A Portable Implementation of First-Class Continuations for Unrestricted
Interoperability with C in a Multithreaded Scheme

Marc Feeley
Département d’informatique et recherche opérationnelle
Université de Montréal
http://www.iro.umontreal.ca/“feeley

Abstract

The implementation of first-class continuations in a Scheme
system that interfaces to a stack-based language such as C
is difficult when Scheme and C frames can be interleaved
(i.e. Scheme and C can nest calls to each other arbitrar-
ily). Such a situation occurs when using a combination of
callbacks, higher-order functions, exception processing, and
a Scheme level thread system built on top of first-class con-
tinuations. We show that in this context the use of C threads
to implement first-class continuations allows unrestricted in-
teroperability with C.

1 Introduction

Scheme systems that allow linking with C code (and more
generally any stack-based language) whether they generate
native code or C code, require special treatment of continu-
ations when Scheme continuation frames and C frames can
be interleaved. In our examples we will denote continuations
with a string of letters; C frames are in upper-case, Scheme
frames are in lower-case, and the last frame added to the
continuation is on the right. As a running example we will
use the continuation “abCDefGHi” which corresponds to the
chain of frames shown in Figure 1 (the arrows represent a
logical link between frames, not necessarily real pointers).

Scheme heap

C stack

Figure 1: The continuation “abCDefGHi”.

A context where such interleaving is useful is when a
Scheme procedure is passed as a “callback” to a C procedure
(e.g. gsort or a GUI event dispatcher) and the callback
invokes a continuation.

The fundamental problem is that Scheme continuations
have unlimited extent whereas C frames have dynamic ex-
tent. To simplify, we will assume that Scheme frames are
consistently allocated on a heap managed by a garbage col-
lector and that C frames are allocated LIFO on a stack (tech-
niques such as [HDB90] which manage Scheme continuation
frames on a stack between calls to call/cc are thus viewed
as optimizations).

Consequently, in our example the C stack only contains
“CDGH” and when control returns to D there is no way to

return to frame G and H because they have been deallocated
from the stack. The fact that C frames cannot be returned
to more than once, i.e. that they are “one-shot”, is not
a concern in this paper. Our aim is to allow control to
return to C frames in an arbitrary order rather than LIFO
order. This is of particular interest when using Scheme level
threads implemented with call/cc as explained later.

The following approaches can be used to cope with the
inconsistent management of frames by C and Scheme.

2 Approach 1: Copy the C Stack

This approach makes a heap copy of the C stack frame
portion of the continuation (i.e. “CDGH”) when it is cap-
tured with call/cc (Bigloo [Ser00] essentially uses this ap-
proach except that Scheme frames are also allocated on the
C stack). Invoking this continuation copies the C frames
back to their original location which is needed for correct
handling of the “&” operator. Aside from being highly C
compiler dependent and having non-linear space and time
behavior, this approach coalesces the store and the continu-
ation, which means that all assignments to local C variables
are obliterated when a continuation is invoked. This major
departure from the Scheme semantics is only viable when
using C procedures written in a very special style (no as-
signments to local variables after a continuation capture),
which precludes its use with off-the-shelf C libraries. More-
over, pointers to local C variables cannot be passed freely
to Scheme code because there is no guarantee that the ap-
propriate C frame is still on the stack when the pointer is
dereferenced.

3 Approach 2: Deallocate C Stack Frames Lazily

This approach, which is used by Gambit-C 3.0 [Fee98], con-
sists in removing frames from the C stack (with a normal
return or longjmp) only when control returns to a C frame.
In our example, if the program invokes the continuation
“ab” and then “abCDefGHi” and then “abCDe”, the C frames
“CDGH” remain on the C stack. However, if the continuation
“abCD” is invoked the frames “GH” are removed. Note that
the continuation “abCDefGHi” can still be invoked; it is only
when attempting to return to a deallocated C frame that
a run-time error needs to be signaled (after all, the code
attached to frame “i” could decide to invoke the continua-
tion “ab”). If not used carefully this approach may result in
longer retention of memory and even space leaks (if control
never returns to a C frame). To avoid this the programmer



may have to force a cleanup of the C stack by artificially
returning to an appropriate C frame.

