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Abstract

This paper presents a taxonomy of parallel and distributed debug-
gers based on execution replay. Programming of distributed and pa-
rallel systems is a complex task. Amongst the many factors contri-
buting to this complexity, the nondeterminacy of these systems is
an important one. Execution replay is a technique developed to
facilitate the debugging of nondeterministic programs.

Execution replay has very broad applications and not every algo-
rithm is applicable in every situation. This taxonomy provides a
precise classification of replay debuggers using nine criteria. From
this classification, it is easier to determine a debugger’s scope of
application, outline its strengths and weaknesses and compare it
with others. This taxonomy is illustrated and validated using a
collection of existing replay debuggers.
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1 Introduction

It is well known that programming of distributed and parallel applications is a complex
task. Furthermore, very few parallel programming tools are available to support the
programmer. In particular, debugging tools are often not well suited or simply lacking.

Tools used in sequential programming environments may not scale appropriately to
distributed and parallel environments. Mellor-Crummey cites four reasons that make
debugging parallel systems more problematic: lack of global time, nondeterminism,
multiple threads of control and complex patterns of interactions [10]. Innovative stra-
tegies have to be developed to build tools well adapted to these difficulties. Execution
replay is a strategy proposed to facilitate debugging of nondeterministic programs.
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1.1 Related work

Our taxonomy aims at providing a terminology of replay debugger characteristics. The
need for a debugging terminology has been formally identified in the conclusion to
the 1988 workshop on distributed and parallel debugging by Sopka and Redell. Both
concluded that we lacked a theory and a terminology for debugging [10].

Regarding replay debugging more specifically, important work has been accompli-
shed since, but we are still far from a general theory and terminology. Netzer proposed
a taxonomy of race conditions [12], extended by Helmbold and McDowell in 1994 [7].
A better comprehension of race condition properties lead to replay algorithms optimal
in terms of the quantity of logged information [11, 13].

Our taxonomy widens the scope of these race condition taxonomies, by caracterizing
other aspects of a replay debugger. We cover the characteristics of the replayed system,
the replay algorithm (where the type of race condition replayed is included), the inte-
gration of the replay debugger into the replayed system as well as the characteristics of
the resulting replay itself.

2 Terminology

2.1 Execution replay

Execution replay aims at providing an effective method to debug nondeterministic pro-
grams. We say that a program P has a nondeterministic behavior if two executions
with the same input may differ. With execution replay, information is gathered during
an execution F and used to control another execution E’, called replay, in such a way
that FE’ is identical to E at some level of abstraction. Clearly, the replay E’ is not
identical to E at all levels: one produces information while the other uses it. However,
this replay helps to locate the fault if:

e Information may be gathered during the replay. This information may be obtained
from additional instructions in the code (e.g printf), using standard sequential
debuggers or with more sophisticated tools. Further, the information should be
gathered at a level of abstraction where executions are identical.

e The information gathered at this level of abstraction is sufficient to locate the
fault.

We illustrate these requirements with two examples. The first example illustrates a
useless replay debugger. At a very high level of abstraction, it simply reproduces the
output of an execution of a program: if the execution outputs the result 5, the replay
simply returns 5. This is a correct replay at a very high level of abstraction. At this
level of abstraction, the only information that can be gathered is its output, and this
information is useless to debug the program. Furthermore, even if some information
could be gathered at a lower level of abstraction, this information would be useless since
the executions differ at this lower level of abstraction.

The second example illustrates a situation where replay is useful. Replay debuggers
generally operate at a level of abstraction corresponding to that of the primitive ope-



rations of the language. A regular sequential debugger is usually available to gather
information. Functions like printf could also be added to the code to gather informa-
tion. If the replay is correct at the language level, information is gathered at a level
of abstraction where executions are identical. This information is useful to debug the
program. Of course, nondeterminism is not the only difficulty of parallel and distribu-
ted debugging: lack of global time, multiple threads of control and complex patterns
of interaction might make it complex to track down the fault using the information
gathered. Other debugging techniques should then be used in conjunction with replay,
but further analysis is beyond the scope of this paper.

2.2 Other terms related to replay

Execution replay is applied to a particular language or system. We call that language
or system the replayed system.

We also distinguish between replay algorithm and replay debugger. A replay algo-
rithm describes how a particular set of instructions is replayed. A replay debugger
incorporates one or more replay algorithms, as well as more practical aspects such as
the integration into the replayed system.

