
IFT 3245
Simulation et modèles

Fabian Bastin
DIRO

Université de Montréal

Automne 2012

Fabian Bastin IFT3245



Générateur U(0,1): principe de base

Définir une fonction de transition

f : S → S,

où S est l’espace d’état, de cardinalité finie.

L’état initial: s0. Récurrence:

sn = f (sn−1).

Supposons de plus que f est périodique pour tout n ≥ τ connu
(souvent égal à 0), de période ρ ≤ #S.

Espace de sortie: U = (0,1).

Fonction de sortie
g : S → U

transforme l’état sn dans la valeur de sortie un.
Fabian Bastin IFT3245



· · · f−−−−→ sρ−1
f−−−−→ s0

f−−−−→ s1
f−−−−→ · · · f−−−−→ sn

f−−−−→ · · ·

g
y g

y g
y g

y
· · · uρ−1 u0 u1 · · · un · · ·

Comment choisir f et g?

Buts: grand ρ, bonne uniformité, comportement ”aléatoire”.

Fabian Bastin IFT3245



Générateur congruentiel linéaire (GCL)

Dès 1948 furent introduits des générateurs de la forme

ax + c mod m.

En supposant tout d’abord que c vaut 0 (comme dans
l’approche proposée par Lehmer), la période maximale est
m − 1 et est atteinte si et seulement si m est premier et a est
une racine primitive de m.

r est une racine primitive de m si les puissances de r (1, r , r2,
r3,. . . ) génèrent tous les entiers non-nuls modulo m.

Fabian Bastin IFT3245



Générateur congruentiel linéaire (GCL)

Puisqu’il y a m − 1 entiers non nuls, ceci signifie que les
premières m − 1 puissances de r doivent être différentes,
modulo m.

De manière équivalente, nous pouvons parler de l’ordre de r .
L’ordre d’une racine r de m est le plus petit entier (strictement)
positif x tel que r x = 1 mod m.

r est une racine primitive si son ordre est m − 1. Il est possible
de montrer que ceci équivaut à exiger que a(m−1)/p − 1 est un
multiple de m pour chaque facteur premier p de m − 1, ou
encore le plus petit entier l pour lequel r l − 1 est divisible par m
est l = m − 1.

Fabian Bastin IFT3245



Générateur congruentiel linéaire (GCL)

Les générateurs congruentiels linéaires qui remplissent ces
conditions sont appelés GCL’s multiplicatifs à modulus premier.

Notons que la condition m premier suffit pour garantir
l’existence d’un générateur de période maximale, en vertu du
théorème ci-dessous.

Théorème.
Si m est premier, il existe une racine primitive pour m.

Il n’existe malheureusement pas de méthode simple pour
calculer ces racines.

Fabian Bastin IFT3245



GCL: exemple

Si m = 7, alors 3 est une racine primitive de m car les
puissances de 3 modulo 7 sont 1, 3, 2, 6, 4, 5, c’est-à-dire
chaque entier strictement compris entre 0 et 7. Mais 2 n’est
pas une racine primitive de m car les puissances de 2 modulo 7
sont 1, 2, 4, 1, 2, 4, 1, 2, 4,. . .

Fabian Bastin IFT3245



Générateur congruentiel linéaire (GCL)

Si c 6= 0, il est possible d’obtenir une période égale à m, sous
les conditions exposées dans le théoréme ci-dessous. Le GCL
a une période pleine si et seulement si les trois conditions
suivantes tiennent:

1 le seul entier positif qui divise de manière exacte à la fois
m et c est 1;

2 si q est un nombre premier qui divise m, alors q divise
a− 1;

3 si 4 divise m, alors 4 divise a− 1.

Fabian Bastin IFT3245



Générateur standard minimal

Exemple.
Park et Miller ont proposé un générateur standard qu’ils ont
appelé le Standard Minimal générateur Standard Minimal,
aprés avoir testé divers générateurs connus au moment de leur
étude.

Bien qu’il suffise pour les applications simples, les générateurs
présentés dans les sections suivantes le surpassent largement,
et par conséquent, il est déconseillé de l’utiliser pour des
simulations complexes.

Le Standard Minimal est un générateur congruentiel linéaire
défini par la récurrence

xn+1 = 16807xn mod (231 − 1).

