
Storage Use Analysis and its ApplicationsManuel Serrano1;2 and Marc Feeley1fSerrano,Feeleyg@IRO.UMontreal.CA1 Universit�e de Montr�eal C.P. 6128, succ. centre-ville, Montr�eal Canada H3C 3J72 Inria B.P. 105, Rocquencourt, 78153 Le Chesnay Cedex, FranceAbstractIn this paper we present a new program analysis methodwhich we call Storage Use Analysis. This analysis deduceshow objects are used by the program and allows the opti-mization of their allocation. This analysis can be applied toboth statically typed languages (e.g. ML) and latently typedlanguages (e.g. Scheme). It handles side-e�ects, higher or-der functions, separate compilation and does not require cpstransformation. We show the application of our analysis totwo important optimizations: stack allocation and unbox-ing. The �rst optimization replaces some heap allocations bystack allocations for user and system data storage (e.g. lists,vectors, procedures). The second optimization avoids box-ing some objects. This analysis and associated optimizationshave been implemented in the Bigloo Scheme/ML compiler.Experimental results show that for many allocation inten-sive programs we get a signi�cant speedup. In particular,numerically intensive programs are almost 20 times fasterbecause oating point numbers are unboxed and no longerheap allocated.1 IntroductionModern strict functional languages such as Scheme and MLare still often much less e�cient than traditional imperativelanguages such as Fortran and C. Few compilers for func-tional languages are able to produce executable programswhose e�ciency is close to that of imperative ones [12]. To alarge extent, this ine�ciency is due to poor use of memory.Because read and write operations are much more expen-sive than arithmetic operations and control operations onmodern computers, memory access is a major performanceissue. Consequently, an e�cient system must allocate as fewobjects as possible and must choose very carefully the loca-tion where the objects are allocated. Let's discuss these twopoints further.� High allocation rate:For languages like Scheme and ML polymorphism isdi�cult to implement e�ciently. With these languages,functions which accept several kinds of arguments arelegal, such as an \identity" function which acceptscharacters, �xnums and onums. This feature is hardto handle e�ciently (�xnums and onums are not gen-erally of the same size and cannot be stored in the samekind of hardware registers). The traditional solution is

to \box" values, i.e. use pointers to values in memoryrather that direct values. This uniform representa-tion [19] is ine�cient because it requires memory allo-cation for all objects. In this paper, we present an al-gorithm which allows mixed representation. With thisframework, values can be directly represented withoutrequiring indirections. There are two bene�ts: mem-ory allocation is less frequent and values are accessedmore e�ciently.� Location of allocation:Some programs make heavy use of objects with dy-namic extent (nested lifetime). Stack based languageimplementations1 which do not exploit this charac-teristic will pay a higher cost for allocation than isrequired. Instructions are already present in the pro-gram to allocate and deallocate activation frames. Ob-jects with dynamic extent could be allocated (and deal-located) at no cost in the frames. In order to automat-ically �nd when objects can be allocated in the stackwe have designed a conservative analysis which deter-mines if objects have dynamic extent.The two optimizations presented in this paper (mixedrepresentation and stack allocation) use the same analysisbut in di�erent ways. Section 2 �rst develops this analysisfor a small source language and then the language is ex-tended to obtain a language with data storage, side e�ectsand modules. The stack allocation decision algorithm ispresented in Section 3 and the mixed representation in Sec-tion 4. We have implemented these two optimizations in theBigloo Scheme/ML compiler, and have measured the gainin performance on benchmark programs. The experimentalresults are presented in Section 5.2 Storage Use Analysis (sua)In this section, we will present Storage Use Analysis (sua) by�rst describing the analysis for a simple �rst-order languagewith only �xnum and onum values and then we will extendit by adding several data types (higher-order functions, listsand vectors).2.1 The input language �The input language for the �rst version of our analysis is asimple language resembling Lisp (functions are second classcitizens and closures do not exist), with only immediate val-ues (�xnum and onum), and without any data storage. �'sgrammar is shown below:1Some systems like Sml/NJ [2] allocate activation frames in theheap.

Syntactic categoriesv 2 VarId (Variables identi�er)f 2 FunId (Functions identi�er)� 2 Exp (Expressions)k 2 Cnst (Constant values)� 2 Prgm (Program)� 2 Def (De�nition)Concrete syntax� ::= � : : :�� ::= (define (f v : : : v) �)� ::= kj vj (labels ((f (v : : : v) �) : : :) �)j (if � � �)j (set! v �)j (f � : : : �)j (+ � �)Note that since functions are �rst-order � is not a func-tional language. A program is composed of several globalfunction de�nitions; local functions are introduced by thelabels special form. The language includes side e�ects onvariables (the set! form).2.2 The �rst-order suaFor the sake of simplicity, we will consider the last functionde�nition as the entry point of the program (equivalent tothe C main function). So running a � program means callingthe last function de�ned, with no arguments.Sua0(�)=repeatSua0app(�#main)until no approximation set changed in this iterationSua0app(f, a1, : : :, an)=8i2[1::n]let x=Sua0ast(ai)Avar(f#argi) Avar(f#argi)Sx,if f not yet processed in this iterationthen let x=Sua0ast(f#body)Avar(f#res) Avar(f#res)Sx,Avar(f#res)Sua0ast(atree)=case atree[[k]]:fT (k)g[[var]]:Avar(var)[[(if atree atreet atreef)]]:Sua0ast(atree),Sua0ast(atreet)SSua0ast(atreef)[[(set! var val)]]:let x=Sua0ast(val)Avar(var) Avar(var)Sx,;[[(labels ((f1 (v1 : : : vn) atree1) : : :) atree)]]:Sua0ast(atree)[[(+ a1 a2)]]:ffixnum, flonumg[[(f a1 : : : an)]]:Sua0app(f, a1, : : :, an)end Algorithm 2.1: A �rst-order analysis

The sua algorithm shown in algorithm 2.1 computes typeinformation about variables and function results (which willboth be called variables). The result of the analysis is an\approximation set" for each variable, which indicates thetype of values that can be bound to the variable. Since theonly data types are �xnum and onum, an approximationset is a subset of the set A0 = ffixnum; flonumg. Note thatbecause the analysis is conservative an approximation set isa superset of the true set of types that can be bound to thevariable.Note that the sua algorithm requires �-converted pro-grams. It is written in an intuitive pseudo language whichuses the following notation:T (k) The type of a constant (fixnum or flonum).� #main The program entry point.Avar(v) The approximation set of variable v.f #body The body of function f .f #argi The ith formal parameter of function f .f #res The arti�cial variable representing the re-sult of function f .The algorithm performs a �x point iteration. Each itera-tion is a depth �rst traversal of the entire call graph initiatedby the program's entry point. The �x point iteration stopswhen an iteration does not add any new information. Thisprocess is guaranteed to stop because there is a �nite numberof variables, a �nite number of possible approximation sets,and no element is ever removed from a variable's approxi-mation set. Let's study sua's behavior with the program:(define (id x) x)(define (plus a b) (+ a b))(define (foo) (plus (id 4) (id 5.0)))The analysis collects approximation sets for x, a and band the result of id, plus and foo. The traversal of thecall graph starts with the body of foo which leads to a callof the function id with the value 4. We are collecting typeinformation so this call to id assigns the approximation setffixnumg to x. Since id returns x, the approximation setffixnumg is also assigned to the result of id. After process-ing this �rst call to id, the analysis examines the second call(id 5.0). This time, the approximation set for id's argu-ment is fflonumg so the analysis assigns the approximationset ffixnum; flonumg to x. In a given iteration, the depth�rst traversal of the call graph will not visit a function'sbody more than once, so id's body is not processed againand the approximation set of id's result is not changed (thisis done in the next iteration). After the second call to id,the call to plus is processed. Since at this point the approx-imation set of id's result is ffixnumg, the analysis assignsthe approximation set ffixnumg to a and b.During the second iteration, when the analysis processesthe body of id, flonum is added to the approximation set ofid's result. This approximation set is propagated to a andb and the �x point is reached in 3 iterations. sua concludesthat all variables and function return values of this programcan be a fixnum or a flonum.Implementation note: The set of variables and function re-sults is �nite and known at compile time. This propertyis important because it allows e�cient implementation ofAvar table using e�cient set representations (e.g. using bit-vectors).

