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Générateur récursif multiple (MRG)

Nous pouvons généraliser la récurrence du GCL par

xn = (a1xn−1 + · · ·+ akxn−k ) mod m, un = xn/m.

En pratique, on prendra plutôt un = (xn + 1)/(m + 1), ou encore
un = xn/(m + 1) si xn > 0 et un = m/(m + 1) sinon, mais la
structure demeure essentiellement la même.

Si k = 1, nous retrouvons le générateur à congruence linéaire
classique, avec c = 0.

L’état à l’étape n est sn = xn = (xn−k+1, . . . , xn)T .
Espace d’états: Zk

m, de cardinalité mk .
La période maximale est ρ = mk − 1, pour m premier.
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Polynôme caractéristique

On associe au MRG le polynôme caractéristique:

P(z) = zk − a1zk−1 − · · · − ak = −
k∑

j=0

ajzk−j ,

où a0 = −1.

Pour k > 1, pour avoir une période maximale, il est possible de
montrer qu’il suffit d’avoir au moins deux coefficients non nuls,
dont ak . Ainsi, la récurrence la plus économique a la forme:

xn = (ar xn−r + akxn−k ) mod m,

avec 0 < r < k .
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m = 2e

Une erreur fréquente, commise en particulier par les
informaticiens peu au fait des statistiques, est de considérer
m = 2e.

Utiliser une puissance de 2 pour m permet en effet de
facilement calculer le produit ax mod m, et est parfois décrit
comme efficace, ce qui est vrai du point de la rapidité
d’exécution.

Les effets sur la période sont pourtant dommageables, vu que
pour k = 1 et e ≥ 4, on a ρ ≤ 2e−2;
pour k > 1, on a ρ ≤ (2k − 1)2e−1.
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m = 2e: exemple

Si k = 7 et m = 231 − 1, la période maximale est
(231 − 1)7 − 1 ≈ 2217. Mais pour m = 231 on a
ρ ≤ (27 − 1)231−1 < 237, i.e. 2180 fois plus petit!

Pire, si nous nous intéressons au i th bit le moins significatif,
pour k = 1, la période de xn mod 2i ne peut pas dépasser
max(1,2i−2). Pour k > 1, la période de xn mod 2i ne peut pas
dépasser (2k − 1)2i−1.

Fabian Bastin IFT3245



m = 2e: exemple

Récurrence xn = 10205xn−1 mod 215:

x0 = 12345 = 0110000001110012

x1 = 20533 = 1010000001101012

x2 = 20673 = 1010000110000012

x3 = 7581 = 0011101100111012

x4 = 31625 = 1111011100010012

x5 = 1093 = 0000100010001012

x6 = 12945 = 0110010100100012

x7 = 15917 = 0111110001011012.
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m = 2e

De tels générateurs restent populaires, mais sont à proscrire
dans des simulations dignes de ce nom. Ainsi, la fonction
ran48 reste présente dans les librairies C standards BSD.

m a c Source
224 1140671485 12820163 early MS VisualBasic
231 65539 0 RANDU (IBM)
231 134775813 1 early Turbo Pascal
231 1103515245 12345 rand() in BSD ANSI C
232 69069 1 VAX/VMS systems
232 2147001325 715136305 BCLP language
235 515 7261067085 Knuth (1998)
248 68909602460261 0 Fishman (1990)
248 25214903917 11 Unix’s rand48()
248 44485709377909 0 CRAY system
259 1313 0 NAG Fortran/C library
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Générateurs à sous-suites multiples

Afin de pouvoir adéquatement représenter les différentes
variables aléatoires, il peut être intéressants de pouvoir
instancier des générateurs de variables aléatoires à volonté, et
faire évoluer ceux-ci en parallèle, plutôt que d’utiliser un seul
générateur et transformer les tirs dans les distributions voulues
à la volée.

Nous voudrions pouvoir utiliser plusieurs fois un même
générateur au sein d’un programme, mais en débutant avec
des semences différentes afin de produire des suites aléatoires
différentes.
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Générateurs à sous-suites multiples

Une première approche consiste à créer plusieurs générateurs,
en spécifiant manuellement ces semences. Le danger majeur
de cette approche est qu’il est difficile de prévoir la position des
ces semences dans la séquence aléatoire, ce qui peut conduire
à produire des séquences fortement corrélées. Le risque est
d’autant plus élevé que la période du générateur est faible.
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Exemple

Soit X , Y , deux variables aléatoires normales N(0,1)
indépendantes. Il est possible de montrer que le rapport X/Y
suit une distribution de Cauchy.

Générons ce rapport à l’aide du GCL Standard Minimal, avec 1
comme semence au numérateur, et 2 au dénominateur.
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Générateurs à sous-suites multiples

Il est ainsi utile de pouvoir partitionner ces suites (ou “streams”)
en sous-suites.