Fabian Bastin IFT3245



Implantation de générateurs congruentiels linéaires

Une difficulté principale est de calculer ax mod m pour de
grands m, ce qui entraı̂ne des risques de débordement de
registres.

Première approche. Factorisation approximative.

Cette méthode est valide si

a2 < m

ou
a = bm/ic,

avec i2 < m, et procède par des calculs sur des entiers.

Fabian Bastin IFT3245



Factorisation approximative

Précalculons q = bm/ac et r = m mod a, puis

y = bx/qc;
x = a(x − yq)− yr .

Si x < 0, nous posons x := x + m. Justification:

ax mod m = (ax − bx/qcm) mod m
= (ax − bx/qc(aq + r)) mod m
= (a(x − bx/qcq)− bx/qcr) mod m
= (a(x mod q)− bx/qcr) mod m.

Sous les conditions posées, il est immédiat de noter que toutes
les quantités intermédiaires demeurent entre −m et m.

Fabian Bastin IFT3245



Factorisation approximative: implantation

En C, la procédure peut s’exprimer comme suit:

long q, r, y;

q = m/a;
r = m%a;

y = x/q;
x = a*(x-y*q)-y*r;

if (x < 0) x += m;

Fabian Bastin IFT3245



Calculs en point flottant, double précision.

La procédure est valide si tous les entiers à considérer peuvent
être représentés de manière exacte en passant en calcul
flottant. En particulier, si la double précision fait appel à 64 bits,
et suit la norme IEEE, la procédure suivante est correcte si
am < 253:

double m,a, x , y ; int k ;
y = a ∗ x ; k = by/mc; x = y − k ∗m;

Fabian Bastin IFT3245



Décomposition en puissances de 2.

Supposons que a = ±2q ± 2r et m = 2e − h pour h petit. Dans
ce cas,

ax mod m = ±2qx mod m +±2r x mod m.

Pour calculer y = 2qx mod m (le calcul de 2r x est similaire),
nous décomposons x en x0 + 2e−qx1.

x = x1 x0

q bits (e − q) bits

Fabian Bastin IFT3245



Décomposition en puissances de 2.

Pour h = 1 (Wu, 1997), on obtient y en permutant x0 et x1. En
effet,

2qx mod m = 2q(x0 + 2e−qx1) mod (2e − 1)
= 2qx0 + [2ex1 mod (2e − 1)]
= 2qx0 + x1.

Fabian Bastin IFT3245



Décomposition en puissances de 2.

Pour h > 1 (L’Ecuyer et Simard 1999), nous avons de la même
manière

y = 2q(x0 + 2e−qx1) mod (2e − h) = (2qx0 + hx1) mod (2e − h).

Si h < 2q et h(2q − (h + 1)2−e+q) < m, comme x0 ≤ 2e−q et
x1 ≤ 2q, nous avons

2qx0 ≤ 2e − 2q < m.

De plus, étant donné que 2e−qx1 ≤ m − 1, nous avons

hx1 ≤ h(m−1)/2e−q = h(2e−h−1)/2e−q = h(2q−(h+1)2−e+q) < m,

et par conséquent chaque terme est strictement inférieur à m.
L’opération modulo revient dès lors à soustraire m si la somme
est ≥ m.

Fabian Bastin IFT3245



Décomposition en puissances de 2: implantation

#define m 1073741789 /* 2ˆ30 - 35 */
#define h 35
#define q 15
#define emq 15 /* e - q */
#define mask1 32767 /* 2ˆ(e-q) - 1 */
#define r 13
#define emr 17 /* e - r */
#define mask2 131071 /* 2ˆ(e-r) - 1 */
#define norm 1.0/m

long x;

Fabian Bastin IFT3245



Décomposition en puissances de 2: implantation

double axmodm () {
unsigned long k, x0, x1;

x0 = x & mask1;
x1 = x >> emq;
k = (x0 << q) + h*x1;

x0 = x & mask2;
x1 = x >> emr;
k += (x0 << r) + h*x1;

if (k < m) x = k;
else if (k < 2*m) x = k-m;
else x = k - 2*m;

return x*norm;
}

Fabian Bastin IFT3245



Décomposition en puissances de 2.

L’Ecuyer et Simard ont toutefois démontré que ces générateurs
présentent des faiblesses statistiques s’ils sont utilisés de
manière directe.

Fabian Bastin IFT3245


