
A Scheme Foreign Function Interface to JavaScript Based on
an Infix Extension

Marc-André Bélanger
Université de Montréal

Montréal, Québec, Canada
marc-andre.belanger@umontreal.ca

Marc Feeley
Université de Montréal

Montréal, Québec, Canada
feeley@iro.umontreal.ca

ABSTRACT
This paper presents a JavaScript Foreign Function Inter-
face for a Scheme implementation hosted on JavaScript and
supporting threads. In order to be as convenient as possible
the foreign code is expressed using infix syntax, the type
conversions between Scheme and JavaScript are mostly im-
plicit, and calls can both be done from Scheme to JavaScript
and the other way around. Our approach takes advantage of
JavaScript’s dynamic nature and its support for asynchronous
functions. This allows concurrent activities to be expressed
in a direct style in Scheme using threads. The paper goes
over the design and implementation of our approach in the
Gambit Scheme system. Examples are given to illustrate its
use.

CCS CONCEPTS
• Software and its engineering → Interoperability; Compil-
ers;

KEYWORDS
Foreign function interface, Macros, JavaScript, Scheme

1 INTRODUCTION
In this paper we relate our experience designing, implement-
ing and using a Foreign Function Interface (FFI) in the
context of a Scheme implementation hosted on JavaScript.
Our system avoids the cumbersome syntax and boilerplate
declarations found in typical FFIs and offers a lightweight
interface that is both easy to use and expressive.

Cross-language interoperability is a desirable feature of
any language implementation. It allows building applications
using multiple languages and expressing each part with the
most appropriate language. Important factors in the choice
of language are the availability of libraries and APIs for
the tasks to be done. In a Scheme implementation running
in a web browser the support of a JavaScript FFI opens up
many interesting possibilities such as accessing the Document
Object Model (DOM) and handling events in Scheme code.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ELS’21, May 03–04 2021, Online, Everywhere
© 2021 Copyright held by the owner/author(s).
https://doi.org/10.5281/zenodo.4711424

FFIs are notoriously implementation-dependent and code
using a given FFI is usually not portable. Consequently,
the nature of FFI’s reflects a particular set of choices made
by the language’s implementers. This makes FFIs usually
more difficult to learn than the base language, imposing
implementation constraints to the programmer. In effect,
proficiency in a particular FFI is often not a transferable
skill.

In general FFIs tightly couple the underlying low level
data representation to the higher level interface provided to
the programmer. This is especially true of FFIs for statically
typed languages such as C, where to construct the proper
interface code the FFI must know the type of all data passed
to and from the functions. As a simple example, here is a
program using Gambit Scheme’s C FFI[9] to interface to the
C library’s ldexp(x,y) function computing 𝑥× 2𝑦:

(c-declare "#include <math.h>") ;; get ldexp C prototype
(define ldexp (c-lambda (double int) double "ldexp"))
(println (ldexp 10.0 -3)) ;; prints 1.25

Note the use of type specifiers in the c-lambda to indicate the
type of the arguments (double and int) and result (double).
The FFI defines some mapping between the Scheme data
and the C types, and raises an error for incompatible types
(e.g. the Gambit C FFI will raise an error when a C double is
expected and a value other than a Scheme inexact real is used).
There is even wider variation in how different FFIs handle
more complex constructs like variadic functions, higher order
functions, multiple return values, pointers, arrays, structures,
classes, continuations and threads (a notorious hard case
is interfacing to the C library’s qsort function which uses
universal pointers and a callback). FFIs are also difficult to
use from the REPL and interpreted code, if at all possible.

There is an opportunity to simplify the interfacing code
when the host language is a dynamically typed language that
supports dynamic code evaluation (i.e. eval). By interfac-
ing through expressions rather than the function level, we
can leverage a Scheme reader extended with infix notation
support to generate and evaluate host language expressions.
Our work proposes a new FFI design based on those ideas
for interfacing Scheme and JavaScript that is easy to use in
the common case yet also supports more complex use cases
including asynchronous execution and threads. Our design
enables natural cross-language programming that program-
mers can pick up quickly. We first go over our design and its
implementation, followed by an exposition of potential uses.

https://doi.org/10.5281/zenodo.4711424

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

2 SYNTAX AS INTERFACE
Programmers using an FFI are expected to be knowledge-
able in both the foreign and native languages; in our case
JavaScript and Scheme respectively. We use the term native
as the opposite of foreign and not to mean machine code.

Some Lisp/Scheme FFIs cast the foreign constructs to a
parenthesized syntax to make them usable within the native
language. As an illustrative example, JScheme[1] interfaces
to Java using functions whose names follow the “Java Dot
Notation” containing special characters: (.method obj . . .)
for calls to methods, (Constructor. . . .) for calls to construc-
tors, Class.field $ for static field members, etc. For exam-
ple: (.println System.out$ "hello") performs the same
operation as the Java code System.out.println("hello").

This decoupling of syntax and semantics can be confusing
to the programmer who must essentially write semantically
foreign code but with a more or less contrived mapping
of foreign constructs to the native syntax (e.g. there are
9 different but similar looking Java Dot Notation rules in
JScheme). This adds an intellectual burden and prevents cut-
and-paste of existing foreign code snippets and idioms into
native code. Our point of view is that the foreign language’s
syntax should be preserved as much as possible in native
code in order to express naturally the foreign constructs
which don’t map well to the native language, such as method
calls and accessing member fields. Moreover, the difference in
syntax helps distinguish which of the two languages is being
used at various points in the program. This works particularly
well in languages such as Scheme and JavaScript that have
easily distinguishable syntaxes: prefix and infix notation.

