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Dynamic and polymorphic languages attach information, such as types, to run time objects, and therefore

adapt the memory layout of values to include space for this information. This makes it difficult to efficiently

implement IEEE754 floating-point numbers as this format does not leave an easily accessible space to store type

information. The three main floating-point number encodings in use today, tagged pointers, NaN-boxing, and

NuN-boxing, have drawbacks. Tagged pointers entail a heap allocation of all float objects, and NaN/NuN-boxing

puts additional run time costs on type checks and the handling of other objects.

This paper introduces self-tagging, a new approach to object tagging that uses an invertible bitwise

transformation to map floating-point numbers to tagged values that contain the correct type information

at the correct position in their bit pattern, superimposing both their value and type information in a single

machine word. Such a transformation can only map a subset of all floats to correctly typed tagged values,

hence self-tagging takes advantage of the non-uniform distribution of floating point numbers used in practice

to avoid heap allocation of the most frequently encountered floats.

Variants of self-tagging were implemented in two distinct Scheme compilers and evaluated on four microar-

chitectures to assess their performance and compare them to tagged pointers, NaN-boxing, and NuN-boxing.

Experiments demonstrate that, in practice, the approach eliminates heap allocation of nearly all floating-point

numbers and provides good execution speed of float-intensive benchmarks in Scheme with a negligible

performance impact on other benchmarks, making it an attractive alternative to tagged pointers, alongside

NaN-boxing and NuN-boxing.
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1 Introduction
In dynamic and other polymorphic languages, efficiently supporting floating-point numbers (floats)

remains a challenging issue. These languages require attaching type information to values at run

time, including numeric types like integers and floats. This requirement conflicts with the IEEE754

standard [1] for encoding floats, which uses the entire 64-bit word to represent a double-precision

float, leaving no space for additional type information. A straightforward but suboptimal solution

is to represent floats as heap allocated objects. To reduce the overhead of heap allocating floats,

several alternative representations have been proposed, each offering different trade-offs.
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This paper presents a novel technique for encoding floats, called self-tagging, that avoids most

float allocations without adversely affecting the cost of checking types and accessing objects, which

are frequent operations of dynamic languages.

Self-tagging exploits the fact that any invertible bitwise transformation on an IEEE754 float will

map some floats to a bit arrangement that contains the correct type information at the correct

location, thus requiring no memory allocation for these floats. Using the fact that some ranges

of floats appear more frequently in practical applications [4, 10, 28, 45], it is possible to define a

transformation that avoids heap allocating almost all floats encountered in practice.

This technique does not require any program static analysis and could be integrated in most

runtime systems of languages that need run time types. It is developed in the context of 64-bit

runtime systems but is also applicable to 32-bit systems. The rest of this section presents the main

encodings in-use as well as their trade-offs.

1.1 Tagged Objects
The classical and popular solution to preserve type information is to attach a tag to all objects [5,

16, 21, 25]. An N-bit machine word is used to encode an object reference (either a value or a pointer
to a heap allocated value) and a small bit field is reserved in the word to store type information.

For the rest of the paper the term object is used interchangeably with object reference. Tagging

allows low-cost type checks and object access at the cost of losing a few bits for data. Aligning all

heap allocated values to 64-bit machine words conveniently frees the low bits of pointers to store a

3-bit tag. On many architectures, accessing the fields of the object can be done at no additional cost

by using an offset in the memory dereference instruction to take into account the tag for that type

of object. Objects can thus be encoded using one of the three following representations.

• Tagged values store type information with a tag, and the object’s value in the remaining

bits. This representation does not require heap allocation.

• Tagged pointers also store type information with a tag, but values are stored in the heap.

The objects are represented by pointers with a tag in their low bits.

• Generic pointers represent all remaining objects as pointers with a generic tag. The generic

tag is associated with multiple types, and type information is stored in a header, in the heap.

Hence, a tag indicates a type, but also a memory representation. A tagged value representation is

the most efficient as it needs no heap allocation and no memory read. A tagged pointer still allows

efficient type checks, but requires heap allocation. This introduces the overhead of dereferencing

the pointer, and adds a strain on the garbage collector. A generic pointer is the least efficient

representation as it involves storing type information in the heap, which increases space usage

and the cost of type checks and memory management. Consequently, specific tags are a precious

resource that must be carefully assigned to the most frequent types observed in programs, such as

small integers or floats. Figure 1 shows a typical memory layout of each representation.

As an example, consider an implementation using 3-bit tags. Due to the frequent use of small

integers, a tagged value representation is appropriate for small integers and the choice of the tag

000 allows direct addition/subtraction. Since 3 bits are occupied by the tag, small integers are

limited to 61 bits. This is generally considered an acceptable trade-off since a two’s complement

representation of signed integers can accommodate any number of bits, and 61 bits still offers a wide

range of values. For larger values, generic pointers to heap allocated big integers can be used [25].

This provides a hybrid representation where the most common integers appear as efficient tagged

values and less-frequent big integers are represented with more costly generic pointers.

Unfortunately, when it comes to the representation of floats, none of the aforementioned options

are well-suited. Double-precision floats cannot be represented as tagged values since the IEEE754
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Fig. 1. The three representations in a tagged object system (here shown on a little-endian machine).

standard enforces the use of 1 sign bit, 11 exponent bits and 52 mantissa bits (see Figure 2a), totaling

64 bits and leaving no space for a tag [1]. Parting from this standard is impracticable due to the set

of instructions offered by x86 [12] and ARM [26] architectures being specific to 32 or 64-bit floats.

Yet, tagged pointers introduce two major inefficiencies for floats. First, all uses of the value

require fetching it from memory. Second, the heap allocation of all floats increases memory usage

and the cost of computing float results. This is especially disconcerting considering that allocated

floats are often short-lived intermediate results that add a strain on garbage collectors [22, 40]. This

has costly implications for programs performing extensive numerical computations or languages

such as JavaScript where floats are the only available primitive number type [20].

Still, tagged objects are straightforward to implement and are thus found in numerous compilers

such as V8 [42], QuickJS [7], and Hopc [39] (JavaScript), the Lua interpreter [38] (Lua), CRuby [41]

(Ruby), SBCL [35] (Lisp), and Gambit [30] and Bigloo [29] (Scheme). Recently, CPython also moved

toward tagged pointers in the process of removing its global interpreter lock [15].

1.2 NaN-Boxing
NaN-boxing circumvents the drawbacks of tagged pointer floats by reclaiming unused bits in the

encodings of floating-point NaN values to store data [16, 25]. As per the IEEE754 standard, a NaN

value is represented by setting all 11 bits of the exponent to 1 and a non-zero mantissa (zero is used

to encode Infinity). The mantissa’s highest bit distinguishes between a quiet and signaling NaN,

which determines whether the NaN should signal an exception or fall through operations.

A subset of NaNs can thus be reserved to encode non-float objects. A convenient subset is

that of negative, quiet NaNs, illustrated in Figure 2b, which correspond to the interval from

0xfff8_0000_0000_0000 to 0xffff_ffff_ffff_ffff. This partitions floating-point numbers in

two intervals. Bit patterns above 0xfff8_0000_0000_0000 are reserved for non-float objects. The

bit patterns below 0xfff8_0000_0000_0000 are reserved for floats (including signaling NaN but

not quiet NaN) and negative quiet NaN are mapped to the bit pattern 0xfff8_0000_0000_0000.
On current hardware, memory addresses typically fit in 48 bits. The 51 bits uncovered by NaN-

boxing are thus sufficient for storing tagged pointers with 3-bit tags, and 32-bit small integers. It

offers the advantage of unboxed floats, but impacts the performance of other, non-float objects due

to higher-cost machine instructions to check the type and dereference NaN-boxed pointers.

This reliance on hardware specific details also interferes with other optimizations and portability.

Moreover, on 32-bit architectures, NaN-boxing would cripple memory management because 32-bit

float NaNs leave space for only 22-bit pointers, which only allows addressing 4 MiB.
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0 10000000000 1001001000011111101101010100010001000010110100011000

Exponent
11 bits

Mantissa
52 bits

Sign
1 bit

(a) IEEE754 floating-point representation of 𝜋 .