2.3 The �rst-order sua with modulesWe now extend � to support modules. Rather than addnew constructions to the language we will assume that allglobal functions are exported (i.e. that they are visible inother modules).From the compiler's point of view, the fact that a func-tion is exported means that its actual parameters may beunknown because it can be invoked outside the current mod-ule. To handle this we have to introduce a representa-tive for unknown values. As customary [8] this is noted\top" (>). Approximation sets are now subsets of A1 =f>;fixnum; flonumg. When a variable's approximation setcontains >, it means that any value may be bound to thevariable. Algorithm 2.2 contains the updated sua algorithm2 .It makes use of the new notation:� #export The set of �'s exported functions.In this new version of the analysis, the traversal of the callgraph is initiated by all exported functions. The formal pa-rameters of all exported functions are initially approximatedby f>g. The function Aspread-> will be useful later on tospread > into data storage approximations.Sua1(�)=8f2�#exportSua1export(f)Sua1export(f)=let n=f 's arity8i2[1::n]Avar(f#argi) Avar(f#argi)Sf>g,if f not yet processed in this iterationthen let x=Sua1ast(f#body)Avar(f#res) Avar(f#res)Sx,Aspread->(Avar(f#res))Sua1app(f, a1, : : :, an)=if f is importedthen f>gelse 8i2[1::n]let x=Sua1ast(ai)Avar(f#argi) Avar(f#argi)Sx,if f not yet processed in this iterationthen let x=Sua1ast(f#body)Avar(f#res) Avar(f#res)Sx,Avar(f#res)Aspread->(a)= aAlgorithm 2.2: A �rst-order analysis with modules2.4 The higher-order sua with modulesWe now extend the analysis to accept as input a higher-orderfunctional language. Three new constructions are added to�: make-closure (to create closures), closure-ref (to ac-cess a closure's free variables) and closure-call (to invokea closure). Here are the modi�cations to �'s grammar:� ::= . . .j (make-closure f v . . .v)2function Sua1ast is not de�ned here because it has the same def-inition as Sua0ast (with references to Sua0ast replaced with Sua1ast).This kind of misuse will be used in the remainder of the paper toavoid redundancy.

j (closure-ref v k)j (closure-call � v . . . v)The usefulness of these constructs rests in the ability toeasily translate Scheme programs into �. The translation ofthe following program:(define (curry-plus x) (lambda (y) (+ x y)))(define (add a b) ((curry-plus a) b))(define (main) (add 3.4 5.6))is:(define (curry-plus x) (make-closure1 f x))(define (f p y) (+ (closure-ref p 0) y))(define (add a b) (closure-call (curry-plus a) b))(define (main) (add 3.4 5.6))The translation required to map Scheme, ML or otherhigher-order functional languages to � is the so-called �-lifting transformation [16].Sua2ast(atree)=case atree...[[(closure-call e a1 : : : an)]]:[f2Sua2ast(e)Sua2clocall(f, a1, : : :, an)[[(make-closurei f v1 : : :)]]:let a1=Sua2ast(v1), . . .Aclo(i) dmake-closure(f, a1, : : :),fcloig[[(closure-ref f k)]]:[cloi2Sua2ast(f) dclosure-ref(Aclo(i), k)endSua2clocall(e, a1, : : :)=case ecloi:Sua2app(dclosure-function(Aclo(i)), a1, : : :)else:Sua2failure()endSua2app(f, a1, : : :, an)=if n = f 's aritythen Sua1app(f, a1, : : :, an)else Sua2failure()Sua2failure()= ;Aspread->(a)=8cloi2aSua2export(dclosure-function(Aclo(i))),aAlgorithm 2.3: A higher-order analysis with modulesClosures introduced by make-closure are for now theonly data structures of our language. sua is modi�ed tocompute information about types and data storage by adding\closure approximations". A closure approximation is atuple containing a closure function and a closure environ-ment (a list of approximation sets, one for each free vari-able). Closure approximations are created by the function

dmake-closure. The function associated with closure ap-proximation a is obtained with dclosure-function(a) anddclosure-ref(a; i) returns the approximation set associatedwith the ith free variable of closure approximation a.Closure approximations are stored in a closure approxi-mation table named Aclo. There is a one-to-one correspon-dence between entries in this table and make-closures in theprogram. To add a closure approximation to an approxima-tion set, cloi is added to the set, where i is the entry's indexin Aclo. In this version of our algorithm, approximation setsare subsets of A2 = f>;fixnum; flonum; clo1; : : : ;clokg,where k is the number of make-closures in the program.A new problem arises with functional values. In latentlytyped languages closure-call can lead to two possible er-rors: the object given to closure-call is not a closure orthe number of arguments is incompatible with the functioncalled. We have to deal with these possible errors in the sua.For the sake of simplicity we suppose that closure-ref isalways correct. This is reasonable since these constructionsare inserted by the program which is in charge of the �-liftingand not by the user. The treatment of errors is straightfor-ward: errors just produce empty approximation sets. Thismeans that an error leaves all the approximation sets as theyare. This is sound because at run time, if an error occurs,the program is interrupted, so errors do not return values.Our handling of closures has been guided by their specialnature: they are immutable data (since we are using atclosures, mutable free variables are stored in cells) and theyare always accessed via the closure-ref procedure whichrequires a constant index as second argument. It is thuspossible to distinguish the free variables.Algorithm 2.3 presents the extensions to sua needed toaccept the higher-order version of � (we assume functionSua1app in the algorithm uses the new version of the graphtraversal function, i.e. Sua2ast). TheAspread-> function alsorequires a slight modi�cation: if a closure can be returnedby an exported function, this closure is also exported as itcan be invoked with unknown actual parameters. The newAspread-> handles this.Let's study sua on the example of the curried additioncurry-plus. Assuming no exported functions, the itera-tion process starts by traversing main. The call to add as-signs the approximation set fflonumg to a and b. The callcurry-plus in turn assigns the approximation set fflonumgto x, and the function's result is assigned the approximationset fclo1g after storing a closure approximation over oneonum (i.e. dmake-closure(f, fflonumg)) in Aclo(1). The�rst argument of the closure-call has the approximationset fclo1g, so sua continues by analyzing f's body withthe approximation set fclo1g for p. The closure-ref thusreturns the approximation set fflonumg.2.5 The higher-order sua with modules and listssua can be easily extended to accept other data types. Inthis section, we present how lists are added to the analysis.Lists (in Lisp and Scheme) di�er from closures because theyare mutable data. Lists are built out of pairs. The two �eldsof a pair can be distinguished in our approximation scheme(just like all the free variables of a closure are distinguished).� ::= . . .j (cons � �)j (car �)

