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ABSTRACT
Software developers often have to make many design decisions.
The underlying logic behind these decisions, also called design
rationale, represents beneficial and valuable information. In the
past, researchers have tried to automatically extract and exploit
this information, however, prior techniques are only applicable to
specific contexts and there is insufficient progress on an automated
end-to-end rationale extraction and management system. In this
research project, we propose to use Natural Language Processing
(NLP) and Machine Learning (ML) techniques to create a system for
the automated extraction, structuring and management of design
rationale. This system would support and ensure the consistency
and the coherence of the development process.
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1 RESEARCH PROBLEM STATEMENT
Developers often need to make design decisions and to be aware
of the reasons behind previously made ones. This knowledge is
called design rationale [3]. In fact, developers have to spend time
and make effort to understand the historical evolution of decisions.
This is important as the lack of a shared vision and of a complete
understanding of the logic behind the previous decisions would
result in duplicated effort, incoherent choices, conflicting decisions
and unsuccessful collaborations. It could also result in design evap-
oration [15] and design erosion [22], especially when the project
spans a long period of time and geographically-distributed teams.

Thus, rationale knowledge would greatly benefit different stake-
holders. For instance, developers could exploit it to find relevant
past decisions when facing similar situations, or to apprehend the
big picture and understand how previous decisions are intercon-
nected, which would help maintain the stability and the perma-
nence of the systems quality. Therefore, several researchers [2, 8]
tried to capture it by requiring developers to document it. However,
this line of research was unsuccessful because of the extra effort

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

needed for the documentation. The solution is thus to recover ratio-
nale automatically. However, this is challenging as it involves not
only finding and linking scattered and poorly organized rationale
information from different artifacts such as developments docu-
ments and written communications [4], but also, structuring it in
an exploitable format and proposing a usable system to leverage it.
Recently, researchers have tried to automatically extract [1, 10, 20]
and exploit this information [7], however, these techniques are ap-
plicable to specific contexts and we still lack a complete automated
extraction and management system.

We propose to address this gap with an automated end-to-end
rationale extraction and management system. For our first mile-
stone, we are building Kantara, a pipeline for automated rationale
reconstruction. Kantara takes as input different textual sources and
artifacts (e.g., mails, commit messages) specified by the user, and
outputs a knowledge graph that contains the decisions and their
rationales as nodes. The graph also captures the different relation-
ships between decisions as edges. Our next steps consist of building
a graph-based retrieval system and a tool that supports users by
responding to their queries and allowing them to update the graph.

2 DISCUSSION OF THE STATE-OF-THE-ART
In [1], the authors proposed a ML approach to automatically detect
and classify design decisions. In [10], the authors compared the
performance of several ML configurations to automatically identify
decisions. Both these works did not consider rationale information.
In [13], the authors proposed a semantic grammar-based approach
to automatically capture and structure design rationale. They did
not use NLP. In [20], the authors proposed a heuristic-based ratio-
nale extraction system and a ranking module. This is different from
our generic approach as it is specific to the python development
process. In [18] and [9], the authors studied the use of text features
for rationale extraction, and in [17], whether some features could
be generalizeable to different data sets. They did not consider the
structuring and management aspects. In [19], the authors proposed
a bot that uses a knowledge graph that creates a domain model from
a textual description. The bot can also find and retrieve the rationale
behind his modelling decisions. Thus, the rationale they consider
is pre-defined by the developers. In [7], the authors proposed tools
that use a knowledge graph for the continuous identification, visu-
alization and management of rationale in requirements. They differ
from us because they require manual documentation, and they do
not consider the historical evolution of decisions.

3 PROPOSED SOLUTION
Our proposed solution is based on the automated on-demand devel-
oper documentation (OD3) system concept [16]. Our OD3 system
has two components: 1) An information inference component that
extracts and structures the scattered useful information, and 2) A re-
sponse generation component that gives responses to users queries.
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Table 1: Kantara pipeline overview

Stage Step Definition Proposed Method

Extracting DR triples 1. Decisions extraction Identify decision-containing sentences Classification
2. Rationale extraction Extract sentence-level rationale Semantic Role Labeling [14]

Extracting DD relation-
ships

3. Relatedness relationship Capture related decisions (about the same topic) Classification
4. Similar relationship Capture semantically similar decisions Semantic Similarity
5. Contradicts relationship Capture contradictory decisions Natural Language Inference [11]
6. History relationship Check if a decision is a previous version of another Heuristics

3.1 Information inference component
We exposed our plans for this component in [6]. Our contributions
in this part are: 1) Rationale and Decision Graph: a knowledge graph-
based representation of decisions and their rationale expressions
that takes their historical evolution into consideration and that pro-
vides traceability to artifacts. 2) Kantara Approach: an end-to-end
generic NLP-based information extraction pipeline to extract and
structure rationale in a knowledge graph. 3) Validation Mechanisms:
NLP-based heuristics to detect inconsistencies in the graph.