  

1 11111111111 000000000000000000000000000000000000000000000000000

Exponent
11 bits

Mantissa low bits
51 bits

51 free bits for data

Sign
1 bit

1 

Quiet
1 bit

Negative quiet NaN 

(b) NaN-boxing uses the 51 free bits on negative, quiet NaN values to store data.

Fig. 2. Floating-point representations of numbers and NaN.

NaN-boxing is used in a few language implementations, including SpiderMonkey [14] (JavaScript),

tinylisp [13] (Lisp), LuaJIT [36] (Lua), and Zag [31] (Smalltalk).

1.3 Pointer-Biased NaN-Boxing
NuN -boxing is a variant of NaN-boxing that alleviates the cost of dereferencing NaN-boxed

pointers [25]. It relies on the (currently valid) fact that common hardware never returns negative,

quiet NaNs greater than or equal to 0xfffe_0000_0000_0000.
Instead of taking advantage of the unused NaN value range from 0xfffe_0000_0000_0000 to

0xffff_ffff_ffff_ffff, which would result in an encoding similar to standard NaN-boxing,

NuN-boxing biases all floats by adding 0x0001_0000_0000_0000. This frees up the lowest and

highest ranges for 48-bit tagged objects as shown in Figure 3. It however reintroduces a cost for

encoding and decoding floats (adding/subtracting the bias) to operate on their value.

NuN-boxing is used by JavaScriptCore [19] (JavaScript).

1.4 Contribution
The contribution of this paper is a thorough analysis of a new approach to object tagging, named

self-tagging, that allows attaching type information to some 64-bit objects by applying a bitwise

transformation that preserves their value without heap allocation. This approach is applied to

implement double-precision floats as tagged values instead of tagged pointers. Contrarily to NaN-

boxing, it does not impact the performance of encoding and decoding other tagged objects and

is applicable in the context of 32-bit architectures. Self-tagging cannot represent all floats and

thus requires an hybrid representation for fast self-tagged and slow heap allocated floats. Yet, the

conducted experiments show that the set of numbers covered by self-tagging is large enough to

remove nearly all heap allocations of floats in practice. Hence, it provides another alternative to

allocated floats with different trade-offs than NaN/NuN-boxing.

1.5 Paper Structure
This paper is structured as follows. Section 2 describes the general idea of self-tagging with a focus

on its application to floats. Section 3 presents technical details for portable implementations that

could be used by compilers that generate either C or assembly code. Section 4 shows experimental

results in the context of Scheme with the Bigloo and Gambit compilers. Section 5 discusses the

adaptation of self-tagging to 32-bit architectures. Finally, Section 6 presents related work.
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0x0000 0000_0000_0000

0x0000 ffff_ffff_ffff

0x0001 0000_0000_0000Lowest NuN-boxed float:
Representation of 0.0

⁞Tagged
values/pointers

⁞
0xfffe ffff_ffff_ffffHighest NuN-boxed float:

Representation of a negative, quiet NaN

0xffff 0000_0000_0000

0xffff ffff_ffff_ffff

⁞Negative tagged 
values/pointers

Fig. 3. Encoding of NuN-boxed values, after having applied the 0x0001_0000_0000_0000 bias to floats. The

low and high ranges (whose 16 highest bits are 0x0000 or 0xffff) are used for non-float objects that can be

represented as tagged values or pointers.

  

Sign
1 bit

Exp. low bits
8 bits

Mantissa
52 bits

Tag
3 bits

Sign
1 bit

Decoding
4-bit rotate right

Encoding
4-bit rotate left

Tag
3 bits

Mantissa
52 bits

Exp. low bits
8 bits

Fig. 4. A float self-tagging representation where the tag corresponds to the high bits of the exponent. The

top bit sequence is a float where the tag is superimposed with the exponent’s three most significant bits. The

bottom sequence is the tagged value representation of the float where a 4-bit left rotation is applied to place

the tag on low bits.

2 Self-Tagging
This section describes self-tagging, a tagging technique that exploits the fact that some values can

be encoded to a tagged value by a bitwise transformation containing the tag corresponding to

their type. Such self-tagged objects avoid the cost of heap allocation. In this paper, self-tagging is

applied to the specific case of IEEE754 floats. Unless stated otherwise, double-precision floats and a

64-bit architecture are implied. However, self-tagging also pertains to 32-bit architectures, which is

discussed in Section 5.

Consider the common case of tagged objects with 3-bit tags (8 available tags). Given tag 𝑇 for

floats, any invertible bitwise transformation will map 1/8 of possible floats to a bit arrangement that

contains𝑇 on its low bits. These floats can thus be encoded to tagged values with this transformation

and decoded back to a IEEE754 representation by applying the inverse transformation. The set

of floats that are mapped to a correctly tagged value by a given transformation are said to be

self-tagged and require no memory allocation. Since only a subset of all floats can be self-tagged,

the remaining floats must be heap allocated with tagged or generic pointers. Yet, the proportion of
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self-tagged floats can be increased by assigning more than one tag to self-tagged floats. In general,

using 𝑛 tags for self-tagging allows avoiding heap allocation of 𝑛/8 of all possible floats.
As an example, consider the case where the encoding transformation is a 4-bit rotation to the

left, which has the effect of using the 3 high bits of an IEEE754 float’s exponent as tag for self-

tagged floats (Figure 4). This transformation has the interesting property that each tag captures a

contiguous range of floats. For instance, assigning the tags 000, 011 and 100 to self-tagged floats,

avoids heap allocating all floats in the ranges 0.0 .. 7×10−251 and 1.7×10−77 .. 2.3×1077 as well as the
corresponding negative ranges (detailed calculations of these ranges are provided in Section 2.1).

This suggests that, while many transformations can be chosen to implement self-tagging, some

choices are better than others. Three properties make for a useful self-tagging scheme. It must:

• Capture intervals of common floats: most values computed in practice are either ±0.0 or
centered around ±1.0 [4, 10, 28, 45]. These should be prioritized to reduce memory allocation.

• Have an efficient encoding/decoding: the cost of the transformation must not outweigh

the benefit of decreased memory allocations and strain on the garbage collector.

• Use few tags: it should reserve as few tags as possible to avoid having to defer to generic

pointers for other important types. Ideally, a single tag should be used for all common floats,

and uncommon floats should be represented either with tagged or generic pointers.

Section 2.1 presents self-tagging variants that offer different tradeoffs between captured intervals

and number of reserved tags. Section 3 describes efficient implementations for each variant.

2.1 Float Coverage
Self-tagging introduces the notion of tags that indicate which values of a type are not heap allocated.

This contrasts with standard object tagging that invites assigning tags with efficient handling of

frequent types in mind, regardless of values. Consequently, self-tagging should be used for themost
common floats to maximize the likelihood that a float will be self-tagged. Floats whose magnitude

is concentrated near 1.0 have been observed to be more common [4, 10, 28, 45], with a relative

occurrence that decreases sharply away from 1.0 [45]. Zeros are common, but subnormal numbers

are rarely used [45].

These observations from [4, 10, 28, 45] are reproduced by instrumenting the R7RS benchmarks,

the standard benchmark suite for Scheme [2], to create a profile of computed floats. All benchmarks

labelled as float benchmarks were profiled (this includes fibfp=recursive Fibonacci with floats,

fft=1024 points Fast Fourier Transform, mbrot=mandelbrot set, nucleic=3D structure determi-

nation of a nucleic acid, pnpoly=determine if a 2D point is in a 20 sided polygon, ray=raytrace a
scene of 33 spheres, simplex=linear programming using simplex method, sumfp=add the floats 0

to 10
6
, and sum1=add a file of floats).

