
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Extraction and Management of Rationale
Mouna Dhaouadi

DIRO, Université de Montréal
Montreal, Canada

ABSTRACT
Software developers often have to make many design decisions.
The underlying logic behind these decisions, also called design
rationale, represents beneficial and valuable information. In the
past, researchers have tried to automatically extract and exploit
this information, however, prior techniques are only applicable to
specific contexts and there is insufficient progress on an automated
end-to-end rationale extraction and management system. In this
research project, we propose to use Natural Language Processing
(NLP) and Machine Learning (ML) techniques to create a system for
the automated extraction, structuring and management of design
rationale. This system would support and ensure the consistency
and the coherence of the development process.

KEYWORDS
Rationale Extraction, Rationale Management
ACM Reference Format:
Mouna Dhaouadi. 2022. Extraction and Management of Rationale. In Pro-
ceedings of The 37th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE ’22). ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 RESEARCH PROBLEM STATEMENT
Developers often need to make design decisions and to be aware
of the reasons behind previously made ones. This knowledge is
called design rationale [3]. In fact, developers have to spend time
and make effort to understand the historical evolution of decisions.
This is important as the lack of a shared vision and of a complete
understanding of the logic behind the previous decisions would
result in duplicated effort, incoherent choices, conflicting decisions
and unsuccessful collaborations. It could also result in design evap-
oration [15] and design erosion [22], especially when the project
spans a long period of time and geographically-distributed teams.

Thus, rationale knowledge would greatly benefit different stake-
holders. For instance, developers could exploit it to find relevant
past decisions when facing similar situations, or to apprehend the
big picture and understand how previous decisions are intercon-
nected, which would help maintain the stability and the perma-
nence of the systems quality. Therefore, several researchers [2, 8]
tried to capture it by requiring developers to document it. However,
this line of research was unsuccessful because of the extra effort

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

needed for the documentation. The solution is thus to recover ratio-
nale automatically. However, this is challenging as it involves not
only finding and linking scattered and poorly organized rationale
information from different artifacts such as developments docu-
ments and written communications [4], but also, structuring it in
an exploitable format and proposing a usable system to leverage it.
Recently, researchers have tried to automatically extract [1, 10, 20]
and exploit this information [7], however, these techniques are ap-
plicable to specific contexts and we still lack a complete automated
extraction and management system.

We propose to address this gap with an automated end-to-end
rationale extraction and management system. For our first mile-
stone, we are building Kantara, a pipeline for automated rationale
reconstruction. Kantara takes as input different textual sources and
artifacts (e.g., mails, commit messages) specified by the user, and
outputs a knowledge graph that contains the decisions and their
rationales as nodes. The graph also captures the different relation-
ships between decisions as edges. Our next steps consist of building
a graph-based retrieval system and a tool that supports users by
responding to their queries and allowing them to update the graph.

2 DISCUSSION OF THE STATE-OF-THE-ART
In [1], the authors proposed a ML approach to automatically detect
and classify design decisions. In [10], the authors compared the
performance of several ML configurations to automatically identify
decisions. Both these works did not consider rationale information.
In [13], the authors proposed a semantic grammar-based approach
to automatically capture and structure design rationale. They did
not use NLP. In [20], the authors proposed a heuristic-based ratio-
nale extraction system and a ranking module. This is different from
our generic approach as it is specific to the python development
process. In [18] and [9], the authors studied the use of text features
for rationale extraction, and in [17], whether some features could
be generalizeable to different data sets. They did not consider the
structuring and management aspects. In [19], the authors proposed
a bot that uses a knowledge graph that creates a domain model from
a textual description. The bot can also find and retrieve the rationale
behind his modelling decisions. Thus, the rationale they consider
is pre-defined by the developers. In [7], the authors proposed tools
that use a knowledge graph for the continuous identification, visu-
alization and management of rationale in requirements. They differ
from us because they require manual documentation, and they do
not consider the historical evolution of decisions.

3 PROPOSED SOLUTION
Our proposed solution is based on the automated on-demand devel-
oper documentation (OD3) system concept [16]. Our OD3 system
has two components: 1) An information inference component that
extracts and structures the scattered useful information, and 2) A re-
sponse generation component that gives responses to users queries.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ASE ’22, October 10–14, 2022, Rochester, MI Mouna Dhaouadi

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Table 1: Kantara pipeline overview

Stage Step Definition Proposed Method

Extracting DR triples 1. Decisions extraction Identify decision-containing sentences Classification
2. Rationale extraction Extract sentence-level rationale Semantic Role Labeling [14]

Extracting DD relation-
ships

3. Relatedness relationship Capture related decisions (about the same topic) Classification
4. Similar relationship Capture semantically similar decisions Semantic Similarity
5. Contradicts relationship Capture contradictory decisions Natural Language Inference [11]
6. History relationship Check if a decision is a previous version of another Heuristics

3.1 Information inference component
We exposed our plans for this component in [6]. Our contributions
in this part are: 1) Rationale and Decision Graph: a knowledge graph-
based representation of decisions and their rationale expressions
that takes their historical evolution into consideration and that pro-
vides traceability to artifacts. 2) Kantara Approach: an end-to-end
generic NLP-based information extraction pipeline to extract and
structure rationale in a knowledge graph. 3) Validation Mechanisms:
NLP-based heuristics to detect inconsistencies in the graph.

