
Appendix A.0: Approximating other performance measures

Alternative definition of service level and approximation. The waiting time is defined as

the minimum of virtual waiting time and patience. Define an alternative service level, SL
(2)
j,p(x),

as the long-run fraction of calls that are not lost and whose waiting time is less than the AWT,

denoted τ throughout Appendix A.0 (regardless of class). This is the fraction defining gj,p, modified

by adding to both enumerator and denominator the expected number of arrivals that wait less

than τ and abandon (that is, no arrivals are excluded in the denominator). This implies that

gj,p = (SL
(2)
j,p − θj)/(1 − θj), where θj is the long-run fraction of class-j calls that wait less than τ

and abandon. Our approximation of SL
(2)
j,p , denoted ŜL

(2)

j,p , is analogous to the LDA approximation,

except that we replace the function DA in (4) by the approximated probability that a call is lost

or its waiting time exceeds τ , conditional upon overflow to its last station; this is the right side in

(4) modified by multiplying the second term by the probability that patience exceeds τ , i.e., e−ητ .

A conceptually better approximation of gj,p. As a better approximation of our original

SL we could consider ĝj,p = (ŜL
(2)

j,p − θ̂j)/(1 − θ̂j), where

θ̂j = (γ`(j),j/λj)

c−1∑

k=0

πs+k(µ
∗)

∫ τ

0
pk(µ

∗, t)ηe−ηtdt

approximates θj (this is obtained by conditioning on the patience time and employing the usual

analysis, i.e., class-j calls queue up at station `(j)). This ĝj,p is conceptually better than our

LDA approximation because it is consistent with the SL definition (1): it excludes the quickly-

abandoning calls and focuses on the waiting time. In our examples, the absolute difference between

these two approximations was no more than 0.5% when aggregated over all classes. Using ĝj,p

instead of the standard approximation in the staffing algorithm did not lead to noticeably better

staffing solutions. However, ĝj,p is considerably more expensive to compute (it requires numerical

integration to compute θ̂j), so we view it as less attractive.

Other performance measures. The long-run fraction of class-j calls that abandon is

(γ`(j),j/λj)A`(j), where A`(j) is the long-run fraction of delay calls that abandon at the station

`(j), as derived in Section 3.2.The distribution of the (stationary) class-j waiting time is a mixture:

with probability γ`(j),j/λj , it is their waiting time at station `(j); otherwise, it is zero. Conditional

1

on being positive, the waiting time exceeds τ with probability equal to the second term on the

right side of (4) multiplied by e−ητ . Thus, the class-j expected waiting time follows by integrating

this function of τ on (0,∞). The type-j service-completion rate at station i is fi,j = γi,j(1 − Ai)

if i = `(j), and γi,j(1−Bi) otherwise.

Appendix A.1: Pseudocodes

Figures 3 to 8 list pseudocodes for the procedures referred to in Section 4. Procedure Search

controls the Stage-1 search as shown in the outline in Figure 2.In the descriptions that follow,

Si = {j : i ∈ Rj} is the skill set of type-i agents; q∗ is the smallest-known infeasible move

size for agent removal; and NormalTermination is a boolean variable indicating whether normal

termination has occurred; | · | denotes set cardinality; round(x) is the integer closest to x; median(x)

is the median of the elements of x. RandUnif(P), where P is a finite set, denotes an element of

P chosen randomly, uniformly over P . LD(x) signifies a call to the loss-delay approximation for

staffing vector x; this returns the object LD; LD.isFeas, LD.globSL, LD.classSL, and LD.served

denote the feasibility indicator, global SL, SL for all classes, and the service-completion rate for

all i and j, respectively. For approximation LDN, LD.indeterminate is an empty set if a solution

was found; otherwise, it is the station that was declared indeterminate. In the simulation-based

adjustment (Figures 7 and 8), calls to Simulate(x) return an object SIM whose fields are analogous

to those of object LD, except that they are simulation-based estimates.