The results are shown in Figure 5. The table contains 32 rows, one for each combination of the 5

most significant bits of the float’s 11-bit exponent field, which is indicated in the first column (for

now, ignore the second column). Each of the right columns indicates what proportion of computed

floats have a specific combination of most significant exponent bits. The computed floats are clearly

clustered around 1.0, specifically in the range 1.1 × 10−19 .. 3.7 × 1019, and the value 0.0 also occurs

frequently for some programs. In fact, R7RS benchmarks have a distribution of floats that appears

even more tightly concentrated near 1.0 than that reported by [45, Fig. 7], shown in the rightmost

column. Hence, other scientific programs may exhibit profiles that use slightly wider ranges of

floats. It is apparent that many programs will operate with floats that are predominantly those

around 1.0 on a logarithmic scale, and also 0.0.
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5 most 5 most
signif. signif.
expo. expo. Value
bits bits + 1 range fft fib

fp
mb

rot
nu
cle
ic

pn
po
ly

ray sim
ple

x

su
mf
p
su
m1

[45
]

0.0 79% 9% 0% 1% 11% 7% 11% 13% 0% 0%

00000 00001

5e-324 .. 2.1e-289 - - - - - - - - - 0%

00001 00010 2.1e-289 .. 3.8e-270 - - - - - - - - - 0%

00010 00011 3.8e-270 .. 7e-251 - - - - - - - - - 0%

00011 00100 7e-251 .. 1.3e-231 - - - - - - - - - 0%

00100 00101 1.3e-231 .. 2.4e-212 - - - - - - - - - 0%

00101 00110 2.4e-212 .. 4.4e-193 - - - - - - - - - 0%

00110 00111 4.4e-193 .. 8.1e-174 - - - - - - - - - 0%

00111 01000 8.1e-174 .. 1.5e-154 - - - - - - - - - 0%

01000 01001 1.5e-154 .. 2.8e-135 - - - - - - - - - 0%

01001 01010 2.8e-135 .. 5.1e-116 - - - - - - - - - 0%

01010 01011 5.1e-116 .. 9.4e-97 - - - - - - - - - 0%

01011 01100 9.4e-97 .. 1.7e-77 - - - - - - - - - 0%

01100 01101 1.7e-77 .. 3.2e-58 - - - - - - - - - 0%

01101 01110 3.2e-58 .. 5.9e-39 - - - - - - - - - 1%

01110 01111 5.9e-39 .. 1.1e-19 0% - - - - 0% - - - 3%

01111 10000 1.1e-19 .. 2 21% 28% 89% 61% 63% 22% 64% 13% 0% 61%

10000 10001 2 .. 3.7e19 0% 63% 11% 38% 26% 70% 25% 75% 100% 28%

10001 10010 3.7e19 .. 6.8e38 - - - - - - - - - 2%

10010 10011 6.8e38 .. 1.3e58 - - - - - - - - - 1%

10011 10100 1.3e58 .. 2.3e77 - - - - - - - - - 0%

10100 10101 2.3e77 .. 4.3e96 - - - - - - - - - 0%

10101 10110 4.3e96 .. 7.9e115 - - - - - - - - - 0%

10110 10111 7.9e115 .. 1.5e135 - - - - - - - - - 0%

10111 11000 1.5e135 .. 2.7e154 - - - - - - - - - 0%

11000 11001 2.7e154 .. 4.9e173 - - - - - - - - - 0%

11001 11010 4.9e173 .. 9.1e192 - - - - - - - - - 0%

11010 11011 9.1e192 .. 1.7e212 - - - - - - - - - 0%

11011 11100 1.7e212 .. 3.1e231 - - - - - - - - - 0%

11100 11101 3.1e231 .. 5.7e250 - - - - - - - - - 0%

11101 11110 5.7e250 .. 1.1e270 - - - - - - - - - 0%

11110 11111 1.1e270 .. 1.9e289 - - - - - - - - - 0%

1.9e289 .. 1.8e308 - - - - - 0% - - - 0%

11111 00000

Infinity/NaN - - - - - - - - - N/A

Fig. 5. The absolute value ranges captured by each combination of the 5 most significant exponent bits and

the proportion of all floats computed by float-intensive R7RS benchmarks. Intervals of interest are highlighted.

Empty entries indicate no float in this range, whereas 0% means that very few floats were generated (less

than 0.5%). The last column shows the relative occurence of float for each interval reported by [45, Fig. 7].
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2.2 Self-Tagging with 3 Tags and 4 Tags
The float profile of Figure 5 has the property that almost all floats computed have the 3 most

significant bits of the exponent field that are either 000 (green rows), 011 (dark blue rows), or 100
(light blue rows). Moreover, among the values captured by 000, only ±0.0 are used.

These 3 exponent bits can be shifted using a bit rotation to align them with the lower 3 tag bits

as shown in Figure 4. Thus a float is encoded to a tagged value by a 4-bit rotation to the left (or

60-bit to the right). A tagged value is decoded to a float with the inverse rotation. This corresponds

to the encoding discussed in the previous section (Figure 4).

Test programs did not compute the float values ±Infinity and NaN, but those values would be

assigned the tag 111 (gray rows). Assigning this fourth tag to self-tagged floats might be useful to

avoid heap allocated floats in programs frequently computing these values.

2.3 Self-Tagging with 2 Tags and Preallocated Zeros
As is shown in the float profile of Figure 5 the tag 000 is only used to capture the values ±0.0. It
can be freed for other uses by preallocating the values ±0.0 using tagged pointer or generic pointer
representation. When a float must be encoded as an object it is compared to zero, in which case

one of the preallocated zeroes is returned, thus avoiding a new allocation. If this is done then only

2 tags are needed to cover the most frequent cases: 011 and 100. Unfortunately, this approach may

raise the number of failed branch predictions due to the test for ±0.0 (this is further discussed in

Section 4.6).

2.4 Self-Tagging with 1 Tag
Self-tagging can also be achieved with a single tag by a different transformation of the most

significant exponent bits. The 5 most significant bits of the exponent are added to 1 and the middle

3 bits are used as the tag (using a rotation 5 places to the left). This corresponds to the second

column of Figure 5. Note that the tag 000 (bold pink rows) covers all the useful ranges, including

±Infinity and NaN that are not covered by the 2-tag and 3-tag variants.

It is noteworthy that there is nothing special about the tag 000. If for some external reason

some other tag is more convenient it can easily be assigned to 1-tag self-tagged floats by adding

1 + 2 × 𝑡𝑎𝑔 rather than 1 to the 5 most significant exponent bits.

Putting all of this together, the self-tagged encoding of a float whose IEEE754 64-bit representation

is the integer 𝑛 can be computed as (𝑛 ⊕ ((1 + 2 × 𝑡𝑎𝑔) << 58)) <<𝑟𝑜𝑡 5, where ⊕ is addition

modulo 2
64

and <<𝑟𝑜𝑡 is the left rotation operator. The operations are reversed to perform the

decoding of a self-tagged float to its IEEE754 64-bit representation.

This variant has the advantages of covering all the useful ranges of floats computed by R7RS

benchmarks and about 90% of floats reported by [45], while using a single tag, which leaves more

tags available for other types.

2.5 Self-Tagging with a Different Exponent Bias
A small change in the exponent bias of the 1-tag variant can be used to get another self-tagging

variant. If 2× 𝑡𝑎𝑔1 is added to the highest 5 bits and the middle 3 bits are examined, then when they

are equal to 𝑡𝑎𝑔1 or 𝑡𝑎𝑔2 = 𝑡𝑎𝑔1 − 1 they are self-tagged floats. This effectively doubles coverage by

including both the light pink and bold pink rows of the second column of Figure 5. The following

ranges will be self-tagged: 0..3.8 × 10−270 ∪ 5.9 × 10−39 ..6.8 × 1038 ∪ 1.1 × 10270 ..𝐼𝑛𝑓 𝑖𝑛𝑖𝑡𝑦/𝑁𝑎𝑁 . To

put this into perspective, this is a superset of the IEEE754 32-bit floats, so any floating point value

that can be represented as a IEEE754 32-bit float can be self-tagged with this variant which uses 2
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of the 8 3-bit tags. This is likely a better use of 2 tags than the 2-tag variant of Section 2.3, which

does not cover the ranges containing 0, Infinity, and NaN.

When compared to the 1-tag variant, there will be almost no difference in heap allocations for

programs with similar float profiles as Figure 5. However, as will be explained in the next section,

it yields more compact code, because the bias can be added after the rotation, and the need for a

bias disappears when 𝑡𝑎𝑔1=000.