j (cdr �)j (set-car! � �)j (set-cdr! � �)The handling of pairs in the sua is very similar to clo-sures. The sua extended for pairs is shown in Algorithm 2.4(the cases for cdr and set-cdr! are left out because of theirobvious symmetry with car and set-car!). Acons is a ta-ble similar to Aclo but for pair approximations. A pairapproximation is a tuple of two approximation sets (onefor each �eld of the pair) and is created with the func-tion dcons. ccar(a) and ccdr(a) respectively return the ap-proximation set associated with the car and cdr �eld ofpair approximation a to which is added the special approx-imation obj (as explained in section 4.5, obj denotes thegeneric Scheme object type and is needed to prevent un-boxed pairs). Approximation sets are now subsets of A3 =f>;fixnum; flonum; clo1; : : : ;clok; cons1; : : : ;consc; objg,where c is the number of calls to cons in the program.The main change is in the Aspread-> function. Evenwhen closures are exported, the values they hold cannotbe changed because closures are immutable data storage.Because pairs are mutable they may be altered when ex-ported (i.e. the �elds of the pair can be changed using theset-car! and set-cdr! functions). The new Aspread->function handles this. When pairs are exported, > is addedto the approximation set of each �eld. Note that a pair isspread at most once per iteration by Aspread->. This isnecessary to handle cyclic approximations.Sua3ast(atree)=case atree...[[(consi a d)]]:Acons(i) dcons(Sua3ast(a), Sua3ast(d)),fconsig[[(car p)]]:[consi2Sua3ast(p)ccar(Acons(i))[[(set-car! p x)]]:let x0=Sua3ast(x)8consi2Sua3ast(p)Acons(i) dcons(ccar(Acons(i))Sx0,ccdr(Acons(i))),;endAspread->(a)=8consi2aif consi not already spread in this iterationthen let a0=ccar(Acons(i)),let d0=ccdr(Acons(i))Aspread->(a0),Aspread->(d0),Acons(i) dcons(a0Sf>g, d0Sf>g),:::,aAlgorithm 2.4: A higher-order analysis with modules andlistsLet's study sua on the following Scheme program (theprogram is presented in Scheme rather than in � so that it

is easier to read):1: (define lst (let ((p1 (cons1 1 0)))2: (let ((p2 (cons2 2 p1)))3: p2)))4: (define (length l)5: (if (pair? l) (+ 1 (length (cdr l))) 0))6: (length lst)Types used by this program are: fixnum, pairs (i.e. cons1and cons2) and the special obj type (we omit boolean,needed for the pair? predicate, because it does not ap-pear in a variable's approximation set). Here is the state ofthe tables at the end of the analysis:Avar(p1) = fcons1gAvar(p2) = fcons2gAvar(lst) = fcons2gAvar(l) = ffixnum; cons1; cons2; objgAcons(1) = dcons(ffixnumg; ffixnumg)Acons(2) = dcons(ffixnumg; fcons1g)The invocation of length at line 6 has added cons2 to l'sapproximation set. Because of the call to cdr, the recursivecall at line 5 has added ccdr(Acons(2)), that is fcons1; objg,in one iteration and ffixnum; objg in the next iteration.2.6 The higher-order sua with modules, lists and vectorsWe conclude this section by adding vectors.� ::= . . .j (make-vect � �)j (vref � �)j (vset! � � �)Sua4ast(atree)=case atree...[[(make-vecti len filler)]]:Sua4ast(len),Avect(i) dmake-vect(Sua4ast(filler)),fvectig[[(vref v o)]]:Sua4ast(o),[vecti2Sua4ast(v)dvref(Avect(i))[[(vset! v o x)]]:Sua4ast(o),let x0=Sua4ast(x)8vecti2Sua4ast(v)Avect(i) dmake-vect(dvref(Avect(i))Sx0),;endAspread->(a)=8vecti2aif vecti not already spread in this iterationthen let r0=dvref(Avect(i))Aspread->(r0),Avect(i) dmake-vect(r0Sf>g),:::,aAlgorithm 2.5: A higher-order analysis with modules, listsand vectors

Vectors di�er from closures and lists in that they aremutable and because it is not possible, a priori, to know, atcompile time, which part of a vector is addressed when us-ing vector accessors. sua computes information about typesand data storage but it does not discover the exact value ofa �xnum. So for vectors the sua merges all possible valuescontained in a vector into a single approximation set (e.g. ifa vector is composed of a character and a �xnum, sua willindicate that each entry is a \character or a �xnum"). Algo-rithm 2.5 presents the modi�cation to our previous analysisto support vectors.Avect is a table similar to Acons but for vector approx-imations. Vector approximations are created by the func-tion dmake-vect and dvref(a) return the approximation setassociated with the vector approximation a. Approxima-tion sets are now subsets of A4 = f>;fixnum; flonum; clo1;: : : ;clok; cons1; : : : ;consc; vect1; : : : ;vectv; objg, where vis the number of calls to make-vector in the program.Just like for pairs, vector exportations have to be handledcarefully. This kind of object is mutable so when exportedvectors can hold any value.2.7 Related workThe sua is an extension of Shivers' 0cfa (0th order controlow analysis) [29, 28]. We have generalized his analysis todi�erent data storage. Shivers' analysis only handles clo-sures, our analysis also handles lists and vectors.In a previous paper [26] we have presented an algorithmwhich is close to the present Sua1. The goal of that workwas to study the impact of control ow analysis on functioncompilation. The analyses presented here are more gen-eral because closures are only considered as one special datastorage. E�cient closure compilation is not the focus here.We study the problems of unboxed representation and stackallocation.Ayers has studied similar improvements to Shivers' 0cfa.In his PhD thesis, he presents extensions for lists, vectors,etc. Our work has been realized concurrently with his [24, 3].The large di�erence between our analyses comes from theformalism. Ayers uses Galois connection while we chose amore algorithmic approach.Jagannathan and Wright describe in [15] a control-owanalysis and an application which removes type checks. Theiranalysis gives more precise type information than ours be-cause it does not merge types for polymorphic programs.More precise type information is valuable to remove typechecks but is not more valuable for a mixed representation.As explained in section 4, we use unboxed representation formonomorphic program parts which are e�ciently detectedby our analysis.2.8 ExtensionsOur input language �, is still much simpler than a full pro-gramming language such as Scheme or ML. Some importantconstructions are missing. We present here how to add themto sua.� Variable arity functions: this construction can be addedto sua by splitting functional application in two sepa-rate cases. Each time a function is applied (in a directcall or in a closure-call construction), the analysishandles the last parameter of variable arity functionsspecially. In Scheme, this parameter is bound to the