Rationale and Decision Graph. The main components of our
knowledge graph are the triples (decision, “rationale”, rationale),
which associate each decision node with its corresponding ratio-
nale node through the “rationale” edge. Each decision has an as-
sociated source attribute to ensure traceability (the URI of the file
from which the decision has been extracted), and is related to a
specific topic. Topics organize the extracted decisions into clusters
of related decisions. The graph also allows representing different
relationship types between decisions. For now, we introduce three
types: a similar relationship, a contradicts relationship and a history
relationship, and we plan to introduce other types in the future.

Kantara Approach. This information extraction pipeline has two
stages: 1) extracting decision-rationale (DR) triples, and 2) extract-
ing decision-decision (DD) relationships. Table 1 explains the steps
of each stage, and mentions the proposed methods to use. We
use context-independent techniques for each step: in step 1, we
plan to use the software embeddings proposed in [12] that were
shown to help with transferring contexts; in step 2, we only con-
sider a sentence grammatical structure; in step 3, we choose a
training dataset with 300K entries spanning the entire StackOver-
flow community [21]; in steps 4 and 5, we use pre-trained context-
independent models; in step 6, we use heuristics.

Validation Mechanisms. We propose twomechanisms: 1) a mecha-
nism for detecting inconsistencies between the decisions rationales
and the decisions (e.g., if two decisions have a similar relationship,
detecting a contradiction between their rationales could reflect a
problem in the graph construction or a problem in the actual devel-
opment), and 2) a conflict detection mechanism to check whether
new decisions may cause conflict with former ones.

Evaluation plan. We conducted a preliminary evaluation ofKantara
on a small example sourced from the Linux Kernel, which showed
promising results [6]. Our future evaluation plan is two-fold: 1) a de-
tailed step-by-step evaluation of the 6 steps of the Kantara pipeline,
and 2) an overall evaluation of the pipeline as a whole. For the first
detailed evaluation, we focus on the performance of our proposed
methods and we plan to leverage commonly-used metrics (e.g., ac-
curacy, F1-score). We plan to use publicly available datasets (e.g.,

we will use [10] for step 1), and create our own datasets through
manual labelling (e.g., for step 2). For the second overall evaluation,
we plan to use a case study to evaluate the end-to-end effectiveness
and performance of Kantara, as well as its usefulness and that of
the validation mechanisms. We also plan to evaluate the generic-
ity of our pipeline, by applying it on case studies from different
open-source systems (e.g., the Linux Kernel and Rust).

3.2 Response generation component
Our proposed contributions in this part are: 1) Retrieval system: a
two-step graph-based retrieval system that can produce responses
to a natural language query about a certain decision. 2) Tool: an
interactive tool that allows the user to query the graph, see the
results and refine the search. The tool should also allow the user to
visualize and traverse the graph, and to correct or improve it.

Retrieval system. In order to select relevant decisions, our pro-
posed retrieval system uses an index of the decision nodes of the
Rationale and Decision graph. This is done as follows: 1) We com-
pute a relevance score (e.g., similarity score) to find and rank the
relevant decisions using the decisions index. We plan to experi-
mentally propose a threshold and filter out results with relevance
scores below it. 2) For each relevant decision selected, we leverage
the knowledge to retrieve its corresponding rationale, the decisions
associated with its topic and their rationales, and the decisions
connected to it within a parameterized scope, and their rationales.

Tool. Our envisioned user interface is a web-based bot with a
form field to type the query, and a list field to show the results (a
list of reports). For each selected decision, the bot creates a report
composed of two parts: 1) an image of the corresponding sub-graph
retrieved as explained in step 2 of the retrieval system, and 2) a
textual description of the image that coherently integrates the sub-
graph information. Our bot can also open an interactive web page
for the Rationale and Decision Graph visualization and traversal.
This page should allow the user to update the graph (e.g. correct
some nodes, or add another data source and recreate the graph).
The tool could be used at any point in the development process.