2.1 Scheme Infix eXtension
In our FFI, infix expressions within Scheme code are consid-
ered to be foreign code. A single backslash must precede the
infix expression to escape temporarily from the prefix syntax.
As a simple example the following native code will print the
current day of the week twice to the JavaScript console:
(define date \Date().slice(0, 15))
(define day (substring date 0 3))
\console.log(`day)
\console.log(`(substring \Date().slice(0, 15) 0 3))
The first line calls out to JavaScript to retrieve the date
as a Scheme string (stripped of the time of day using the
JavaScript slice method). The second line extracts the day
of the week with a Scheme call to substring. The third
line reads the Scheme variable day and uses the JavaScript
console.log method to print it out. The last line is similar
but with an inline Scheme call to substring. Note the use of
a backquote to switch back to the prefix syntax temporarily
within the infix form. The expressions marked with a back-
quote are evaluated in the Scheme environment whereas the
rest of the infix form is evaluated in the JavaScript global
environment. This is why the identifiers Date and console
refer to JavaScript globals and the identifiers date, day, and
substring refer to Scheme variables. As shown in the last
line it is possible to nest prefix and infix forms.

The FFI’s implementation is simplified by Gambit’s ex-
isting reader which supports reader macros and which has
a default setup to invoke the Scheme Infix eXtension (SIX)
parser when a backslash is encountered. After a complete
infix form is read the reader continues parsing using the
prefix syntax. Note that the Gambit reader does not use \ to
escape symbols as in Common Lisp and some other Scheme
implementations. Vertical bars are the only supported symbol
escaping syntax.

Similarly to other reader macros, the SIX parser constructs
an s-expression representation of the infix form’s AST. This
representation can easily be viewed by quoting the infix form
and pretty printing it, for example (pp '\console.log(`day))
prints:

(six.infix
(six.call
(six.dot (six.identifier console)

(six.identifier log))
(quasiquote day)))

The system achieves the JavaScript FFI semantics by defining
a six.infix macro, as explained in the next section.

The grammar supported by the SIX parser is given in the
Gambit user manual and the details are mostly uninteresting
here. Two aspects are nevertheless noteworthy.

First of all the grammar combines syntactic forms from
multiple languages including C, JavaScript, Python and Pro-
log (without implementing any of those grammars fully) and
has a few extensions, such as `X to parse `X using the prefix
syntax. The choice of using ` to switch back to prefix is mo-
tivated by the fact it is seldom used in the grammars of infix
based languages. It is also evocative of Scheme’s quasiquote
notation, but with \ and ` in place of ` and ,.

The infix operators have the precedence and associativity
of the JavaScript language. The SIX parser was originally
designed to be used in an undergraduate course on compilers
to easily construct ASTs. Even though the parser supports
multiple syntaxes, it is problematic to force the parser to
restrict the syntax to a subset, or to extend the grammar
itself, as this introduces a phasing problem. It would require
introducing a read-time mechanism (such as Racket’s #lang
feature[10]) to select the grammar, which is something we
want to avoid so that a source file can combine code for
multiple host languages (possibly guarded by a cond-expand
dependent on the compilation target).

Secondly, supporting infix forms within prefix forms re-
quired a few syntactic concessions related to identifier syntax
and whitespace handling. Whitespace is significant when
it is outside of infix form parentheses and braces. The ex-
pression (list \1+2 \3+4-5) evaluates to (3 2) whereas
(list \(1 + 2) \3+4 -5) evaluates to (3 7 -5). This is
important to keep the syntax lightweight. In an earlier ver-
sion of the SIX parser whitespace was not significant and
infix forms were required to end with a semicolon, but this
was less visually pleasing, so the current parser makes the
semicolons optional outside of infix braces.

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

The use of a Scheme identifier immediately after a ` can
cause issues because Scheme allows many more characters in a
symbol than in JavaScript. Consequently the SIX parser will
have the surprising behaviour of treating \`x-f(y) as an ex-
pression containing a reference to the identifier x-f. The pro-
grammer can circumvent this issue by using \(`x - f(y)),
\(`x)-f(y), or \`|x|-f(y) that unambiguously reference x.

2.2 The six.infix Macro
As with any FFI there is a need to bridge the semantic gap
between the native and foreign languages. An important as-
pect is the conversion of values between the languages so that
a value generated in the Scheme code gets converted to the
appropriate value in JavaScript. Conversion from JavaScript
values to Scheme values is also needed for returning results
back to Scheme. Conversions in both directions are also
needed to allow JavaScript code to call Scheme procedures.
Scheme procedures and JavaScript functions are themselves
considered to be data with a mapping to the other language.

The FFI must also bridge the semantic gap of the con-
trol features of the languages. Specifically, Gambit Scheme
supports proper tail calls, first class continuations, and thread-
ing (SRFI-18 and SRFI-21) thanks to a green thread sched-
uler implemented in Scheme using first class continuations.
JavaScript does not support these features. However it does
offer asynchronous functions which are similar to threading
in that they allow concurrent activities. The details of the
mapping between languages is explained in Section 4.