3 Implementation
This section discusses implementation details for float-related operations in dynamic languages.

The types f64 and f32will refer to IEEE754 64-bit and 32-bit doubles and the types i64 and i32will
refer to 64-bit and 32-bit integers. Moreover, the type object will refer to values in the language

(the sum type of floats, integers, booleans, and other objects). To illustrate the low-level implications

of the implementation and give a sense of the execution time performance, assembly code for the

Intel x86 architecture is provided. This section focusses on a 64-bit implementation where object
is an i64 and floats are f64, but it is straightforward to implement the operations similarly on a

32-bit implementation where the type object is an i32 and floats are f32.
Testing the low tag bits of an object value is a basic need for float-related operations to convert

f64 to and from object and for dynamic type checks. In particular it is possible to determine if a

f64 can be self-tagged by going through the encoding process and checking that the resulting tag

is one of the tags (or the tag) appropriate for the chosen self-tagging variant.

3.1 Single Tag Testing
Checking that the N low bits are equal to a specific tag can be achieved by masking those bits

followed by a comparison. Assuming the object value is in the x86 64-bit register rax, then the

following sequence will branch to label tag_matches when the 3 low bits are equal to tag:1

and al , 7

cmp al , 𝑡𝑎𝑔

jz tag_matches

Note that by using al only the lower 8 bits of rax are accessed, leading to smaller constants and

instruction encodings. However, this sequence modifies rax so if the value is needed after the tag

test, as often will be the case, then an additional instruction and register are required to keep a copy.

In the special case of tag=0, the two first instructions can be replaced with “test al, 7”, which is a

bitwise-and that tests if all 3 lowest bits of rax are zero without modifying rax. In the general case

when tag≠0, the test instruction can be combined with a lea (Load Effective Address) instruction
to copy the source register, plus a constant to cancel tag (mod 8), to a temporary register:

lea ebx , [eax+(8-𝑡𝑎𝑔)] # ebx = eax + (8 −𝑡𝑎𝑔 )

test bl , 7

jz tag_matches

3.2 Multiple Tag Testing
When it is necessary to check if an object’s tag is one of a set of tags it is often possible to use a

single branch instruction rather than a sequence of single tag checks. This is particularly the case

when the implementer has leeway in the assignments of tags, as is often the case.

Checking that 𝑡𝑎𝑔 ∈ {𝑡𝑎𝑔1, 𝑡𝑎𝑔2} where 𝑡𝑎𝑔2 = 𝑡𝑎𝑔1 + 2𝑛 (mod 8) can be done just as efficiently

as the single tag test by using the lea instruction to map 𝑡𝑎𝑔1 to 0 and 𝑡𝑎𝑔2 to 2
𝑛
and then using a

1
Intel assembler syntax is used throughout.
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mask of 7 − 2𝑛 in the test instruction to ignore the bit that may be 0 or 1. For example, for 2-tag

self-tagging (Section 2.5) with the tags 010 and 110 the check is:

lea ebx , [eax +(8 -2)] # 010 −> 000 and 110 −> 100

test bl , 3 # 3 = 7−4

jz tag_matches_010_or_110

4-tag self-tagging (Section 2.2) with the tags 010, 011, 110, and 111 is even simpler:

test al , 2

jnz tag_matches_010_or_011_or_110_or_111

The general case of checking that 𝑡𝑎𝑔 is in a set of tags can be done efficiently with the x86

bit-test instruction “bt n, i” that reads the bit at index i of n and puts it in the carry flag. The bt
instruction comes in 16, 32, and 64 bit variants, but not 8 bit. For example, for 3-tag self-tagging

(Section 2.2) with the tags 000, 011, and 100 the check is:

mov bx , 0x1919 # s e t o f t a g s

bt bx , ax # t e s t b i t a t index ax o f bx

jc tag_matches_000_or_011_or_100

The bit index in ax is obtained mod 16, so the byte 0b00011001=0x19 (all 0’s except at bit indices
0, 3, and 4) is repeated twice in register bx. Using the bt instruction has the advantage of neither

modifying the rax register nor the register holding the set of tags, amortizing the cost of mov over

multiple checks of that set of tags (a possibly near zero cost if that register is globally reserved).

On architectures without a bit test instruction, a dynamic count shift of the tag set register can

achieve the bit indexing. If done by modifying the tag set register, the initialization can’t be shared

by multiple tag tests. On most 3-address RISC architectures the shift can be done non-destructively.

On ARM A64, this instruction sequence tests the 3 low bits of 64-bit register x1 for a tags 0, 3, or 4:

lslv w3 , w2 , w1

cmp w3 , 0

bmi matching_tag

It assumes that the 32-bit register w2 has been preloaded with 0x98989898, the bit reversed tag set

that aligns the bit for tag 0 with the sign bit.

The cost of the check does not depend on the number of tags tested. This can be advantageous if

a tagged pointer is used for heap allocated floats, say with tag h. In that case, a check for a float

(either self-tagged or heap allocated) can be done by adding h to the tag set. Once it is known that

an object is a float, it is easy to check for the single tag h to discriminate between the self-tagged

and heap allocated representations.

3.3 Boxing: Conversion f64→object

To convert a f64 to an object, it is converted to an i64, added to a constant 𝑏𝑖𝑎𝑠 modulo 2
64
, and

bit-rotated left by 𝑟 . For the 1-tag variant, 𝑏𝑖𝑎𝑠 = (1 + 2 × 𝑡𝑎𝑔) × 258 and 𝑟 = 5. For the 2-tag, 3-tag,

and 4-tag variants, 𝑏𝑖𝑎𝑠 = 0 (no bias) and 𝑟 = 4. After this there is a check to verify if the resulting

object’s tag is in the set of self-tagged tags. If this is the case the conversion is done, otherwise an

out of line routine can be called to heap allocate a float and return an appropriately tagged pointer.

As an example, if the f64 value is in the 64-bit float register xmm0, then the following x86 code will

set register rax to the corresponding object when 3-tag self-tagging is used:

mov rax , xmm0 # rax ← xmm0

rol rax , 4 # r o t a t e l e f t 4 p l a c e s

bt bx , ax # assumes bx i n i t i a l i z e d to 0 x1919 e l s ewhere

jnc heap_alloc_float # t ag i s not one o f 000 , 0 11 , or 100?

done:
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Assuming the initialization of the tag mask register (bx) is amortized over multiple float-related

operations, the cost for the hot path is low: 3 register-to-register operations and an easily predictable

conditional jump.

The following x86 code is appropriate for 1-tag self-tagging using 000 as the tag:

mov rax , xmm0 # rax ← xmm0

add rax , rbx # assumes rbx i n i t i a l i z e d to 1<<58 e l s ewhere

rol rax , 5 # r o t a t e l e f t 5 p l a c e s

test al , 7

jnz heap_alloc_float # t ag i s not 000?

done:

Here also, the cost for the hot path is just a bit more due to the bias: 4 register-to-register operations

and an easily predictable conditional jump.

For the 2-tag variant with no special handling of zeroes (Section 2.5), the rotation can be done

before adding the bias to use a compact addition instruction (because then the bias is the small

constant 𝑡𝑎𝑔1). In the special case of 𝑡𝑎𝑔1=000 the bias vanishes. For example, here is the code when

𝑡𝑎𝑔1=011:

mov rax , xmm0 # rax ← xmm0

rol rax , 5 # r o t a t e l e f t 5 p l a c e s

add al , 3 # s u f f i c i e n t to modify the lower 8 b i t s o f rax

bt bx , ax # assumes bx i n i t i a l i z e d to 0 x0c0c e l s ewhere

jnc heap_alloc_float # t ag i s not one o f 010 or 011?

done:

The add instruction uses a small constant as a bias, contrary to the code for the 1-tag version (large

constants typically need to be setup in a register, which is additional work even if it is amortized).

Moreover the 1-tag version cannot eliminate the bias, but here the add instruction can be removed

when 𝑡𝑎𝑔1=000 which makes it slighly faster than the 1-tag variant and as efficient as the 3-tag

variant: 3 register-to-register operations and an easily predictable conditional jump.