Evaluation plan. To evaluate the effectiveness of the retrieval
component and the usefulness of the OD3 system, we plan to do
a user study. Specifically, we will ask participants to query the
tool and to assess the relevance of the results. Then, we will use
standard retrieval metrics: Reciprocal Rank and Precision@K [5]
to evaluate the effectiveness of the retrieval process, and Mean
Average Precision, Recall and F1-score to evaluate the usefulness
of the whole OD3 system. To evaluate the usability aspect, we will
ask participants to take a post-study questionnaire regarding the
intuitiveness and the ease of learning of our tool.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Extraction and Management of Rationale ASE ’22, October 10–14, 2022, Rochester, MI

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

REFERENCES
[1] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, and Florian

Matthes. 2017. Automatic extraction of design decisions from issue management
systems: a machine learning based approach. In European Conference on Software
Architecture. Springer, 138–154.

[2] Janet E Burge. 2005. Software engineering using design RATionale. Ph. D. Disser-
tation. Worcester Polytechnic Institute.

[3] Janet E Burge and David C Brown. 2008. Software engineering using rationale.
Journal of Systems and Software 81, 3 (2008), 395–413.

[4] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and Muhammad Ali
Babar. 2016. 10 years of software architecture knowledge management: Practice
and future. Journal of Systems and Software 116 (2016), 191–205.

[5] Ben Carterette and Ellen M Voorhees. 2011. Overview of information retrieval
evaluation. In Current challenges in patent information retrieval. Springer, 69–85.

[6] Mouna Dhaouadi, Bentley James Oakes, and Michalis Famelis. 2022. End-to-End
Rationale Reconstruction. In 2022 37th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, to appear.

[7] Anja Kleebaum, Barbara Paech, Jan Ole Johanssen, and Bernd Bruegge. 2021. Con-
tinuous Rationale Identification in Issue Tracking and Version Control Systems.
(2021).

[8] Jintae Lee. 1991. Extending the Potts and Bruns model for recording design
rationale. In Proceedings-13th International Conference on Software Engineering.
IEEE Computer Society, 114–115.

[9] Miriam Lester, Miguel Guerrero, and Janet Burge. 2020. Using evolutionary
algorithms to select text features for mining design rationale. AI EDAM 34, 2
(2020), 132–146.

[10] Xueying Li, Peng Liang, and Zengyang Li. 2020. Automatic identification of deci-
sions from the hibernate developer mailing list. In Proceedings of the Evaluation
and Assessment in Software Engineering. 51–60.

[11] Bill MacCartney. 2009. Natural language inference. Stanford University.
[12] Alvi Mahadi, Neil A Ernst, and Karan Tongay. 2022. Conclusion stability for natu-

ral language based mining of design discussions. Empirical Software Engineering

27, 1 (2022), 1–42.
[13] Raymond McCall. 2018. Using argumentative, semantic grammar for capture of

design rationale. In International Conference on-Design Computing and Cognition.
Springer, 519–535.

[14] Martha Palmer, Daniel Gildea, and Nianwen Xue. 2010. Semantic role labeling.
Synthesis Lectures on Human Language Technologies 3, 1 (2010), 1–103.

[15] Martin P Robillard. 2016. Sustainable software design. In Proceedings of the
2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. 920–923.

[16] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, et al. 2017. On-demand developer documentation. In
2017 IEEE International conference on software maintenance and evolution (ICSME).
IEEE, 479–483.

[17] Benjamin Rogers, Connor Justice, Tanmay Mathur, and Janet E Burge. 2017. Gen-
eralizability of document features for identifying rationale. In Design Computing
and Cognition’16. Springer, 633–651.

[18] Benjamin Rogers, Yechen Qiao, James Gung, Tanmay Mathur, and Janet E Burge.
2015. Using text mining techniques to extract rationale from existing documen-
tation. In Design Computing and Cognition’14. Springer, 457–474.

[19] Rijul Saini, Gunter Mussbacher, Jin LC Guo, and Jörg Kienzle. 2022. Automated,
interactive, and traceable domain modelling empowered by artificial intelligence.
Software and Systems Modeling 21, 3 (2022), 1015–1045.

[20] Pankajeshwara Nand Sharma, Bastin Tony Roy Savarimuthu, and Nigel Stanger.
2021. Extracting Rationale for Open Source Software Development Decisions—A
Study of Python Email Archives. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). IEEE, 1008–1019.

[21] Amirreza Shirani, Bowen Xu, David Lo, Thamar Solorio, and Amin Alipour. 2019.
Question relatedness on stack overflow: the task, dataset, and corpus-inspired
models. arXiv preprint arXiv:1905.01966 (2019).

[22] Jilles Van Gurp and Jan Bosch. 2002. Design erosion: problems and causes.
Journal of systems and software 61, 2 (2002), 105–119.

3

	Abstract
	1 Research problem statement
	2 Discussion of the state-of-the-art
	3 Proposed solution
	3.1 Information inference component
	3.2 Response generation component

	References

