Towards Understanding and Analyzing Rationale in Commit Messages using a Knowledge Graph Approach

Mouna Dhaouadi[†], **Bentley James Oakes**^{‡†}, Michalis Famelis[†]

† Université de Montréal ‡ Polytechnique Montréal

MDEIntelligence Workshop at MODELS 2023

POLYTECHNIQUE Montréal

UNIVERSITÉ D'INGÉNIERIE

CO-AUTHORS

Mouna Dhaouadi

Bentley James Oakes

Michalis Famelis

CO-AUTHORS

Mouna Dhaouadi

Bentley James Oakes

Michalis Famelis

PhD topic :

Rationale extraction and management

Towards Understanding and Analyzing Rationale

For a **decision**, software/system developer has **rationale** 'Why' reasoning for their decision

For a **decision**, software/system developer has **rationale** 'Why' reasoning for their decision

Rationale is *useful information* to deeply understand the system Learn from mistakes, reuse solutions

RATIONALE IN CODE COMMITS

Scope: Code commit messages

RATIONALE IN CODE COMMITS

Scope: Code commit messages

''Fix: Added check to prevent null pointer exception.''

RATIONALE IN CODE COMMITS

Scope: Code commit messages

Scope: Code commit messages

Challenges:

- What is rationale *exactly*?
- Implicit or unrecorded

Scope: Code commit messages

Challenges:

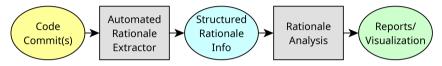
- What is rationale *exactly*?
- Implicit or unrecorded

- Ambiguous language
 - Especially past/future tenses
 - Non-native writers
- Need technical understanding

Scope: Code commit messages

Challenges:

- What is rationale *exactly*?
- Implicit or unrecorded


- Ambiguous language
 - Especially past/future tenses
 - Non-native writers
- Need technical understanding

Research question:

How can we structure and extract rationale information from code commits?


KANTARA: RATIONALE FRAMEWORK

"Kantara: a framework for end-to-end rationale reconstruction"

KANTARA: RATIONALE FRAMEWORK

"Kantara: a framework for end-to-end rationale reconstruction"

Purposes:

- As research to gain insight into rationale itself
- Allow developers to better understand presence of rationale in their software
 - Who, what, where, when
- Decide if a code commit has insufficient rationale
 - Flag or reject

1 Introduction

Running Example

- Creating a Dataset
- 4 Automatic Sentence Classification
- **5** Structuring Rationale Information
- 6 Analyzing Rationale Information
- Conclusion

Linux kernel:

- Development is through Git commits
- Culture for motivating/describing changes
- Valuable (highest-quality?) source of rationale

Linux kernel:

- Development is through Git commits
- Culture for motivating/describing changes
- Valuable (highest-quality?) source of rationale

Out-of-Memory Killer subsystem:

- When Linux kernel runs out of memory
- OOM-Killer is called to avoid crashing
- Two broad steps:
 - Select "best" task to kill
 - 2 Force task to release memory and exit
- Meaningful heuristics

Sentence

0 signal: Use SEND_SIG_PRIV not SEND_SIG_FORCED with SIGKILL and SIGSTOP

Sentence

- 0 signal: Use SEND_SIG_PRIV not SEND_SIG_FORCED with SIGKILL and SIGSTOP
- 1 Now that siginfo is never allocated for SIGKILL and SIGSTOP there is no difference between SEND_SIG_PRIV and SEND_SIG_FORCED for SIGKILL and SIGSTOP.
- 2 This makes SEND_SIG_FORCED **unnecessary and redundant** in the presence of SIGKILL and SIGSTOP.
- 3 Therefore change users of SEND_SIG_FORCED that are sending SIGKILL or SIGSTOP to use SEND_SIG_PRIV instead.
- 4 This removes the last users of SEND_SIG_FORCED.

