
Eurographics Symposium on Geometry Processing 2025
M. Attene and S. Sellán
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 5

One-Shot Method for Computing Generalized Winding Numbers

C. Martens and M. Bessmeltsev

Université de Montréal, Canada

(d)(b) (c)

-0.7

0

0.5

1

1.5
1.8 (a)

Figure 1: We propose a novel one-shot method for generalized winding number computation that does not require discretization of the
surface. Our method only uses the boundary of the surface and a single ray-surface intersection test. This focus on the boundary allows
us to compute winding numbers for 2D parametric curves (a) on a regular grid of query points significantly faster than the state of the
art. In 3D, we can compute a winding number for a parametric surface (b, Coons patches, c, minimal surfaces) without discretizing it. For
both parametric surfaces (b,c) and meshes (d), for some boundaries our method can improve the performance over standard methods while
staying exact. Piggy Bank mesh with minor modifications by belch.

Abstract
The generalized winding number is an essential part of the geometry processing toolkit, allowing to quantify how much a given
point is inside a surface, even when the surface has boundaries and noise. We propose a new universal method to compute
a generalized winding number, based only on the surface boundary and the intersections of a single ray with the surface,
supporting any oriented surface representations that support a ray intersection query. Due to the focus on the boundary, our
algorithm has a unique set of properties. For 2D parametric curves, on a regular grid of query points, our method is up to 4×
faster than the current state of the art, maintaining the same precision. In 3D, our method can compute a winding number of a
surface without discretizing it, including parametric surfaces. For some meshes with many triangles and a simple boundary, our
method is faster than the hierarchical evaluation of the generalized winding number while still being precise. Similarly, on some
parametric surfaces with a simple boundary, our method can be faster than adaptive quadrature. We validate our algorithms
theoretically, numerically, and by demonstrating a gallery of results on a variety of parametric surfaces and meshes, as well
uses in a variety of applications, including voxelizations and boolean operations.

CCS Concepts
• Computing methodologies → Shape analysis; Parametric curve and surface models;

1. Introduction

For meshes, parametric surfaces, and point clouds, even represent-
ing open, noisy, and non-manifold geometry, the notion of gener-
alized winding number captures how much a point is inside the
surface [JKS13, BDS∗18] (Fig. 2). Generalized winding numbers
are used in a variety of applications, including tetrahedral meshing
[HZG∗18], surface reconstruction [XDW∗23], and medical imag-
ing [BFP∗11], to name a few.

The standard methods of computing generalized winding num-

bers calculate the area of the surface projected onto a unit sphere.
We propose an alternative method to compute the generalized
winding number. Our main insight is that for any surface, with or
without boundary, computing a generalized winding number at a
point requires the surface boundary only and intersections of the
surface with a single ray. We furthermore show that in typical sce-
narios, when processing multiple query points, one can use less
than one ray per query point on average, significantly reducing time
complexity.

Our method is generic and can be applied to various geome-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://orcid.org/0009-0005-6866-8159
https://orcid.org/0000-0002-8864-2934
https://www.thingiverse.com/thing:104734

2 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

try representations, in 2D or 3D. The elegance lies in its univer-
sality: just like a standard ray tracing pipeline, our method is ex-
actly the same for different surface representations, such as meshes
or parametric surfaces, and encapsulates the representation com-
pletely within a ray-surface intersection test. Due to our method’s
focus on the boundary, the performance of our method does not
depend much on the complexity of the surface and instead excels
when the boundary is simple. For example in 2D, when the bound-
ary of a set of parametric curves is just a set of points, our method,
when run on a regular grid of query points is up to 4x faster than
the state of the art. Similarly, for challenging parametric surfaces
with a planar boundary (Fig. 17), on a similar arrangement of query
points, our method is significantly faster than the standard inte-
gration method, adaptive quadrature, while maintaining the same
precision. For meshes with few boundary edges, in typical appli-
cation scenarios such as voxelization, our method can be signifi-
cantly faster than the hierarchical evaluation of the winding num-
ber [JKS13]. While an approximation can be computed more ef-
ficiently [BDS∗18], our computation is significantly more precise.
The regular grid of query points allows us to reuse the same ray
intersection for many points, saving computations. We addition-
ally show that the key components of our method, including the
ray-surface intersection, can be done exactly via a convex Sum-of-
Squares formulation [MZPS21], making the computations exact if
so desired.

We showcase our method on a wide variety of standard tasks for
generalized winding numbers for all these representations (Sec. 7),
in 2D and 3D, including parametric Coons patches and Bézier
curves and triangles. We extensively validate our method by both
formally showing it is equal to the generalized winding number and
validating its numerical precision and performance in numerous
experiments, as compared to the state of the art methods includ-
ing [JKS13, BDS∗18, SGW24] and adaptive quadrature (Sec. 7).
An application of our method is to piecewise minimal surfaces on
3D curve networks, collections of 3D curves forming one or multi-
ple loops (Fig. 1), typical for (VR/AR) contexts [Goo23, GHL∗20]
(Fig. 11). We apply our method to compute a winding number of
piecewise minimal surfaces by expressing them in a parametric
form via Boundary Element Method (BEM). Our method allows
us to avoid discretizing these surfaces.

Our contributions are:

• demonstrating that a computation of generalized winding num-
ber requires boundary-only operations and finding intersections
of a surface with a single ray and that the same ray can be reused
for multiple query points,

• a new method of computing generalized winding number based
on this observation, enabling state-of-the-art performance for 2D
parametric geometry on a regular grid of query points, and show-
ing performance improvements for some 3D parametric surfaces
and meshes.

2. Related Work

Winding Numbers. The classical concept of a winding number,
originally defined for a closed curve [Mei69] and easily general-
izable to closed surfaces, is one of the topics in complex anal-
ysis [Nee97]. [JKS13] generalized winding numbers to polylines

(a) (b) (c)

0

1

2

(d)

Figure 2: Just like meshes, parametric surfaces also often con-
tain gaps and overlaps, either intentional for tight alignment af-
ter manufacturing (a) or unintentional due to modelling defects.
At the same time, precision is paramount for parametric surfaces,
especially when parts are designed to touch (b). Discretizing such
surfaces is often undesired, as it may introduce new artifacts (c).
Our method can compute winding numbers precisely without sur-
face discretization (d). Truck by Toru Odazawa.

and meshes, including the ones with boundary. They also propose
an efficient algorithm to compute the generalized winding num-
ber that empirically has a time complexity of O(F0.55), where F is
the number of triangles. Later, winding numbers have been further
generalized to, among other representations, point clouds and tri-
angle soups [BDS∗18]. The method of [BDS∗18] can also serve as
a very efficient approximation for meshes, achieving O(logF). Un-
der simple assumptions, on meshes our algorithm has a time com-
plexity between those two, while still being exact (Sec. 7). More
importantly, these methods target discretized geometry; applying
them to parametric surfaces leads to loss of precision (Fig. 16).
Our method can be applied to parametric surfaces directly yielding
exact winding numbers. Finally, [FGC23b] extended the definition
to curves on discrete surfaces.

Our method computes a generalized winding number of a sur-
face in any representation that supports ray intersection queries,
such as parametric surfaces or meshes. A recent work [SGW24]
offers a practical method of finding a generalized winding number
for a rational curve in 2D; their technique cannot be easily extended
into 3D. In contrast, we propose a general method for any surfaces
or curves supporting ray intersections, including parametric or dis-
crete geometry in 2D and 3D. We compare with their method in 2D
in Sec. 7.

A closely related concept is a solid angle, which for a surface
is defined as generalized winding number (without normalization)
modulo 4π, so it does not measure the number of turns the surface
makes around a point, nor does it change under a flip of surface
orientation [FGC23a]. We are focusing on the full winding number,
the signed solid angle, that includes the multiplicity and depends
on the orientation. The solid angle can be similarly defined and
effectively computed for a space curve [Kno18, CI24, BA18]. Note
that in 3D we always compute a winding number of a surface, albeit
sometimes not discretized.