3.4 Unboxing: Conversion object→f64

To convert an object (that is known to be a float) to a f64, the tag must be tested to see if it is a

self-tagged float. If it is, the boxing operations are done in reverse order and inverted, replacing the

rol by a ror (rotate-right), and if there is a bias, replacing the add by a sub (subtract). If it is not a

self-tagged float, a memory read gets the f64 result out of the heap allocated float. As an example

using the 3-tag variant, if the object value is in the 64-bit register rax, then the following x86

code will set register xmm0 to the corresponding f64:

bt bx , ax # assumes bx i n i t i a l i z e d to 0 x1919 e l s ewhere

jc self_tagged

mov xmm0 ,[rax+offset] # xmm0 ← va lue f i e l d o f f l o a t

jmp done

self_tagged:

ror rax , 4 # r o t a t e r i g h t 4 p l a c e s

mov xmm0 , rax # xmm0 ← rax

done:

The number and type of instructions on the hot path is the same as for the boxing operation.

In summary, the self-tagging operations require few machine instructions but there are small

variations depending on the instruction set and also the assignment of tags which can often be

optimized for self-tagging without impacting the speed of operations on objects or small integers.
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3.5 C Implementation
This section explains how the above operations can be implemented in C, as this is a common

implementation language, in particular it is used by the Bigloo and Gambit Scheme to C compilers

used in the experiments of Section 4.

Testing for a specific tag or a pair of tags is fairly straightforward to express in C and follows

the same principles as the assembly code, so details are skipped. Testing for a set of tags is more

challenging in portable C code. It can be implemented with the following pure C function, which is

easily inlined by a C compiler (here testing for the tags 000, 011, and 100):

#define TAG_SET ((1 < <0)|(1 < <3)|(1 < <4)) / ∗ 0 x19 f o r t a g s 000 , 0 11 , and 100 ∗ /

inline bool has_tag_0_or_3_or_4(int64_t n) {

return ((( uint32_t )1 << (n & 31)) & (~( uint32_t )0/0 xff * TAG_SET )) != 0;

}

The expression n & 31 computes a shift count mod 32 and the bitwise-and therefore tests

the bit at index n mod 32 of its second operand. The code uses the compile-time constant

~(uint32_t)0/0xff * TAG_SET that repeats the 8 bit mask TAG_SET 4 times to fill a 32 bit word,

giving 0x19191919. This achieves the equivalent of testing the bit at index n mod 8 of TAG_SET.
Using this pure C definition with gcc version 13.2.0 and clang version 18.1.3 on x86-64 results in

the non-destructive approach based on the bit test instruction. The expression n & 31 is optimized

out by those compilers because the bit test instruction on x86 implicitly does this operation. On

older versions of those compilers that would implement this with a destructive shift instruction,

the bit test approach can be achieved using the following definition that uses an asm statement:

inline bool has_tag_0_or_3_or_4(int64_t n) {

bool carry;

__asm__("bt %%ax, %2;" / ∗ g e t one b i t o f mask i n t o c a r r y ( ax i s index ) ∗ /

: "=@ccc"(carry)

: "a"(( uint16_t)n),

"r"(~( uint16_t )0/0 xff * TAG_SET )); / ∗ 0 x1919 ∗ /

return carry;

}

Boxing and unboxing operations need to convert between a float value and its bit representation.

This can be achieved portably with a union type whose fields are of type f64 and i64. Moreover,

boxing and unboxing need to rotate the bit representation of the float. Although C does not provide

an operator for bit rotation, both gcc and clang recognize an equivalent pair of shifts and generate

a single machine rotate instruction.

The implementation of boxing in C for the 3-tag variant is:

union di { double d; int64_t i; };

#define ROTL(n,s) (( int64_t )((( uint64_t)n << s) | (( uint64_t)n >> (64 - s))))

inline int64_t f64_to_object(double f) {

int64_t result = ROTL ((( union di)f).i, 4);

if (has_tag_0_or_3_or_4(result )) return result;

return heap_allocate_float(f);

}
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The implementation of unboxing for the 3-tag variant is:

inline double object_to_f64(int64_t o) {

int64_t result = ROTL(o, 60);

if (has_tag_0_or_3_or_4(result )) return ((union di)result ).d;

return value_of_heap_allocated_float(o);

}

4 Experiments
This section evaluates float self-tagging and demonstrates that it presents an interesting performance

trade-off between programs that perform frequent operations on objects but few floating-point

operations, and float-intensive programswhere this balance is reversed. This evaluation is conducted

through experiments that measure performance metrics across different object representations

(both self-tagging and existing ones), multiple machine architectures, and two state-of-the-art

Scheme implementations: the Bigloo (commit 5b1118) [29] and Gambit v4.9.7 (commit 768900) [30]
compilers. These offer a level of performance that is competitive with other high-performance

Scheme implementations such as Chez Scheme [2, 3, 33]. Using two independently developed

compilers helps to demonstrate that self-tagging can be adapted to preserve the different design

philosophies and historical implementation choices of these systems.

The following self-tagging variants are evaluated:

• 3-tag self-tagging uses 3 tags for self-tagging floats corresponding to the green, dark blue,

and light blue ranges from Figure 5. Remaining floats are heap allocated. Bigloo uses the tags

000, 011 and 100, and heap allocated floats are represented with generic pointers. Gambit

offsets the tags by 3 (i.e. it uses 011, 110 and 111) so that the tag 000 is kept for tagging small

integers, and tagged pointers with the tag 010 are used for the heap allocated floats.

• 4-tag self-tagging (Gambit only) is like the 3-tag variant but uses the tag 010 to self-tag

floats in the gray range from Figure 5. Allocated floats are represented with generic pointers.

• 2-tag self-tagging with preallocated zeros (Bigloo only) tests the impact of expending the

tag 000 for self-tagging. It only uses the tags 011 and 100 for float self-tagging the dark blue

and light blue ranges from Figure 5 and reclaims the tag 001 to represent all heap allocated

floats as tagged pointers. The floats ±0.0 are preallocated and the float boxing operation

contains an explicit zero check to return the preallocated zeros.

• 2-tag self-tagging (Gambit only) tests the variant that uses the tags 010 and 110 for float
self-tagging the bold pink and light pink ranges from Figure 5.

• 1-tag self-tagging tests the variant that uses a single tag for self-tagging the bold pink

ranges from Figure 5. Bigloo uses the tag 001 and Gambit uses the tag 110. heap allocated

floats are represented with tagged pointers.

Both compilers can also be configured to represent all floats with heap allocated tagged objects or

NuN-boxing. Bigloo also supports NaN-boxing. This provides a flexible comparison environment.

In this paper the C back end of the Bigloo and Gambit compilers are used. This way the resulting

machine code benefits from the C compiler’s optimizations and in particular excellent architecture

specific instruction selection. In both cases the same version of the gcc C compiler is used.

4.1 Overview of the Bigloo Compiler
The Bigloo compiler conforms to the R5RS Scheme specification and adds several extensions,

including optional type annotations. Exact rational numbers and complex numbers, which are

optional in the R5RS Scheme specification, are not supported.
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The Bigloo compiler builds a typed abstract syntax tree from the compiled Scheme program.

Several analysis and optimizations refine the initial optional type annotations contained in the

source program, the main ones being occurrence-typing [43] and storage use analysis [40]. During

compilation, primitive values have a dual representation: one for polymorphic contexts and one for

specific contexts. For instance, when the compiler can establish that a function is always invoked

with floats, the compiler assigns the C double type to that function and, when needed, it introduces

cast operations from and to the generic representation of floats and double.

The result of this compilation technique is that many local variables and local functions are

precisely typed and avoid polymorphic representations. This contributes to removing otherwise

necessary heap allocations and casts for floats. The compiler also tracks cases where only floats are

stored into vectors, which are then transformed into arrays of C doubles.

Bigloo uses the Boehm-Demers-Weiser conservative mark-and-sweep garbage collector [8].

The complexity of collecting dead objects is proportional to the sum of the live and dead objects,

contrary to copying collectors. For such a collector, avoiding allocating short lived floats is crucial

for performance.

4.2 Overview of the Gambit Compiler
The Gambit compiler conforms to the R7RS Scheme language. It features the full numerical tower

including arbitrary-precision integers, exact rational numbers and complex numbers. Arithmetic

operators are generic and the result type depends on the specific values, for example multiplying

two complex numbers may yield a number of any type. Like Bigloo, the compiler inlines the small

integer and float cases of the dispatch and handles other cases in an out-of-line function.