1 Introduction

- 2 Running Example
- Creating a Dataset
- 4 Automatic Sentence Classification
- 5 Structuring Rationale Information
- 6 Analyzing Rationale Information
- Conclusion

CREATING A LABELLED RATIONALE DATASET

Goal: Build a dataset of OOM-Killer commit sentences, classified wrt rationale

CREATING A LABELLED RATIONALE DATASET

Goal: Build a dataset of OOM-Killer commit sentences, classified wrt rationale

Motivation:

- Gain insights through classification
- Empirical analysis
- Ground truth for automated classification

CREATING A LABELLED RATIONALE DATASET

Goal: Build a dataset of OOM-Killer commit sentences, classified wrt rationale

Motivation:

- Gain insights through classification
- Empirical analysis
- Ground truth for automated classification

Procedure:

- Collect 410 commits (paper reports 180)
- Remove merge commits, filter code sentences
- Three authors label sentences
- Resolve conflicts in discussion

SENTENCE CLASSIFICATION

SENTENCE CLASSIFICATION

Label	Meaning
Inapplicable	Pre-processing error or bad sentences
	(i.e., does not contain English sentences)
Supporting Facts	A narration of facts used to support a decision
Rationale	Reason for a decision or value judgment
Decision	An action or a change that has been made,
	including a description of the patch behaviour

SENTENCE CLASSIFICATION

Label	Meaning
Inapplicable	Pre-processing error or bad sentences
	(i.e., does not contain English sentences)
Supporting Facts	A narration of facts used to support a decision
Rationale	Reason for a decision or value judgment
Decision	An action or a change that has been made,
	including a description of the patch behaviour

- Obtained through piloting rounds and discussions
- Multiple classifications per sentence
- In disagreement, take classification union
- Fleiss kappa: Around 0.65 (fair to good agreement)

0 Decision signal: Use SEND_SIG_PRIV not SEND_SIG_FORCED with SIGKILL and SIGSTOP

3

0	Decision	signal: Use SEND_SIG_PRIV not SEND_SIG_FORCE	
		with SIGKILL and SIGSTOP	

- 1 Supporting Now that siginfo is never allocated for SIGKILL and
 - Fact
 &
 SIGSTOP there is no difference between SEND_SIG_PRIV
 - Rationale and SEND_SIG_FORCED for SIGKILL and SIGSTOP.
- 2 Rationale This makes SEND_SIG_FORCED unnecessary and

redundant in the presence of SIGKILL and SIGSTOP.

Decision Therefore change users of SEND_SIG_FORCED that are

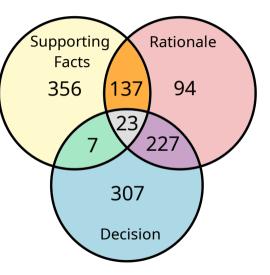
sending SIGKILL or SIGSTOP to use

SEND_SIG_PRIV instead.

4 Decision This removes the last users of SEND_SIG_FORCED.

OOM SUBSYSTEM INSIGHTS

Common structure: Decision summary phase , Supporting facts , Rationale , Decisions Common structure: Decision summary phase , Supporting facts , Rationale , Decisions


Amount of rationale:

- 97.5% of commits contain rationale
- About **40-50%** of sentences per commit contain rationale

Common structure: Decision summary phase , Supporting facts , Rationale , Decisions

Amount of rationale:

- 97.5% of commits contain rationale
- About **40-50%** of sentences per commit contain rationale

1 Introduction

- 2 Running Example
- 3 Creating a Dataset

Automatic Sentence Classification

- **5** Structuring Rationale Information
- 6 Analyzing Rationale Information
- Conclusion

Automatic Classification of Sentences

Automatic Classification of Sentences

Binary classification: Logistic regression, decision tree, SVM Multi-label classification: Random Forest, XGBoost, KNN Binary classification: Logistic regression, decision tree, SVM Multi-label classification: Random Forest, XGBoost, KNN