A replay debugger is also often a component of a more complete debugging system:
execution replay is helpful in debugging if additional information is given during the
replay, this information being gathered by the other components of the debugging
system.

3 Existing Replay Systems

Before proceeding with the taxonomy itself, we first present a survey of existing replay
debuggers. These debuggers will be used to illustrate the various classification criteria.
Their classification is summarized in table 1.

RD 1 (BugNet [1]) BugNet is a replay debugger developed by Curtis and Wittie.
It is used to replay applications running on a workstation cluster. The application’s
tasks communicate through interprocess communication (IPC), where unpredictable
communication delays cause nondeterminism. All I/O and IPC data exchanges are
captured, their data recorded and used to create the replay.

RD 2 (Recap [14]) Recap is a debugger that provides the illusion of reverse execu-
tion. It logs and replays the results of systems calls and shared-memory read, as well
as the time when asynchronous events (signals) occur. Given (1) an initial execution
passing through states t., t, and t,,, (2) a checkpoint of the execution state at ¢. and (3)
a replay stopped at t,, it creates the illusion of reverse execution to time ¢, by replaying
(forward) the execution from ¢, to t,.

RD 3 (Instant Replay [9]) Instant Replay is an algorithm developed by Leblanc and
Mellor-Crummey to replay shared-memory parallel programs. Instant Replay assumes
that all accesses to shared variables are guarded. The replay is guaranteed by recording
the order in which the variables are accessed, rather than recording the data that is



accessed. Several adaptations of Instant Replay were proposed to debug other types of
nondeterministic constructs (RD 8, 9).

RD 4 (SYN-Sequence [16]) Tai, Carver and Obaid proposed a replay debugger for
concurrent Ada programs. Given a program P, source-to-source transformations pro-
duce the programs P’ and P”, such that (1) the execution of P’ records a sequence of
synchronization events (SYN-Sequence) and (2) P” uses this SYN-Sequence to produce
a correct replay. Their debugger is concerned with all nondeterministic Ada constructs,
except accesses to shared-variables: it is assumed that these accesses will be guarded
using other Ada constructs.

RD 5 (Optimal Tracing of Shared Memory Accesses [11]) Netzer proposed an
enhancement to the original Instant Replay algorithm. This enhancement is based
on the observation that it is usually more expensive to record all log entries than to
compute a subset of them that is sufficient to guarantee replay. With Instant Replay, all
accesses to shared variables are logged. Netzer proposes an algorithm that computes,
dynamically, a subset of accesses that is sufficient to guarantee a correct replay, and
shows that this subset is minimal.

RD 6 (Optimal Tracing of Messages [13]) Based on the previous observation, Net-
zer and Miller proposed an algorithm applicable to message-passing programs that dy-
namically computes the minimal subset of events that needs to be recorded.

RD 7 (Mostly Functional Language [6]) Halstead and Krantz proposed a replay
algorithm adapted to mostly functional parallel programs. The algorithm has been
implemented for Multilisp, a parallel variant of Scheme. Like Instant Replay, their
algorithm reproduces the order in which shared-variables are accessed. But it exploits
characteristics of mostly functional languages to reduce the intrusiveness of the debug-
ger: no tracing overhead is imposed on read accesses to variables (even shared-variables),
only a small amount of tracing overhead is imposed to Multilisp’s touch operation, but
greater overhead is added to side-effect operations, that are presumed to be rare.

RD 8 (Concurrent Logic Language [15]) Shen and Gregory extended Instant Re-
play to concurrent logic programs. Their replay debugger is applied to KLIC. Commit-
ted choice concurrent logic programming languages have several properties that they
exploit in order to simplify the replay algorithm. The most important property is that
KLIC’s processes communicate through single-assignment shared-variables. Nondeter-
minism of KLIC’s executions occurs because the clause to which each goal (or process)
commits during an execution is nondeterministic. Tracing this information is sufficient
to create a correct replay.

RD 9 (Actor Language [3]) Dionne proposed a replay debugger applied to CLAP[2],
an actor extension of C++. CLAP’s multi-threaded actors communicate through both
shared-variables and messages. This replay debugger reproduces some nondeterministic
instructions of CLAP with an extension of Instant Replay, and combines the logging
of data to reproduce other nondeterministic instructions such as clock accesses or user
input.