Ray Casting. Our work is influenced by works on ray casting to
voxelize shapes [NT03, HBW03]. The surfaces they focus on have
no true boundary, albeit might be composed of multiple compo-
nents due to noise, so they perform an inside-outside test; ours may

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://grabcad.com/library/trailer-head-1

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 3 of 15

-1

-0.5

0

0.5

1

Winding Number Field in 2D

Figure 3: In two dimensions, the winding number is the sum of the
signed subtended angles of the curve.

have a boundary, so the definition of insidedness is not binary and
is better captured by the notion of generalized winding number.

3. Background

We start by defining a generalized winding number for a smooth
oriented curve C in 2D and an oriented surface M in 3D, open or
closed. Both the theory and the method we propose apply equally to
piecewise smooth curves or surfaces. We only use smoothness for
the simplicity of exposition. For brevity, later in the text we write
‘winding number’ instead of ‘generalized winding number’.

In 2D, a winding number at a point p ∈ R2 \C is defined via the
subtended angle θ of the curve C:

wC(p) =
1

2π

∫
C

dθ(p).

In 3D, for a given surface M, the winding number at a point
p ∈ R3 \ M is defined as the integral of the differential solid angle
dΩ(p) subtended at p [BDS∗18]:

wM(p) =
1

4π

∫
M

dΩ(p).

In the article we focus on the 3D case for brevity; our algorithm
works in both 2D and 3D, as we demonstrate in Fig. 1 and Sec. 7. In
both the theory and the algorithm we consider the winding number
to be undefined when p ∈C or p ∈M.

An equivalent formulation of the winding number, which we use
as the starting point for our method, is the number of signed inter-
sections of rays with the surface over all directions [JKS13]:

wM(p) =
1

4π

∫
q∈S2

p

χ(q)dA, (1)

where S2
p is a unit sphere centered at p, and χ(q) is the number of

signed intersections between ray −→pq and M. By ‘signed intersec-
tions’ we mean that an intersection is counted as +1 when the ray
is intersecting from the back of the surface, i.e., the ray is aligned
with the surface normal, and as −1 when it is intersecting from the
front. So formally,

χ(q) = ∑
j

Sign(−→pq ·n(r j)), (2)

(a) (b)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: Our method is compatible with oriented surfaces of ar-
bitrary genus. We show a torus (a) with genus 1, and a (4,3)-torus
knot with genus 3 (b). Surface boundaries are highlighted in black.

where r j are all the intersection points of a ray −→pq with the sur-
face, and n(r j) are the corresponding normals. We refer to χ as the
number of signed intersections.

4. Algorithm

The input to our algorithm is an oriented manifold surface M of
arbitrary genus (Fig. 4), with or without boundary ∂M. We first
describe a generic algorithm, then clarify its implementation for
parametric and discrete surfaces in Sec. 5.1.

In this section we outline our basic algorithm that uses multiple
rays for a query point. Later (Sec. 5), we build upon it and describe
a significantly faster one-shot algorithm, which uses a single ray
for multiple query points.

4.1. Computing the Winding Number

Our goal is to compute the winding number at a point p ∈ R3, i.e.,
evaluate the integral in Eq. 1 using the boundary ∂M. Computing
χ(q) for a single q includes finding all intersections of a ray −→pq
with a potentially non-discretized surface — a rather expensive op-
eration (Sec. 6.2). Therefore, evaluating the integral naïvely is in-
feasible, as it requires many such ray-surface intersections. Instead,
our main observation is the following lemma, a corollary of a more
general and technical proposition we prove in Appendix A:

Lemma 4.1 Let M ⊂ R3 be a smooth surface with a boundary ∂M.
Let S2

p be a unit sphere centered at p ∈ R3, and let the projection
of ∂M onto S2

p split the sphere into open regions Ai. Then for each
i there is a constant χi ∈ Z such that χ(q) = χi almost everywhere
in each Ai ∋ q.

The lemma is illustrated in Fig. 6. Intuitively, this means that χ is
constant within each region, except maybe for a few isolated curves

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

4 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

(a) (b) (c) (d)

Figure 5: Overview of the basic algorithm: Given a surface with a
boundary (a), we project the boundary onto a unit sphere around
the query point (b, blowup in c). The boundary splits the surface of
the sphere into regions (d). We shoot a single ray through each of
those regions, and compute the number of signed intersections χi
of each ray with the surface.

+1
-1

+1

+1

-1

+1

Start

End

(a) (b)

A1

Start

A2

End

+1

-1
+1

+1

-1

+1

Figure 6: We define χ for a ray as the number of signed intersec-
tions (Eq. 2) (a). The value of χ is constant in each region, A1 and
A2, formed by projecting the curve endpoints onto a unit circle.
Note that this holds even if the curve is self-intersecting.

or points. In the figure, we show the 2D example: the surface M be-
comes a curve, the boundary of M is now a pair of endpoints; their
projections onto the unit circle split it into two regions A1 and A2.
The lemma states that even though the number of unsigned inter-
sections may change over each region Ai on the sphere, the number
of signed intersections is a constant within each region (except for
some special points, see below). We denote that constant as χi. The
projection of the boundary itself has measure zero, thus we do not
need to define χ(q),q ∈ ProjS2

p
∂M, as these values do not influence

the integral. The lemma therefore allows us to rewrite Eq. 1 as a
discrete sum:

wM(p) =
1

4π
∑

i
AreaS2

p
(Ai)χi. (3)

p

The technical detail ’almost everywhere’ in the
formulation of the lemma refers to the points q
where the rays −→pq are tangent to the surface at a
contact point (see inset). The set of such points,
however, has measure zero, so they do not affect
the integral.

The observation captured in this lemma significantly simplifies

(a) (b)

Figure 7: For a given query point and a unit sphere around it, the
projection of the boundary of a surface patch splits the sphere into
two ((a), the blue ‘inside’ and the beige ‘outside’) or more regions
(b) Ai with a constant number of signed intersections χi. Blue is
the ‘front’ of the surface, i.e., the side with the positive normal; the
boundary is oriented accordingly.

our algorithm. Now we can shoot one ray per region Ai, compute
the number of signed intersections χi, and sum their contributions
multiplied by the region area AreaS2

p
(Ai). Considering that num-

ber of regions is typically small, this leads to an efficient algo-
rithm: project the boundary onto the sphere (Fig. 5c), decompose
the sphere’s surface into regions, compute their areas, shoot a sin-
gle ray through each one and compute χi (Fig. 5d). Therefore, our
method is compatible with all oriented surface representations that
support ray-intersection queries and represent boundaries as con-
tinuous curves. Examples of unsupported representations include
oriented point clouds and NeRFs [MST∗21], as they neither pro-
vide explicit ray-intersections nor represent boundaries as continu-
ous curves.

If the curve network has no boundary, i.e., represents a closed
manifold, then the sphere only has one region A1, so we compute
only one χ1. Such manifolds divide the space into ‘inside’ and ‘out-
side’ (see Jordan–Brouwer separation theorem [GP10]), so in this
case our algorithm is equivalent to a simple inside-outside ray cast-
ing test.

For a compact manifold with boundary, the projection of the
boundary ProjS2

p
∂M on the unit sphere S2

p divides the surface of the
sphere into two or more regions Ai. For example, for a surface with
a single boundary, ProjS2

p
∂M divides the sphere into exactly two re-

gions if the boundary projection has no self-intersections, and more
if it has (Fig. 7).

5. One-shot algorithm

Performing ray-surface intersection tests is still rather expensive,
so we would like to minimize their number. Our key observation
enabling an efficient algorithm is the following lemma:

Lemma 5.1 For two regions i, j adjacent across a common edge,
|χi−χ j|= 1.

Indeed, crossing the projection of the boundary ∂M means one
of the regions has an additional intersection with M (Fig. 8). This
lemma is also a direct corollary of the proposition in Appendix
A. By ‘adjacent along a common edge’ we mean that two regions

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 5 of 15

(a)

1

2 0

-1
-1

(b)

Figure 8: (a) Between two adjacent regions on the sphere, χ can
only change by +1 or -1. In this example, as the ray moves from the
bottom ray to the top ray, passing from one region on the sphere to
the other, the number of unsigned intersections changes from 2 to
1, and χ changes from 0 to 1. (b) An example of regions and their
χ values: For each region, χ is a constant. Furthermore, any two
regions i, j adjacent across a segment have |χi−χ j| = 1. Finally,
for a correctly oriented boundary curve, the normals always point
towards increasing χ.

touching only at a common point do not follow that property. For
instance, in Fig. 8, while the χ= 0 and 1 regions are adjacent across
edges and thus follow the lemma, the χ = 1 and χ = −1 regions
only share a common point, so |χi−χ j|= 2.