état
⇓. . . . . . . . . .

début suite prochaine sous-suite prochaine suite
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Sauts entre suites

Pour passer d’une suite à une autre, il est nécessaire de
pouvoir calculer un point de la récurrence sans devoir générer
tous les points intermédiaires. Or, nous pouvons écrire

xn = Axn−1 mod m =


0 1 · · · 0
...

. . .
...

0 0 · · · 1
ak ak−1 · · · a1

xn−1 mod m.

Ainsi

xn+ν = Aνxn mod m = (Aν mod m)xn mod m.
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Sauts entre suites

Nous pouvons précalculer Aν mod m au moyen de la
procédure suivante:

Aν mod m ={
(Aν/2 mod m)(Aν/2 mod m) mod m si ν est pair;
A(Aν−1 mod m) mod m si ν est impair.
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Structure de réseau

Considérons le sous-ensemble de [0,1]t construit à partir des
différents états initiaux possibles du générateur.

Ψt = {u = (u0, . . . ,ut−1) = (g(s0), . . . ,g(st−1)), s0 ∈ S}.
Un critère majeur est que Ψt doit recouvrir [0,1]t très
uniformément, et ce pour “tout” t .

Par généralisation, nous chercherons également à mesurer
l’uniformité de ΨI = {(ui1 , . . . ,uit ) | s0 ∈ S} pour une classe
choisie d’ensembles d’indices de forme I = {i1, i2, · · · , it}. La
récurrence linéaire à la base d’un MRG a comme conséquence
majeure de produire une structure pour l’ensemble Ψt , comme
illustré sur les Figures ?? à ??.
Pour ce faire, considérons un vecteur quelconque (x0, . . . , xk−1) dans
{0,1, . . . ,m − 1}k , et la base canonique de Rk :

{ei , i = 1, . . . , k},
où ei est un vecteur dont les composantes sont toutes nulles, sauf
pour la ie, laquelle vaut 1. Si (x0, . . . , xk−1) = e1 = (1,0, . . . ,0), la
récurrence du MRG donne

(x1, . . . , xk ) = (0, . . . ,ak ),

(x2, . . . , xk , xk+1) = (0, . . . ,ak , a1ak mod m),

(x3, . . . , xk+2) = (0, . . . , (a2
1 + a2)ak mod m), . . .

Si (x0, . . . , xk−1) = e2 = (0,1, . . . ,0), alors

(x1, . . . , xk ) = (1,0, . . . ,ak−1),

(x2, . . . , xk , xk+1) = (0, . . . ,ak−1, (a1ak−1 + ak ) mod m),

(x3, . . . , xk+2) = (0, . . . , (a2
1ak−1 + a1ak + a2ak−1) mod m), . . .

Nous pouvons continuer de la sorte jusqu’à considérer
(x0, . . . , xk−1) = ek = (0, . . . ,0,1), ce qui produit

(x1, . . . , xk ) = (0, . . . ,1, a1),

(x2, . . . , xk , xk+1) = (0, . . . ,1,a1, (a2
1 + a2) mod m), . . . .

Or tout vecteur (xn, . . . , xn+t−1) qui obéit à la récurrence, pour t ≥ k ,
est une combinaison linéaire à coefficients entiers de ces k vecteurs
de base. Pour le voir, notons xi,0, xi,1, xi,2, . . . la suite obtenue à partir
du vecteur de base ei . Un état initial (x0, . . . , xk−1) = (z1, . . . , zk ) peut
s’écrire comme z1e1 + · · ·+ zk ek et produit la suite
z1(x1,0, x1,1, . . . ) + · · ·+ zk (xk,0, xk,1, . . . ) mod m, et réciproquement.
La réduction modulo m se fait en soustrayant des vecteurs mei .
Ainsi, pour t ≥ k , (x0, x1, . . . , xt−1) suit la récurrence si et seulement
s’il s’agit d’une combinaison linéaire à coefficients entiers de

(1,0, . . . ,0, x1,k , . . . , x1,t−1)

...
(0,0, . . . ,1, xk,k , . . . , xk,t−1)

(0,0, . . . ,0,m, . . . ,0)

...
(0,0, . . . ,0,0, . . . ,m).

En divisant par m, on obtient que (u0, . . . ,ut−1) ∈ [0,1)t est dans Ψt
si et seulement si c’est une combinaison linéaire (sur les entiers) de

v1 = (1,0, . . . ,0, x1,k , . . . , x1,t−1)T/m
...

...
vk = (0,0, . . . ,1, xk,k , . . . , xk,t−1)T/m

vk+1 = (0,0, . . . ,0,1, . . . ,0)T

...
...

v t = (0,0, . . . ,0,0, . . . ,1)T .

Si

Lt =

{
v =

t∑
i=1

ziv i | zi ∈ Z

}
est le réseau ayant ces vecteurs pour base, alors Ψt = Lt ∩ [0,1)t .
Les Figures ?? à ?? illustrent les réseaux obtenus à partir de
quelques LCGs.
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