RD 10 (Distributed Training System [4]) Dionne proposed a debugger to replay
executions of a distributed training system composed of a user interface, a simulation
engine and a collection of artificial agents. The replay debugger is applied to messages
sent across the system: their data is recorded and used to replay a process by simulating
its interactions with other processes.

Debugger Instructions Task | Alg Inst. traced Int. | Time | Proc.
(RD 1) 1b, input 2a 3a 4a 5b 8b 9¢
(RD 2) 1b, input 2a 3a 4a 5b 8b 9c
(RD 3) la 2a 3b 4a 5a | 8a 9a
(RD 4) la, 1b 2a 3a 4a 5a | 8a 9a
(RD 5) la 2a 3b 4b (races) 5a | 8a 9a
(RD 6) 1b 2a 3b 4b (races) 5b | 8a 9a
(RD 7) la 2b 3b | 4b (side effects) | 50 | 8a 9a
(RD 8) goal commitment | 2b 3b 4a 5b 8a 9a
(RD9) la, 1b, input 2b | 3b,3a 4a 5a 8a 9a
(RD 10) 1b 2a 3a 4a 50, | 8a 9¢

Table 1: Classification of some replay debuggers. Two criteria were omitted: the failure
of the replay (criterion 6) is not a concern in most debugger papers, but we believe that
most debuggers are of the type 6b, and all debuggers are of type 7a regarding the class
of instrumented instructions (criterion 7).

4 Taxonomy

The taxonomy we are proposing is composed of nine criteria, describing a debugger from
four different perspectives: the characteristics of the replayed system, the characteristics
of the replay algorithms used by the debugger, the integration of the replay debugger
into the replayed system and the characteristics of the resulting replay.

We consider that the integration of the replay debugger into a larger scale debugging
system is not a characteristic of the replay debugger, but rather of the debugging system.
Thus, aspects such as the interface to visualization packages, user interface and so on
are not relevant in this classification.

The replay debuggers previously described illustrate the classification criteria.

4.1 Characteristics of the replayed system

This first perspective captures the aspects of the replayed system relevant to the clas-
sification of a replay debugger.

Criterion 1 (Type of instruction) We first classify the replay debuggers according
to the type of instructions they replay. The value set defined by this criterion is not
formally introduced. Typically, either accesses to shared-variables (1a) or message ex-
changes (1b) are the instructions that provoke nondeterminism, and thus the instruc-
tions replayed.



Not every instruction of the replayed system has to be considered. We distinguish
three classes of instructions?:

e Deterministic instructions: instructions that always produce a deterministic effect
(do not require replay at all);

o Weakly nondeterministic instructions: instructions that produce a deterministic
effect if they are executed in a particular order;

e Strongly nondeterministic instructions: instructions that do not produce a deter-
ministic effect.

Replay debuggers are not concerned with deterministic instructions. Strongly non-
deterministic instructions occur both in parallel and in sequential programs: access to
a timer, user input, etc. Some debuggers do consider them (RD 1, 2, 9), but they are
often ignored. Weakly nondeterministic instructions are generally the ones that make
debugging parallel programs such a hard task. Replay debugging has mostly been ap-
plied to this class of instructions. Typically, replay debuggers deal with instructions
related to shared-variables accesses (RD 3, 5, 7, 9) or to messages exchanges (RD 1,
2,4, 6,9, 10). Some systems consider a different set of instructions: KLIC’s (RD 8)
reproduces the commitment of a goal to a clause, CLAP’s (RD 9) deals with message-
passing and shared-variable access, but also with instructions related to control of the
actor’s behavior.

As more complex distributed applications are developed, execution replay may have
to be applied to systems where a wider set of instructions cause nondeterminism. Access
to more complex shared ressources (databases, files) and complex user interactions are
examples of instructions that may have to be dealt with in the future.

Criterion 2 (Task creation model) The replayed system’s task creation model is an
important classification criterion. It describes whether the replay debugger requires a
static task creation (2a), or handles a dynamic task creation (2b).

We distinguish two task creation models: static and dynamic. In systems where
task creation is static, the number of tasks is known when the program is started.
In systems where it is dynamic, that number may change during the execution. The
implementation of a replay debugger that handles the dynamic creation of tasks is more
complex.