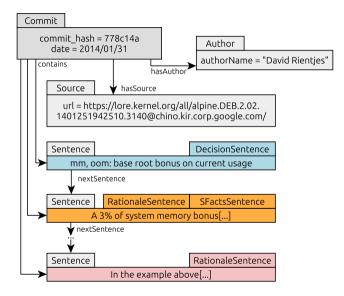
XGBoost classification evaluation				
Label	Precision	Recall	F1-score	
Decision	0.76	0.69	0.72	
Rationale	0.62	0.41	0.49	
Supporting Facts	0.64	0.68	0.66	

Binary classification: Logistic regression, decision tree, SVM Multi-label classification: Random Forest, XGBoost, KNN

XGBoost classification evaluation				
Label	Precision	Recall	F1-score	
Decision	0.76	0.69	0.72	
Rationale	0.62	0.41	0.49	
Supporting Facts	0.64	0.68	0.66	

Insights:

• Overall poor performance


o Decisions easier to classify, rationale is harder

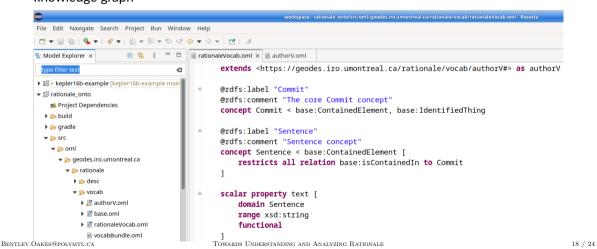
1 Introduction

- 2 Running Example
- 3 Creating a Dataset
- 4 Automatic Sentence Classification
- Structuring Rationale Information
- 6 Analyzing Rationale Information
- Conclusion

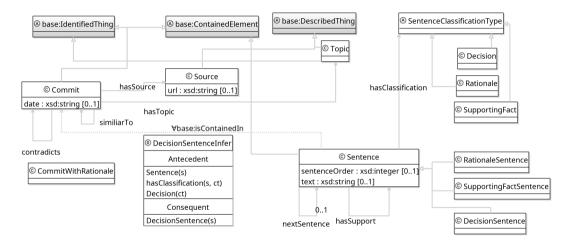
RATIONALE INFO AS A GRAPH

- Prior work modelled relationships between commits
- Here, we model the sentences as a knowledge graph

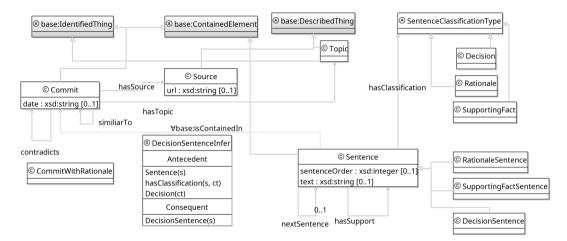
OPENCAESAR FRAMEWORK


Elaasar *et al.*, "openCAESAR: Balancing agility and rigor in model- based systems engineering," in Proceedings of SAM Conference, 2023

OPENCAESAR FRAMEWORK


Elaasar *et al.*, "openCAESAR: Balancing agility and rigor in model- based systems engineering," in Proceedings of SAM Conference, 2023 Ontological Modelling Language (OML) for easily creating OWL ontologies and the knowledge graph

OPENCAESAR FRAMEWORK


Elaasar *et al.*, "openCAESAR: Balancing agility and rigor in model- based systems engineering," in Proceedings of SAM Conference, 2023 Ontological Modelling Language (OML) for easily creating OWL ontologies and the knowledge graph

ONTOLOGY AND INFERENCING

ONTOLOGY AND INFERENCING

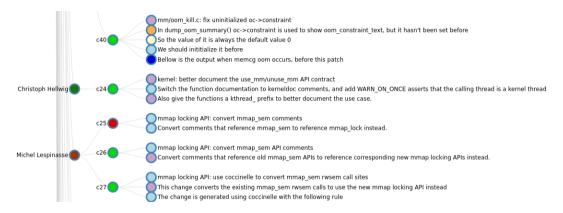
- Inferred multi-classification simplified analysis
- Easier to query for CommitWithRationale, RationaleSentence