If we could know the sign of that difference for every pair of
adjacent regions, computing all χi would be trivial once we know
the value of χ for at least one region. To determine the sign of the
difference χi j := χi−χ j, we orient the in-plane normals to the pro-
jected boundary curve (Fig. 8) so that they always point towards a
higher χ value. We observe that these normals are changing contin-
uously along the projected curve boundary across the intersections
(Fig. 8), and are always making a left turn with respect to the pro-
jected curve tangent. Therefore, we define these normals simply as
nS2

p
(s)× τ(s).

We first need to compute χi for exactly one arbitrary region. We
heuristically choose the largest region i = argmax jArea(A j) and
compute χi using the ray intersection procedure (Sec. 6.2), using
an arbitrary point q within a region. For many points the largest
region contains no intersections (e.g., Fig. 8), so most likely a ray
intersection test will return quickly.

If we find at least one intersection, we additionally test whether
the ray is tangent to the surface at one of those points. If it is, we ig-
nore the ray, because it is a point of contact rather than an intersec-
tion, so the number of intersection points for this ray is unreliable,
and choose a different random ray through the region. We test this
by verifying |−→pq · n| > ε, where n is the surface normal. For BEM,
we use ε = 10−2; for parametric geometry and meshes, ε = 10−12.

Once all the pairwise differences χi j are known for all adjacent
regions i, j, with a similar approach to [ZGZJ16], we can represent
adjacency between the regions as a directed graph, where each re-
gion becomes a vertex, and each pair of adjacent regions i, j gets
two edges i→ j and j→ i, associated with χi j and χ ji, respectively.
Since it is a connected graph, knowing χi for a single ’seed’ vertex i

is enough to compute all the other χ j. We therefore use breadth-first
search on the graph starting from i and fill in all the other values of
χ j, which completes our algorithm. Note that the typical number
of regions, and therefore graph vertices, is fewer than 5, so this is
essentially instantaneous.

Optimization. We further observe that once we know all the
intersections along the ray −→pq, we can immediately compute the
winding numbers for all the points along that ray without any more
intersection tests. More precisely, once we compute all the ray pa-
rameter values t j where it intersects the surface, we know χ for any
point with parameter t along that ray by only counting the intersec-
tions with t j > t. Thus, for every point along that ray, we only need
to perform the decomposition into spherical regions to compute its
winding number.

This optimization allows us to very efficiently compute wind-
ing numbers in some typical scenarios. For instance, for all points
in a planar slice of an object (Fig. 19), where we only need to
shoot min(W,H) rays for a W by H pixel image. Similarly, to com-
pute voxelizations of resolution N3, we only need to shoot N2 rays
(Fig. 12). In those scenarios, this technique allows us to compute
winding numbers using fewer than one ray per point on average.

Algorithm 1 One-Shot Generalized Winding Number

1: function WINDING NUMBER(p,C) ▷ p ∈ R3, C is a closed
curve

2: C′ = Project ∂C onto S2
p

3: {An} = IdentifyRegions(C′)
4: i← argmax Area({An})
5: q← NonTangentRay(Ai)
6: {rk, tk,nk}← Intersect(−→pq) ▷ rk ∈Ω, tk ≥ 0,nk ∈ R3

7: χi← ∑k Sign(nk ·−→pq) ▷ Eq. 2
8: {χi j}← PairwiseDifferences({An})
9: {χ j}= BFS({χi j}, i)

10: return 1
4π ∑ j χ j ·Area(A j) ▷ Eq. 3

11: end function

5.1. Implementation Details

To implement this generic algorithm, we need three main pro-
cedures: finding intersections between boundary curves projected
onto the unit sphere, ray-surface intersection, and computing areas
on the sphere.

Meshes. For meshes, we find ray-mesh intersections using a k-d
tree; areas are computed using the spherical polygon area formula
as simply A = 2π−∑i(αi− π), where αi are the interior angles.
Finally, we identify regions by computing a surface arrangement
on the sphere by first finding intersections between polylines on
a sphere, which can be done using a Surface Sweep Algorithm.
For a maximum constant number of intersection points, its time
complexity is O(B logB) [BCKO08], where B is the number of
mesh boundary segments. All in all, the asymptotic time complex-
ity of our algorithm is O(B logB+ logF) for a single query point.
For such scenarios as voxelization, however, the ray intersection is
done only once for many query points, so the time complexity for
meshes isO(B logB+ 1

max(W,H)
logF) per point, which for meshes

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

6 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

0

0.5

1

Figure 9: The results of our one-shot algorithm on meshes. Camel
head mesh [Sor05], Vase by virtox.

with B≪ F is faster than the state-of-the-art exact winding number
computation with the empirical complexity of O(F0.55) [JKS13].
Note that while [BDS∗18] computes a much faster approximation,
our algorithm computes exact winding number.

Parametric Surfaces. For surfaces made out of parametric
patches, such as Coons patches, Bézier patches or triangles, or
NURBS patches, we can compute the winding number without sur-
face discretization as follows. Starting with the problem of ray-
parametric patch intersection, let us take a Bézier triangle as an
example, which in essence is a low-degree polynomial f (u,v) with
a simplex u,v > 0,u+ v < 1 as the parametric domain.

Then for a given ray O + tR, where O,R ∈ R3, t > 0, we can
formulate the following optimization problem that finds the first
intersection along the ray:

min
u,v,t

t

s.t. f (u,v) = O+ tR

u,v, t ≥ 0

u+ v≤ 1.

(4)

In practice, we use a nonlinear solver to find intersections. We
express the ray-surface intersection test as an equation f (ξ)+(q−
p)t = 0, which we solve numerically for t ≥ 0,ξ ∈ Ω, finding all
roots. We first can compute an axis-aligned bounding box of a
parametric patch, then intersect it with each ray, giving tmin and
tmax; box’s diagonal is D. If the parametric surface has no self-
intersections, we then compute all roots by dividing the interval
[tmin, tmax] into a number of subintervals (in our implementation,
we use max(2,30 tmax−tmin

D) and initializing the solver with the mid-
dle of each subinterval. We then consider the roots duplicate, if the
distance between them is less than the accuracy of the solver. Note
that for polynomial patches one can use specialized techniques such
as ‘pencil of a matrix’ [XBC19]. We do not assume that surfaces
are polynomial, so in our 3D implementation we use a generic non-
linear solver instead.

-0.5
0

1

2

3.2(a)

(b)

0

0.5

1

1.5

Figure 10: Additional results on parametric surfaces: a spiral with
high winding numbers (a) and a non-manifold boat with Coons
patches (b)

.

We discretize the boundary of a parametric surface and compute
region decomposition using polyline intersection algorithm, simi-
lar to the mesh case. Unlike surface discretization, however, this
boundary discretization may lead only to minor differences in the
final winding number close to the boundary (Sec. 7).

To find a point within a spherical region, we
first compute the Euclidean centroid of the region,
which, due to the convexity of the sphere, lies in-
side the sphere. We project it onto the sphere (in-
set, white circle) and connect it to an arbitrary
point (one of the black crosses) along the region boundary via a
geodesic, i.e., great circle. We then choose the middle of some
great circle arc that is inside the polygon (inset, white star), test-
ing whether an arc is inside using the orientation of the boundary
curve tangents at the arc’s endpoints. Note that by construction the
circle will necessarily either intersect the region boundary or be
tangent to it. If it is tangent, we choose another arbitrary boundary
point and repeat the procedure.

Multiple Boundaries. In the case that the surface has multiple
disconnected boundaries, we project all the boundaries in a single
spherical arrangement.