Unfortunately, the lazy deallocation approach does not
interact well when using Scheme level thread or coroutine
systems implemented on top of first-class continuations, even
in a uniprocessor setting where at most one thread is exe-
cuting at a given time. To understand the problem consider
the case shown in Figure 2 where there are two Scheme
threads (T1 and T2) attached respectively to the contin-
uations “abCDe” and “fGHi”, and the C frames “GH” are
allocated on the C stack after “CD”.

Scheme heap

C stack

Figure 2: Two threads with interleaved Scheme and C
frames.

If T1 is currently executing and it returns to “abCD”,
then the C frames “GH” will be removed from the C stack.
A context switch back to T2 followed by a return to “£GH”
is no longer possible. Note that if at most one thread builds
a continuation with interleaved Scheme and C frames, then
this problem does not arise. Of course we would like to lift
this restriction and allow any number of Scheme threads to
interleave Scheme and C frames.

4 C Threads Approach

If the management of C frames could be liberated from its
strict LIFO allocation strategy we would be closer to a com-
plete solution. But in fact there is another way to allocate
C frames: C threads! Most platforms include C thread li-
braries (e.g. POSIX threads, Win32 threads, SUN LWP)
which allow the creation of a thread with an associated stack
(some thread systems automatically allocate the space for
the stack, other systems require an explicit malloc()). The
stacks of different threads are independent and can be deal-
located in any order. Note that this use of threads is unusual
because we are not trying to exploit any kind of concurrent
execution; we simply want a portable way to allocate a new
C stack and perform C procedure calls within it.

What we propose is that each contiguous segment of C
frames in the continuation be assigned to one C thread. The
creation of a new C stack (i.e. thread) can be done when
Scheme calls C; all contiguous C frames added to the con-
tinuation will be allocated in this stack. However, because
calls to C from Scheme are likely to be more frequent than to
Scheme from C, it is probably more efficient to eagerly cre-
ate a new C stack when C calls Scheme and to start adding
C frames to it if and when Scheme calls C. The deallocation
of the C stacks (and associated threads) is the responsibil-
ity of the garbage collector which will deallocate all C stacks
that are not part of a reachable Scheme continuation.

With this approach the C frames in a continuation can be
returned to in any order, and the garbage collector reclaims
C frames with the same promptness as Scheme frames.

5 Practicality

We have not yet implemented this approach in Gambit-C.
It is not clear that it is worthwhile for typical programs

because of C thread system limitations and overheads. Lin-
uxThreads for example cannot create more than 1024 si-
multaneous threads, each thread stack is a large fixed size
(2 MBytes), and it takes 2 msecs on a 600MHz Athlon to
create and join a thread so there is at most 500 C to Scheme
calls per second.

6 Related Work and Conclusion

The use of native threads to implement first-class continua-
tions was proposed in [KBD98]. We have shown that it can
be used in a Scheme level thread system to allow an arbi-
trary nesting of calls between Scheme and C, and that there
are no restrictions to the order in which continuations with
interleaved Scheme and C frames can be invoked. However,
the restrictions and overheads of most C thread systems re-
duces the practicality of this approach at this point in time.

References

[Fee98] Marc Feeley. Gambit-C version 3.0. Available
at http://www.iro.umontreal.ca/“gambit, May

1998.

[HDB90] Robert Hieb, R. Kent Dybvig, and Carl Brugge-
man. Representing control in the presence of first-
class continuations. In ACM SIGPLAN ’90 Conf.
on Programming Language Design and Implemen-
tation, pages 66-77, White Plains, New York,
June 1990.

[KBD98] Sanjeev Kumar, Carl Bruggeman, and R. Kent
Dybvig. Threads yield continuations. Lisp and
Symbolic Computation, 10(3):223-236, May 1998.

[Ser00] Manuel Serrano. Bigloo 2.2a.  Available at
http://kaolin.unice.fr/"serrano/bigloo,

July 2000.



