Etos: an Erlang to Scheme compiler

Marc Feeley and Martin Larose
Université de Montréal
C.P. 6128 succursale centre-ville
Montréal H3C 3J7, Canada
{feeley,larosem}@iro.umontreal.ca

August 18, 1997

Abstract

The programming languages Erlang and Scheme have
many common features, yet the performance of the
current implementations of Erlang appears to be be-
low that of good implementations of Scheme. This
disparity has prompted us to investigate the transla-
tion of Erlang to Scheme. In this paper we describe
the design and implementation of the Etos Erlang
to Scheme compiler and compare its performance to
other systems. On most benchmark programs, Etos
outperforms all currently available implementations
of Erlang.

1 Introduction

Erlang [3] and Scheme [13, 5] have some obvious dif-
ferences (e.g. infix vs. prefix syntax, pattern match-
ing vs. access functions, catch/throw vs. call/cc,
concurrency) but also a large number of similarities
(e.g. use of functional style, dynamic typing, auto-
matic memory management, data types). Erlang has
been mostly developed internally at Ericsson and as
a result there is a limited choice of compilers. As the
implementers of these compilers freely admit [1], “Per-
formance has always been a major problem”. On the
other hand there are many implementations of Scheme
available [15] and the good compilers appear to gen-
erate faster code than the Erlang compilers available
from Ericsson (for example Hartel et al. [11] has
shown that the “pseudoknot” benchmark compiled
with Ericsson’s BEAM/C 6.0.4 is about 5 times slower
than when compiled with the Gambit-C 2.3 Scheme
compiler).

Because of the strong similarity between Erlang and
Scheme and the availability of several good Scheme
compilers, we have begun the implementation of an
Erlang to Scheme compiler called “Etos”. This paper
explains the major design issues of such a compiler,
how these are solved in Etos 1.4, and the performance
of the compiler compared to other Erlang compilers.

2 Portability vs Efficiency

Early on we decided that portability of the compiler
was important in order to maximize its usefulness and
allow experiments across platforms. Etos is written in
standard Scheme [5] and the generated programs con-
form fairly closely to the standard (the discrepancies
are explained later).

It is clear however that better performance can be
achieved if non-standard features of the target Scheme
implementation are exploited (in particular the exis-
tence of fast operations on fixed precision integers,
i.e. fixnums). To allow for this, the generated code
contains calls to Scheme macros whose definition de-
pends on the target Scheme implementation. The ap-
propriate macro definition file is supplied when the
Scheme program is compiled. This avoids the need
to recompile the Erlang program from scratch when
the target Scheme implementation is changed. For
example, the Erlang addition operator is translated
to a Scheme call to the erl-add macro. The macro
call (erl-add x y) may simply expand to a call to
a generic addition procedure which adds x and y, or
if fixnum arithmetic is available, expand to an inline
expression which performs a fixnum addition if x and
y are fixnums and otherwise calls the generic addition

procedure.

Using a macro file also allows to move some of the
code generation details out of the compiler and into
the macro file, making it easy to experiment and tune
the compiler. For example the representation of Er-
lang data types can easily be changed by modifying
the macro definitions.

3 Direct Translation

We also wanted the translation to be direct so that Er-
lang features would map into the most natural Scheme
equivalent. This has several benefits:

e Erlang and Scheme source code can be mixed
more easily in an application if the calling conven-
tion and data representation are similar. Special
features of Scheme (such as first-class continua-
tions and assignment) and language extensions
(such as a C-interface and special libraries) can
then be accessed easily.

e The generated code can be read and debugged by
humans.

e A comparison of compiler technology between Er-
lang and Scheme compilers will be fairer because
the Scheme compiler will process a program with
roughly the same structure as the Erlang com-
piler.

When a direct translation is not possible, we tried
to generate Scheme code with a structure that we felt
would be compiled efficiently by most Scheme compil-
ers. Nevertheless there is often a run time overhead
in the generated Scheme code that makes it slower
than if the application had been written originally in
Scheme. For example, Erlang’s “<” operator is generic
(it works on numbers as well as lists and other data
types) but in most application programs it is only used
to compare numbers. The code generated by Etos
can’t use Scheme’s “<” primitive directly because it
works on numbers only.