First-class continuations (call/cc) and tail-calls are fully supported, and stack-overflows are

gracefully handled. With the C back end, this requires the use of a trampoline and the management

of the stack through an explicit array, stack pointer and stack-overflow checks. This causes a small

slowdown when compared to a machine code back end where the trampoline would not be required.

Memory management is based on a fast bump-allocator and a stop-and-copy garbage collector.

The compiler front end performs several source-to-source optimizations, such as constant folding,

lambda lifting, and function inlining. It does not perform type analysis or type inference. However,

the back end uses a simple mechanism to optimize float calculations by tracking the use of their

results within basic blocks. The result of a float operation is kept in raw form so that other operations

within the same basic block that consume it do not need to unbox the value. A float value is boxed

only if it remains live at the end of the basic block.

4.3 Experimental Setup
Self-tagging variants are implemented in Bigloo and Gambit, and tested using a subset of the R7RS

benchmarks, which is the standard benchmark suite for Scheme [2]. The experiment includes all

macro-benchmarks (more than 500 lines of code) and benchmarks whose calculationsmainly involve

floats (tagged as such in the R7RS benchmarks suite). For the purpose of analyzing results, it is

useful to distinguish between benchmarks that use few or no floats and float-intensive benchmarks

(fibfp, fft, mbrot, nucleic, pnpoly, ray, simplex, sum1, and sumfp).
Experiments were repeated on the followingmachines that operate on distinct microarchitectures:

• Intel - Intel(R) Xeon(R) W-2245, 32GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0

• Amd - AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0

• M2 - Apple M2 Max, 64GB, macOS 15.4.1, gcc 14.3.0

• Risc-V - riscv sifive, u74-mc, 8GB, Linux starfive 6.1.31-starfive riscv64, gcc 14.2.0
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Heap Allocations Relative to Allocated Floats (Bigloo)

Intel(R) Xeon(R) W-2245, 32GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 6. Heap allocations of Bigloo with each variant of self-tagging, NaN-boxing, NuN-boxing, and allocated

floats. The y-axis shows the number of allocated bytes relative to the version that heap allocates all floats

(dashed horizontal red line). 1.00× indicates no change, while 0.00× indicates no heap allocation.

For each combination of machine, compiler and self-tagging variant, benchmarks are executed

10 times, and each repetition is configured to last at least 5 seconds. Repetitions of each variant and

baseline are paired in order of execution to compute relative execution time for each pair. Upcoming

sections report geometric means of these relative times, with geometric standard deviations.

To reduce variance on Intel and Amd, benchmarks are executed on the same CPU core with

taskset and address space randomization is disabled with setarch. On M2, no equivalent tools are

available, hence the higher variance. On Risc-V, variance remains low despite not using taskset
and setarch.
For measurements that were similar across all machines, a single microarchitectures is shown.

Omitted figures can be found in Appendix A.

4.4 Memory Profiling and Execution Time
Figure 6 shows the memory allocations of Bigloo’s self-tagging variants, NaN-boxing, and NuN-

boxing compared to allocated floats. Since NaN/NuN-boxing are known to allocate no floats at all,

these correspond to executions where heap usage is for non-float objects only. A few self-tagging

variants allocate some floats on some benchmarks (see Figure 5), but these allocations are rare

enough that memory profiling of all variants is nearly identical to that of NaN/NuN-boxing.

Detailed execution time comparisons with NuN-boxing are shown in Figures 7 and 8 (Bigloo and

Gambit respectively). Figure 7 also shows time for NaN-boxing, which Bigloo implements. Figure 9

summarizes results by providing the geometric mean of execution times relative to NuN-boxing

for each float encoding, compiler, and microarchitecture, for both float and non-float benchmarks.

As a general observation, none of the evaluated encodings is a better alternative overall; the

best encoding depends on the nature of benchmarks, microarchitecture, and implementation. For

instance with Bigloo, NaN-boxing is faster across microarchitectures on float-intensive benchmarks,

but slowest on non-float benchmarks. Conversely, self-tagging generally fares better than NaN/NuN-

boxing on non-float benchmarks since it introduces no overhead on non-float objects.

Bigloo’s self-tagging does not consistently match the performance of NuN-boxing on float

benchmarks across microarchitectures (but is faster than allocated floats, as will be discussed in

Section 4.5). The 1-tag and 3-tag variants offer the highest performance overall for Bigloo, with

the 3-tag variant being faster for float benchmarks and slightly slower for non-float benchmarks.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 330. Publication date: October 2025.



330:16 Olivier Melançon, Manuel Serrano, and Marc Feeley

Execution Time Relative to NuN-Boxing (Bigloo)

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Intel(R) Xeon(R) W-2245, 32GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Apple M2 Max, 64GB, macOS 15.4.1, gcc 14.3.0
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Fig. 7. Execution time of Bigloo with each variant of self-tagging and NaN-boxing relative to NuN-boxing on

four distinct microarchitectures (from top to bottom: Amd, Intel, M2, and Risc-V). The y-axis shows execution

time relative to NuN-boxing (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no change,

lower means faster, and higher means slower execution than NuN-boxing.
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AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 8. Execution time of Gambit with each variant of self-tagging relative to NuN-boxing on four distinct

microarchitectures (from top to bottom: Amd, Intel, M2, and Risc-V). The y-axis shows execution time relative

to NuN-boxing (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no change, lower means

faster, and higher means slower execution than NuN-boxing.
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Summary of Execution Time Relative to NuN-Boxing

Non-float benchmarks Float benchmarks

Amd Intel M2 Risc-V Amd Intel M2 Risc-V

B
i
g
l
o
o

1-tag 1.01× .97× .97× .97× 1.20× 1.20× 1.25× 1.28×
2-tag w/ prealloc. zero 1.01× .96× .98× .97× 1.22× 1.34× 1.33× 1.29×

3-tag 1.00× 1.00× 1.00× 1.02× 1.13× 1.09× 1.10× 1.19×
NaN-boxing 1.01× 1.02× 1.00× 1.06× .87× .84× .90× .90×

G
a
m
b
i
t 1-tag .95× .87× .91× .88× 1.06× .94× 1.05× 1.03×

2-tag .96× .88× .95× .89× 1.11× 1.00× 1.16× 1.09×
3-tag .96× .90× .98× .88× 1.09× 1.06× 1.14× 1.06×
4-tag .97× .89× .96× .89× .97× .90× 1.04× .94×

Fig. 9. Geometric mean of execution times relative to NuN-boxing of float and non-float benchmarks for

each combination of float encoding, compiler, and microarchitecture. 1.00× indicates no change, lower means

faster, and higher means slower execution than NuN-boxing.

Bigloo’s 2-tag with preallocated zeros has similar average performance as 1-tag, however it shows

more variability across benchmarks (see fft and pnpoly in Figure 7) since it has to test for ±0.0
out-of-line. Hence, Gambit’s 2-tag variant (Section 2.5) should be preferred to that of Bigloo.

Gambit’s 4-tag variant provides consistently faster average execution times for both float and non-

float benchmarks on all architectures except M2 where it is nearly the same speed as NuN-boxing.

Gambit’s 1-tag variant also fares well on all benchmarks on Intel and Risc-V.

Self-tagging and NaN/NuN-boxing have competitive performance and the best choice depends

on the specific setting. When floating point computation performance is important but less so than

operations on other objects, self-tagging is a good option to consider. Additionally, a significant

portion of this studywas spent adapting existing systems (Bigloo andGambit) to newfloat encodings,

and self-tagging was found to be qualitatively simpler to implement as it only affects the encoding

of floats, while NaN/NuN-boxing has deeper object encoding implications.

4.5 Memory Management Considerations
Figures 10 and 11 show execution times of the best self-tagging variants on each implementation

(Bigloo 1-tag, and Gambit 4-tag respectively) relative to allocated floats. For Bigloo, decreased

memory allocations correlates with lower execution time on all architectures (see Figure 6) with

the exception of sum1, an I/O bound benchmark.