Exact Computations. For parametric geometry, our pipeline en-
ables exact computation of the winding number. As we show in Ap-
pendix C, the intersection problem (Eq. 4), as well as the problems
of intersecting two parametric curves, such as Bézier, and finding
their self-intersections, can be relaxed into Sum-of-Squares (SOS)
formulations [MZPS21], which then yield convex problems solv-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://www.thingiverse.com/thing:126567

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 7 of 15

(a) (b) (d)(c)

Figure 11: Curve networks can, depending on the context, repre-
sent different surfaces, such as (a) parametric patches [BWSS12],
(b) minimal surfaces [WC21], [Web19] (c) other PDEs [NISA07],
or (d) more complex surfaces [YAB∗22].

able by standard semidefinite programming (SDP) solvers. This re-
laxation is tight, yielding exact recovery in almost all cases (Sec. 7,
[MZPS21]). All these techniques, as shown in [MZPS21] are easily
extendable to arbitrary NURBS patches. In this case, for exactness,
instead of sampling a point within the largest region on the sphere,
we sample a random point on the sphere and perform a point loca-
tion within the spherical region decomposition, which can be done
exactly. SOS optimization, however, is slow (see Sec. 7). Finally,
for a region bounded by a parametric curve γ(s) : [0,L]→ S2

p pro-
jected onto the unit sphere, using Gauss-Bonnet theorem, we can
compute the area inside the curve as A = 2π−

∫ L
0 kg(s), where kg

is the geodesic curvature of the boundary. Note that for most para-
metric boundaries, including Bézier curves, this integral has to be
evaluated numerically.

6. Curve Networks

In this section, we demonstrate an application of our algorithm de-
termining winding number of a curve network (Fig. 12, 19), where
each patch satisfies a known linear PDE. In the following, we fo-
cus on the Laplace’s equation for the simplicity of exposition; our
method can be generalized to any PDE where Boundary Element
Method is applicable, such as Poisson equation, biharmonic equa-
tion, or others.

6.1. Preprocessing

Given an input curve network composed of polylines, we use the
method of [ZZCJ13] to detect loops, consisting of input curve seg-
ments. We then identify boundaries as segments adjacent to only
one loop. If the surface is an orientable 2-manifold, we then consis-
tently orient the loops via breadth-first search such that each non-
boundary curve segment is traversed once in each direction. This
procedure detects if the surface is not a manifold, in which case we
compute a winding number as a sum of winding numbers of each
manifold patch.

6.2. Ray-Surface Intersection

We need to find a point on the ray −→pq that satisfies the boundary
value problem for a linear PDE for each coordinate (x,y,z).

We formulate the Dirichlet problem for Laplace’s equation for
x : Ω⊂ R2→ R:

∆x = 0

x|
∂Ω

= x̃,
(5)

Figure 12: The results of our algorithm on closed curve networks,
surfaces with minimal surfaces, with our one-shot algorithm. Vox-
els with a GWN of 1 are occupied and those with a GWN of 0 are
left empty.

where x̃ is the given curve loop x coordinate. For simplicity, for the
examples we set Ω = [0,1]2. Solutions to this problem are related
to minimal surfaces [MP12].

Here we follow the Boundary Element Method (BEM) with col-
location [LaF06]. We express the surface as a smooth map f :R2→
R3, where each coordinate of f (ξ) = (x,y,z) is the solution to the
corresponding boundary value problem (Eq. 5). In BEM, a repre-
sentation formula states that the solution of the linear differential
equation at a point ξ ∈Ω is expressible as a boundary integral over
Γ = ∂Ω, which converts our surface into parametric form:

f (ξ) =
∫

η∈Γ

G(ξ,η)
∂ f (η)

∂n
− ∂G(ξ,η)

∂n
f (η)dΓ, (6)

where G(ξ,η) is the fundamental solution of the PDE, and n is the
outwards normal of Γ (See Appendix B).

We discretize the integrals in Eq. 6 using constant boundary el-
ements, and numerically integrate for each polyline segment using
trapezoid integration. To find Neumann boundary conditions, i.e.,
the normal derivative ∂ f (ξ)

∂n

∣∣∣
Γ

, we use the Dirichlet boundary con-
ditions, which are the curve loop’s coordinates, and solve a dense
linear system [LaF06] via Cholesky decomposition.

Once both boundary conditions are known, we apply our method
using the representation formula in Eq. 6 as a parametric form. We
further optimize the process by observing that a minimal surface
is contained inside a bounding box of the boundary x̃ due to the
maximum principle. We can therefore easily compute the minimum
and maximum possible t values tmin, tmax by intersecting the ray
with the axis-aligned bounding box, improving performance.

7. Validation and Results

We implemented our method in C++ with Eigen [GJ∗10],
sphericalpolygon library [Li20] for areas, and GNU Sci-
entific Library’s [GDT∗96] implementation of Powell’s Hybrid
method as a nonlinear solver for intersection with parametric ge-
ometry.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

8 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

=
=

∪
∩

-0.7
0

1

2

Figure 13: Winding numbers enable boolean operations on curve
networks. Here ‘set union’ is sum of winding numbers and ‘inter-
section’ is the pointwise product.

Throughout the paper, we demonstrate the results of our one-
shot winding algorithm on various 2D parametric curves, paramet-
ric surfaces (a set of Coons patches in Fig. 1 a and 10b, extrusion
surfaces in Fig. 2d,10a), meshes (Fig. 1c, 9), and curve networks
with minimal surfaces (Fig. 1b, 19). We demonstrate surfaces with
boundary, because without boundary our method is a trivial inside-
outside test. The boundaries on the curve networks are selected
manually. In Fig. 12, we show a typical application of winding
numbers, a voxelization of the volume enclosed inside the curve
network, computed without discretizing the surfaces. We consider
a voxel inside if its center has a winding number≥ 0.5. We demon-
strate boolean operations in Fig. 13. To compute the ‘set union’, we
add the winding numbers; to compute ‘set intersection’, we multi-
ply them pointwise.

2D Parametric Geometry. We first evaluate the performance
and precision of our method on 2D parametric geometry. As a test,
we randomly generate cubic Bézier curves (N=1000) with control
points in the unit square. For each curve, we compute a winding
number for each point of a regular grid (250× 250) in the curve’s
bounding box (Fig. 14).

We compare our performance with the 2D state-of-the-art
method [SGW24]. For any query point outside the bounding box,
we use the same closure property as [SGW24], so our performance
on those points is identical. Inside the bounding box, on a reg-
ular grid of query points, however, our method performs signifi-
cantly faster (up to 4×), as we only need to perform subdivisions
for one ray per row due to our one-shot strategy. Furthermore,
in this setup, our algorithm is more precise: We obtain 0 ‘mis-
classified’ points (winding number error above 10−10 compared
to the ground truth) with a threshold of 10−7. Our method takes
5074ms,while [SGW24] takes 20131ms and produces 47 misclas-
sified points.

For random query points, without a regular grid, we cannot reuse
the rays and have to shoot a new ray for each query point. In this
case, our method is roughly 2x slower for the same accuracy com-
pared to [SGW24]. On the same test set, per uniformly sampled
query point in the bounding box, our method takes 0.08µs, while
their method takes 0.038µs. We underline, however, that regularly
sampled grids of query points are quite common in some applica-
tions, including voxelization in 3D or visualization in 2D/3D.

Parametric Surfaces. We validate the accuracy of our one-shot
winding number computation for a discretized boundary and com-
pare it with the accuracy of the hierarchical winding number algo-

rithm (HWN) [JKS13] and [BDS∗18] that use a mesh (Fig. 16). As
as simple test case, we took a randomly generated Bézier triangle,
generated 104 query points evenly in an arbitrary slice, and plotted
maximum and mean ℓ2 (RMSE) errors in a logarithmic scale of
our method and theirs as functions of the number of boundary sam-
ples and mesh vertices, respectively. For the mesh-based methods,
we meshed the parametric domain with a regular triangle mesh.
The horizontal axis indicates the number of boundary edges for our
method and their mesh (bottom), and the corresponding number of
faces (top).

Even with a small number of boundary edges, our method is
quite precise. Both mesh-based methods, until a certain refinement
level, have large maximum errors close to the surface: Each time a
query point is on one side of the parametric surface and on the other
of the mesh, the winding number will have a wrong sign, yielding
a significant error. In contrast, the error of our method, even for
roughly discretized boundaries, is significantly smaller, noticeable
only around the surface boundary, and stems mainly from approxi-
mation of the spherical areas.