Appendix A.2: Effect of initialization

We compared several initialization methods in our standard examples. The methods are now

described; in these descriptions, references are made to steps of procedure Init in Figure 3.

1. As in Figure 3, Alternative 5A. Favor specialist agents and require a fixed pseudo-SL (param-

eter ξ0) in step 4. Unless indicated otherwise, ξ0 = 0.8.

2. (Geometric). Minor variation of method 1; replace step 2 as follows: scan stations by increas-

ing cost, allocating a fraction β of the yet-unallocated arrival rate; the last station receives

2

PROCEDURE: Init

OUTPUT: x = (xi)
m
i=1, an E-feasible staffing vector

CALLS: LD; function D (no aband.) or its counterpart DA (aband.).

1. i∗j = arg mini∈Rj
ci, j ∈ N (cheapest feasible agent type, by call class)

2. Split arrival rate, by agent type and call class:

f̃i,j =

{
βλj if i = i∗j
(1− β)λj/(|Rj | − 1) if i ∈ Rj \ {i

∗
j}

}
, j ∈ N

3. Aggregated parameters, by agent type:

f̃i =
∑

j∈Si

f̃i,j,
1

µ̃i
=


∑

j∈Si

f̃i,j

f̃i

1

µi,j


 , τ̃i =

∑

j∈Si

f̃i,j

f̃i

τj, i ∈M

4A. ξ = ξ0

4B. xi = min{x : 1−D(τ̃i;x, 0, f̃i, 0, µ̃i) ≥ ξ}, i ∈M; x = (xi)
m
i=1

LD = LD(x); g = LD.globSL; (gj)
n
j=1 = LD.classSL

Alternative 5A. Ensure E-feasibility:

while (LD.isFeas = False)

if (LD.indeterminate = ∅)

(fi,j)j∈Si,i∈M = LD.served; g = LD.globSL; (gj)
n
j=1 = LD.classSL

if (g < l)

i = arg maxi∈M

P

j∈Si

fi,j
µi,j

xici

else

j∗ = arg maxj∈N (lj − gj); Cj∗ = Rj∗ ∩ {i : xi ≥ 1}; i = arg maxi∈Cj∗

fi,j∗

µi,j∗

P

j∈Si

fi,j
µi,j

end if

else

i = LD.indeterminate

end if

x = x + ei; LD = LD(x)

end while

OR

Alternative 5B. Ensure E-feasibility (control constraint slack):

while (g < l + (1− l)υ or (gj < lj + (1− lj)υ for some j ∈ N))

ξ = ξ + (1− ξ)ζ

Execute step 4B

end while

Figure 1: Initialization. Steps 5A and 5B are alternatives of ensuring the staffing is E-feasible.

3

PROCEDURE: Search

k = 1; x(1) = x; g∗ = LD.globSL(x(1)); q∗ =∞; q∗i =∞, ∀i ∈M
NormalTermination= False

while (NormalTermination= False and User-defined termination = False)

Select a positive integer move size q ≤ maxi x
(k)
i

if q < q∗

[k,x(k), g∗, q∗]← Remove(q, k,x(k), g∗, q∗)

else

[k,x(k), g∗, (q∗i)i∈M,NormalTermination]← Switch(q, k,x(k), g∗, (q∗i)i∈M)

end if

end while

Figure 2: Search integration.

[k,x(k), g∗, q∗] = function Remove(q, k,x(k), g∗, q∗)

T = {i : x
(k)
i ≥ q} (set of candidates)

if (T = ∅)
q∗ = min(q∗, q) (update the smallest-known infeasible move size)

return

end if

LDi = LD(x(k) − qei), i ∈ T (evaluate candidates)

F = T ∩ {i : LDi.isFeas = True} (set of feasible candidates)

if (F 6= ∅)
g̃i = LDi.globSL, i ∈ F

ιi = (g∗ − g̃i)/ci, i ∈ F

I∗ = arg mini∈F ιi (best candidate)

k = k + 1; x(k) = x(k−1) − qeI∗; g∗ = g̃I∗ ; q∗ =∞
else

q∗ = min(q∗, q) (update the smallest-known infeasible move size)

end if

Figure 3: Agent removal.