The FFI’s semantics are implemented using a suitable
definition of the macro six.infix. This macro traverses the
SIX AST of the expression and extracts all the Scheme ex-
pressions wrapped in a quasiquote. These are the Scheme
parameters of the expression. These Scheme parameters are
given names by generating JavaScript identifiers (___1, ___2,
...). The SIX AST gets translated to a string of JavaScript
code representing an asynchronous function whose parame-
ters are these identifiers and where the body of the function
computes the expression using these identifiers. As an exam-
ple, the SIX expression \(`s).repeat(10), that can be used
to repeat a Scheme string s 10 times, leads to the creation
of this JavaScript function:

async function (___1) { return ___1.repeat(10); }

Using the standard data mapping this JavaScript function will
be converted to a Scheme procedure p and \(`s).repeat(10)
expands to code that performs the call (p s).

There is a concern with this approach related to phas-
ing. The six.infix macro is expected to work in compiled
code and also through the REPL and Scheme’s eval. This
is solved by a JavaScript eval of the function definition
to create dynamically the JavaScript function and the cor-
responding Scheme procedure. This dynamic evaluation is
required because at Scheme compilation time the JavaScript
environment has not yet started running (for example the
Scheme program could be compiled on a desktop computer
ahead of time).

Scheme JavaScript
#!void undefined
() null
#f/#t false/true
fixnum, e.g. 12 number, e.g. 12
flonum, e.g. 1.2 _Flonum
bignum, e.g. 999999999 _Bignum
ratnum, e.g. 1/2 _Ratnum
cpxnum, e.g. 1+2i _Cpxnum
character, e.g. #\a _Char
pair, e.g. (1 . 2) _Pair
string, e.g. "abc" _ScmString
symbol, e.g. abc _ScmSymbol
keyword, e.g. abc: _ScmKeyword
structure, port, table, ... _Structure
vector, e.g. #(1 2) Array, e.g. [1,2]
u8vector, e.g. #u8(1 2) _U8Vector
... other homogeneous vectors
f64vector, e.g. #f64(1.2 3.4) _F64Vector
procedure of n parameters parameterless function

Figure 1: GVM’s representation of the Scheme types in
JavaScript

To avoid a call to the JavaScript eval at every evaluation
of a given six.infix call site, the expansion uses a simple
caching mechanism to remember the Scheme procedure ob-
tained during the first evaluation. A Scheme box is used as a
cache. It initially contains a string of the JavaScript function
definition, and on the first execution it is mutated to contain
the result of calling the JavaScript eval on that string and
converting the result to a Scheme procedure. This is done by
the procedure ##host-function-memoized which takes the
box as its sole parameter and returns the Scheme procedure.
So to be precise, \(`s).repeat(10) expands to:

((##host-function-memoized
'#&"async function (___1)

{ return ___1.repeat(10); }")
s)

with ##host-function-memoized defined as:
(define (##host-function-memoized descr)

(let ((x (unbox descr)))
(if (string? x)

(let ((host-fn (##host-eval-dynamic x)))
(set-box! descr host-fn)
host-fn)

x)))

3 GAMBIT VIRTUAL MACHINE
Before discussing in more detail the implementation of the
FFI it is important to briefly go over the Gambit Virtual
Machine (GVM) which is the Gambit compiler’s intermediate
language. Thanks to this abstraction it is possible to retarget
the compiler with moderate effort, and indeed there are
backends for several languages both high-level (C, JavaScript,
Python, ...) and machine languages (x86, arm, riscv, ...). In

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

the case we are concerned with here, the compiler translates
GVM instructions to JavaScript.

To support the GVM each Scheme type is mapped to
a corresponding representation as a JavaScript type. The
mapping for some types is direct when a JavaScript type
supports the same operations. This is the case of #f, #t, (),
#!void, vectors, and fixnums which are mapped to false,
true, null, undefined, Array, and numbers respectively. It
is important for performance to use JavaScript numbers as a
representation of fixnums so that operations on small integers
can be done without an extra layer of boxing/unboxing.

Figure 1 gives a list of the Scheme types and their repre-
sentation in JavaScript. All the JavaScript classes supporting
the GVM are prefixed with _. In most cases a class is used to
group the information related to a type, for example a _Pair
contains the car/cdr fields of a Scheme pair and a _Char
contains the Unicode code of a Scheme character. Scheme
strings are not mapped to JavaScript strings because those
are immutable. Instead a _ScmString contains an Array of
Unicode codes. Scheme symbols are not mapped directly
to the (relatively new) JavaScript Symbol type because the
GVM stores a hash code and other information in symbols.

Scheme procedures are mapped to parameterless JavaScript
functions. What is peculiar about this mapping is that the
JavaScript function is used to represent a control point in the
code, similarly to a code label in assembly language. These
control point functions take no parameters and return a new
control point function or null. Jumping from one point in
the code to another is the job of the trampoline which is the
loop while (pc) pc = pc(); where pc is the current con-
trol point function. A control point function can jump to a
new control point by returning this new control point to the
trampoline which will transfer control to it. This approach
is needed to support tail calls properly and also to perform
strict checking of the parameter count (JavaScript does not
check or report parameter count mismatches). When Scheme
code calls a procedure the parameters, a parameter count
and a return address (another control point function) will
be stored in registers and the stack of the GVM (JavaScript
global variables) before returning the procedure’s control
point function to the trampoline to jump to it.