list of the optional actual parameters. In sua, thismeans that the approximation set of the last formalparameter is the approximation set of the list of theoptional actual parameters.� The Scheme special form apply: this construction is analternative way to apply functions. Rather than applya function to its n actual parameters, it is applied toa list of length n which holds the actual values. Sinceour analysis is able to distinguish individual elementsof a list, the apply form can be e�ciently handled:each formal parameter is assigned the correspondingapproximation set from the list's approximation set.� call/cc: the analysis does not treat call/cc spe-cially. This library function takes closures as argu-ments. These closures therefore escape because call/ccis managed as any imported function. call/cc's resultis simply approximated by the set f>g.� Multiple values can be easily added by the addition ofa treatment similar to the one for vectors.� Scheme and ML global variables: global variables canbe managed using a global environment. A subtleproblem with global variables can arise when the sourcelanguage allows references to global variables beforetheir declaration. For example, the Bigloo Schemecompiler considers this program as legal:(module foo (static x))(define (foo) (print x))(foo)(define x 8)Before its declaration x holds a special value (uninitial-ized , which stands for the lack of initialization) whichhas to be stored in x's approximation set. This im-plies that no optimization can be applied to x becauseit holds at least two types: the type of the uninitializedvalue and the �rst value used on the declaration site.In order to give a unique type to global variables, be-fore the sua analysis, we perform a simple conservativeanalysis to determine the set of variables which are al-ways de�ned (then initialized) before being referenced.This analysis is straightforward, because it consists ofa simple abstract tree traversal. These variables do nothold the special uninitialized value in their approxima-tion set.3 Stack allocationThe storage allocation optimizations discussed here assumean area of memory managed by a garbage collector and anarea of memory managed as a stack. The stack is scanned bythe collector to �nd the root pointers. Activation records areallocated on the stack when entering a procedure and theyare removed from the stack upon procedure exit. Withina procedure activation the allocation of additional storagefrom the stack is permitted; this storage is freed when theprocedure exits.We present a conservative optimization based on suawhich automatically replaces heap allocations by stack al-locations when it is legal to do so. This optimization isvaluable if stack allocations and deallocations are fast with

respect to heap allocations. For the sake of simplicity weadd a let form to �:� ::= . . .j (let ((v �)) �)This form has no impact on the sua algorithm (it can beseen as a macro over function application). For our stackallocation optimization, we assume that in � source pro-grams all allocations (the result of make-closure, cons andmake-vect) are bound to local variables using let forms.Consequently, each allocation has a unique name.Here are three examples that present interesting situa-tions for our optimization.1: (define (foo)2: (let ((x (cons1 1 2)))3: (car (id x))))4:5: (define (id z) z)In this �rst example, the pair bound to x can be stack allo-cated since it is never used outside of x's let extent.1: (define (bar)2: (let ((x (cons1 1 2)))3: (let ((y (cons2 3 x)))4: (cdr y))))In this second example, the pair allocated at line 2 is livewhen bar exits (since it is the result of bar) while the oneat line 3 is dead outside x's scope. Only the second pair canbe stack allocated.1: (define (hux)2: (let ((p0 (cons1 1 2)))3: (let ((p1 (cons2 3 4)))4: (let ((p2 (gee p0 p1)))5: p0))))6:7: (define (gee a b) (set-cdr! a b))Finally, in this example, no pairs can be stack allocatedbecause they are all live when hux returns.3.1 When is it legal to stack allocate?We present in this section the condition an allocation mustsatisfy to be done on the stack rather than in the heap. Fornow we are not concerned with preserving the tail-recursiveproperty of the program (at the end of this section we discussmodi�cations of our optimization to make it suitable for lan-guages like Scheme which have to implement tail-recursivecalls without consuming stack space).An allocation can be done on the stack if the data stor-age allocated is not live at the end of the procedure thatallocates it. Data storage is live at the end of a function if itappears (directly or indirectly) in the result of the functionthat allocated it or if it appears (directly or indirectly) in aglobal variable. Compile time computation of the livenessproperty requires information about data storage which isprovided by sua. This information is: the set of allocationsa variable may be bound to, the set of allocations possiblycontained in an allocation, and the set of allocations possiblyreturned by a function.3.2 Stack allocation decision algorithmEach allocation is marked with a stamp. The \current stamp"is incremented each time a let form is encountered. When

a function de�nition for f is reached, the current stamp issaved in h and then f 's body is processed. Each allocationin the approximation set of f 's result that is stamped witha more recent value than h escapes from f and so cannot bestack allocated. In addition all allocations which are acces-sible from a global variable cannot be stack allocated.The �rst part of the algorithm (algorithm 3.1) dispatchesbetween two function types: exported functions and staticfunctions. These two kinds of function di�er. For the �rstone, no returned (or pointed by) value can be stack allo-cated (since the function is exported the result value usageis not known to the compiler). For the second one, only datastorage allocated by the function cannot be stack allocated.�H�: 0 (0 stands for an initial stamp value)Stackprog(�)=8f2�if f2�#exportthen Stackexport(f)else Stackstatic(f)Stackstatic(f)=let h=�H�Stack(f#body),spreadunstackable(Aout(f), h, �H�)Stackexport(f)=Stack(f#body),spreadunstackable(Aout(f), -1, -1)Stack(atree)=case atree...[[(closure-call e a1 : : : an)]]:Stack(e),8i2[1::n]Stack(ai)[[(set! var val)]]:Stack(val)[[(labels ((f1 : : :) : : : (fn : : :)) atree)]]:8i2[1::n]Stackstatic(fi),Stack(atree)[[(let ((var val)) atree)]]:�H� �H� + 1,Stack(val),Stack(atree)[[(f a1 : : : an)]]:if f is an allocatorthen mark!(atree, �H�),8i2[1::n]Stack(ai)endAlgorithm 3.1: The \stackability" algorithmOur stack algorithm uses a spreadunstackable function. Thisfunction is similar to Aspread->. It follows a data storagechain to mark as \unstackable" all allocations which areyounger (marked as younger) than the value of the secondargument.The algorithm's main part is the function Stack. It dis-patches on the abstract syntax tree. Before calling Stackprogall allocations which have been passed as argument toAspread-> have to be marked as unstackable. These al-locations escape from the current module. The compiler is