Rationale and Decision Graph. The main components of our
knowledge graph are the triples (decision, “rationale”, rationale),
which associate each decision node with its corresponding ratio-
nale node through the “rationale” edge. Each decision has an as-
sociated source attribute to ensure traceability (the URI of the file
from which the decision has been extracted), and is related to a
specific topic. Topics organize the extracted decisions into clusters
of related decisions. The graph also allows representing different
relationship types between decisions. For now, we introduce three
types: a similar relationship, a contradicts relationship and a history
relationship, and we plan to introduce other types in the future.

Kantara Approach. This information extraction pipeline has two
stages: 1) extracting decision-rationale (DR) triples, and 2) extract-
ing decision-decision (DD) relationships. Table 1 explains the steps
of each stage, and mentions the proposed methods to use. We
use context-independent techniques for each step: in step 1, we
plan to use the software embeddings proposed in [12] that were
shown to help with transferring contexts; in step 2, we only con-
sider a sentence grammatical structure; in step 3, we choose a
training dataset with 300K entries spanning the entire StackOver-
flow community [21]; in steps 4 and 5, we use pre-trained context-
independent models; in step 6, we use heuristics.

Validation Mechanisms. We propose twomechanisms: 1) a mecha-
nism for detecting inconsistencies between the decisions rationales
and the decisions (e.g., if two decisions have a similar relationship,
detecting a contradiction between their rationales could reflect a
problem in the graph construction or a problem in the actual devel-
opment), and 2) a conflict detection mechanism to check whether
new decisions may cause conflict with former ones.

Evaluation plan. We conducted a preliminary evaluation ofKantara
on a small example sourced from the Linux Kernel, which showed
promising results [6]. Our future evaluation plan is two-fold: 1) a de-
tailed step-by-step evaluation of the 6 steps of the Kantara pipeline,
and 2) an overall evaluation of the pipeline as a whole. For the first
detailed evaluation, we focus on the performance of our proposed
methods and we plan to leverage commonly-used metrics (e.g., ac-
curacy, F1-score). We plan to use publicly available datasets (e.g.,

we will use [10] for step 1), and create our own datasets through
manual labelling (e.g., for step 2). For the second overall evaluation,
we plan to use a case study to evaluate the end-to-end effectiveness
and performance of Kantara, as well as its usefulness and that of
the validation mechanisms. We also plan to evaluate the generic-
ity of our pipeline, by applying it on case studies from different
open-source systems (e.g., the Linux Kernel and Rust).

3.2 Response generation component
Our proposed contributions in this part are: 1) Retrieval system: a
two-step graph-based retrieval system that can produce responses
to a natural language query about a certain decision. 2) Tool: an
interactive tool that allows the user to query the graph, see the
results and refine the search. The tool should also allow the user to
visualize and traverse the graph, and to correct or improve it.

Retrieval system. In order to select relevant decisions, our pro-
posed retrieval system uses an index of the decision nodes of the
Rationale and Decision graph. This is done as follows: 1) We com-
pute a relevance score (e.g., similarity score) to find and rank the
relevant decisions using the decisions index. We plan to experi-
mentally propose a threshold and filter out results with relevance
scores below it. 2) For each relevant decision selected, we leverage
the knowledge to retrieve its corresponding rationale, the decisions
associated with its topic and their rationales, and the decisions
connected to it within a parameterized scope, and their rationales.

Tool. Our envisioned user interface is a web-based bot with a
form field to type the query, and a list field to show the results (a
list of reports). For each selected decision, the bot creates a report
composed of two parts: 1) an image of the corresponding sub-graph
retrieved as explained in step 2 of the retrieval system, and 2) a
textual description of the image that coherently integrates the sub-
graph information. Our bot can also open an interactive web page
for the Rationale and Decision Graph visualization and traversal.
This page should allow the user to update the graph (e.g. correct
some nodes, or add another data source and recreate the graph).
The tool could be used at any point in the development process.

Evaluation plan. To evaluate the effectiveness of the retrieval
component and the usefulness of the OD3 system, we plan to do
a user study. Specifically, we will ask participants to query the
tool and to assess the relevance of the results. Then, we will use
standard retrieval metrics: Reciprocal Rank and Precision@K [5]
to evaluate the effectiveness of the retrieval process, and Mean
Average Precision, Recall and F1-score to evaluate the usefulness
of the whole OD3 system. To evaluate the usability aspect, we will
ask participants to take a post-study questionnaire regarding the
intuitiveness and the ease of learning of our tool.
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