4 Data Types

The most important Erlang data types have a direct
equivalent in standard Scheme:

Erlang Scheme
integer exact integer
float inexact real
atom symbol

list list

tuple vector
function procedure

4.1 Numbers

Scheme numbers are organized into a class hierarchy:
integer C rational C real C complex. Independently
of their class, numbers have an “exactness”. For in-
stance 2.0 denotes the inexact number 2 and 1/2 de-
notes the exact number 0.5. Scheme exact integers
correspond to Erlang integers. In both Scheme and
Erlang, integers can be of limited range (24 bits min-
imum required by Erlang) but typically they are im-
plemented as bignums which have unlimited precision.
Scheme inexact reals correspond to Erlang floats.

An unfortunate consequence of this representation
is that testing for an Erlang integer or float trans-
lates into two tests in standard Scheme (i.e. (and
(integer? x) (exact? x)) tests if x is an exact in-
teger).

Scheme’s rational and complex numerical types are
not needed as they do not exist in Erlang.

4.2 Atoms

Scheme symbols can be used to represent Er-
lang atoms. Both can contain arbitrary charac-
ters and symbols can be compared for equality ef-
ficiently with the eq? predicate (which is simply
a pointer comparison in many implementations of
Scheme). The Scheme procedures string->symbol
and symbol->string are equivalent to the Erlang
built-in functions list_to_atom and atom_to_list
except that the former deals with strings (which in
Scheme is a data type separate from lists).

One complication is that Scheme is a case-
insensitive language. Variables and symbols in the
source of Scheme programs are stripped of their
case. A simple solution for variables is to prefix
uppercase letters with an escape character (i.e. ~),
so that the Erlang variable List0fFloats becomes
“list~of~floats in Scheme.

The only way to force a particular case for symbols
in Scheme is to use the procedure string->symbol.
Constants containing atoms (e.g. the constant
list [one,two]) are created at run time using
string->symbol. This is done by storing the objects
created into global variables once in the initialization
phase of the Scheme program and references to these
globals replace references to the constants. Constants
not containing atoms get converted to Scheme con-
stants.

Alternative representations for atoms which were
rejected are:

e Strings: no special treatment for uppercase let-
ters is needed but the equality test is much more
expensive.

e Symbols with escape character for uppercase let-
ters: requires an unnatural and inefficient trans-
lation of 1ist_to_atom and atom_to_list.

4.3 Lists

Lists are handled similarly in Scheme and Erlang. In
Scheme, lists are made up of the empty list (i.e. > ())
and pairs created with the binary cons primitive or
the variable arity 1ist primitive. The primitives car
and cdr extract the head and tail of a list.

4.4 Tuples

Scheme vectors are the obvious counterpart of tu-
ples. Vectors are constructed either with the vari-
able arity vector primitive (Erlang’s {...}), the
list->vector primitive (Erlang’s list_to_tuple),
or the make-vector primitive (which creates a vec-
tor of length computed at run time).

A minor incompatibility is that tuples are in-
dexed from 1 (with the element builtin function)
and Scheme vectors are indexed from 0 (with the
vector-ref primitive).

A more serious problem is that lists and vectors
are the only compound data structures in standard
Scheme. Since the Erlang data types port, pid, ref-
erence, and binary don’t have a direct counterpart
in Scheme, they must be implemented using lists or
vectors. We have used vectors to implement these
data types (as well as tuples and functions) because
their content can be accessed in constant time. The

first element of the vector is a symbol which in-
dicates the type and the data associated with the
type is in the remaining elements. Thus the tuple
{1,2,3%} is represented by the Scheme vector #(tuple

1 2 3). Note that with this representation, tuple
indexing does not require a run time decrement of
the index to access an element. However, an Erlang
type test translates to two Scheme tests (for example
(and (vector? x) (eq? (vector-ref x 0) ’tuple))
tests if x is a tuple).

A more space efficient representation which is based
on Scheme’s ability to test object identity with eq? is
to use no tag for tuples and a special tag for non-
tuples:

(define pid-tag (vector ’pid))

(define make-pid
(lambda (...)
(vector pid-tag ...)))
(define pid?
(lambda (x)
(and (vector? x)
(> (vector-length x) 0)
(eq? (vector-ref x 0) pid-tag))))

This representation was not used because type
testing (which is a frequent operation in pattern-
matching) is more expensive in this representation.
One more test is required for non-tuples (as shown
above) and many more tests for tuples:

(define tuple?
(lambda (x)
(and

(vector? x)
(or (= (vector-length x) 0)

(let ((tag (vector-ref x 0)))
(not

(or (eq?