Control point functions, the trampoline and an explicit
representation of the stack are the basic elements needed to
implement closures, continuations and threads similarly to
implementing these types in machine language. The thread
type is a structure with several fields, one of which is the
continuation of the thread. When a thread needs to be sus-
pended, its current continuation is captured and stored in
the thread structure so that it can be invoked later when the
thread’s execution needs to resume. Mutexes and condition
variables are structures which contain a queue of threads,
which are the threads blocked on them. A thread scheduler
implemented in Scheme keeps track of a queue of runnable
threads and moves threads out of this queue when the threads
block on a mutex or condition variable. The scheduler is pre-
emptive, forcing the current runnable thread to the end of
the runnable thread queue when it has been the currently

Scheme JavaScript
#!void ←→ undefined
#f/#t ←→ false/true
fixnum, flonum ←→ number, e.g. 12, 1.2
bignum, e.g. 999999999 −→ number, e.g. 999999999
ratnum, e.g. 1/2 −→ number, e.g. 0.5
character, e.g. #\a −→ number, e.g. 97
exact integer, e.g. 42 ←− BigInt, e.g. 42n
string, e.g. "abc" ←→ string, e.g. "abc"
symbol, e.g. abc −→ string, e.g. "abc"
keyword, e.g. abc: −→ string, e.g. "abc"
vector, e.g. #(1 2) ←→ Array, e.g. [1,2]
() −→ Array, e.g. []
pair, e.g. (1 . 2) −→ Array, e.g. [1,2]
pair, e.g. (1 2 3) −→ Array, e.g. [1,2,3]
table −→ object, e.g. {a:1,b:2}
u8vector ←→ Uint8array
... other homogeneous vectors
f64vector ←→ Float64Array
procedure of n parameters ←→ function of n parameters

Figure 2: FFI mapping of types between Scheme and
JavaScript

running thread for more than a small time interval (typically
0.01 second).

4 FFI MAPPING OF TYPES
The FFI defines the mapping of types between the native and
foreign languages. The mapping is designed to be convenient
and intuitive to allow commonly used values to be be mapped
to the other language to what is expected by a programmer,
and be consistent. The conversions need not have a link with
the GVM’s mapping of Scheme to JavaScript types, which
was chosen to achieve good execution speed of pure Scheme
code. The mapping is given in Figure 2.

4.1 Simple Types
The conversion functions which implement this mapping, the
JavaScript functions _scm2host and _host2scm, are called
when there is an inter-language call when converting the
parameters and the result. It is desirable for values to be in-
variant when they are sent to an identity function in the other
language (i.e. that the round-trip does not change the value
in the sense of equal?). However this is not possible for all
values. The Scheme values #!void, #f, #t, strings and homo-
geneous vectors are bidirectionally mapped to the JavaScript
values undefined, false, true, strings and typed arrays re-
spectively, so they have ideal round-trip behaviour. Scheme
vectors are bidirectionally mapped to JavaScript Arrays, how-
ever the elements of the array need to be recursively converted.
So the round-trip behaviour of vectors/Arrays will depend
on the round-trip behaviour of their elements.

Numbers need to be mapped carefully because JavaScript
has two numerical types, number and BigInt, that correspond
to Scheme’s inexact reals and exact integers respectively.

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

However, they are not consistently used that way in typical
code (for example JavaScript arrays are almost never indexed
with BigInt which is a fairly recent addition to the language).
For that reason it is more convenient for Scheme exact integers
to be mapped to JavaScript numbers. When a JavaScript
number is converted to Scheme, it will become a fixnum value
if it has an integer value falling in the fixnum range, otherwise
(if it has a fractional part or is outside the fixnum range)
it becomes a flonum value. When a JavaScript BigInt is
converted to Scheme, it will become an exact integer (either
a fixnum or bignum depending on its value). Scheme bignums
and rationals are also mapped to numbers. Scheme characters
are mapped to the number that is their Unicode code.

Scheme symbols and keywords are converted to JavaScript
strings. Scheme pairs and lists are converted to JavaScript
Arrays with recursively converted elements.

4.2 Procedures
Scheme procedures are mapped bidirectionally to JavaScript
functions and they accept the same number of parameters.
In the conversion from one language to the other, calls to the
appropriate conversion functions are added to convert the
parameters and the result. In other words, when a Scheme
procedure p is converted to the JavaScript function f , a call
of f in JavaScript must pass JavaScript values that will be
converted to the corresponding Scheme value for processing
by p . When p delivers its Scheme result it will be converted
to JavaScript and returned for the call to f . The situation is
similar for a JavaScript function that is converted to Scheme.

Asynchronous functions and the Promise type were added
to JavaScript to avoid the deeply nested Continuation Passing
Style (CPS), aka. “callback hell”, that commonly occurs
when using CPS to perform asynchronous processing. In a
language with threads, such as Gambit Scheme, asynchronous
processing can instead be expressed in a direct style using
threads that wait for the availability of the next piece of
data or event. Our FFI implements a mapping of JavaScript
promises and asynchronous functions to Scheme threads,
making asynchronous processing easier to use.

It is important to realize that, due to the presence of
threads, Scheme procedures may take an arbitrary long time
to complete if they block the current thread on an I/O
operation or mutex or condition variable until some event
unblocks the thread and allows the procedure to return.
So for a smooth integration with the JavaScript execution
model, Scheme procedures must be mapped to JavaScript
asynchronous functions. Similarly, a JavaScript asynchronous
function may take an arbitrarily long time to deliver a result,
so if Scheme code calls a JavaScript asynchronous function
it may cause the current Scheme thread to effectively block.
However, this must not happen deep inside JavaScript code
because in that case the Scheme thread scheduler itself would
be unable to continue scheduling runnable threads (in effect
the scheduler itself would be blocked).