not able to discover the exact usage of these allocations andthus, it cannot make any assumption about their lifetime.Once the algorithm has completed, allocations which havenot been marked as unstackable can be stack allocated (wewill introduce new constraints to safely allocate data storagein stack in the next section).spreadunstackable(a, min, max)=if a not yet processed for the values min and maxthen case apairi:if mark(a) > min and mark(a) � maxthen mark-unstackable!(a),8a02ccar(Apair(i))spreadunstackable(a0, min, max),8a02ccdr(Apair(i))spreadunstackable(a0, min, max)vecti::::cloi::::endAlgorithm 3.2: Spreading \unstackability"Let's study the algorithm's behavior on our previous barfunction example. The function allocates two pairs cons1and cons2. sua proves that y points to cons2 (which pointsto cons1) and x points to cons1. The cons1 pair is pointedto by the result of bar. So, the algorithm concludes thatthis pair cannot be stack allocated.3.3 Extension for proper tail-recursion implementationsand safety considerationsSome languages like Scheme require that executions of aniterative computation take constant space. Let's considerthe following two functions:(define (foo1 x y) (define (foo2 x y)(if (= y 0) (if (= y 0)(display x) (display x)(foo1 (cons 1 2) (foo2 (cons x x)(- y 1)))) (- y 1))))The two functions di�er only in their recursive call. In foo1,only one allocated pair of the recursive call is live at a time;in foo2, allocated pairs are linked together and they are alllive at any given point. The common intuitive idea of thetail-recursive property imposes an implementation to requireonly one free pair to run foo1. Our algorithm presented inalgorithm 3.1 provides rough data storage lifetime. It is notable to distinguish that pairs allocated in foo1 cannot bestack allocated while pairs allocated in foo2 can be.The problem is more general than tail-recursion. As re-vealed by Chase in [7], there is a general safety problem forstack allocation optimizers. Sometime, allocating an objectin the stack rather than in the heap extends its lifetime. Forinstance, in foo1, a garbage collector is free to reclaim pre-vious allocated pairs but if these pairs are stack allocatedthey will be all freed at the same time and required space torun this program is no longer constant. Stack allocation canconvert a running program into one that fails. In his paper,Chase, presents \safety conditions for stack allocation" inorder to decide the replacement of heap allocations by stackallocations in presence of loops or recursions. His methodand our work are complementary.

3.4 Related workKranz presents in [17] the strategy used by Orbit to realizestack allocations. His method is less precise than ours. InOrbit only closures can be stack allocated and only if theyare passed as an argument or applied. These conditions arevery restrictive.In [9], B. Goldberg and G. Park present a method for op-timizing the allocation of closures in memory. Their methodis based on what they call an escape analysis, an applica-tion of abstract interpretation to higher-order functional lan-guages. Escape analysis determines, at compile time, if anyarguments to a function have a greater lifetime than thefunction call itself. The language studied does not containside e�ects and the only data storage used are closures andlists. List management is very rough because their analysisis not able to distinguish the elements of a list. Separatecompilation is not studied in that paper.Ruggieri and Murtagh present in [23] a data storage al-location framework called sub-heap allocation. This frame-work consists of partitioning the heap into sub-heaps, oneassociated with each active procedure. The contents of thesub-heap associated with a procedure is exactly the objectswhose lifetime are guaranteed to be contained by the life-time of the procedure but not by any younger procedure.The paper presents an algorithm to compute lifetime analy-sis in order to divide the heap with an input source languagewhich contains no higher-order functions nor side e�ects.Ayers also presents sub-heap optimization in [3]. Ourlifetime analysis is similar to his but we do not use it forthe same goal. We decided to stack allocate rather thansub-heap allocate for two reasons:� Safety considerations presented by Chase [7] are verydi�cult to satisfy with the sub-heap allocation frame-work because it tends to enlarge object lifetime. Opti-mized objects are not freed when leaving the functionthey have been created but when leaving the functionwhich is the upper bound of their lifetime.� Sub-heap allocation is di�cult to implement e�ciently.This framework needs allocated memory to hold sev-eral objects which share a lifetime upper bound. Ifall objects are freed at the same time, they are al-located at di�erent moments. This has two negativeincidences:� Sub-heap size is di�cult to estimate. Sub-heapswill probably need linking machinery to be ex-tended which slows down the allocation process.� Sub-heaps must be allocated empty (i.e. a sub-heap cannot be �lled up at the moment of itscreation). Included in a runtime with automaticmemory management, uninitialized blocks of mem-ory are annoying.Tofte and Talpin present in [31] a way of implementing �calculus based languages using regions for memory manage-ment. At runtime the store consists of a stack of regions. Allvalues are put into regions with the intended goal to avoidgarbage collection in the runtime system. The allocation ofnew regions and the bindings of values to regions rely on atyping system and so this technique cannot be applied todynamically typed languages.

In [4], Banerjee and Schmidt present a static criterionto detect stackability of environments for a call-by-value �-calculus. The presented analysis does not include higher-order nor imperative features. Thus their approach and oursare hard to compare.Other approaches to stack allocation have been proposedby Hudak in [14].4 Data representationApproximations computed by our sua can be used to removesome runtime type checks. A type check can be removedwhen sua proves that all the values possibly contained bythe argument of the test is (or is not) of the tested type.This idea has been presented by Shivers [29, chapter 9] inhis type-recovery. The goal is to speed up program execu-tion of latently typed languages. In the same way, Hengleinin [13] and Ayers in [3, chapter 6] have presented frameworksto remove useless tagging/untagging operations. Heingleinuses type inference while Ayers uses an extended control owanalysis close to our sua. The intended goal is more thancompile-time type check reductions. Appel claims \the useof tag bits leads to ine�ciency" [1], Steenkiste and Henessyevaluate, in [30], at 25% the cost of type checking and tag-ging operations for \classical" Lisp applications. We thinkthis time �gure is an upper bound of the real cost. Classicaldata ow optimization (such as copy propagation) removesmost type checks and, for smart runtime design, tagging anduntagging operations could require only a logical mask inthe most frequent cases. On modern computers, applying amask costs one cycle and these operations are much cheaperthan memory fetches. They have a very small impact onglobal performance (for more details see [25]).We think a much more important source of ine�ciencyfor language like Scheme or ML come from uniform datarepresentation. Tag handling is cheap but uniform repre-sentation is very expensive.4.1 Uniform representationUsing uniform data representation, all objects have exactlythe same size (usually one word, i.e. pointer size). Objectsthat do not �t naturally in one word, such as long oating-point numbers, have to be boxed (allocated in the heap andhandled through a pointer). This scheme makes it possibleto assume a default size, common to all objects, and defaultcalling conventions, common to all functions.Polymorphism leads to the use of the uniform representa-tion because an object can belong to several di�erent typesat the same time and the actual type cannot be known atcompile-time. Polymorphic functions (e.g. the identity func-tion) can be applied to arguments of any type. Therefore,when compiling these functions, the compiler knows neitherthe size of the argument nor the correct calling convention.4.2 The uniform representation is ine�cientWe claim uniform representation results in a serious loss ofe�ciency and we present two arguments for this assertion.Objects that do not �t in one word have to be boxed.Long oating-point numbers dramatically illustrate this. Foroating-point intensive programs, boxing numbers can slowdown applications by a large factor. This problem has suchan important impact that many ML and Lisp implementa-tions use ad hoc methods to reduce the creation of number