Conversely, Gambit execution time slightly increases on many float benchmarks. This difference

is caused by its use of a stop-and-copy garbage collector with bump allocation, while Bigloo uses

the Boehm mark-and-sweep GC [8]. For programs with a nearly empty heap (default of R7RS

benchmarks), the overhead of self-tagging’s encoding/decoding outweighs that of bump allocation.

However, since self-tagging improves performance by allocating fewer floats, its impact is more

pronounced for programs that spendmore time in memory management tasks. This section presents

an experiment to measure execution time in a more realistic setting where benchmarks are executed

with live data on the heap, thus putting more pressure on the garbage collector.

For this experiment, the R7RS benchmark suite ismodified to allocate a vector before the execution

of each benchmark. The size of the allocated vector is given as a parameter of the benchmark. Each

float benchmark is then executed with vectors of 10
4
to 10

8
fields, which correspond to about 80 kB

and 800 MB respectively. An execution is also done with no preallocated vector.
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Execution Time Relative to Allocated Floats (Bigloo)

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 10. Execution time of Bigloo with self-tagging (1-tag) relative to allocated floats on four distinct microar-

chitectures (from top to bottom: Amd, Intel, M2, and Risc-V). The y-axis shows execution time relative to the

version that heap allocates all floats (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no
change, lower means faster execution than allocated floats.
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Execution Time Relative to Allocated Floats (Gambit)

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 11. Execution time of Gambit with self-tagging (4-tag) relative to allocated floats on four distinct

microarchitectures (from top to bottom: Amd, Intel, M2, and Risc-V). The y-axis shows execution time relative

to the version that heap allocates all floats (dashed horizontal red line) on a logarithmic scale. 1.00× indicates

no change, lower means faster execution than allocated floats.
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Execution Time with Non-Empty Heap

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 12. Execution time of float benchmarks with extra data allocated on heap before execution with Bigloo

and Gambit on Amd. The x-axis shows the size of preallocated data in bytes on a logarithmic scale. The y-axis

represents execution time in seconds (mean of 10 repetitions). Execution time without preallocated data is

added at 𝑥 = 0. Dashed lines correspond to times with allocated floats. Solid lines are with self-tagging.

Figure 12 compares execution times for Bigloo and Gambit with self-tagging (1-tag and 4-tag

respectively) and allocated floats with increasing vector sizes. With a nearly empty heap, and thus

little strain on the garbage collector, the bump allocator of Gambit with allocated floats sometimes

outperforms self-tagging since it does not incur the cost of encoding and decoding self-tagged

floats. Once the heap is preloaded with about 1 MB (which is the size of the L2 cache per core on

the Amd machine) the strain of the garbage collector starts to outweigh the cost of encoding and

decoding self-tagged floats, thus self-tagging hereafter outperforms allocated floats.
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Execution Time of Self-Tagging with Low Bits (Bigloo)
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Fig. 13. Execution time of Bigloo with self-tagging using the mantissa low bits relative to allocated floats on

the Amd microarchitecture. The y-axis shows execution time relative to the version that heap allocates all

floats (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no change, lower means faster, and

higher means slower execution than allocated floats.

Branch Misprediction of Self-Tagging with Low Bits (Bigloo)

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 14. Branch mispredictions of Bigloo with each variant of self-tagging, NaN-boxing, and NuN-boxing

relative to allocated floats by the Amd microarchitecture. The y-axis shows branch mispredictions relative to

allocated floats (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no change, lower means

less, and higher means more mispredictions.

4.6 Branch Prediction Considerations
This section discusses the impact of branch misprediction on the performance of self-tagging by

presenting another variant of self-tagging that was developed based on intuitions that turned out to

be wrong. This negative result is detailed here to guide implementers when adapting self-tagging.

Self-tagging variants from previous sections use high exponent bits of floats. This is convenient

since it captures contiguous ranges of floats at the cost of a small encoding/decoding overhead.

Alternatively, low bits of a float’s mantissa can be used. For instance, by reserving the tag 000 for

self-tagged floats and heap allocating all floats whose low mantissa bits are not 000.
This encoding has no overhead since a self-tagged float corresponds exactly to its IEEE754 value.

It comes as the cost of no longer capturing contiguous ranges of floats, but rather a set uniformly

spread across all possible floats. As in previous techniques, the proportion of captured floats can be
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increased by assigning more tags to self-tagging. This variant is implemented in Bigloo with tags

000 and 100, thus self-tagging 1/4 of all floats, in particular all floats 𝑛 that are integers |𝑛 | ≤ 2
51
.

Figure 13 compares execution times of this variant to allocated floats. As expected, benchmarks

that extensively use floats corresponding to integers (fibfp and sumfp) execute faster, even faster

than previous variants (see Figure 10), due to most floats avoiding heap allocation. However, other

benchmarks (mbrot and nucleic) are slower despite allocating about 1/4 fewer floats.
This unpredictability is explainable by profiling the number of branch mispredictions caused by

this variant. Figure 14 shows missed branch predictions of float encodings, including self-tagging

with mantissa bits. This encoding causes a steep increase in missed branch predictions on some

benchmarks, namely mbrot and nucleic. This stems from the fact that when tags occupy the low

bits of the mantissa, even the smallest variations cause a float’s representation to switch between

self-tagged and tagged pointer in a hard to predict way. This is beyond the capabilities of the branch

predictor and execution suffers costly misprediction penalties [11].

This result refutes the intuition that self-tagging with mantissa bits may be a good compromise

due to its cheap encoding/decoding. It also hints at the necessity to avoid tests for special values

in encoding/decoding, such as the test for ±0.0 in the 2-tag self-tagging variant with preallocated

zeros, which has a higher occurrence of branch mispredictions than 1-tag self-tagging in Figure 14.

5 Self-Tagging on 32-bit Architectures
Although previous sections only considered double-precision floats on 64-bit architectures, self-

tagging has a natural adaptation for 32-bit architectures. Indeed, the core idea, which is to superim-

pose a tag to a sequence of bits likely to appear in practice, can be used for any machine word size.

A popular object representation on 32-bit architectures is to use 2-bit tags (4 possible tags) and heap

allocated objects aligned to 32-bit words. Figure 15 shows the ranges covered by each combination

of the top 4 bits of the exponent, which is 8 bits wide in the IEEE754 32-bit representation.

The 1-tag approach described previously can be adapted to the narrower exponent of the IEEE754

32-bit representation field: the self-tagged encoding of a float whose IEEE754 32-bit representation

is the integer 𝑛 can be computed as (𝑛 ⊕ ((1 + 2 × 𝑡𝑎𝑔) << 27)) <<𝑟𝑜𝑡 4, where ⊕ is addition

modulo 2
32
and <<𝑟𝑜𝑡 is the left rotation operator. If the two lowest bits are equal to 𝑡𝑎𝑔 then the

float is self-tagged. This will cover all float values in the ranges: 0.0..3.9 × 10−34 ∪ 3.1 × 10−5 ..1.3 ×
10

5 ∪ 1.0 × 1034 ..𝐼𝑛𝑓 𝑖𝑛𝑖𝑡𝑦/𝑁𝑎𝑁 (bold pink rows of Figure 15 using 𝑡𝑎𝑔=00).
The coverage can be doubled by using an adaptation of the 2-tag variant described in Section 2.5:

0.0..2.5 × 10−29 ∪ 4.7 × 10−10..8.6 × 109 ∪ 1.6 × 1029 ..𝐼𝑛𝑓 𝑖𝑛𝑖𝑡𝑦/𝑁𝑎𝑁 (light pink rows of Figure 15

using 𝑡𝑎𝑔1=00 and 𝑡𝑎𝑔2=11). With this variant, it would be reasonable to reserve one tag for small

signed integers in the range −229..229 − 1 (-536870912 .. 536870911), and the remaining tag for heap

allocated objects, including the floats that can’t be self-tagged.