This is solved by using the Promise API and a JavaScript
to Scheme callback that notifies the Scheme thread scheduler

when a promise is settled (either fulfilled with a value or
rejected with an exception). An asynchronous JavaScript
function f is converted to a Scheme procedure p that ends
with a call to the ##scm2host-call-return procedure that
receives the promise result of the asynchronous function. The
Scheme thread must wait for the promise to be settled. This
is achieved with a mutex that is initially in a locked state
and that the Scheme thread tries to lock (thus blocking at
that point). When the promise is settled a Scheme callback is
called which stores the result (in the mutex specific field) and
unlocks the mutex, allowing the Scheme thread to determine
if the result is normal or an error. The following code shows
how this synchronization is implemented:

// JavaScript side

function _when_settled(promise, callback) {

function onFulfilled(value) {
// call the Scheme callback asynchronously
_async_call(false, false, // no result needed

callback,
[_host2scm([value])]);

}

function onRejected(reason) {
// call the Scheme callback asynchronously
_async_call(false, false, // no result needed

callback,
[_host2scm(reason.toString())]);

}

promise.then(onFulfilled, onRejected);
}

;; Scheme side

(define (##scm2host-call-return promise)
(let ((mut (make-mutex)))

;; Setup mutex in locked state
(mutex-lock! mut)

;; Add callback for when promise is settled
(when-settled ;; defined in JS as above
promise
(scheme ;; pass-through (see next section)
(lambda (result) ;; callback

(mutex-specific-set! mut result)
;; wake up waiting Scheme thread
(mutex-unlock! mut))))

(mutex-lock! mut) ;; Wait until settled
(mutex-unlock! mut) ;; Avoid space leak
(let ((msg (mutex-specific mut)))

(if (vector? msg) ;; Promise was:
(vector-ref msg 0) ;; fulfilled
(error msg))))) ;; rejected

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

Non asynchronous JavaScript functions can be encountered
by _host2scm in a variety of situations, including converting
data structures containing functions and global functions such
as alert and fetch. The above code is a slight simplification
of the actual code which must also handle calling a non
asynchronous JavaScript function which (typically) does not
return a promise. This is done by dynamically testing the
type of ##scm2host-call-return’s parameter to determine
if it is a promise.

Because the handling of SIX expressions creates a definition
of a JavaScript asynchronous function, a call to that function
always returns a promise. The expansion of the six.infix
macro will contain a Scheme call of the JavaScript asynchro-
nous function converted to Scheme. Consequently the Scheme
thread will implicitly wait for the asynchronous JavaScript
processing to complete before continuing. This decouples
the control flow of the Scheme thread scheduler and the
JavaScript task queue, allowing other Scheme threads to run
while the asynchronous call is executing.

A similar decoupling is necessary for Scheme procedures
that are converted to JavaScript asynchronous functions.
When called, the JavaScript function creates a promise and an
Array packaging the Scheme procedure to call, the parameters
and a JavaScript callback, and calls _async_call to add this
Array to a callback queue. A dedicated callback loop Scheme
thread reads this queue, performs the corresponding Scheme
call and settles the promise accordingly (fulfilled or rejected
depending on whether a Scheme exception was raised) by
calling the JavaScript callback.

4.3 Pass-Through Types
In some cases it is not desirable for values to be converted
implicitly according to the previously described rules. An
important case is when a value created by one language
needs to be stored by the other language for passing back
to the originating language unchanged at a later time. For
this purpose the FFI defines two pass-through types which
are treated specially by the conversion functions, represented
by the _Scheme and _Foreign JavaScript types. These types
simply box a Scheme and JavaScript value respectively. In
Scheme a _Scheme value is constructed with the procedure call
(scheme val). In JavaScript a _Foreign value is constructed
with the function call foreign(val).

The _scm2host conversion function acts as the identity
function when passed a _Scheme value. Similarly the _host2scm
conversion function acts as the identity function when passed
a _Foreign value. However, when passed a _Foreign, the
_scm2host conversion function unboxes the value to get back
the JavaScript value originally passed in the call foreign(val).
Similarly, when passed a _Scheme, the _host2scm conversion
function unboxes the value to get back the Scheme value orig-
inally passed in the call (scheme val). With these rules it
is possible for the programmer to achieve ideal round-trip be-
haviour (in the eq? sense) for any value by inserting explicit
calls to scheme and foreign when the normal conversion
must be disabled.

The foreign function can also be used to bypass the
implicit promise synchronization. If the programmer wants
the calling Scheme thread to continue execution without
waiting for the asynchronous call to complete then a Promise
object can be returned to Scheme by wrapping it in a call to
foreign. Waiting for a promise p to be settled is as simple
as writing \`p as shown in the following example:

;; define a JS function that takes time to complete

\sleep=function (ms) {
return new Promise(function (resolve) {

setTimeout(resolve,ms);
});

}

(define p \foreign(sleep(5000))) ;; does not wait

\sleep(1000) ;; pause Scheme execution for 1 sec

\`p ;; waits for the remaining part of 5 secs

The scheme procedure can also be used to write JavaScript
code that directly accesses the GVM’s value representation.
This can be useful to implement special operations or special
purpose conversions of Scheme values. A _Scheme value has
a scmobj field that contains the Scheme object (more pre-
cisely its GVM representation using JavaScript objects). For
example \`(scheme "abc").scmobj.codes[1] evaluates to
98, which is the Unicode code of the second character of the
Scheme string "abc".