Under refinement, FWN [BDS∗18], being an approximation,
does not improve. Our method becomes an order of magnitude
more precise than the exact mesh-based [JKS13]; our worst (max-
imum) error is roughly the same as their average. Note that to get
to a similar maximum error accuracy as our 1900 boundary edges,
mesh-based methods would need roughly 16.3 · 106 faces, taking
0.9Gb in memory. Our memory footprint is negligible in compari-
son (kilobytes).

3D Performance. We evaluate performance of our method on
a Intel® Core™ i7-9700X @ 4.900GHz. We measure all the total
performances using the C++ code, parallelized via OpenMP.

We present the results in Table 1 for parametric and minimal sur-
faces, computing winding numbers of all points in a slice (i.e., the
optimization in Sec. 5.1 is on). The performance per point depends
mostly on the number of boundary samples; for most of our results
a query point takes ≈ 0.2ms. Dense system solve for BEM is done
once for all the query points and takes 10-90ms.

The bottleneck of our algorithm is marked as ‘Boundary Pro-
cessing’ (BP); almost all time is spent on computing finding all
intersections between spherical segments. Note that despite the op-
timal algorithmic complexity of O(B logB), in our implementation
we use a naïve O(B2) algorithm which may explain the perfor-
mance.

For meshes, the accuracy of our method is exactly the same as
the ground truth of [JKS13]. Performance-wise, our method may
bring advantages for meshes where, as discussed in Sec. 5.1, the
boundary has few elements, while the mesh has many faces. In Ta-
ble 1 we present typical performance statistics for such meshes.
Note that the approximation algorithm [BDS∗18] timing statistics
are a few times faster: 0.59,0.55,0.53µs. Our goal, however, is pre-
cise winding number computation: as Fig. 16 shows, their approx-
imation is often imprecise.

Curve networks with minimal surfaces. We compare the ac-
curacy of the nonlinear solver approach for a BEM curve network,
with the method of [JKS13] on a FEM discretization of the sur-
face using linear elements. As the ground truth surface, we take

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 9 of 15

10-3 10-4 10-5 10-6 10-7
1

2

3

4

5

10

10

10

10

10

10

6

0

5

10

15

20

25

Ti
m

e
(s

)

(a) (b)Query accuracy near the curve. Query performance near the curve.

SGW24
Ours

SGW24
Ours

Threshold used in the subdivision’s stopping criterion

-1
0 .

Qu
er

ie
s

w
it

h
a

sq
ua

re
d

er
ro

r
gr

ea
te

r
th

an
 1

0

10-3 10-4 10-5 10-6 10-7

Threshold used in the subdivision’s stopping criterion

Figure 14: For 2D parametric curves, on a typical regular grid of query points, our method (a) is more precise and faster than the state-of-
the-art method [SGW24] (b). The performance of both methods is minimally affected by the stopping criterion threshold, since most of the
computation time is spent calculating arccosines. We find that our method is 4× faster on a regular grid of 250× 250 query points within
the bounding box of 1000 random cubic Bézier curves. Both methods fall back to the same algorithm when the query point is outside the
bounding box of the curve.

BEM Error (Ours)

Boundary Vertices
100 200 300 400 500 600 700 800

FEM Errorx10-3

Number of triangles

9

3

4
5
6

7
8

2

1
0 2k 4k 6k 8k

(a) (b)

Figure 15: Accuracy of the the winding number computation for
curve networks with minimal surfaces computed via BEM. (right).
Our method, in general, has similar precision to the mesh-based
method (left).

z(x,y) = ex−1 sin(y)− ex cos(y); we mesh it and compute its wind-
ing numbers. We then reconstruct the surface by FEM using a regu-
lar grid on the parametric domain. Then we uniformly sample 342k
points, keeping only those 2368 points with the absolute value of
the ground truth winding number ∈ (0.4995,0.5005); on the rest
the error is 0. We can see (Fig. 15) that our solution is as accurate
as theirs for just a fraction of the stored data (e.g., 500 vertices vs.
5000 triangles). The discrete increments of the error are because
each query point can be classified as either on the correct side of
the surface, yielding zero error, and on the wrong side, yielding a
winding number error of 1.

Adaptive Quadrature. For parametric curves and surfaces, the
generalized winding number can be computed via numerically
evaluating the signed solid angle surface integral using adaptive
quadrature. In 2D, for a regular grid of query points, we are signifi-
cantly faster than the state-of-the-art method [SGW24], which was
already an improvement over adaptive quadrature. In 3D, our ap-
proach is generally slower than adaptive quadrature methods, with
the bottleneck being the computation of spherical arrangement.

For a class of parametric surfaces, however, with a simpler
boundary, for instance, planar, our method is faster in a scenario
with a regular grid. As a projection of a planar curve on a sphere
can have no self-intersections, for such parametric surfaces we only
need to perform a trivial area computation and a ray-surface in-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

10 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

0 4k 17k 38k 69k 108k 155k 210k 274k 347k 430k
Boundary Vertices

10-7

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Boundary Vertices

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Er
ro

r

Ours (Max)
Ours (RMSE)
FWN (Max)
FWN (RMSE)
HGWN (Max)
HGWN (RMSE)

Faces

Figure 16: Logarithmic error plot with respect to ground truth for
our method (blue), [JKS13] (HGWN, red) and [BDS∗18] (FWN,
green). Even when the boundary is discretized, our method com-
putes winding numbers a few orders of magnitude more precisely
than [JKS13] or [BDS∗18] on a mesh of comparable complexity.
Horizontal axis shows the number of faces (top) and boundary ver-
tices (bottom) of a mesh and used in our method.

Input # L # B # Q % B.P. Ours (ms)

Beetle 53 950 196k/308k 93.4 0.157
Hand 132 2150 136k/136k 91.92 0.26

Enterprise 117 1632 250k 99.96 0.26
Spacecraft 20 2761 113k 98.8 1.20

Roll 1 200 250k 95.93 0.10
Car 25 1500 180k 28.92 1.13
Ship 30 1780 262k 20.98 1.84
Gear 2 400 250k 41.66 0.208

Input # F # B # Q % B. P. HG (µs) Ours (µs)

Piggy 11k 6 600k 96.66 4.41 1.46
Bunny 5k 9 360k 97.64 2.69 2.12
Camel 23k 56 480k 99.01 4.71 8.99

Table 1: Timing statistics for curve networks with minimal surfaces
(top half) and parametric surfaces with Coons patches (Car, Ship),
and extrusion surfaces (gear, roll). The columns #L,#B,#Q refer
to loops, boundary edges, and query points respectively. Total time
in ms per query point is in the last column; time spent boundary
processing is %BP. Bottom: statistics for meshes, time in µs (10−6s)
per query point. HG refers to the hierarchical method of [JKS13].

tersection. We show two examples of surfaces of revolution with
planar boundaries in Fig. 17 where we are both faster and more ac-
curate than adaptive quadrature. On a regular grid of 800× 800, it
is 83s for our method vs. 103s for adaptive quadrature (both yielded
similar errors of 3.1e-5, Fig. 17a). Since the parametric surface in
Fig. 17b has a sharp feature, we switched both methods to higher

(a)

(b)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 17: Our approach on two surfaces of revolutions. Comput-
ing the winding numbers for the surface in (a) took our method
83s while adaptive quadrature took 103s for a similar error of
3.125e−5 and 3.140e−5 respectively. In (b), as the surface has a
sharp feature, we used higher precision arithmetic, significantly de-
creasing performance. For this experiment, our method took 484s
while having a MSE of 2.6875e−4. This was an almost intractable
input for adaptive quadrature, taking it 12637s to only achieve a
MSE of 0.0809.

precision arithmetic, decreasing performance. On the challenging
example in Fig. 17b, our method computed the winding numbers in
484s with an MSE of 2.6e-4. Adaptive quadrature took 12637s to
compute result with a high MSE of 0.0809. This showcases the crit-
ical difference with the adaptive quadrature: since our method does
not need to discretize the surface, high-frequency surface details are
much less of a problem for us. Our approach also requires signifi-
cantly less function evaluations compared to adaptive quadrature.

Singular and unbounded surfaces. Our method is compatible
with both singular and unbounded surfaces, as long as the boundary
has an asymptote at infinity and each ray has a finite number of in-
tersections. We demonstrate an example in Fig. 18. For unbounded
surfaces, we project the asymptote of the surface at limr→∞ from
the center of the parametric domain, otherwise our method requires
no changes. Note that these surfaces are hard to process with con-
ventional methods, as discretizing them may result in significant
accuracy loss.