1 Introduction

- 2 Running Example
- 3 Creating a Dataset
- 4 Automatic Sentence Classification
- **5** Structuring Rationale Information
- G Analyzing Rationale Information
- Conclusion

SPARQL queries on knowledge graph

SPARQL queries on knowledge graph


Implemented:

- Listing authors and their commits
- List of sentences containing rationale
- List of commits containing rationale (uses inference)

```
{
"author": { "value": "Michal Hocko" } ,
"commit_id": { "value": "co" } ,
"text": { "value": "mm: reduce noise in show_mem for lowmem allocations" } ,
"isCommitWithRationale": { "value": "true" } ,
"isSentenceRationale": { "value": "true" } ,
"isSentenceDecision": { "value": "true" } ,
"isSentenceSupporting": { "value": "false" }
}
```

VISUALIZATION

	c40 mm/oom_kill.c: fix uninitialized oc->constraint In dump_oom_summary() oc->constraint is used to show oom_constraint_text, but it hasn't been set before So the value of it is always the default value 0 We should inititialize it before Bellow is the output when memcg oom occurs, before this patch
Christoph Hellwig 🔵 –	c24 kernel: better document the use_mm/unuse_mm API contract Switch the function documentation to kerneldoc comments, and add WARN_ON_ONCE asserts that the calling thread is a kernel thread Also give the functions a kthread_ prefix to better document the use case.
	c25 Convert comments that reference mmap_sem to reference mmap_lock instead.
Michel Lespinasse 🔴	c26 Convert comments that reference old mmap_sem APIs to reference corresponding new mmap locking APIs instead.
	c27 mmap locking API: use coccinelle to convert mmap_sem rwsem call sites This change converts the existing mmap_sem rwsem calls to use the new mmap locking API instead The change is generated using coccinelle with the following rule

Intention:

- Allow developers/researchers to understand rationale presence
- $\circ~$ Identify commits/subsystems/developers without sufficient rationale

1 Introduction

- 2 Running Example
- **3** Creating a Dataset
- 4 Automatic Sentence Classification
- **5** Structuring Rationale Information
- 6 Analyzing Rationale Information

Conclusion

CONCLUSION

CONCLUSION

Summary:

- Classification of sentences
 - Supporting fact, rationale, decision
- Insights into rationale presence
 - 40% of commit, category overlap
- Poor automatic classification
- Structuring as knowledge graph, inferencing, and analysis
- **5** Visualization of rationale presence

Summary:

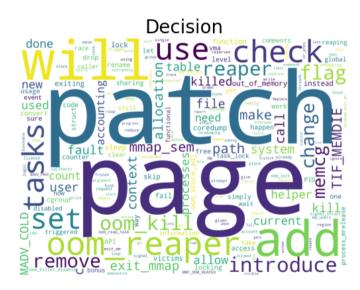
- Classification of sentences
 - Supporting fact, rationale, decision
- Insights into rationale presence
 - 40% of commit, category overlap
- Poor automatic classification
- Structuring as knowledge graph, inferencing, and analysis
- 5 Visualization of rationale presence

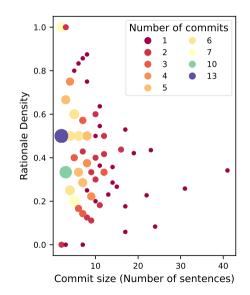
Future work:

- Finish dataset
- Investigate indicators for rationale
 - Evolution over time
 - Developer characteristics
- Improve auto. classification
- Kantara as a pull request bot

Summary:

- Classification of sentences
 - Supporting fact, rationale, decision
- Insights into rationale presence
 - 40% of commit, category overlap
- Boor automatic classification
- Structuring as knowledge graph, inferencing, and analysis
- 5 Visualization of rationale presence


Future work:


- Finish dataset
- Investigate indicators for rationale
 - Evolution over time
 - Developer characteristics
- Improve auto. classification
- Kantara as a pull request bot

Towards Understanding and Analyzing Rationale in Commit Messages using a Knowledge Graph Approach Mouna Dhaouadi, Bentley James Oakes, Michalis Famelis