For convenience, any Scheme object not mentionned in
Figure 2 is converted to a _Scheme value. Similarly, any
JavaScript object not mentionned is converted to a _Foreign
value. As a consequence, a data conversion between languages
always succeeds. For example a Scheme complex number
will be converted to a _Scheme value, allowing the GVM
representation to be accessed using JavaScript, as shown in
the following code:

(define num 1+2i)
(println \(`num).scmobj.real) ;; prints 1
\(`num).scmobj.imag=9 ;; mutate object
(println num) ;; prints 1+9i

This shows that by accessing its GVM representation the
complex number can be mutated even though it is a Scheme
constant. This clearly exposes implementation details to the
programmer, which is a double edged sword (useful in some
contexts but dangerous if not used properly). A programmer
should mainly rely on the FFI mapping shown in Figure 2
and seldom if ever use the GVM object representation details
given in Figure 1 that is more likely to change in future
versions of Gambit or when special compiler options are
used (indeed the Gambit compiler’s compactness setting
may cause the use of shorter names for the fields of GVM
objects).

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

5 EXAMPLES
We can now show various examples that illustrate the quali-
ties of our design. We begin with a trivial hello world program
and move on to more involved use cases. We hope these exam-
ples convincingly show the simplicity of use and terseness of
the code interfacing Scheme and JavaScript. The reader may
want to try the examples on the online Gambit Scheme REPL
at https://gambitscheme.org/try/ using a cut-and-paste
of the code shown.

5.1 Interfacing with the DOM
One of the most obvious use cases for the FFI is interfacing
with the DOM. The browser effectively acts as a graphical
user interface for Scheme, just as it would for JavaScript. As
a first example, let’s consider inserting a DOM node in the
page to render some text, as shown in Figure 3.

(define msg "<h1>Hello!</h1>")
(define top "afterbegin")

\document.body.insertAdjacentHTML(`top, `msg)

Figure 3: Simple modification of the DOM.

This defines the HTML code to insert and then calls the
insertAdjacentHTML method of the body element of the page.
Note that this directly invokes the JavaScript DOM API with-
out writing Scheme wrappers. This code should feel natural
and be self-explanatory for any programmer knowledgeable
in JavaScript and Scheme, a stated goal of our design. The
example in Figure 3 could have been written as

(define body \document.body) ;; <-- foreign object
\(`body).insertAdjacentHTML(`top, `msg)

where the body element is stored as a foreign object in Scheme.
Such use still feels natural and allows for modularization in
more involved code, such as when developing a library.

5.2 Event Handling
Event handlers and listeners constitute the foundation of
interactive browser user interfaces. It is easy to register a
Scheme procedure as a callback to an event listener. Because
of the implicit mapping of Scheme procedures to JavaScript
functions, any Scheme procedure can be used as a callback to
process DOM events triggered on the page. The following code
will track the mouse movements and log the 𝑥, 𝑦 coordinates
to the console as the mouse is moved.

(define (handler evt)
(update \(`evt).clientX \(`evt).clientY))

(define (update x y)
\console.log(`(object->string (list x: x y: y))))

\document.addEventListener("mousemove", `handler)

Figure 4: Registering a Scheme procedure as an event listener
callback.

The handler event listener callback passes the mousemove
event’s clientX and clientY coordinates to the update proce-
dure. The latter simply logs the coordinates to the console
using JavaScript’s console.log.

5.3 Interfacing with Libraries
Modern web apps typically make use of multiple external
JavaScript libraries. Our FFI allows Scheme code to easily
interface to such libraries. JQuery is a widely used library
that facilitates interacting with the DOM. Figure 5 is a
representative example.

(define html
(string-append

"<button>Toggle visibility</button>"
"<p class='first visible'>First paragraph</p>"
"<p class='second hidden' "
"style='display: none'>Second paragraph</p>"))

\document.body.insertAdjacentHTML("beforeend", `html)

(define (toggle evt)
(let ((hidden \$("p.hidden"))

(visible \$("p.visible")))
\((`hidden).removeClass("hidden")

.addClass("visible")

.toggle())
\((`visible).removeClass("visible")

.addClass("hidden")

.toggle())))

\$("button").click(`toggle)

Figure 5: Interfacing Scheme with JQuery through the FFI.

After defining and inserting the HTML, the toggle event
handler is defined and assigned to the click event using
JQuery. The event handler uses JQuery’s $ function to find
the elements corresponding to a selector. In the example, the
selectors find every <p> element with class hidden or visible.
The toggle handler uses the JQuery removeClass, addClass
and toggle methods to hide or show the element in question.
An element with class hidden will see its class change from
hidden to visible, and its actual visibility toggled by JQuery’s
toggle method, and vice versa.

The SIX expressions in the body of the handler’s let
are wrapped in parentheses to allow writing a multi-line

ELS’21, May 03–04 2021, Online, Everywhere Marc-André Bélanger and Marc Feeley

expression which is very similar to the conventional style
used in JavaScript. The pattern of selecting and mutating
DOM elements is very common and forms the basis of rich
user interfaces and web applications and is clearly easily
achieved with our FFI design.