Replay debuggers for CLAP (RD 9), Multilisp (RD 7) and KLIC (RD 8) support
dynamic task creation. It is a fundamental aspect of the systems that they replay:
in CLAP, an actor processes messages with new threads, in Multilisp, parallelism is
expressed with an expression resulting in the creation of a new task (a short execution
could result in tens of thousands of tasks being created) and in KLIC, every goal
corresponds to a task and additional tasks are created as subgoals are found.

The replay debuggers proposed by Netzer (RD 5, 6) rely on a fixed number of tasks:
every shared ressource is associated with a vector of size ¢, where t is the number of
tasks. If tasks are dynamically created, the value of ¢ changes. Thus, debuggers (RD
5, 6) require a static task creation model.

2A formal definition of these three classes of instruction may be found in [3]



The replay debugger (RD 10) does not handle dynamic task creation. It was not
required since the underlying communication system does not permit the attachment or
creation of tasks. If dynamic task creation was allowed, the event identification method
would have to be adapted accordingly. In general, an event is uniquely identified within
a specific context. This context is usually the task: events of different tasks are logged
into different files, or the event identification within the log file describes the task from
which the event originated. The identification of every task or the association of every
task to a log file is usually easy when tasks are statically created. But this might be
nondeterministic when tasks are dynamically created. This adds to the complexity of
the debugger.

In the case of the other debuggers (RD 1, 2, 3, 4), it is not clearly indicated whether
they support dynamic task creation or not. They do not attach a vector of information
to the shared ressources, but dynamic task creation is not fundamental to the replayed
system. A fair assumption would be that the previous discussion about (RD 10) holds
true for these debuggers.

4.2 Type of algorithm

We have discussed the characteristics of the replayed system. We now focus on the
replay algorithm itself. A replay debugger could combine many replay algorithms.
Such a replay debugger would be described by the characterization of every algorithm
it employs.

Criterion 3 (Data or synchronization replay) Replay algorithms are either based
on the data (3a) or the synchronization (3b) of the instructions.

Data replay was the first technique used, by BugNet (RD 1). It is also the technique
used in (RD 2). Since synchronization replay is usually more efficient, it is the technique
used by most recent algorithms (RD 3, 4, 5, 6, 7, 8, 9). One of these debuggers (RD 9)
also employs a data replay algorithm to replay nondeterministic instructions (that, by
definition, require data replay).

Unfortunately, synchronization algorithms require that all tasks be replayed, a
condition that is not always feasible. For example, in (RD 10), a component of the
system (a simulation engine) could not be replayed. Thus a data algorithm was requi-
red.

Criterion 4 (Class of traced instructions) This criterion describes the relation-
ship between the instrumented instructions and the traced instructions: whether in-
formation is traced upon the execution of every instruction instrumented (4a), or only
upon the execution of a subset of these instructions (4b).

Run-time knowledge of the execution may drastically reduce the size of the log.
Two approaches are illustrated in the debuggers we use as examples: (RD 5, 6) do not
log unecessary information upon the execution of instructions inherently ordered, while
(RD 7) optimizes the replay of mostly functional programs by considering that most
accesses are read accesses, and that only information about variables that were written
needs to be logged. The other debuggers log information upon the execution of every
instruction that is instrumented.



4.3 Integration into the replayed system

The next family of criteria describes the integration of the replay debugger into the
replayed system.

Criterion 5 (Integration method) This criterion caracterizes the method used to
integrate the replay debugger into the system: the integration is manual (5a) or auto-
matic (5b). We further distinguish between complete (5b.) and partial (5b,) automatic
integration.

Integration is manual when the user is involved in the instrumentation of the pro-
gram. In this case, it is the responsibility of the programmer to identify nondetermi-
nistic instructions in the program. When integration is manual, it is not possible to
guarantee that the replay is always correct: the user could have forgotten to identify
an instruction, for example. This type of integration is paradoxical in the sense that
the debugger relies on the premise that the program is free of a certain type of bug.

Integration is automatic when the user is not involved in the instrumentation pro-
cess. In this case, the integration might be done during the compilation (by a preproces-
sor, the compiler or the interpreter), or at run-time (by instrumenting the library). With
automatic integration, programs will be replayed without extra effort from the user. In
the case where integration is automatic, we further distinguish between complete and
partial automatic integration. If integration is complete, then replay is guaranteed for
any valid program of the given language.

Debuggers of the type la usually require manual integration. In (RD 9), shared-
variables have to be instances of a particular class, and standard C++ access methods
are overloaded and instrumented. In (RD 3, 4, 5), shared-variable accesses are guarded
with particular instructions. As an exception to this rule, (RD 7) is automatically
integrated into the language.