handles (descriptions of these methods for modern imple-mentations can be found in [20, 12]). Mainly, they consistof local optimizations to avoid boxing numbers for interme-diate results.Another negative impact of oating-point boxing is reg-ister allocation. When onums are allocated in memory,every oating-point operation, requires a memory fetch foreach operant. These operations are expensive and much lesse�cient than a solution where the numbers are held in reg-isters.Tagging optimization is not boxing optimization in thesense that it removes tagging/untagging operations but suchoptimized programs must still satisfy the polymorphism con-straint. They are still obliged to box numbers (even if no tagis written on the handle or stored in the allocated memory).Small objects (i.e. characters) are also ine�ciently man-aged by uniform representations as memory is wasted.4.3 Mixed representationMixed representation is a representation where all objectsare not required to be of the same size. It mixes boxed ob-jects and unboxed objects. Initial e�orts using mixed repre-sentation are Leroy [18, 19] and Peyton-Jones and Launch-bury [21], and more recently Shao and Appel [27]. Theirworks are complementary because Peyton-Jones and Launch-bury introduce a (non-strict) language where boxing opera-tions are explicit and introduce several source-to-source op-timizations for this language while Leroy and Shao and Ap-pel present a translation of ML to this mixed language. Inthis paper, we will focus on the translation of source lan-guages (like ML or Scheme) to mixed languages, comparingour work to Leroy's.Leroy's translation only uses type information. It mixesspecialized representations when the static types are monomor-phic and uniform representation when the static types arepolymorphic. Coercions between the two representation stylesare performed when a polymorphic object is used with amore speci�c type. As Leroy presents, \in the case of apolymorphic function, for instance, coercions take place justbefore the function call and just after the function result".This solution is very elegant because the translation's qual-ity does not su�er from separate compilation (type informa-tions are propagated across ML modules) but is has somedisadvantages. Every time a polymorphic function is used,objects have to be boxed. Some data accessors are polymor-phic. For instance, vector accessors are polymorphic wherethe same function is used to access a vector of �xnums or avector of onums. Vectors are a too important kind of datastorage to be out of the scope of this transformation. Inother words, Leroy's translation requires some ad hoc treat-ments for some special functions. The second restriction toLeroy's work is about the input languages of its translation.Programs have to be statically type checked, and as a con-sequence Leroy's optimization is not applicable to the Lispfamily.4.3.1 Untagging vs. unboxingOptimizing tagging/untagging operations as in [13, 3] doesnot require the same analysis as mixed representation. Con-straints about untagged representations are weaker than forunboxed representations. An object can be untagged as soonas its type is never required at runtime, without any poly-morphism consideration. For instance, with untagged rep-

resentation, a vector can hold in its �rst slot an untaggedoating point number and in its second slot a tagged one.This is not possible with unboxed representation becausethese two kind of objects do not have the same size. Untag-ging optimization consists of type analysis (possibly usingtype system as Henglein, control ow analysis as Ayers orany other data ow analysis) while unboxing optimizationrequires type and polymorphism analyses.4.3.2 Other polymorphism implementation improvementsIn [10], Goubault presents an optimization for latently typedlanguages. Like our e�orts, its source language is not re-quired to be statically type checked. Goubault uses dataow equations to choose unboxed representation. However itis di�cult to compare his work with our because the methodemployed is very di�erent than ours and the paper containsneither measurements nor examples.Harper and Morrisett present in [11] a new scheme to im-plement polymorphism. The key idea is to separate valuesand types for polymorphic functions and to defer the selec-tion of the code to execute until types are known (e.g. at run-time). Unfortunatelly this work addresses statically typedlanguages and cannot be applied to languages such as Scheme.4.4 sua and mixed representationIn this section, we use the sua approximation to introduceunboxed representations. This is done in two stages.4.4.1 Type electionA �rst stage after the sua analysis is the type electionwhichgives types to all variables and function results. This passobviously uses sua approximations. It does not perform anydata ow analysis to choose better type. Let us study typeelection on the following Scheme program (-fx and =fx arethe �xnum subtraction and equality test procedures):(define (bcopy! dst src size)(let loop ((i (-fx size 1)))(if (=fx i -1)0(let ((c (string-ref src i)))(string-set! dst i c)(loop (-fx i 1))))))(define (copy-string src)(let* ((len (string-length src))(new (make-string len)))(bcopy! new src len)new))(copy-string "foo")sua shows that variables new, dst and src are strings, vari-ables len and i are only �xnums and variable c is a char-acter. sua is able to compute these type approximationsbecause the types of the library functions (string-length,make-string, string-ref and string-set!) are known bythe compiler. Each one of the variables contains one typein its approximation set. Hence type approximations alsoare the results of type election. If a variable contains morethan one type in its approximation set, then it is given thespecial obj type.sua merges all possible values in single sets. Hence, ifa variable contains one unique type in its approximation,

this variable can only take place in a monomorphic pro-gram. For instance, if sua shows that the formal parameterof the identity function can only be a �xnum it means thatthis function has only been given �xnums as argument, nomatter the polymorphism of this function. This is the mainadvantage of our method compared to Leroy's one. suaisolates monomorphic parts of polymorphic programs, thusour method allows us to use unboxed representation whenLeroy's fails.4.4.2 Type conversionThe second stage is called type conversion. It introducesconversions between boxed representation and unboxed rep-resentation in the abstract syntax tree. Objects can beboxed or unboxed. One type exists for these two states.The boxed state is denoted by the obj type. Conversionintroduction is straightforward because the abstract syntaxtree is fully annotated. Here is an example that illustratestype conversion:(define (id x) x)(define (foo y)(id (+fl 1.0 (id y))))Let's assume that foo is exported, hence, y and foo's resulthave type obj. Identity id is invoked with a onum (resultof +fl invocation) and an obj, so formal x and the functionresult are typed as obj. Conversions are then inserted.(define (id x) x)(define (foo y)(id (float-box (+fl 1.0 (float-unbox (id y))))))C(�)=8f2�Cast(f#body, T (f))Cast(atree, �)=case atree[[k]]:convert!(k, T (k), �)[[v]]:convert!(v, T (v), �)[[(if atree atreet atreef)]]:let atree=Cast(atree, boolean),let atreet=Cast(atreet, �),let atreef=Cast(atreef, �)(if atree atreet atreef)...[[(f a1 : : :)]]:let atree=[[(f Cast(a1, T (f#arg1)) : : :)]]convert!(atree, T (f), �)endAlgorithm 4.1: Type conversion introductionAlgorithm 4.1 presents a fragment of the complete type con-version algorithm. Function T is a function that returns thetype of an expression. Function convert! takes three argu-ments: an abstract syntax tree, a from type, and a to type.It introduces boxing operations required by the translation.Function convert! is source language dependent. For la-tently typed languages with boxing operations, it introducesruntime type checks to ensure the soundness of the transla-tion. For instance, when introducing conversions from objto character, the Scheme convert! version also introduces a