5.4 Asynchronous Updates
Asynchronous processing is a useful approach to decouple the
UI and application logic. In this example we use JavaScript’s
fetch API to get resources from other web servers, specifically
the weather reports of New-York and Miami. The program
in Figure 6 uses the JavaScript fetch asynchronous function
to request a JSON formatted weather report from the server
forecast.weather.gov . The temperature is shown for each
city and is updated every 10 seconds.

The updating is handled for each city by creating one
Scheme thread per city. Each thread loops on the operations
that fetch the JSON weather report, transfers the temper-
ature to the DOM, and sleeps for 10 seconds. Note that
the Scheme code hides from view inside the fetch-json pro-
cedure the promises and asynchronous functions that are
operating at the JavaScript level.

(define (fetch-json url)
\fetch(`url).then(function (r) { return r.json(); }))

(define (url loc)
(string-append
"https://forecast.weather.gov/MapClick.php?"
"lat=" (cadr loc) "&lon=" (caddr loc)
"&FcstType=json"))

(define (html loc)
(string-append "<h3><span id='" (car loc)

"'>? F -- " (car loc) "</h3>"))

(define (show-weather loc)
\(document.body

.insertAdjacentHTML("beforeend", `(html loc)))
(let ((elem \document.getElementById(`(car loc))))

(thread (lambda ()
(update-weather elem loc 10)))))

(define (update-weather elem loc period)
(let loop ()

(let ((json (fetch-json (url loc))))
\(`elem).innerText=`(temperature json)
(thread-sleep! period)
(loop))))

(define (temperature json)
\(`json).currentobservation.Temp)

(for-each show-weather
'(("New-York" "40.78333" "-73.96667")

("Miami" "25.76000" "-80.21219")))

Figure 6: Asynchronously updating weather reports using
threads.

5.5 Parallelism
Figure 7 is our last example. It shows how the use of threads
for asynchronous processing can improve performance. The
program starts off by defining the future and touch forms
of Multilisp[11] to easily express parallelism. They are the
basis of the pmap procedure which is like map but processes
all elements concurrently. The rest of the code uses pmap to
fetch 43 images1 asynchronously and adds them to the web
page. This program is an order of magnitude faster than one
using plain map because it takes advantage of the inherent
external parallelism in the web servers and network.

(define-syntax future
(lambda (stx)

(syntax-case stx ()
((future expr)
#'(thread (lambda () expr))))))

(define touch thread-join!)

(define (pmap f lst) ;; "parallel" map
(map touch (map (lambda (x) (future (f x))) lst)))

(define memo
(string-append
"Scheme_-_An_interpreter_for_extended_"
"lambda_calculus.djvu"))

(define (page n)
(string-append
"https://upload.wikimedia.org/wikipedia"
"/commons/thumb/1/1e/" memo
"/page" (number->string n) "-593px-" memo ".jpg"))

(define (fetch-blob url)
\fetch(`url).then(function (r) { return r.blob(); }))

(define (->URL blob)
\URL.createObjectURL(`blob))

(define (show url)
\document.body.insertAdjacentHTML(
"beforeend",
""))

(define images
(pmap (lambda (n) (->URL (fetch-blob (page n))))

(iota 43 1)))

(for-each show images)

Figure 7: Downloading a set of images in parallel.

6 RELATED WORK AND CONCLUSION
C FFIs are offered by Scheme implementations such as
Racket[5], Chez Scheme[8], Larceny[12], Bigloo[14] and Gam-
bit Scheme[9]. These essentially propose a domain-specific

1The pages of the original Scheme report!

A Scheme Foreign Function Interface to JavaScript Based on an Infix Extension ELS’21, May 03–04 2021, Online, Everywhere

language (DSL) to facilitate interfacing through foreign func-
tion declarations, something we wish to avoid.

FFIs to dynamically typed languages exist in languages and
software such as Hop[15], Haskell[7], Kotlin[2], PharoJS[6],
Pyodide[4] or Racket[5]. Of these, Haskell’s Foreign Expres-
sion Language, PharoJS and Racket’s facilities fall into the
DSL category. Hop, Pyodide and Kotlin allow seemingly
more natural access to JavaScript code. This is facilitated
by Kotlin and Python’s syntactic similarity to JavaScript.
However, these methods are in essence either like writing
Python to a string and passing it to Python’s eval in the
case of Pyodide (which is essentially CPython compiled to
WebAssembly), or evocative of the C FFI function declara-
tions in the case of Kotlin. JScheme[1] and LIPS[3] offer yet
another way of interfacing with JavaScript by leveraging a
dot notation, wherein Java or JavaScript semantics is mapped
to Scheme through syntactic convention.

Hop’s ability to syntactically distinguish computations that
should occur on the server or the client resembles our escaping
mechanism to switch between languages. This is reminiscent
of quotation/antiquotation in SML[16], which allows to splice
host-language expressions in foreign code. The `C (Tick
C)[13] language also offers a mechanism using a backquote
for escaping between languages which is reminiscent of our
own. Racket provides facilities for modifying its reader and
expander which can be used to read and execute custom
languages by using the #lang form[10]. These features, while
certainly powerful, are more complex than our solution, yet
share the quality of allowing a programmer to switch back
and forth between languages.