Debuggers of type 1b usually provide automatic integration. This is true of (RD 1,
2, 6, 10). (RD 4, 9) belong to both types la and 1b. Their integration is automatic
with respect to the message exchange instructions, but manual with respect to shared-
variable accesses. Overall, their integration is manual since the user’s intervention is
required. (RD 8) is of neither type and is automatically integrated.

Most papers on replay debuggers are concerned with the instructions that they
replay, and do not mention those that they do not replay. Therefore, the classification
of debuggers into the types 50, and 5b, is usually not possible. We believe that most
debuggers, if not all, are only partially integrated.

Criterion 6 (Failure of the replay) Only a replay debugger with complete automa-
tic integration (of type 5b.) may guarantee a correct replay of any program. Generally,
there exists programs and situations such that the replay may fail. This criterion cha-
racterizes the failure detection: whether it is never detected (6a), sometimes signaled to
the user (6b) or always signaled to the user (6¢).

The failure of the replay debugger is a concern that very often remains unanswered.
Most papers on debuggers describe the replayed instructions, how the replay is achieved
and what type of replay is achieved. Sometimes, the integration of the replay debugger



into the replayed system is described. But most of the time, the behavior of the debugger
when the replay fails is not described.

The failure may occur in many situations. Where integration is manual, the user
could have forgotten to identify a nondeterministic instruction. Where integration is
automatic but incomplete, the execution of a particular instruction might cause the
replay to fail. This includes simple cases such as inputs that are not taken care of, but
also less trivial cases, such as memory exhaustion occuring only during the replay.

A failure of the replay in (RD 9, 10) will sometimes be signaled to the user, but this
is not guaranteed. The failure is detected when an access to the log is performed, and
if the event parameters do not match the original ones (for example, event types do not
match).

Criterion 7 (Class of instrumented instructions) This criterion describes the re-
lation between the program and the instrumented instructions. It indicates whether all
instuctions of a given type are instrumented (7a), or if only a subset of these instructions
are instrumented (7b).

Run-time information analysis leads to debuggers of type 4b, that do not trace
every instrumented instruction. Static analysis of the program may reduce the number
of instructions that need to be instrumented. This analysis is particularly important
when a high proportion of the instructions of a given type do not have to be traced (but
not all of them, since we assume that some of these instructions are nondeterministic).
A good example of such instruction types are accesses to variables: instances of accesses
to shared-variables are weakly nondeterministic and need to be traced, while instances
of accesses to variables that are not shared are deterministic, and do not need to be
traced. A static analysis of the program could be used to determine which variables
are shared and which are not, and enable the restriction of the instrumentation to only
the subset of accesses performed to a shared-variable.

Of the debuggers we use as examples, none use static information to reduce the
proportion of instrumented instructions. This is not an important feature for debuggers
that replay instructions that almost always have to be instrumented (message-passing
instructions, for example). But it is interesting to see how instrumentation of shared-
variables accesses is performed. Most debuggers operating on shared-variables require
them to be protected (RD 3, 5, 9, 4). Thus the responsability of identifying shared-
variables belongs to the user. In (RD 7), all variable accesses are instrumented, but
run-time information is used to distinguish those that really need to be traced.

To our knowledge, static information has not yet been used to distinguish instruc-
tions that need to be instrumented. But we believe that as automatically integrated
debuggers replaying shared-variable languages are built, debuggers using static infor-
mation will start to appear.

4.4 Resulting Replay

The last family of criteria categorizes the type of replay obtained with the debugger.
A replay occurs in two different dimensions: in time and in task space. These two
dimensions are used to define two classification criteria.



Criterion 8 (Range in time) This criterion indicates whether replay occurs from a
predetermined point in time (static time range, 8a) or if the start of the replay may be
changed (dynamic time range, 8b).

Replay from a predetermined point in time is usually provided with a mechanism to
create checkpoints whereupon the program may be restarted. Debuggers characterized
with a dynamic time range may be used as a support for reverse erecution (RD 2).
Reverse execution gives the illusion that the flow of execution is reversed, which might
be a more natural way to track down the reason of a failure. There is no direct relation
between dynamic time range and reverse execution: (RD 1) is characterized with a
dynamic time range but does not support reverse execution, and IGOR, although not
a replay debugger, supports reverse execution of deterministic programs [5]. We do not
discriminate replay debuggers according to this criteria (whether they support reverse
execution or not): we consider that it is rather a characteristic of the debugging system
to which the replay debugger belongs.