4

[k,x(k), g∗, (q∗i)i∈M,NormalTermination] = function Switch(q, k,x(k), g∗, (q∗i)i∈M)

P = {i : xi ≥ q, q∗i > q} (set of pivot candidates)

if P = ∅

if q > 1, return; else, NormalTermination= True; return; end if

end if

P = RandUnif(P) (selected pivot)

S = {i : ci < cP } (set of candidates to switch in)

if S = ∅

q∗P = min(q∗P , q) (update the smallest-known infeasible move size)

return

end if

LDi = LD(x(k) − qeP + qei), i ∈ S (evaluate candidates)

F = S ∩ {i : LDi.isFeas = True} (set of feasible candidates)

if (F 6= ∅)
g̃i = LDi.globSL, i ∈ F

ιi = (g∗ − g̃i)/(cP − ci), i ∈ F

I∗ = arg mini∈F ιi (best candidate)

k = k + 1; x(k) = x(k−1) − qeP + qeI∗ ; g∗ = g̃I∗ ; q∗i =∞, ∀i ∈M
else

q∗P = min(q∗P , q) (update the smallest-known infeasible move size)

end if

Figure 4: Agent switching.

PROCEDURE: SIMAdd

SIM = Simulate(x)

while (SIM.isFeas = False)

(fi,j)j∈Si,i∈M = SIM.served

g = SIM.globSL; (gj)
n
j=1 = SIM.classSL

if (maxj∈N{lj − gj} > 0) (a constraint for some class is violated)

j∗ = arg maxj∈N (lj − gj) (j∗ is class with maximum constraint violation)

Cj∗ = Rj∗ ∩ {i : xi ≥ 1}

i = arg maxi∈Cj∗

fi,j∗/µi,j∗
P

j∈Si
fi,j/µi,j

(i is agent type maximally dedicated to class j∗)

else if (g < l) (the global constraint is violated)

i = arg maxi∈M

P

j∈Si
fi,j/µi,j

xici
(i is agent type maximizing occupancy-to-cost ratio)

end if

x = x + ei

SIM = Simulate(x)

end while

Figure 5: Adjusting a SIM-infeasible solution x for feasibility.

5

PROCEDURE: SIMRemove

L = {i : xi ≥ 1} (set of candidates for removal)

k = 0; x(0) = x; SIM = Simulate(x)

while (SIM.isFeas = True and L 6= ∅)

(fi,j)j∈Si,i∈M = SIM.served

(gj)
n
j=1 = SIM.classSL

wi,j =
fi,j/µi,j

P

k∈Si
fi,k/µi,k

, j ∈ Si, i ∈ L (busy-time fractions, by agent type and call class)

χi =
∑

j∈Si
wi,j(gj − lj), i ∈ L (excess capacity, by agent type

Let π index L by decreasing cχ: cπ(1)χπ(1) ≥ cπ(2)χπ(2) ≥ . . . ≥ cπ(|L|)χπ(|L|).

for i = 1 to |L|

x = x(k) − eπ(i); SIM = Simulate(x)

if (SIM.isFeas = True)

k = k + 1; x(k) = x

if (xπ(i) = 0)

L = L \ π(i) (remove this type from candidate list)

end if

continue while

else

L = L \ π(i) (remove this type from candidate list)

end if

end for

end while

Figure 6: Cost reduction of a SIM-feasible solution x.

6

the remainder up to λj . Set ξ0 = 0.8.

3. (Overstaffing). Allocate a large number x for each agent type.

4. (Random). The type-i agent count is a random fraction Fi of a random total staffing Y

(except for rounding to the nearest integer). Replace steps 1-4 by the following:

4.1 (F1, F2, . . . Fm) ∼ Dirichlet(α1, . . . , αm) with αi = x for all i. (This distribution arises

from independent random variables Z1, Z2, . . . , Zm, where Zi has the χ2 distribution with 2αi

degrees of freedom; the distribution of (Z1, Z2 . . . , Zm)/
∑m

j=1 Zj is Dirichlet(α1, . . . , αm).)