(eq?

(eq?

(eq?

(eq?

tag function-tag)

tag port-tag)

tag pid—tag§

tag reference-tag)

tag binary—tag))%)))))

4.5 Functions

Scheme procedures are the obvious counterpart of Er-
lang functions. Erlang functions are of fixed arity so
the variable arity mechanism of Scheme is not nec-
essary. Both Erlang and Scheme can create and call
functional objects (known as “closures” in the Scheme
community).

Unfortunately, this direct representation does not
support error detection. Erlang’s general function
calling mechanism needs to ensure that the function
that is being called is of the appropriate arity, and sig-
nal an error if it isn’t. Because there is no standard
way in Scheme to extract the arity of a procedure or to
trap the application of a procedure to the wrong num-
ber of arguments, functional objects are represented
as a tagged vector which contains the function’s arity
and the corresponding Scheme closure.

Note that toplevel functions of a module contain
the arity information in their name and no arity test
is needed when they are called. For example the func-
tion bar of arity 2 in module foo will be translated to
a Scheme lambda-expression of arity 2 bound to the
global variable foo:bar/2 (which is a valid variable
name in Scheme). When the compiler encounters a
call such as foo:bar(1,2), it will translate it to a
Scheme call to foo:bar/2 which is guaranteed to be
bound to a procedure of arity 2.

4.6 Other Types

The other Erlang data types (port, binary, record)
are only partially implemented in Etos 1.4 but this is
mostly because of a lack of time. They can be repre-
sented with tagged Scheme vectors as shown above.

Note that Erlang records are just syntactic sugar
for tuples so no special representation is required for
them.

5 Front End

To ensure compatibility with existing Erlang compil-
ers, Etos’ parser specification was derived from the
one for the JAM interpreter and processed by our own
Scheme parser generator [6, 4]. The original parser
constructs a parse tree built of tuples. Because Etos
needs to attach semantic information on the nodes of
the parse tree, a conversion phase was added to extend
the tree nodes with additional fields. This conversion
also computes the bound variables at each node and
performs constant propagation and constant folding.
Constant propagation and folding are mainly needed
to avoid allocation of structures which are constant,
such as in:

£f(X) > Y ={1,2}, [X,Y,3,4].

which gets compiled as though it were:

£(X) -> [XI[{1,2},3,4]].

The list [{1,2},3,4] is represented internally as the
Scheme constant list * (#(tuple 1 2) 3 4).

Following this, the free variables before and after
each node are computed. This is done as a separate
pass because the bound variable analysis requires a
left-to-right traversal of the parse tree, whereas the
free variable analysis requires a right-to-left traversal.
The free variables are needed to efficiently translate
case, if, and receive expressions, which is explained
in the next section.

6 Binding and Pattern Matching

6.1 Binding in Erlang

Erlang’s approach for binding variables is a relic of its
Prolog heritage. Binding is an integral part of pattern
matching. Once it is bound by a pattern matching
operation, a variable can be referenced in the rest of
a function clause (unless it has become an “unsafe”
variable, see below). For example, in

f({A,B}) -> [X,X,X] = A, B+X.

the function f will pattern match its sole argument
with a two-tuple. In the process, the variables A and
B get bound to the first and second element respec-
tively. After this, A is referenced and pattern matched
with a list containing three times the same element.
Note that the first occurrence of X binds X to the first
element of the list and the remaining occurrences ref-
erence the variable.

6.2 Binding in Scheme

In Scheme the basic binding construct is the lambda-
expression and binding occurs when a procedure is
called, as in:

((lambda (x) (* x x))
3)

Here the variable x is bound to 3 when the closure
returned by evaluating the lambda-expression is called
with 3. Scheme also has the binding constructs let,
let* and letrec but these are simply syntactic sugar

Erlang syntactic categories:
<const>: constant
<ubvar>: unbound variable
<bvar>: bound variable
<exprl>, <expr2>: arbitrary expressions
<patl>, <pat2>: arbitrary patterns
<fn>: function name

Expression translation:
E(<const> , k) = (k C(<const>))
<bvar> , k) = (k N(<bvar>))

<patl>=<exprl> , k) = E(<exprl>, (lambda (v1) (P(<patl>, (k v1) , (erl-exit-badmatch)) v1)))