type check using the char? predicate. No type checks areintroduced for statically type checked languages.4.5 Unboxed data storageIn this section we discuss the unboxed representation of thethree � data types presented in section 2.4.5.1 Unboxed pairsPairs have a special status: they are widely used (manylibrary functions exist to manage them) and in Scheme theyare heterogeneous data structures (i.e. elements of a list canbe of di�erent types). For these reasons, we have decidedto make pairs hold boxed values. If pairs were allowed tohold unboxed values, they would not have a �xed size andlibrary functions which have to be applicable to all pairswould be ine�cient and di�cult to write. To prevent pairsfrom holding unboxed objects, we simply force ccar and ccdrto have the obj type in their approximation sets.4.5.2 Unboxed vectorsVectors are widely used in all programming languages. Wethink vectors are not used in the same way as pairs. Evenif Scheme vectors are heterogeneous (each vector slot canbe of a di�erent type), we think they are mostly used ashomogeneous data storage and thus have allowed unboxedvalues in vectors. Mixed vectors (vector holding boxed andunboxed objects) are forbidden because this would preventthe e�cient implementation of vector indexing functions. Ifa vector only contains elements of a given type, it will betransformed into an unboxed vector. If a vector containsat least two elements of di�erent types, it will be a boxedvector. As shown in section 2.6, sua merges all possiblevalues held by a vector in a single approximation so it iseasy to check if all its elements are of the same type.4.5.3 Unboxed proceduresBecause closure creation and access to the free variablesare handled by the compiler, each closure creation can betreated independently. Closures can hold boxed and un-boxed values (because sua distinguishes approximated val-ues in the closures free variables) but unboxed closures arenot allowed.5 Experimental resultssua has been implemented in the new release of the BiglooScheme/ML compiler. Both stack optimization and un-boxed representation are implemented. Hence, we have beenable to make experimental analyses and performance mea-surements.Experimental results obtained by running some Schemebenchmarks on a DEC Alpha (DEC 3000/300 (150 MHz),running OSF/1 v3.0, with 160 MBytes of memory) are givenin Figure 1. The times given are user+system time, in-cluding garbage collection time. Bigloo1.7 is the currentdistributed version of the system, Bigloo1.8 is the new ver-sion including the unboxed representation and the stack al-location optimization. Both versions of Bigloo use Boehm'sgarbage collector release 4.7 [6]. This collector allows am-biguous pointers and uses a traditional mark & sweep algo-rithm. Gsc is the Gambit-C compiler version 2.3a, S2c is

Bartlett's Scheme-to-C compiler version 15mar93jfb [5] andGcc is the popular Gnu C compiler version 2.6.3, used atoptimized level 2. Here is a short description of the Schemetest programs we used:Nucleic (3496 lines) : Floating-point arithmetic.Fft (127 lines) : Floating-point arithmetic, loops.Bcopy (43 lines) : Strings, chars, �xnum, loops.Ttak (20 lines) : Function calls (with tuples).Beval (548 lines) : Functionals, conditional.Boyer (606 lines) : Term processing, functionals.Maze (800 lines) : Arrays, �xnum, iterations.Slatex (2821 lines) : IO, strings, lists.Mbrot (46 lines) : Floating-point arithmetic, loops.CompilerTest Bigloo1.8 Bigloo1.7 Gsc S2c GccNucleic 9.0 s 47.2 s 10.3 s � 4.1 sFft 1.3 s 22.7 s 5.6 s 39.7 s 1.1 sBcopy 9.9 s 12.2 s 14.5 s 12.2 s 9.9 sTtak 2.9 s 12.0 s 4.8 s 57.2 s 1.9 sBeval 6.7 s 6.5 s 6.9 s 14.8 s �Boyer 3.4 s 3.4 s 3.8 s 4.1 s �Maze 6.2 s 7.7 s 8.0 s 18.7 s �Slatex 7.8 s 7.8 s 23.9 s 22.9 s �Mbrot 1.0 s 20.1 s 9.2 s 35.6 s 1.0 sFigure 1: Runtime statistics on DEC AlphaSigni�cant speed up occurs with the numerical bench-marksNucleic, Fft andMbrot. OnMbrot and Fft (whichis a translation of a C routine from [22], not the Lisp versionfrom the Gabriel suite) Bigloo's performance is very close toGcc. Fft and Mbrot are e�ciently compiled by Bigloo; nooating point values get boxed. Fft makes use of vectors ofoats which are optimized as described in Section 4.5.2.Nucleic computes 7 million oating point values. Ourunboxing optimization allows Bigloo to only allocate 13608onums in the heap. The di�erence in performance betweenthe Bigloo and Gcc versions is mainly due to the use of struc-tures to hold 3 D points. In the C version, all the structuresare explicitly allocated on the stack. The Scheme versiondoes not allow our stack optimization to be frequently ap-plied. Hence, pro�ling the Bigloo executable shows thateven though many heap allocations are avoided, 30% of theexecution time is still spent in the garbage collector.Ttak is written in a ML style using tuples to pass ar-guments. Our stack optimization avoids heap allocation en-tirely and the speedup is thus important. The impact ofstack allocation depends on the program tested. The mostimportant speedup is observed for Ttak (75% of memory isallocated on the stack, which leads to a speed up factor of5). Figure 2 presents dynamic statistics on the amount ofmemory allocated by the programs. For each program testedand for each compiler, the amount of heap memory allocatedis given. The total amount of memory allocated on the stackfor Bigloo1.8 is also given.In accordance with the execution time speedup, the mainreduction of heap allocation is observed on numerical pro-grams (Nucleic, Fft and Mbrot). Except for the Ttakprogram, stack allocations are not widely applied. This poorresult may come from the style of our programs. The nat-ural Scheme style is to write \allocating" functions whichreturn fresh allocations as in:

Memory allocatedTest Bigloo1.7 Bigloo1.8 (heap) Bigloo1.8 (stack)Nucleic 747589 k 127523 k 5655 kFft 425432 k 174 k 0 kBcopy 140 k 98 k 0 kTtak 301148 k 0 k 301148 kBeval 32947 k 32903 k 0 kBoyer 14369 k 14318 k 0 kMaze 17563 k 15902 k 1 kSlatex 67607 k 67431 k 2 kMbrot 265589 k 27 k 0 kFigure 2: Allocation statistics on DEC Alpha(define (foo x) (car (gee x)))(define (gee x) (cons x x))The pair built in gee cannot be stack allocated by our method.The worst case complexity of the sua algorithm is high.The maximum number of iterations to reach the �x point isthe product of the maximum size of approximation sets andthe maximum number of approximation sets (i.e. n2 for aprogram of size n). Each iteration has a O(n2) complexity(the call graph traversal is O(n) and operations performedon the tree's nodes are O(n)). The overall complexity is thusO(n4). In spite of this complexity, our analysis is relativelyfast in practice. Figure 3 presents statistics on compilationtime. For each program tested, we have measured the timerequired by sua, the compilation time until the C code pro-duction and the global compilation time including the Ccompilation. In the worst case (Slatex), the time requiredby sua is only 20% of the overall compilation.Compilation timeTest sua Bigloo1.8 � Bigloo1.8+cc �Nucleic 7.1 s 22.9 s 0.31 538 s 0.01Fft 0.1 s 0.8 s 0.13 2.9 s 0.03Bcopy 0.1 s 0.5 s 0.20 1.5 s 0.07Ttak 0.1 s 0.7 s 0.14 2.6 s 0.04Beval 1.8 s 3.9 s 0.46 17.8 s 0.11Boyer 0.1 s 0.9 s 0.11 3.5 s 0.03Maze 0.4 s 2.0 s 0.20 6.9 s 0.06Slatex 15.7 s 22.6 s 0.69 79.7 s 0.20Mbrot 0.0 s 0.5 s 0 1.8 s 0Figure 3: Compilation statistics on DEC Alpha6 ConclusionWe have presented in this paper a new static analysis methodcalled Storage Use Analysis (sua) which extends Shivers'0cfa to modules and general data storage. This analysis al-lows two important optimizations: unboxed representationand stack allocation. None of these optimizations requiretype information, so both statically typed languages like MLand latently typed languages like Scheme can use them. Ex-perimental results demonstrate important speedups for nu-merical applications where a speedup factor of 20 has beenmeasured for some programs.AcknowledgmentsMany thanks to Pierre Weis and Alain Deutsch for earlydiscussions and to Xavier Leroy and Joel F. Bartlett fortheir helpful feedbacks on this work.