Precise computation for parametric surfaces. We also imple-
mented a proof of concept SOS optimization for precise winding
number computation for parametric shapes, in MATLAB. We use
YALMIP [Löf04] as the SOS interface and MOSEK [ApS24] to
solve.

We validate the accuracy of the SOS solvers, showing all the in-

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 11 of 15

1

0

-1

Figure 18: Our method works without modification on any ori-
ented surfaces that support ray-intersection queries, including infi-
nite surfaces with singularities.

tersections with parametric surfaces can be found within machine
precision. Note that Bézier curves and Bézier triangles were cho-
sen as an example; [MZPS21, ZMST23] demonstrate that all these
techniques are easily generalizable to arbitrary NURBS patches.

In each test, we generate the random control points, as well as
ray origin and direction, following a uniform [−1,1] distribution.
We generated 400 test pairs (half with intersections, half with-
out) for each test. For the ray intersections, we got exact recovery
(within machine precision) or correctly identified no intersections
for 99.75% of the rays. Exact recovery is identified as a correspond-
ing eigenvalue being larger than a threshold (10−3 in our experi-
ments) [MZPS21]. The only ray that did not have exact recovery
had an error in t of 0.0064; such rare ray can be simply ignored
using the eigenvalue threshold. The projected Bézier curve inter-
section test has a similar exact recovery rate of 99.75%, same for
self-intersections.

SOS, while being precise, is slow: finding intersections of pro-
jected Bézier curves takes 592± 275ms via SOS versus 1.2ms via
the polyline intersection code; ray-Bézier triangle intersection takes
581± 25ms via SOS versus 8.85ms via the nonlinear solver with
our parameters. Most of SOS time is spent in YALMIP, not in the
solver.

Limitations. As the complexity of our method is driven by the
complexity of the boundary, our method excels when the boundary
is simple, and is slow when the boundary is complex or has multiple
connected components. Perhaps an efficient system would choose
a suitable method to compute the winding number based on the
boundary complexity vs. the complexity of the curve/surface itself,
falling back to previous methods if necessary. Additionally, errors
in root finding, especially missed or spurious roots, can change the
value of χ, causing errors. While our analysis (Sec. 7) shows this is
extremely rare, this can be fixed by increasing the search resolution
or, when exactness is necessary, via SOS.

8. Conclusions

We have presented a new method for computing a generalized
winding number for parametric curves and surfaces, meshes, and
curve networks with minimal surfaces. We show that for many

cases such as 2D parametric curves or 3D meshes or parametric
surfaces with simple boundary, on a regular grid, our method is
faster than the state of the art. With the use of SOS, our method can
compute winding numbers of parametric geometry precisely. We
hope that the future work will explore applications of our method to
tracking winding numbers of moving or optimized geometry, espe-
cially if the boundary remains fixed, where discretization becomes
even more of an issue.

Acknowledgements

We acknowledge the support of the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) under Grant No.:
RGPIN-2019-05097 (“Creating Virtual Shapes via Intuitive Input”)
and RGPIN-2024-04968 ("Modelling and animation via intuitive
input"), and the NSERC - Fonds de recherche du Québec - Na-
ture et technologies (FRQNT) NOVA Grant No. 314090. We thank
Ivan Puhachov for providing several figures and Paul Zhang for his
valuable assistance with Sum-of-Squares.

References
[ApS24] APS M.: The MOSEK optimization toolbox for MATLAB

manual. Version 10.1., 2024. URL: http://docs.mosek.com/
latest/toolbox/index.html. 10

[BA18] BINYSH J., ALEXANDER G. P.: Maxwell’s theory of solid angle
and the construction of knotted fields. Journal of Physics A: Mathe-
matical and Theoretical 51, 38 (Sept. 2018), 385202. doi:10.1088/
1751-8121/aad8c6. 2

[BCKO08] BERG M. D., CHEONG O., KREVELD M. V., OVERMARS
M.: Computational Geometry: Algorithms and Applications, 3rd ed. ed.
Springer-Verlag TELOS, Santa Clara, CA, USA, 2008. 5

[BDS∗18] BARILL G., DICKSON N. G., SCHMIDT R., LEVIN D. I. W.,
JACOBSON A.: Fast winding numbers for soups and clouds. ACM
Transactions on Graphics 37, 4 (Aug. 2018), 1–12. doi:10.1145/
3197517.3201337. 1, 2, 3, 6, 8, 10

[BFP∗11] BECCIU A., FUSTER A., POTTEK M., VAN DEN HEUVEL
B., TER HAAR ROMENY B., VAN ASSEN H.: 3D Winding Num-
ber: Theory and Application to Medical Imaging. International Jour-
nal of Biomedical Imaging 2011 (2011), 1–13. doi:10.1155/2011/
516942. 1

[BWSS12] BESSMELTSEV M., WANG C., SHEFFER A., SINGH K.:
Design-driven quadrangulation of closed 3D curves. In ACM Trans-
actions on Graphics (2012), vol. 31. doi:10.1145/2366145.
2366197. 7

[CI24] CHERN A., ISHIDA S.: Area formula for spherical poly-
gons via prequantization. SIAM Journal on Applied Algebra
and Geometry 8, 3 (2024), 782–796. URL: https://doi.
org/10.1137/23M1565255, arXiv:https://doi.org/10.
1137/23M1565255, doi:10.1137/23M1565255. 2

[FGC23a] FENG N., GILLESPIE M., CRANE K.: Perspectives on Wind-
ing Numbers, 2023. URL: https://markjgillespie.com/
Research/WNoDS/PerspectivesOnWindingNumbers.pdf.
2

[FGC23b] FENG N., GILLESPIE M., CRANE K.: Winding Numbers on
Discrete Surfaces. ACM Transactions on Graphics 42, 4 (Aug. 2023),
1–17. doi:10.1145/3592401. 2, 14

[GDT∗96] GALASSI M., DAVIES J., THEILER J., GOUGH B., JUNG-
MAN G., ALKEN P., BOOTH M., ROSSI F., JOHNSON M., ROSSI
G., MOORE S., ET AL.: GNU Scientific Library Reference Manual,
3rd ed. ISBN 0954612078, 1996. URL: http://www.gnu.org/
software/gsl/. 7

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

http://docs.mosek.com/latest/toolbox/index.html
http://docs.mosek.com/latest/toolbox/index.html
https://doi.org/10.1088/1751-8121/aad8c6
https://doi.org/10.1088/1751-8121/aad8c6
https://doi.org/10.1145/3197517.3201337
https://doi.org/10.1145/3197517.3201337
https://doi.org/10.1155/2011/516942
https://doi.org/10.1155/2011/516942
https://doi.org/10.1145/2366145.2366197
https://doi.org/10.1145/2366145.2366197
https://doi.org/10.1137/23M1565255
https://doi.org/10.1137/23M1565255
http://arxiv.org/abs/https://doi.org/10.1137/23M1565255
http://arxiv.org/abs/https://doi.org/10.1137/23M1565255
https://doi.org/10.1137/23M1565255
https://markjgillespie.com/Research/WNoDS/PerspectivesOnWindingNumbers.pdf
https://markjgillespie.com/Research/WNoDS/PerspectivesOnWindingNumbers.pdf
https://doi.org/10.1145/3592401
http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/

12 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

0 0.5 1

Figure 19: Winding numbers computed for each point of a planar slice for the curve networks, surfaced with minimal surfaces, with our
one-shot algorithm. Boundaries are highlighted in pink.