<expri>+<expr2> ,k) = E(<exprl>, (lambda (v1) E(<expr2>, (lambda (v2) (k (erl-add vl v2))))))

E(
E(
E(<expril>,<expr2> k) = E(<exprl>, (lambda (v1) E(<expr2> ,k)))
E(
E(

<fn>(<exprl>) ,k) = E(<exprl>, (lambda (v1) (k (N(<fn>)/1 v1))))

Pattern-matching translation:
P(<ubvar>,s, f) = (lambda (N (<ubvar>)) s)
P(
P
P([<pati1>|<pat2>] ,s, f) = (lambda (v1)
(if (erl-comns? v1)

<bvar>,s, f) = (lambda (v1) (if (erl-eg-object? vl N(<bvar>)) s f))
[0,s,f) = (lambda (v1) (if (erl-nil? v1) s f))

(P(<patl>, (P(<pat2>,s,f) (erl-tl v1)),f) (erl-hd v1))

N

Auxiliary functions:
C(const): translate an Erlang constant to Scheme

N (name): translate an Erlang variable or function name to Scheme

Note:

vn stands for a freshly created variable which will not conflict with other variables.

Figure 1: Simplified translation algorithm for a subset of Erlang.

for lambda-expressions and calls. For example the

previous expression is equivalent to:

(et ((x 3))
(*» x x))

6.3 Translation of Binding and Pattern
Matching

To translate an Erlang binding operation to Scheme it
is necessary to nest the evaluation of the “rest of the
function clause” inside the binding construct. This
can be achieved by performing a partial CPS conver-
sion, as shown in Figure 1.

The translation function E takes two parameters:
the Erlang expression to translate and a Scheme
lambda-expression denoting the continuation which

consumes the result of the Erlang expression. E re-
turns the equivalent Scheme expression. E makes use
of the function P to translate pattern-matching. P’s
arguments are: the pattern to match and the suc-
cess and failure Scheme expressions. P returns a one
argument Scheme lambda-expression which pattern
matches its argument to the pattern, and returns the
value of the success expression if there is a match and
returns the value of the failure expression otherwise.
When an Erlang function is translated, £ is called
on each function clause to translate the right hand
side with the initial continuation (lambda (x) x)
(i.e. the identity function). Note that the continuation
k and all lammbda-expressions generated in the trans-
lation are always inserted in the function position of
a call. This implies that in the resulting Scheme code
all the lambda-expressions generated can be expressed
with the 1let binding construct (except for those gen-

erated in the translation of functional objects, which
is not shown). To correctly implement tail-calls, an
additional translation rule is used to eliminate appli-
cations of the identity function, i.e.

((lambda (x) x) Y) =Y

The translation algorithm is not a traditional CPS
conversion because function calls remain in direct
style (i.e. translated Erlang functions do not take an
additional continuation argument). This partial CPS
conversion is only used to translate Erlang binding
to Scheme binding. An interesting property of func-
tion E is that it embeds & in the scope of all Scheme
bindings generated, so that these bindings can be ac-
cessed by k. Similarly, P always embeds s (the success
expression) in the scope of all Scheme bindings gen-
erated. For example, consider the Erlang expression:

[X|Y] = foo:f(A), X+bar:g(Y)

This is translated to the following Scheme expression
(if we assume that A is a bound variable):

(let ((v7 ~a))
(let ((v5 (foo:f/1 vT7)))
(let ((v6 v5))
(if (erl-comns? v6)
(let (("x (erl-hd v6)))
(let (("y (erl-tl v6)))
(let ((v1 v5))
(let ((v2 ~x))
(let ((v4 "y))
(let ((v3 (bar:g/1 v4)))
(erl-add v2 v3)))))))
(erl-exit-badmatch)))))

Note that there are many useless bindings in this
code. In the actual implementation, the translator
keeps track of constants, bound variables and singly
referenced expressions and propagates them to avoid
useless bindings. With this improvement the Scheme
code generated is:

(let ((v5 (foo:f/1 ~a)))
(if (erl-coms? v5)
(erl-add (erl-hd v5)
(bar:g/1 (erl-tl v5)))
(erl-exit-badmatch))))))

This is close to what we would expect a Scheme pro-
grammer to write.