References[1] A. Appel. Runtime Tags Aren't Necessary. Technical ReportCS-TR-142-88, Princeton University, 1989.[2] A. Appel. Compiling with continuations. Cambridge Uni-versity Press, 1992.[3] A. Ayers. Abstract Analysis and Optimization of Scheme.PhD thesis, Massachusetts Institute of Technology, Septem-ber 1993.[4] A. Banerjee and D. Schmidt. Stackability in the Simple-Typed Call-By-Value Lambda Calculus. In 1fst Static Anal-ysis Symposium, pages 131{146, Namur, Belgium, Septem-ber 1994.[5] J.F. Bartlett. Scheme->C a Portable Scheme-to-C Compiler.Research Report 89 1, DEC Western Research Laboratory,Palo Alto, CA, January 1989.[6] H.J. Boehm. Space e�cient conservative garbage collection.In Conference on Programming Language Design and Im-plementation, number 28, 6 in Sigplan Notices, pages 197{206, 1991.[7] D. Chase. Safety considerations for storage allocation opti-mizations. In Conference on Programming Language Designand Implementation, Atlanta, Georgia, USA, June 1988.[8] P. Cousot and R. Cousot. Abstract interpretation: a uni-�ed lattice model for static analysis of programs by con-struction or approximation of �xpoints. In Symposium onPrinciples of Programming Languages, pages 238{252, LosAngeles, CA, USA, January 1977.[9] B. Goldberg and G. Park. Higher order escape analysis: Op-timizing stack allocation in functional program implemen-tations. In European Symposium on Programming, number432 in Lecture Notes on Computer Science, pages 152{160,May 1990.[10] J. Goubault. Generalized Boxings, Congruences and PartialInlining. In 1fst Static Analysis Symposium, pages 147{161,Namur, Belgium, September 1994.[11] R. Harper and G. Morrisset. Compiling polymorphism usingintensional type analysis. In 22 Annual ACM Symposium onPrinciples of Programming Languages, pages 130{141, NewYork, NY, USA, January 1995.[12] P. Hartel et al. Pseudoknot: a Float-IntensiveBenchmark forFunctional Compilers. Journal of Functional Programming,To appear, 1996.[13] F. Henglein. Global Tagging Optimization by Type Infer-ence. In Conference on Lisp and Functional Programming,1992.[14] P. Hudak. A semantic model of reference counting and itsabstraction. In Abstract Interpretation of Declarative Lan-guages, pages 45{62. Ellis Horwood, 1987.[15] S. Jagannathan and A. Wright. E�ective Flow Analysis forAvoiding Run-Time Checks. In 2nd Static Analysis Sympo-sium, Lecture Notes on Computer Science, pages 207{224,Glasgow, Scotland, September 1995.[16] T. Johnson. Lambda Lifting : Transforming Programs toRecursive Equations. In Proceedings of the ACM Confer-ence on Functional Programming Languages and ComputerArchitecture, pages 190{203, 1985.[17] D.A. Kranz. ORBIT: An Optimizing Compiler For Scheme.PhD thesis, Yale university, February 1988.[18] X. Leroy. E�cient data representation in polymorphiclanguages. In P. Deransart and J.Ma luszy�nski, editors,Int. Symp. on Programming Language Implementation andLogique Programming, volume 456 of Lecture Notes on Com-puter Science. Springer-Verlag, 1990. Also available as IN-RIA research report 1264.

[19] X. Leroy. Unboxed objects and polymorphic typing. InSymposium on Principles of Programming Languages, pages177{188, Albuquerque, New Mexico, January 1992.[20] R. MacLachlan. The Python Compiler for CMU CommonLisp. In Proceedings of the 1992 ACM Conference on Lispand Functional Programming, pages 235{246, San Francisco,CA, USA, June 1992.[21] S. Peyton Jones and J. Launchbury. Unboxed Values as FirstClass Citizens in a Non-Strict Functional Language. In Pro-ceedings of the ACM Conference on Functional Program-ming Languages and Computer Architecture, pages 636{666,Cambridge, MA, USA, August 1991.[22] W. Press, B. Flannery, S. Teukolsky, and Vetterling W. Nu-merical Recipes in C. Cambridge University Press, 1988.[23] C. Ruggieri and T. Murtagh. Lifetime Analysis of Dynami-cally Allocated Object. In Symposium on Principles of Pro-gramming Languages, pages 285{293, 1988.[24] M. Serrano. De l'utilisation des analyses de ot de contrôledans la compilation des langages fonctionnels. In Pierre Les-canne, editor, Actes des journ�ees du GDR de Programma-tion, September 1993.[25] M. Serrano. Vers une compilation portable et performantedes langages fonctionnels. Th�ese de doctorat d'universit�e,Universit�e Pierre et Marie Curie (Paris VI), Paris, France,December 1994.[26] M. Serrano. Control Flow Analysis: a Functional Lan-guages Compilation Paradigm. In 10th Symposium on Ap-plied Computing, Nashville, Tennessee, USA, February 1995.[27] Z. Shao and A. Appel. A Type-Based Compiler for StandardML. In Proceedings of the SIGPLAN '95 Conference onProgramming Language Design and Implementation, June1995.[28] O. Shivers. Control ow analysis in scheme. In Proceedingsof the SIGPLAN '88 Conference on Programming LanguageDesign and Implementation, Atlanta, Georgia, June 1988.[29] O. Shivers. Control-Flow Analysis of Higher-Order Lan-guages or Taming Lambda. CMU-CS-91-145, School of Com-puter Science, Carnegie Mellon University, Pittsburgh, PA15213, May 1991.[30] P.A. Steenkiste and J. Hennessy. Tags and Type Checking inLISP: Hardware and Software Approaches. In Architecturalsupport for programming languages and operating systems,pages 50{59, Palo Alto. CA US, 1987.[31] M. Tofte and J-P. Talpin. Implementation of the Typed Call-by-Value �-calculus using a Stack of Regions. In 21st acmsigplan-sigact Symposium on Principles of ProgrammingLanguages, pages 188{201, Portland, Oregon, USA, January1994.