6 Related Work
Handling floats is a long-standing issue in dynamic language implementation. In the last decades,

little progress has been made improving the encoding of floats, with most implementations either

using heap allocated floats or suffering from the overhead of NaN-boxing on pointers. Thus, more

general strategies that use data flow analysis [18, 23, 27, 37, 40] and partial evaluation [44] have

been developed to find locations where the type of a value is known across its lifecycle. This

allows the generation of specialized code that safely handles fully unboxed, untagged values. Such

strategies are not specific to unboxing floats. Rather, they tackle the more general problem of

inferring types in dynamic languages, which allows dropping type information in either tagged

pointers or NaN-boxed pointers. While more limited in scope, self-tagging solves the problem of

heap allocated floats with a new encoding that involves no program analysis.
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4 most signif. 4 most signif.
expo. bits expo. bits + 1 Value

0.0
0000 0001

1.4e-45 .. 3.9e-34

0001 0010 3.9e-34 .. 2.5e-29

0010 0011 2.5e-29 .. 1.7e-24

0011 0100 1.7e-24 .. 1.1e-19

0100 0101 1.1e-19 .. 7.1e-15

0101 0110 7.1e-15 .. 4.7e-10

0110 0111 4.7e-10 .. 3.1e-5

0111 1000 3.1e-5 .. 2

4 most signif. 4 most signif.
expo. bits expo. bits + 1 Value

1000 1001 2 .. 1.3e5

1001 1010 1.3e5 .. 8.6e9

1010 1011 8.6e9 .. 5.6e14

1011 1100 5.6e14 .. 3.7e19

1100 1101 3.7e19 .. 2.4e24

1101 1110 2.4e24 .. 1.6e29

1110 1111 1.6e29 .. 1.0e34

1.0e34 .. 3.4e38

1111 0000

Infinity/NaN

Fig. 15. The positive value ranges captured by each combination of the 4 most significant exponent bits of

the IEEE754 32-bit representation. The rows coloured in bold pink are covered by the 1-tag variant (tag 00)
and the rows coloured in light pink are covered by the 2-tag variant (tags 00 and 11).

Self-tagging is straightforward to add to compilers that already use object tagging. Therefore,

implementations that represent floats as tagged pointers could benefit from it with minimal im-

plementation effort. Such popular implementations include CPython [15] and Google’s V8 [42].

Compilers that use NaN/NuN-boxing, such as Mozilla’s SpiderMonkey [14] and Apples’s JSC [19]

can also benefit from the lower impact that self-tagging has on the performance of non-float types.

Due to the shortcomings of tagged pointers and NaN-boxing, additional strategies are used

to avoid boxing. A straightforward approach is to provide homogeneous data structures such as

TypedArray in JavaScript [20] and numpy’s float64 arrays in Python [17]. Type homogeneity

then allows unboxing values within the collection. More generally, compilers can detect data

homogeneity at run time and use context-dependent storage strategies to store data in a way that

prevents pointer chasing [9]. Since self-tagging avoids heap allocating most floats in practice, it

effectively prevents such pointer chasing in the case of floats without static or run time analysis.

Even for general-purpose languages not specifically designed for numerical computation, ensur-

ing reasonably fast float operations is a major concern. All production-quality implementations

surveyed for this paper devote significant efforts to optimizing them. Unfortunately, the academic

literature is scarce when it comes to techniques used by these efficient implementations.

In many cases, the source code itself has to be studied to understand the implementation and

compare it to self-tagging. The NuN-boxing implementation used in experiments in this paper

is based on that of JSC.
2
NuN-boxing has the benefits over self-tagging that it encodes all floats

uniformly and does not reserve tags for them. Its drawbacks are that it negatively impacts the type

checking and accesses of all objects, it can represent integers with at most 48 bits (usually 32 bits

for practical reasons), and it can’t be used on 32-bit architectures.

NaN/NuN-boxing are trade-offs between the performance of floats and pointers (NaN-boxing

favors floats, NuN-boxing favors pointers). Self-tagging offers a different trade-off between the

performance of frequently used floats and other floats. The fact that some ranges of floats are more

commonly used has been studied in scientific computing where real world data typically fall into a

narrow range of values [4, 10, 28, 45]. This is in accordance with the results presented in Figure 5.

2
https://github.com/WebKit/WebKit/commit/74c9b9bbc2c7527144ac366c3f62f84aaa1a8a4e
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The techniques closest to self-tagging discovered among surveyed implementations are those of

CRuby,
3
OpenSmallTalk

4
and MonNom [34]. CRuby and OpenSmallTalk use a variant close to the

1-tag encoding of Section 2.4. The MonNom implementation from [34] uses a variant of the 2-tag

encoding of Section 2.3 with 2-bit tags. Floats captured by these implementations all exclude ±0.0,
and treat it as a special case. This imposes complex sequences of instructions for encoding/decoding

that can hardly be inlined and risks increasing branch misses as discussed in Section 4.6.

To the best of the authors’ knowledge, this is the first work exposing the principles of self-tagging,

implementing it in optimizing compilers, and evaluating its benefits, drawbacks, and variants.

In this paper, self-tagging was discussed in the context of dynamic languages. Yet, polymorphic

languages such as OCaml and Haskell also attach information to run time values and spend

considerable effort to find efficient encodings for abstract data types [6, 24]. Self-tagging could be

applied in these languages, either to floats or to the encoding of abstract data types.

7 Conclusion
Avoiding heap allocation of floating point numbers has always been a major concern for dynamic

and polymorphic languages. This paper presents and evaluates the popular techniques deployed

to that end (NaN and NuN-boxing) as well as a new approach, coined self-tagging, that allows
representing certain floats without heap allocation.

The core idea is to apply a bitwise transformation that maps the most common floats used in

practice to bit patterns that contain the required type information at the correct position. This

allows encoding floats in specific ranges as tagged values instead of heap allocated objects, reducing

the strain on the garbage collector and improving performance. Contrary to NaN-boxing and NuN-

boxing, which are designed to optimize the handling of floats, self-tagging offers a different trade-off

that adds no overhead to the handling of other types. Since it does not rely on the specificity of the

IEEE754 NaN encoding, self-tagging is highly portable, including to 32-bit architectures.

It is also straightforward to retrofit in implementations that already use object tagging. The

only required changes are to reserve one or more tags for float self-tagging and implement an

encoding/decoding function for self-tagged floats. The rest of the runtime stays unchanged.

As shown by the experimental evidence presented, float self-tagging is a good candidate for

general-purpose languages, such as JavaScript, whose specification relies heavily on floats, but

where the performance of other types must not be sacrificed.

Given the purely bit-shuffling nature of float self-tagging boxing and unboxing, it may also be a

good candidate for an essentially zero-cost implementation at the hardware level when floats are

moved between float and integer registers.
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A Experimental Results on All Microarchitectures
This appendix presents results of experiments from Section 4 on all microarchitectures, including

those omitted from the main body of the paper.

Figure 16 shows execution time with a non-empty heap (Section 4.5) on Intel and M2. Results on

Risc-V are unavailable due to this experiment taking too long (several weeks) to run on this machine.

Figures 17 shows execution times of the self-tagging variant using mantissa low bits (Section 4.6)

on all microarchitectures. Figure 18 compares branch misprediction across self-tagging variants on

AMD (already presented in Section 4.6) and Intel (new to this appendix). Branch prediction results

are unavailable on M2 and Risc-V due to lack of proper tooling on these machines.
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Execution Time with Non-Empty Heap

Intel(R) Xeon(R) W-2245, 32GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Fig. 16. Execution time of float benchmarks with extra data allocated on heap before execution with Bigloo

and Gambit on Intel and M2. The x-axis shows the size of preallocated data in bytes on a logarithmic scale.

The y-axis represents execution time in seconds (mean of 10 repetitions). Execution time without preallocated

data is added at 𝑥 = 0. Dashed lines correspond to times with allocated floats. Solid lines are with self-tagging.
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Execution Time of Self-Tagging with Low Bits (Bigloo)

AMD Ryzen 7955WX, 62GB, Linux 6.12.31 x86_64, Debian 10.13, gcc 14.2.0
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Branch Misprediction of Self-Tagging (Bigloo)
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Fig. 18. Branch mispredictions of Bigloo with each variant of self-tagging, NaN-boxing, and NuN-boxing

relative to allocated floats by the Amd and Intel microarchitectures. The y-axis shows branch mispredictions

relative to allocated floats (dashed horizontal red line) on a logarithmic scale. 1.00× indicates no change,

lower means less, and higher means more mispredictions.
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