6.4 Translation of Conditionals

Conditional expressions (i.e. case, if, and
receive) must be handled carefully to avoid code du-
plication. Consider the following Erlang expression:

case X of
1 >Y

end,
X*Y

The case expression will select one of the two bindings
of Y based on the value of X. After the case, Y is a
bound variable that can be referenced freely. On the
other hand Z is not accessible after the case because
it does not receive a value in all clauses of the case (it
is an “unsafe” variable after the case).

The case construct could be implemented by
adding to the translation function £ a rule like Fig-
ure 2a. Note that the continuation k is inserted once
in the generated code for each clause of the case. This
leads to code duplication which is a problem if the
case is not the last expression in the function body
and the case has more than one clause. If the func-
tion body is a sequence of n binary case expressions,
some of the code will be duplicated 2" times.

This code explosion can be avoided by factoring the
continuation so that it appears only once in the gen-
erated code. A translation rule like Figure 2b would
almost work. The reason it is incorrect is that k is no
longer nested in the scope of the binding constructs
generated for the case clauses, so the bindings they
introduce are not visible in k.

A correct implementation has to transfer these
bindings to k. This can be done by a partial lambda-
lifting of k as shown in Figure 2c. The arguments
of the lambda-lifted & (i.e. vk) are the result of the
case (i.e. vr) and the set of bound variables that are
added by the clauses of the case and referenced in
k (i.e. AV). Each clause of the case simply prop-
agates these bindings to vk. AV can be computed
easily from the free variables (it is the difference be-
tween the set of free variables after the case and the
set of free variables after the selector expression). The
lambda-lifting is partial because vk may still have free
variables after the transformation.

This lambda-lifting could be avoided by using as-
signment. Dummy bindings to the variables AV
would be introduced just before the first pattern

E(case <expr0> of ,k) = E(<expr0>, (lambda (v0)

<patl> -> <expri>; (P(<pat1>,

<pat2> -> <expr2> E(<expril> k), ;;; duplication of k

end (P(<pat2>,
E(<expr2> ,k), ;; duplication of k
(erl-exit-case-clause))
v0))
v0)))
a) Inefficient translation of the case construct.

E(case <expr0> of ,k) = E(<expr0>, (lambda (v0)

<patl> -> <expri>; (let ((vk k)) ;;; k not in right scope

<pat2> -> <expr2> (P(<patl>,

end E(<expr1l>, vk),
(P(<pat2>,
E(<expr2> , vk),
(erl-exit-case-clause))
v0))
v0))))
b) Incorrect translation of the case construct.

E(case <expr0> of ,k) = E(<expr0>, (lambda (v0)

<patl> -> <expri>;
<pat2> -> <expr2>
end

Where AV...

(let ((vk (lambda (vr AV...) (k vr))))
(P(<patl>,

E(<expr1l>, (lambda (vr) (vk vr AV...
(P(<pat2>,
E(<expr2>, (lambda (vr) (vk vr AV...))),
(erl-exit-case-clause))
v0))

),

v0))))

is the set of bound variables that are added by the clauses of the case and referenced in k.

¢) Correct translation of the case construct.

Figure 2: Translation of the case construct.

matching operation. Assignment would be used to set
the value of these variables in the clauses of the case.
This solution was rejected because many Scheme sys-
tems treat assignment less efficiently than binding.
This is because of assignment conversion (tradition-
ally performed to implement call/cc correctly) and
generational GC.

In the actual implementation of the conditional con-
structs, the patterns are analyzed to detect common
tests and factor them out so that they are only exe-
cuted once. For example the translation of the follow-
ing case expression will only contain one test that X
is a pair:

case X of
[11y] -> ;
(2121 ->

end

7 Errors and catch/throw

The traditional way of performing non-local exits in
Scheme is to use first-class continuations. A catch
is translated to a call to Scheme’s call/cc procedure
which captures the current continuation. This “es-
cape” continuation is stored in the process descriptor
after saving the current escape continuation for when
the catch returns. A throw simply calls the current

escape continuation with its argument. When control
resumes at a catch (either because of a normal return
or a throw), the saved escape continuation is restored
in the process descriptor.

8 Concurrency

First-class continuations are also used to implement
concurrency. The state of a process is maintained in
a process descriptor. Suspending a process is done by
calling call/cc to capture its current continuation
and storing this continuation in the process descrip-
tor. By simply calling a suspended process’ continu-
ation, the process will resume execution.