Of the debuggers we use as examples, (RD 1, 2) are characterized with a dynamic
time range while the others are characterized with a static time range.

Criterion 9 (Range in task space) This last criterion describes the set of tasks col-
laborating during the replay: all tasks (9a), a subset (9b) or only one task (9c).

Our definition of collaboration is based on Lamport’s happened before relation [8].
We say that tasks collaborate if and only if, for every pair of events ordered in the initial
execution, the ordering relation also holds true in the replay. For example, if two tasks
(t; and t,) initially exchanged a message (m is sent from t; to ), and if, during the
replay, m cannot be received by t, before t; sends it, we say that the ordering relation
holds true for events send(m) and receive(m). If this relation holds true for every pair
of events of the replayed tasks, we say that they collaborate. Synchronisation replay
requires that all tasks collaborate during the replay. Most data replay algorithms do
not require collaboration between tasks: since the content of m was recorded, there is
no need to wait for send(m) before receive(m) is replayed.

The replay of a set of collaborative tasks enables information gathering about global
states (distributed accross many tasks). Replay of a single task requires less resources,
but observation of global states is not feasible.

(RD 1, 2, 10) are examples of debuggers that replay non collaborative tasks. We
plan to extend (RD 10) in order to replay a subset of collaborative tasks. The other
debuggers are based on synchronization, and require that all tasks be replayed.

5 Discussion

The juxtaposition of the debuggers survey with the taxonomy enables us to identify
areas of potential research.

5.1 Automatic integration

Debuggers with manual integration (5a) present an interesting paradox: they guarantee
a correct replay if the user correctly identified the sources of nondeterminism in the code,



that is, the replay is correct only if the program is free of a certain type of bug. Because
of this paradox, we believe that debuggers should aim for automatic integration (5b).

We saw that debuggers for languages where shared variables are the source of non-
determinism are particularly hard to integrate automatically, therefore most debuggers
of type 1a are also of type 5a.

Debuggers of the type 4b start to enable the automatic integration of shared va-
riables. An example was shown with (RD 7): (1) this replay debugger is concerned
with shared-variables (1a), (2) an algorithm of type 4b was designed, based on the
asumption that the programs are mostly functional, and (3), the debugger is automa-
tically integrated to Multilisp programs (5b).

Replaying shared-variable programs becomes more and more important with the
advent of new multi-threaded operating systems. We have also seen that automa-
tic integration should be aimed for. These two observations imply that future replay
debuggers will be integrated with the compilation of the program, rather than using
specially instrumented libraries. Shared-variable accesses might be difficult to distin-
guish from nonshared-variable accesses, and implementation of debuggers of type 7b
is an alternative that needs to be explored. Since shared-variable accesses are usually
short and frequent, the debugger should also be of the type 4b.

5.2 Type of instruction

Replay systems have mostly been proposed in parallel computing environments. Ho-
wever, as the usage of clusters of computers increases, effective solutions will also be
required to debug nondeterministic distributed systems. We believe that these distribu-
ted systems will require the replay of a wider range of instructions than those typically
addressed: access to distributed databases, complex interaction with users and so on.

It might not be feasible to integrate all instructions that potentially cause nondeter-
minism. If complete automatic integration (5b.) is not feasible, then the replay might
differ from the initial execution. In this case, the planning of the failure of the replay
becomes an essential feature of the debugger. We believe that debuggers should aim for
criterion 6¢, where a failure of the replay is always detected and signaled to the user.
Using such a debugger, the user will be notified if the replay fails, and will not make
false deductions.

6 Conclusion

In this paper, we have proposed a taxonomy of replay debuggers. This taxonomy
uses four major categories of criteria: the characteristics of the replayed system, the
integration of the replay debugger to the replayed system, the characteristics of the
algorithm as well as the characteristics of the replay itself. A review and classification
of existing replay debuggers demonstrates the proposed taxonomy.

Nondeterminism is an important problem in parallel and distributed computing
and an effective replay debugger certainly proves itself very useful. This taxonomy is
a classification tool to compare debuggers and measure their effectiveness. As such,
it is an important indicator of the work accomplished to date and it reveals research



directions that will lead to debugging tools that achieve their real objective: to find
real bugs in real systems.
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