4.2 Y is set to ρ times U , where ρ =
∑

j∈N λi/µi is the aggregate load and U is a uniform

random variable on a range [l, u]

4.3 xi = round(Y Fi), i ∈M

Note that αi = x (all i) ensures symmetry across i, so no agent type is favored over others.

In methods 1, 2, and 4, if the solution at step 4 is E-infeasible, then E-feasibility is ensured at step

5A; in our large call center examples, this gave initial solutions with an unusually large fraction

of expensive agents relative to the total. The methods that follow are simple remedies to this

problem. The idea is to control explicitly the agent counts; in methods 5 and 6, this is done via

the arrival-rate splitting step 2, and then by increasing the pseudo-SL ξ until a given constraint

slack is met; in method 7, the agent counts are set as random fractions of a total staffing initialized

randomly, but determined iteratively until a minimum constraint slack is met.

5. Remedy for method 1, replacing 5A by 5B. The parameter υ = 0.05 controls the required

constraint slack. The parameter ζ = 0.03 controls the increase in ξ per iteration.

6. Remedy for method 2, replacing 5A by 5B. We set υ = 0.05, ζ = 0.03.

7. Remedy for method 4, replacing 5A as follows, with υ = 0.05:

while (g < l + (1− l)υ or (gj < lj + (1− lj)υ for some j ∈ N))

Y = 1.02Y ; Compute x as in 4B; g = LD(x).globSL; (gj)
n
j=1 = LD(x).classSL

end while

7

B1 B2 B3 B4 B3* B4* G1 G2 S D1a D1b D1c D1a* D1b* D1c* D4a D4b D4c D4a* D4b* D4c*

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Distribution of the solution costs of 16 replications
Example 2 : with abandon

R
el

at
iv

e
co

st
 to

 b
es

t s
ol

ut
io

n
: 6

00

Test case

Figure 7: Boxplots of gap-to-empirical-optimum with various initializations for problem CC2A
based on 16 runs. From left to right: method 1 with β = 0.8 (B1); method 1 with β = 0.6 (B2);
method 1 with ξ0 = 0.3 and β = 0.8 (B3); method 1 with ξ0 = 0.3 and β = 0.6 (B4); method 5 with
β = 0.8 (B3∗); method 5 with β = 0.6 (B4∗); method 2 with β = 0.8 (G1); method 2 with β = 0.6
(G2); method 3 with x = 100 (S); method 4 with all ai = 1 and [l, u] varying as [0.8, 1] (D1a),
[1, 1.5] (D1b), and [1.5, 2] (D1c); method 7, remedies of the cases of method 4 (D1a∗, D1b∗, D1c∗,
resp.); method 4, counterparts of earlier cases of method 4, changing to all ai = 4 (D4a, D4b, and
D4c); and method 7, counterparts of the latter three cases of method 4 (D4a∗, D4b∗, and D4c∗).

We examined the gap-to-empirical-optimum for examples CC1L, CC1A, CC2L, and CC2A.

This will be shown below via boxplots of the final cost for all runs (i.e., we include those where the

final solution was infeasible). The average infeasibility gap Ḡ is small (as discussed in the paper),

so little is lost by considering these instead of restricting results to feasible solutions. The noise due

to stage 2 was controlled to be negligible compared to other sources of noise. In problems CC1L,

CC1A, “Overstaffing” and “Random” did slightly worse than the others, but the gap to better

initializations was small: about 0.5% in CC1L, less than 1% for CC1A.