All things considered, our work distinguishes itself from
other FFIs most clearly by its use of a Scheme reader ex-
tended with an infix notation parser. This allows our FFI to
interface host and foreign languages at the expression level,
enabling a more concise and natural style. The FFI’s ability
to interface JavaScript asynchronous functions with Scheme
threads transparently also simplifies combining Scheme pro-
grams with asynchronous JavaScript code and libraries.

ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada.

REFERENCES
[1] JScheme Reference Manual. Retrieved March 15, 2021 from

http://jscheme.sourceforge.net/jscheme/doc/refman.html.
[2] Use JavaScript code from Kotlin | Kotlin. Retrieved March 15,

2021 from https://kotlinlang.org/docs/js-interop.html.
[3] LIPS: Powerful Scheme based lisp interpreter in JavaScript. Re-

trieved March 15, 2021 from https://lips.js.org/.
[4] Pyodide – Version 0.17.0. Retrieved April 22, 2021 from https:

//pyodide.org/en/0.17.0/.
[5] Eli Barzilay and Dmitry Orlovsky. Foreign interface for PLT

Scheme. In Proceedings of the Fifth ACM SIGPLAN Workshop
on Scheme and Functional Programming, pages 63–74, Snowbird,
Utah, 2004.

[6] Noury Bouraqadi and Dave Mason. Mocks, Proxies, and Tran-
spilation as Development Strategies for Web Development. In
Proceedings of the 11th edition of the International Workshop
on Smalltalk Technologies, pages 1–6, Prague Czech Republic,

August 2016. ACM. https://dl.acm.org/doi/10.1145/2991041.
2991051.

[7] Atze Dijkstra, Jurriën Stutterheim, Alessandro Vermeulen, and
S. Doaitse Swierstra. Building JavaScript Applications with
Haskell. In Ralf Hinze, editor, Implementation and Application
of Functional Languages, volume 8241 of Lecture Notes in Com-
puter Science, pages 37–52, Berlin, Heidelberg, 2013. Springer.
https://doi.org/10.1007/978-3-642-41582-1_3.

[8] R. Kent Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2009. Retrieved March 15, 2021 from https:
//www.scheme.com/csug8/.

[9] Marc Feeley. Gambit v4.9.3 manual, 2019. Retrieved on March
15, 2021 from http://www.iro.umontreal.ca/~gambit/doc/gambit.
pdf.

[10] Matthew Flatt, Robert Bruce Findler, and PLT. The Racket
Guide. Retrieved April 22, 2021 from https://docs.racket-lang.
org/guide/index.html.

[11] Robert H. Halstead. Multilisp: A Language for Concurrent Sym-
bolic Computation. ACM Trans. Program. Lang. Syst., 7(4):
501–538, October 1985. https://doi.org/10.1145/4472.4478.

[12] Felix S. Klock II. The Layers of Larceny’s Foreign Function
Interface. In Workshop on Scheme and Functional Programming,
Vancouver, British Columbia, 2008.

[13] Massimiliano Poletto, Wilson C. Hsieh, Dawson R. Engler, and
M. Frans Kaashoek. ‘C and tcc: a language and compiler for
dynamic code generation. ACM Transactions on Programming
Languages and Systems, 21(2):324–369, March 1999. https://doi.
org/10.1145/316686.316697.

[14] Manuel Serrano. Bigloo, a Practical Scheme Compiler, March
2021. Retrieved March 15, 2021 from http://www-sop.inria.fr/
indes/fp/Bigloo/.

[15] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a
Language for Programming the Web 2.0. In Proceedings of the
First Dynamic Languages Symposium, pages 975–985, Portland,
Oregon, 2006.

[16] Konrad Slind. Object language embedding in Standard ML of
New Jersey. In Proceedings of the Second ML Workshop, CMU
SCS Technical Report, Pittsburgh, Pennsylvania, 1991. Carnegie
Mellon University.

http://jscheme.sourceforge.net/jscheme/doc/refman.html
https://kotlinlang.org/docs/js-interop.html
https://lips.js.org/
https://pyodide.org/en/0.17.0/
https://pyodide.org/en/0.17.0/
https://dl.acm.org/doi/10.1145/2991041.2991051
https://dl.acm.org/doi/10.1145/2991041.2991051
https://doi.org/10.1007/978-3-642-41582-1_3
https://www.scheme.com/csug8/
https://www.scheme.com/csug8/
http://www.iro.umontreal.ca/~gambit/doc/gambit.pdf
http://www.iro.umontreal.ca/~gambit/doc/gambit.pdf
https://docs.racket-lang.org/guide/index.html
https://docs.racket-lang.org/guide/index.html
https://doi.org/10.1145/4472.4478
https://doi.org/10.1145/316686.316697
https://doi.org/10.1145/316686.316697
http://www-sop.inria.fr/indes/fp/Bigloo/
http://www-sop.inria.fr/indes/fp/Bigloo/

	Abstract
	1 Introduction
	2 Syntax as interface
	2.1 Scheme Infix eXtension
	2.2 The six.infix Macro

	3 Gambit Virtual Machine
	4 FFI Mapping of Types
	4.1 Simple Types
	4.2 Procedures
	4.3 Pass-Through Types

	5 Examples
	5.1 Interfacing with the DOM
	5.2 Event Handling
	5.3 Interfacing with Libraries
	5.4 Asynchronous Updates
	5.5 Parallelism

	6 Related work and Conclusion
	Acknowledgments
	References