[GHL∗20] GRYADITSKAYA Y., HÄHNLEIN F., LIU C., SHEFFER A.,
BOUSSEAU A.: Lifting Freehand Concept Sketches into 3D. ACM
Transactions on Graphics (Proceedings of Siggraph Asia) (2020). 2

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3.
http://eigen.tuxfamily.org, 2010. 7

[Goo23] GOOGLE: Google TiltBrush. Google, 2023. 2

[GP10] GUILLEMIN V., POLLACK A.: Differential Topology, reprint edi-
tion ed. American Mathematical Society, Providence, R.I, Aug. 2010. 4,
14

[HBW03] HOUSTON B., BOND C., WIEBE M.: A unified ap-
proach for modeling complex occlusions in fluid simulations. In
ACM SIGGRAPH 2003 Sketches & Applications (New York, NY,
USA, 2003), SIGGRAPH ’03, Association for Computing Machin-

ery, p. 1. URL: https://doi.org/10.1145/965400.965561,
doi:10.1145/965400.965561. 2

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral meshing in the wild. ACM Transactions
on Graphics 37, 4 (Aug. 2018), 1–14. doi:10.1145/3197517.
3201353. 1

[JKS13] JACOBSON A., KAVAN L., SORKINE O.: Robust Inside-Outside
Segmentation using Generalized Winding Numbers. ACM Trans. Graph.
32, 4 (2013). 1, 2, 3, 6, 8, 10

[Kno18] KNOPPEL F.: Tutorial 5 – Solid angle of space curves.
http://wordpress.discretization.de/ddg2018/2018/
06/19/tutorial-5-solid-angle-of-space-curves/,
2018. [Online; accessed 26-04-2024]. 2

[LaF06] LAFORCE T.: PE281 boundary element method course notes.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://doi.org/10.1145/965400.965561
https://doi.org/10.1145/965400.965561
https://doi.org/10.1145/3197517.3201353
https://doi.org/10.1145/3197517.3201353
http://wordpress.discretization.de/ddg2018/2018/06/19/tutorial-5-solid-angle-of-space-curves/
http://wordpress.discretization.de/ddg2018/2018/06/19/tutorial-5-solid-angle-of-space-curves/

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 13 of 15

Stanford, CA., June 2006. 7

[Li20] LI C.: Sphericalpolygon, 2020. URL: https://github.
com/lcx366/SphericalPolygon. 7

[Löf04] LÖFBERG J.: Yalmip : A toolbox for modeling and optimization
in matlab. In In Proceedings of the CACSD Conference (Taipei, Taiwan,
2004). 10, 15

[Löf09] LÖFBERG J.: Pre- and post-processing sum-of-squares programs
in practice. IEEE Transactions on Automatic Control 54, 5 (2009), 1007–
1011. 15

[Mei69] MEISTER A. L. F.: Generalia de genesi figurarum planarum et
inde pendentibus earum affectionibus. Novi Comm. Soc. Reg. Scient.
Gotting., 1769. 2

[MP12] MEEKS W., PÉREZ J.: A Survey on Classical Minimal Surface
Theory, vol. 60 of University Lecture Series. American Mathematical So-
ciety, Providence, Rhode Island, Dec. 2012. doi:10.1090/ulect/
060. 7

[MST∗21] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BAR-
RON J. T., RAMAMOORTHI R., NG R.: Nerf: representing scenes as
neural radiance fields for view synthesis. Commun. ACM 65, 1 (Dec.
2021), 99–106. URL: https://doi.org/10.1145/3503250,
doi:10.1145/3503250. 4

[MZPS21] MARSCHNER Z., ZHANG P., PALMER D., SOLOMON J.:
Sum-of-squares geometry processing. ACM Trans. Graph. 40, 6
(dec 2021). URL: https://doi.org/10.1145/3478513.
3480551, doi:10.1145/3478513.3480551. 2, 6, 7, 11, 15

[Nee97] NEEDHAM T.: Visual Complex Analysis. Clarendon Press, 1997.
2

[NISA07] NEALEN A., IGARASHI T., SORKINE O., ALEXA M.: Fiber-
Mesh: Designing freeform surfaces with 3D curves. ACM Transactions
on Graphics 26, 3 (2007), 1–8. doi:10.1145/1276377.1276429.
7

[NT03] NOORUDDIN F., TURK G.: Simplification and repair of polyg-
onal models using volumetric techniques. IEEE Transactions on Visu-
alization and Computer Graphics 9, 2 (Apr. 2003), 191–205. doi:
10.1109/TVCG.2003.1196006. 2

[SGW24] SPAINHOUR J., GUNDERMAN D., WEISS K.: Robust Con-
tainment Queries over Collections of Rational Parametric Curves via
Generalized Winding Numbers. ACM Transactions on Graphics 43, 4
(July 2024), 1–14. doi:10.1145/3658228. 2, 8, 9

[Sor05] SORKINE O.: Laplacian Mesh Processing. In Eurographics 2005
- State of the Art Reports (2005), Chrysanthou Y., Magnor M., (Eds.),
The Eurographics Association. doi:10.2312/egst.20051044. 6

[WC21] WANG S., CHERN A.: Computing minimal surfaces with differ-
ential forms. ACM Transactions on Graphics 40, 4 (Aug. 2021), 1–14.
doi:10.1145/3450626.3459781. 7

[Web19] WEBER M.: Out of the box. https://
minimalsurfaces.blog/2019/01/13/out-of-the-box/,
2019. Accessed: 2024-01-22. 7

[XBC19] XIAO X., BUSÉ L., CIRAK F.: A noniterative method for ro-
bustly computing the intersections between a line and a curve or sur-
face. International Journal for Numerical Methods in Engineering 120,
3 (2019), 382–390. doi:10.1002/nme.6136. 6

[XDW∗23] XU R., DOU Z., WANG N., XIN S., CHEN S., JIANG M.,
GUO X., WANG W., TU C.: Globally consistent normal orientation
for point clouds by regularizing the winding-number field. ACM Trans.
Graph. 42, 4 (July 2023). URL: https://doi.org/10.1145/
3592129, doi:10.1145/3592129. 1

[YAB∗22] YU E., ARORA R., BÆRENTZEN J. A., SINGH K.,
BOUSSEAU A.: Piecewise-smooth surface fitting onto unstructured 3D
sketches. ACM Transactions on Graphics 41, 4 (July 2022), 1–16.
doi:10.1145/3528223.3530100. 7

[ZGZJ16] ZHOU Q., GRINSPUN E., ZORIN D., JACOBSON A.: Mesh
arrangements for solid geometry. ACM Transactions on Graphics 35, 4
(July 2016), 1–15. doi:10.1145/2897824.2925901. 5

[ZMST23] ZHANG P., MARSCHNER Z., SOLOMON J., TAMSTORF
R.: Sum-of-squares collision detection for curved shapes and paths.
In ACM SIGGRAPH 2023 Conference Proceedings (New York, NY,
USA, 2023), SIGGRAPH ’23, Association for Computing Machinery.
URL: https://doi.org/10.1145/3588432.3591507, doi:
10.1145/3588432.3591507. 11, 15

[ZZCJ13] ZHUANG Y., ZOU M., CARR N., JU T.: A general and effi-
cient method for finding cycles in 3D curve networks. ACM Transactions
on Graphics 32, 6 (Nov. 2013), 1–10. doi:10.1145/2508363.
2508423. 7

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

https://github.com/lcx366/SphericalPolygon
https://github.com/lcx366/SphericalPolygon
https://doi.org/10.1090/ulect/060
https://doi.org/10.1090/ulect/060
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3503250
https://doi.org/10.1145/3478513.3480551
https://doi.org/10.1145/3478513.3480551
https://doi.org/10.1145/3478513.3480551
https://doi.org/10.1145/1276377.1276429
https://doi.org/10.1109/TVCG.2003.1196006
https://doi.org/10.1109/TVCG.2003.1196006
https://doi.org/10.1145/3658228
https://doi.org/10.2312/egst.20051044
https://doi.org/10.1145/3450626.3459781
https://minimalsurfaces.blog/2019/01/13/out-of-the-box/
https://minimalsurfaces.blog/2019/01/13/out-of-the-box/
https://doi.org/10.1002/nme.6136
https://doi.org/10.1145/3592129
https://doi.org/10.1145/3592129
https://doi.org/10.1145/3592129
https://doi.org/10.1145/3528223.3530100
https://doi.org/10.1145/2897824.2925901
https://doi.org/10.1145/3588432.3591507
https://doi.org/10.1145/3588432.3591507
https://doi.org/10.1145/3588432.3591507
https://doi.org/10.1145/2508363.2508423
https://doi.org/10.1145/2508363.2508423

14 of 15 C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers

Appendix A: Proof of Lemma 4.1

Intuitively, in R3, a ray and a surface intersect transversally if at
each intersection point the ray is not tangent to the surface. At such
intersection, the ray’s tangent and the surface’s tangent plane span
the whole R3. More formally,

Definition A.1 [GP10]. The smooth map f is said to be transversal
to the submanifold Z, if at every point x in the preimage of Z, where
f (x) = y and T is a tangent space,

Image(d fx)+Ty(Z) = Ty(Y).