However, large sensitivity was seen in problems CC2L and CC2A. We discuss problem CC2A;

similar observations hold for CC2L. In Figure 9, we show the gap-to-empirical-optimum via box-

plots. Each box has lines at the lower quartile, median, and upper quartile values; whiskers extend

from the box out to the most extreme data value within 1.5 times the inter-quartile range (i.e., box

height); and outliers are values beyond the ends of the whiskers, marked “+”. In the four poor

performers that stand out, the common theme is that in the initial staffing, there were too many

expensive (many-skill) agents relative to the total. Methods 5 and 7 are effective remedies to their

8

counterparts.

Our results suggest: (a) there exist problem instances and initializations where our approach

delivers poor solutions; (b) favoring specialist agents over more expensive ones appears to be an

effective general-purpose initialization heuristic (methods 1 and 2 with ξ0 determined by trial and

error to ensure E-feasibility; and methods 5 and 6); and (c) the methods in (b) yield better final

solutions than overstaffing (method 3) and randomized allocation (methods 4 and 7).

Appendix A.3: Effect of randomized search move size

The search neighborhoods depend on the move size q. We evaluated experimentally the following

choices: q = 1; q is a random variable with uniform distribution on {1, 2, . . . ,maxi∈M(x
(k)
i)}, i.e.,

the set of nontrivial move sizes for incumbent x(k) (Uniform); and q = max(1, round(X)), where

X is an exponential random variable with mean x times the median of the components of the

incumbent solution (x∗med). We summarize empirical results over examples CC1A, CC2L, and

CC2A. We turned off multistart; initialization was via method 1 with ξ0= 0.8 on all examples,

β = 0.7 for CC1, and β = 0.8 for CC2. Work was controlled by a stage-1 time limit of 12 CPU

hours and by setting T = 640 for CC1, T = 320 for CC2L, and T = 160 for CC2A. Based on 32 runs,

q = 1 slightly underperformed in CC1A; Choices “Uniform” and “5*med” slightly underperformed

in CC2L. The difference in median gap-to-empirical-optimum between the best and worst method

was about 0.5% in CC1A and CC2L, and smaller in the other examples. The largest difference

in minimum gap-to-empirical-optimum occurred in CC2A, where “1*med” was better (lower) than

“Uniform” by about 1%. Over all examples, “0.5*med” and “1*med” were slightly better choices.

Appendix A.4: Proof of Proposition 2

Membership of µ in I implies λD < sµ, so h is well-defined in I. For the existence of a root, it is easy

to see that h is continuous with limµ→µ1
h(µ) < 0 and h(µ2) > 0. To show uniqueness of the root,

first observe that B(µ) =
[
1 + s! (1− λD/(sµ))

∑s−1
k=0 ((λD + λL)/µ)k−s /k!

]−1
(by simplification),

so B has derivative B ′(µ) < 0 on I. Differentiation of h gives h′(µ) = w′(µ)(1/µD − 1/µL) + 1/µ2,

where w′(µ) = λDλLB′(µ)/{µD + µL[1 − B(µ)]}2 < 0 on I; the assumption µD > µL now implies

9

h′(µ) > 0 on I.

Appendix A.5: Parameters used for the cutting-plane algorithm

CP is initialized by solving a set-covering problem that provides a solution for which the agents

can cover a fraction αj of the load of call class j for each j (in a fluid model), for some constants

αj chosen heuristically. It is recommended to use αj = 1 when there are low abandonments, and

slightly smaller numbers if there are moderate abandonments. We followed these recommendations.

For instances with abandonment, this yielded an initial solution with global SL above the target

and affected negatively the solution quality; in these cases, α was iteratively decreased by 0.1 until

the initial solution had a global SL below the target; this gave α = 0.9 for example 1 and α = 0.8 for

example 2. In our experience, α was the most influential parameter. CP was also sensitive to di,

i ∈M, the number of agents of type i added to the current solution when estimating subgradients.

Cezik and Lecuyer (2008) recommend using di > 1 if the global SL is low or the simulation is not

very long (is noisy). We set di = 1, with the following exceptions that gave better results: di = 2

when T ≤ 50; in most cases, a higher di did not change the results significantly. In CC2A, di = 1

gave poor results, so we set di = 2 for all T .

10