Three queues of processes are maintained by the
runtime system: the ready queue (processes that are
runnable), the waiting queue (processes that are wait-
ing for a message to arrive in their mailbox), and the
timeout queue (processes which are waiting for a mes-
sage with timeout). The timeout queue is a priority
queue, ordered on the time of timeout, so that time-
outs can be processed efficiently.

There is no standard way in Scheme to deal with
time and timer interrupts. To simulate preemptive
scheduling the runtime system keeps track of the func-
tion calls and causes a context switch every so many
calls. When using the Gambit-C Scheme system,
which has primitives to install timer interrupt han-
dlers, a context switch occurs at the end of the time
slice, which is currently set to 100 msecs.

9 Limitations

Due to its experimental and preliminary nature, Etos
1.4 does not implement Erlang fully. Most notably,
these features of Erlang are not implemented:

1. Macros, records, ports, and binaries.
2. Process registry and dictionary.

3. Dynamic code loading.

4. Several built-in functions and libraries.

5. Distribution (all Erlang processes must be run-
ning in a single user process).

10 Performance

10.1 Benchmark Programs

To measure the performance of our compiler we have
used mostly benchmark programs from other Erlang
compilers. We have added two benchmarks (ring and
stable) to measure the performance of messaging and
processes. Unfortunately, we were not able to use the
“Estone” benchmark [16] because it uses ports which
are not implemented in Etos.

e barnes (iterated 10 times): Simulates gravita-
tional force between 1000 bodies.

e fib (iterated 50 times): Computes 30th fibonacci
number with a recursive function.

e huff (iterated 5000 times): Compresses and un-
compresses a 38 byte string with the Huffman
encoder.

e length (iterated 100000 times): Tail recursive
function that returns the length of a 2000 element
list.

e nrev (iterated 20000 times): Naive reverse of a
100 element list.

e pseudoknot (iterated 3 times): Floating-point
intensive application taken from molecular biol-
ogy [11].

e gsort (iterated 50000 times): Sorts 50 integers
using the Quicksort algorithm.

e ring (iterated 100 times): Creates a ring of
10 processes which pass around a token 100000
times.

e smith (iterated 30 times): Matches a DNA se-
quence of length 32 to 100 other sequences of
length 32. Uses the Smith-Waterman algorithm.

e stable (iterated 5000 times): Solves the stable
marriage problem concurrently with 10 men and
10 women. Creates 20 processes which send mes-
sages in fairly random patterns.

e tak (iterated 1000 times): Recursive inte-
ger arithmetic Takeuchi function. Calculates
tak(18,12,6).

10.2 Erlang Compilers

Etos was coupled with the Gambit-C Scheme com-
piler version 2.7a [8]. We will first briefly describe the

Gambit-C compiler.

The Gambit programming system combines an in-
terpreter and a compiler fully compliant to R*RS and
[EEE specifications. The Gambit-C compiler trans-
lates Scheme programs to portable C code which can
run on a wide variety of platforms. Gambit-C also
supports some extensions to the Scheme standard
such as an interface to C which allows Scheme code
to call C routines and vice versa.

The Gambit-C compiler performs many optimiza-
tions, including automatic inlining of user proce-
dures, allocation coalescing, and unboxing of tempo-
rary floating point results. The compiler also emits
instructions in the generated code to check for stack
overflows and external events such as user or timer in-
terrupts. The time between each check is guaranteed
to be bound.

Gambit-C includes a memory management system
based on a stop and copy garbage collector which
grows and shrinks the heap as the demands of the pro-
grams change. The user can force a minimum and/or
maximum heap size with a command line argument.
Scheme objects are encoded in a machine word (usu-
ally 32 bits), where the lower two bits are the primary
type tag. All heap allocated objects are prefixed with
a header which gives the length and secondary type
information of the object. Characters and strings are
represented using the Unicode character set (i.e. 16
bit characters).

The implementation of continuations uses a lazy
copying strategy. Continuation frames are allocated
in a small area called the “stack cache”. This area
is managed like a stack (i.e. LIFO allocation) except
when the call/cc procedure is called. All frames in
the stack cache upon entry to call/cc can no longer
be deallocated. When control returns to such a frame,
it is copied to the top of the stack cache. Finally, when
the stack cache overflows (because of repeated calls to
call/cc or because of a deep recursion), the garbage
collector is called to move all reachable frames from
the stack cache to the heap.