Transversal Not Transversal
(a) (b)

(c) (d)

Figure 20: Two curves in 2D are transversal (a) if for every inter-
section their tangents at the intersection spans R2. A curve and a
surface in 3D are transversal (c) if for every intersection the curve’s
tangent and the surface’s tangent plane spans R3. Two subman-
ifolds are not transversal if their tangent spaces do not span the
ambient space (b,d).

In our context, the orientation number at an intersection point
measures whether the ray and the normal to the surface are point-
ing in the same direction, i.e., it is Sign(n ·−→pq). For a more formal
definition, please see [GP10].

In Y =R3, we first examine the case of a smooth surface Z with-
out boundary. The smooth map f : X → Y is a parameterization of
a ray f : R+→ R3. More generally,

Proposition A.1 [GP10] If f : X → Y is transversal to Z, then
f−1(Z) is a finite number of points, each with an orientation num-
ber ±1. We define the intersection number I(f ,Z) to be the sum of
these orientation numbers.

The main paper refers to the intersection number as the ‘num-
ber of signed intersections’ as it is customary in computer graph-
ics [FGC23b].

For boundaryless X and Z, when at least one of them is compact,
[GP10] formulate the following proposition:

Proposition A.2 [GP10] Homotopic maps have the same intersec-
tion numbers.

We will use this result to show that for a smoothly rotating
ray, forming a homotopy, the intersection number can only change
when the rotating ray passes a boundary of a surface. More gener-
ally, we formulate our result:

Proposition A.3 Let X be an oriented manifold without boundary,
and M be a oriented submanifold with boundary of Y , dim X +
dim M = dim Y . Let f0, f1 be smooth maps X→Y , also F be a ho-
motopy between them, i.e., F : [0,1]×X → Y,F(0) = f0,F(1) =
f1, and f0, f1 intersect M transversally and for each s,F(s) inter-
sects the boundary ∂M not more than once. Then the oriented in-
tersection number I(F,M) only changes when F(s,∗) intersects the
boundary ∂M, and only by increments of 1.

Proof . We denote as M an arbitrary closure of M such that the
smooth manifold Z = M∪M and M∩M = ∅. A transversal inter-
section on Z may belong to M or M, thus, the intersection number
I(F,Z) = I(F,M)+ I(F,M). By proposition A.2, I(F,Z) does not
change for those values of s.
Suppose that F(s,X) intersects the boundary of M only at s = s0,
maximum at one point. For this point, as the boundary is crossed to
s0 + ε, the number of intersection points is no longer one, but still
finite due to transversality, so M gains (or loses) this intersection,
and since I(F,Z) is constant, I(F,M) loses (or gains) an intersection
(Fig. 21). Therefore, the only value of s where I(F,M) can change
is s = s0 and the intersection number can only change by 1. Q.E.D.

M M

F(s0, X)
F(s0 + ε, X)

Figure 21: The intersection number I(F,Z) remains unchanged.
When Z is decomposed into a manifold M with boundary and a clo-
sure M the intersection number I(F,M) only changes at the bound-
ary.

The only technicality is that in the propositions we assumed
boundaryless X , while R+ has a boundary {0}. This is not an actual
limitation: our homotopy F(s,X) never changes the value F(s,0),
so the proposition still stands.

Appendix B: Boundary Element Method Details

We follow the same notations and general setup as in Sec. 6.2.

For the flat 2D Laplace’s equation, the fundamental solution is

G(ξ,η) =− 1
2π

ln||ξ−η||. (7)

To compute the sign of an intersection, we look at the sign of the
dot product between the normal of the surface at the intersection

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

C. Martens & M. Bessmeltsev / One-Shot Method for Computing Generalized Winding Numbers 15 of 15

point, computed via differentiating Eq. (6), and the ray direction,
e.g.:

∂ f
∂u

=
∫

η∈Γ

∂G(ξ,η)

∂u
∂ f (η)

∂n
− ∂

2G(ξ,η)

∂n∂u
f (η)dΓ, (8)

where ∂G(ξ,η)
∂ξ

and ∂
2G(ξ,η)
∂n∂ξ

are easily calculated in closed form
(see Eq. 7).

Appendix C: Sum-of-Squares Formulations

Intersections of Bézier curve projections

Here we outline the formulation for finding an intersection of two
degree two Bézier curves, when projected onto a unit sphere via
Sum-of-Squares (SOS) relaxation [MZPS21]. This formulation can
be easily adapted to degree 3 Bézier curves with a simple change
of basis functions. We are following the notations of [ZMST23].

In general, the problem of finding an intersection of spherical
projections of two polynomial curves f1(t1), f2(t2) : [0,1] → R3

can be formulated as a following low-order polynomial optimiza-
tion:

min
t1,t2,R

t2
1

f1(t1)R = f2(t2)

t1, t2 ∈ [0,1],R > 0

(9)

Concretely, for Bézier curves, basis functions are:

φ1(t) := (1− t)2

φ2(t) := 2t(1− t)

φ3(t) := t2.

(10)

Then we can define two Bézier curves as f1, f2 : [0,1] →
R3, where Fi,Gi ∈ R3 are the control vertices, i.e., f1(t1) =

∑
3
i=1 Fiφi(t1) and f2(t2) = ∑

3
i=1 Giφi(t2). Then Eq. 9 has the fol-

lowing SOS relaxation:

γ∗=


maxγ,sg,ph γ

s.t. t2
1 − γ−∑g∈G sgg−∑h∈H phh ∈ Σ

sg ∈ Σd1

ph ∈ R[t]d2


G = {(1− t1)t1,(1− t2)t2,R}
H = f1(t1)R− f2(t2),

(11)

The objective function t2
1 is only needed to pick out a particular

intersection. Once an intersection is found with values t′1, t
′
2, we

repeat the process after subdividing the curve at t′1 and taking its
t1 > t′1 chunk.

Here Σd1 are SOS polynomials of maximum degree d1, and
R[t]d2 is a subset of polynomials of maximum degree d2. This is a
canonical SOS formulation, which can be solved by standard SDP

solvers. In our implementation, we use YALMIP [Löf04, Löf09].
We use d1 = 4,d2 = 2 for both quadratic and cubic Bézier curves.

Self-intersections of a spherical projection of a Bézier curve are
implemented in exactly the same way by substituting f2 = f1 and
replacing −t2

1 with +(t1− t2)
2. In this case, we ask to maximize

the difference between t1 and t2. For this problem, solver does not
indicate that a solution is not found if there is no intersection, so we
need to check if the returned t1, t2 are sufficiently different; in our
implementation it is |t1− t2|> 10−6.

Ray Intersection with a Bézier Triangle

Similarly, we can consider the problem of finding the first intersec-
tion of a ray with a cubic Bézier triangle. As done in [MZPS21],
this can be trivially generalized to other degrees of Bézier triangles
or to an arbitrary NURBS patch.

A cubic Bézier triangle has 10 control vertices Fi ∈ R3 and is
expressed as f (u,v) = ∑i φiFi, where the basis functions φi are:

φ1(u,v) =−(u+ v−1)3

φ3(u,v) = 3u(u+ v−1)2

φ5(u,v) =−6uv(u+ v−1)

φ7(u,v) = v3

φ9(u,v) = 3u2v

φ2(u,v) = 3v(u+ v−1)2

φ4(u,v) =−3v2(u+ v−1)

φ6(u,v) =−3u2(u+ v−1)

φ8(u,v) = 3uv2

φ10(u,v) = u3.

(12)

The polynomial problem in Eq. (4) in the main document has the
following SOS relaxation:

γ∗=


maxγ,sg,ph γ

s.t. t2− γ−∑g∈G sgg−∑h∈H phh ∈ Σ

sg ∈ Σd1

ph ∈ R[t]d2


G = {u,v,1−u,1− v, t}
H = f (u,v)−O− tR.

(13)

We found that low degrees of d1 = 4,d2 = 2 are sufficient for
exact recovery.

© 2025 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.

