Measure of Semantic Similarity between Words

Vladimir Jara

Introduction

- Semantic similarity is a generic issue in a variety of applications in the areas of computational linguistics and artificial intelligence, both in the academic community and industry.
- Examples include word sense disambiguation, detection and correction of word spelling errors, text segmentation, image retrieval, document retrieval, amongst others.

- Similarity between two words is often represented by similarity between concepts associated with the two words.
- Generally, these methods can be categorized into two groups: edge count- ing-based (or dictionary/ thesaurus-based) methods and information theorybased (or corpus-based) methods.

Semantic Similarity between Words

- There are constraints to the development of similarity measures.
- Semantic similarity is context-dependent and may be asymmetric

- Context
- Similarity between words is influenced by the context in which the words are presented
- For example, if the context is "the outside covering of living objects," then skin and bark are more similar than skin and hair
- On the other hand, the opposite is true if the context is body parts.

- Asymmetry
- Similarity may also be asymmetric with respect to direction.
- People may give different ratings when asked to judge the similarity of surgeon to butcher and the similarity of butcher to surgeon.

- Thanks to the success of a number of computational linguistic projects, semantic knowledge bases are readily available.
- The lexical hierarchy is connected by following trails of superordinate terms in "is a" or "is a kind of" (ISA) relations.

Wordnet

- This method of measuring works well on much constrained semantic nets (medical, law).
- However, this method may be not so accurate if it is applied to larger and more general semantic nets such as WordNet

Wordnet

To address this weakness, the direct path length method must be modified by utilizing more information from the hierarchical semantic nets.

- It is intuitive that concepts at upper layers of the hierarchy have more general semantics and less similarity between them, while concepts at lower layers have more concrete semantics and stronger similarity.
- Therefore, the depth of concept in the hierarchy should be taken into account.

The Benchmark Data Set

- The quality of a computational method for calculating word similarity can only be established by investigating its performance against human common sense.
- In evaluating all methods, it is necessary to compute word similarity on a benchmark word set with human ratings.

Researchers Rubenstein and Goodenough gave a group of 51 human subjects 65 word pairs and asked the subjects to rate them for similarity in meaning on a scale from 0 (no similarity) to 4 (perfect synonymy).

 Rubenstein-Goodenough's 65 word pairs were divided into two sets: One contains the commonly used 28 word pairs for training, and another contains the remainder, which has 37 word pairs for learning of parameters.

Shortest path length

• Similarity measure is linear and exclusively based on the shortest path length between the two words.

$$S_1(w_1, w_2) = f_0(l) = 2 \cdot M - l_1$$

- This strategy does not have any parameters to tune
- We calculate the similarities for word pairs in the test set.
- The correlation coefficient between S and human similarity judgments of Rubenstein-Good-enough's was 0.664

Shortest path length + depth

• Similarity measure is a linear combination of shortest path length and depth.

$$S_2(w_1,w_2) = lpha S_1(w_1,w_2) + eta d_2$$

This strategy is plausible because the depth of the subtree carries useful information about where the two words possess the same features.

- The higher the subtree is in the semantic hierarchy, the more abstract meaning the two words share and vice versa.
- It is possible to combine this information with the shortest path length in calculating the semantic similarity of words.

- Using the optimal parameters α=0.05 and β= 1, the similarities for word pairs in the test set were calculated.
- The correlation coefficient between this method and human similarity judgments is 0.8315

Nonlinear shortest path length

• The similarity measure is a nonlinear function of the shortest path length.

$$egin{aligned} S_3(w_1,w_2) &= f_1(l) \ &= \mathrm{e}^{-lpha l}. \end{aligned}$$

It is observed that the strongest correlation is reached at α=0.25.

- Using this optimal α, we have that the correlation coefficient between this method and human similarity judgments is 0.8911
- This strategy illustrates that a simple transformation of the shortest path length using a nonlinear function can significantly increase the accuracy of the similarity measure.

Transferred depth nonlinear function

• Similarity measure is the transferred depth of the subtree through a nonlinear function

$$S_{10}(w_1,w_2)=rac{\mathrm{e}^{eta h}-\mathrm{e}^{-eta h}}{\mathrm{e}^{eta h}+\mathrm{e}^{-eta h}}$$

- The strongest correlation against human similarity judgments is at β = 0.15
- The correlation coefficient between this method and human similarity judgments is 0.8356

Conclusions

- The similarity measure can be improved by a suitable combination of information sources.
- The similarity measure can be improved by nonlinearly transferring information sources.
- The depth of the subtree is more similar to human ratings than the shortest path length.

References

* "An Approach for Measuring Semantic Similarity between Words Using Multiple Information Sources", Yuhua Li, Zuhair A. Bandar, and David McLean

* "Semantic Distance in WordNet: An Experimental, Application-Oriented Evaluation of Five Measures", A. Budanitsky and G. Hirst

* "A Comparison of WordNet and Roget's Taxonomy for Measuring Semantic Similarity", M. McHale

Thank you