We have compared Etos version 1.4 [7] with three
implementations of Erlang compilers:

e Hipe version 0.27 [14], an extension of the JAM
bytecode compiler that selectively compiles byte-
codes to native code;

e BEAM/C version 4.5.2 [12], compiles Erlang code

Etos | Time relative to Etos
Program (secs) | Hipe BEAM JAM
fib 31.50 | 1.15 1.98 8.33
huff 9.74 | 1.48 5.01 24.81
length 11.56 | 2.07 3.44 34.48
smith 10.79 | 2.17 3.37 13.06
tak 13.26 | 1.12 4.37 11.09
barnes 9.18 | 2.08 - 4.07
pseudoknot | 16.75 | 2.37 - 3.18
nrev 22.10 .84 1.83 10.98
gsort 14.97 .96 3.88 15.38
ring 129.68 .30 31 1.92
stable 21.27 | 1.16 .64 243

Figure 3: Execution time of benchmarks

to C using a register machine as intermediate;

e JAM version 4.4.1 [2], a bytecode compiler for a
stack machine.

10.3 Execution Time

The measurements were made on a Sun UltraSparc
143 MHz with 122 Mb of memory. Each benchmark
program was run 5 times and the average was taken
after removing the best and worse times.

The Scheme code generated by Etos is compiled
with Gambit-C 2.7a and the resulting C code is then
compiled with gcc 2.7.2 using the option -01. The
executable binary sets a fixed 10 Mb heap.

The results are given in Figure 3. They show that
Etos outperforms the other Erlang compilers on most
benchmarks. If we subdivide the benchmarks accord-
ing to the language features they stress, we can ex-
plain the results further:

e fib, huff, length, smith and tak, which are
integer intensive programs, take advantage of
the efficient treatment of fixnum arithmetic in
Gambit-C and from the inlining of functions.
Etos is up to two times faster than Hipe, 5 times
faster than BEAM/C, and 35 times faster than
JAM.

e On the floating point number benchmarks,
barnes and pseudoknot, Etos is also faster than

the other Erlang implemenations. In this case

Etos is a little over two times faster than Hipe.
These programs crashed when compiled with
BEAM/C.

List processing is represented by nrev and gsort.
On these programs Hipe is a little faster than
Etos (4% to 16%), which is still roughly two to
four times faster than BEAM/C. Etos’ poor per-
formance is only partly attributable to its imple-
mentation of lists:

1. Gambit-C represents lists using 3 word long
pairs as opposed to 2 words on the other
systems. Allocation is longer and the GC
has more data to copy.

. Gambit-C guarantees that interrupts are
checked at bound intervals [9] which is not
the case for the other systems. For exam-
ple, the code generated by Gambit-C for
the function app (the most time consuming
function of the nrev benchmark) tests inter-
rupts twice as often as Hipe (i.e. on function
entry and return).

. The technique used by Gambit-C to imple-
ment proper tail-recursion in C imposes an
overhead on function returns as well as calls
between modules. For nrev the overhead is
high because most of the time is spent in a
tight non-tail recursive function. Indepen-
dent experiments [10] have shown that this
kind of program can be sped up by a factor
of two to four when native code is generated.

e Finally ring and stable manipulate processes.

Here we see a divergence in the results. Hipe
is roughly three times faster than Etos on
ring. Etos performs slightly better than Hipe on
stable but is not as fast as BEAM/C. We sus-
pect that our particular way of using call/cc to
implement processes is the main reason for Etos’
poor performance:

1. When a process’ mailbox is empty, a
receive must call the runtime library which
then calls call/cc to suspend the process.
These intermodule calls are rather expensive
in Gambit-C. It would be better to inline the
receive and call/cc.

. Scheme’s interface to call/cc (which re-
ceives a closure and must allocate a closure)

10

adds considerable overhead to the underly-
ing call/cc mechanism.

11 Future Work

The Etos compiler is still in its infancy. The features
in Section 9 need to be added and obviously other
changes will be needed for the upcoming Erlang 5.0
specification. There are also some interesting avenues
we want to explore.

An interesting extension to Etos is to add library
functions to access Gambit-C’s C-interface from Er-
lang code. Interfacing Erlang, Scheme and C code will
then be easy.

The Gambit-C side of the compilation can also be
improved. In certain cases the Scheme code generated
by Etos could be compiled better by Gambit-C (its
optimizations were tuned to the style of code Scheme
programmers tend to write). It is worth consider-
ing new optimizations and extensions specifically de-
signed for Etos’s output. For example, a more efficient
interface to call/cc could be designed. Moreover we
think the performance of Etos will improve by a fac-
tor of two on average when we start using a native
code back-end for Gambit. We are also working on
a hard real-time garbage collector and a generational
collector to improve the response time.

12 Conclusions

The preliminary version of Etos shows promising re-
sults. It performs very well on integer and floating
point arithmetic, beating all other currently available
implementations of Erlang. Its performance on list
processing and process management is not as good
but we think this can be improved in a number of
ways.

These results are not all that surprising: Scheme
and Erlang offer very similar features (data types,
functional style, dynamic typing) and their differences
(pattern matching, escape methods, concurrency) can
be eliminated by a fairly straightforward compilation
process. Scheme appears to be well suited as a target
for an Erlang compiler.

Acknowledgements

This work was supported in part by grants from the
Natural Sciences and Engineering Research Coun-
cil of Canada and the Fonds pour la formation de
chercheurs et ’aide & la recherche.

References

[1]

J. L. Armstrong. The development of erlang. In
Proceedings of the International Conference on
Functional Programming, pages 196-203, Ams-
terdam, June 1997.

J. L. Armstrong, B. O. Dacker, S. R. Virding,
and M. C. Williams. Implementing a functional
language for highly parallel real-time applica-
tions. In Proceedings of Software Engineering for

Telecommunication Switching Systems, Florence,
April 1992.

J. L. Armstrong, S. R. Virding, C. Wikstrom,
and M. C. Williams. Concurrent Programming

in Erlang. Prentice Hall, second edition edition,
1996.

D. Boucher.
Lalr-scm. Available at ftp.iro.umontreal.ca
in pub/parallele/boucherd.

W. Clinger and J. Rees [editors]. Revised* Re-
port on the Algorithmic Language Scheme. Lisp
Pointers, 4(3):1-55, July-September 1991.

D. Dubé. SlLex, user manual. Available at
ftp.iro.umontreal.ca in pub/parallele.

M. Feeley. Etos 1.4. Com-
piler available at ftp.iro.umontreal.ca in
pub/parallele/etos/etos-1.4.

version

M. Feeley. Gambit-C version 2.7a, user manual.
Compiler available at ftp.iro.umontreal.cain
pub/parallele/gambit/gambit-2.7.

M. Feeley. Polling efficiently on stock hard-
ware. In Proceedings of the Functional Program-
ming and Computer Architecture, pages 179-187,
Copenhagen, June 1993.

11

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Feeley, J. Miller, G. Rozas, and J. Wil-
son. Compiling Higher-Order Languages into
Fully Tail-Recursive Portable C. Technical Re-
port 1078, Département d’informatique et de
recherche opérationelle, Université de Montréal,
1997.

P. H. Hartel, M. Feeley, M. Alt, L. Augusts-
son, P. Baumann, M. Beemster, E. Chailloux,
C. H. Flood, W. Grieskamp, J. H. G. Van Gronin-
gen, K. Hammond, B. Hausman, M. Y. Ivory,
R. E. Jones, J. Kamperman, P. Lee, X. Leroy,
R. D. Lins, S. Loosemore, N. Rojemo, M. Ser-
rano, J.-P. Talpin, J. Thackray, S. Thomas,
P. Walters, P. Weis, and P. Wentworth. Bench-
marking implementations of functional languages
with "Pseudoknot”, a float-intensive benchmark.
Journal of Functional Programming, 6(4):621—
655, 1996.

B. Hausman. Turbo Erlang: approaching the
speed of C. In Evan Tick and Giancarlo Succi,
editors, Implementations of Logic Programming
Systems, pages 119-135. Kluwer Academic Pub-
lishers, 1994.

IEEE Standard for the Scheme Programming
Language. IEEE Standard 1178-1990, IEEE,
New York, 1991.

E. Johansson, C. Jonsson, T. Lindgren, J. Beve-
myr, and H. Millroth. A pragmatic approach to
compilation of Erlang. UPMAIL Technical Re-
port 136, Uppsala University, Sweden, July 1997.

The Internet Scheme Repository.

http://www.cs.indiana.edu/scheme-repository.

C. Wikstrom. Estone, an erlang benchmark.
Available at http://www.ericsson.se:800
/cslab/~“klacke/estone/.

