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Review of Tensor Networks



Tensor Train (MPS)

TX1...XN =
r∑

αi=1

Aα1

1,X1A
α1,α2

2,X2 . . .AαN−2,αN−1

N−1,XN−1
AαN−1

N,XN

Tensor network representation of MPS
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Graphical models and Tensor
Networks



Graphical models

• probabilistic graphical model (PGM) : the factorization of joint
probability distribution of random variables with a graph
(directed or undirected)

• Here, we consider the undirected case

• Efficient tool for parameterizing probability models
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Undirected PGM and factor graph

Any set of nodes that are all connected to each other in G is called a
clique.

Ambiguity in factorization
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Undirected PGM and factor graph

To resolve, we use factor graphs

P(X = x) = 1

Z
∏
C
fC(xc)

P(X1, X2, X3, X4, X5) =
1

Z
f1(X1, X4)f2(X4, X2, X5)f3(X5, X6)
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General PGMs in TN representation

P(X = x) =
1

Z
∏
C
fC(xc)

P(X1, X2, X3, X4, X5) =
1

Z
f1(X1, X4)f2(X4, X2, X3)f3(X3, X5)

P(X = x) =
1

Z
∑
h

∏
C
fC(xc, hc)

P(X1, X2, X3) =
1

Z
∑
H1,H2

f1(X1,H1)f2(H1, X2,H3)f3(H3, X3)

Hidden states play the role of bond dimension and the number of
Hidden states plays the role of TT-rank. 6/28



TN with copy tensor

Sometimes, Hidden states or Visible states or both are connected to
several factors ( like in restricted Boltzmann machine)

P(X1, X2, X3) =
1

Z∑
H1

f1(X1,H1)f2(X2,H1)f3(X3,H1)

=
∑

H1,H2,H3

f1(X1,H1)f2(X2,H2)f3(X3,H3)

δ(H1,H2,H3)

P(X1, X2, X3) =
1

Z∑
H1,H2

f1(X1,H1)f2(H1, X2)f3(X2,H2)f4(H2, X3)

=
∑

H1,H2,H3,H4

f1(X1,H1)f2(H1,H3)f3(H3, X2,H4)

4(H4,H2)f5(H2, X3) 7/28



Fixing the visible random variable
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Restricted Boltzmann machine (RBM) and TN with copy tensor

RBM is an example of PGM with both hidden and visible variables
connecting to several factors.

For fixed visible states TN is simplified
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(binary) RBM probability function

Joint probability function :

P(X,H) = 1

Ze
H(X,H)

with
H(X,H) =

∑
i,j

ωi,jHiXj

For binary RBM :

P(X) = 1

Z
∑
H
eH(X,H) =

1

Z
∏
i

(1 + e
∑

j ωi,jXj)

index i goes over the number of hidden variables.
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Physics inspired TNs as generalizations of RBMs

entangled plaquette states (EPS) : Tx1,...,xN =
∏P

p=1 T
xP
P

P(X1, X2, X3, X4) = T1(X1, X2)T2(X2, X3)T3(X3, X4)

equivalent PGM : short-range RBM : Xi’s connected to the same Hj
reside in the same plaquette

TXii = 1 + e
∑

j ωi,jXj
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Physics inspired TNs as generalizations of RBMs

string-bond states(SBS) : Tx1,...,xN =
∏

s Tr(
∏

j∈s A
xj
s,j)

equivalent PGM : RBM : Xi’s connected to the same Hj reside on the
same string
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“No-Cloning” in Tensor Networks [Yoav Levine, Or Sharir, Nadav Cohen, and Amnon Shashua Phys. Rev.

Lett. 122, 065301 – Published 12 February 2019]

• The required operation of duplicating a vector and sending it to
be part of two different calculations, which is simply achieved in
any practical setting, is actually impossible to represent in the
framework of TNs [2]

• proof by contradiction :

∃ϕ, ∀v ∈ RP :

P∑
i=1

ϕijkvi = vjvk

for basis vectors :
P∑
i=1

ê(α)i ϕijk = ê(α)j ê(α)k

→ ϕαjk = δαjk

counterexample : v = 1⃗∑
i

ϕijkvi =
∑
i

δijk1 = δjk ̸= vjvk = 1 13/28



Generalized Tensor Networks
(GTNs)



Motivating GTNs

• a key factor that boosts the power of deep learning
representations relative to common TNs :
inherent re-use of information in CNNs that cannot be naively
represented in TN language

• To overcome, they introduce a new copy operation in tensor
networks→ Generalized tensor network
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Input features

• We are concerned with data in the form of real numbers
(non-discrete data)

• We make feature vectors as suggested in [4]

x1, . . . , xN → v1 ⊗ v2 ⊗ · · · ⊗ vN, , vi =
(
1

xi

)
The function of inputs is given by the contraction of weights in
TN format with feature vectors
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Copy operation with vector inputs

• Tensor Network + copy operation→ Generalized Tensor Network

• Example of GTN
• several copies of the inputs can be used
• GTNs use weight sharing between some tensors
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GTNs used in the paper for 2-dim inputs : images

• EPS and SBS with copy tensors replaced by copy operations
• EPS with 2 × 2 overlapping plaquettes with weight sharing such
that the tensor for each plaquette is the same

• SBS defined with horizontal and vertical strings covering the 2D
lattice.
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SUPERVISED LEARNING
ALGORITHM



Supervised Learning with Restricted Boltzmann Machines

Given the label training data D = {(xi, yi)} A RBM can be used to
approximate the joint probability distribution of the variables and labels as

p(x, y) = 1

Z
∑
h

eH(x,h,y) ;H =
∑
i,j

wijhixj (1)

In supervised learning we are interested in calculating the conditional
probability

p(y|x) = p(x, y)∑
yj
p(x, yj)

(2)

An optimal label predicted by the model is obtained minimizing the cost
function

L = −
D∑
i=1

log p(yi|xi) (3)

RBM taken from [1] 18/28



Supervised Learning with Generalized Tensor Networks

The joint probability distribution of the variables and labels are
approximated as a tensor network

p(x, y) ∼ GTN((x, y)) (4)

GTN is the function resulting of the contraction of a generalized tensor
network with the inputs features and with the discrete label. The contraction
must be positive so

p(x, y) ∼ eGTN(x,y) (5)
We then define, by analogy with the graphical model case

p(yk|xi) =
eGTN(xi,yk)∑
yj
eGTN(xi,yj)

(6)

and the cost function

L = −
D∑
i=1

log p(yi, xi) (7)

The gradient of the cost function can then be expressed as
∂ log p(yi, xi)

∂w =
∂GTN(xi, yi)

∂w =
∑
yj

p(yj, xi)
∂GTN(xi, yj)

∂w (8)
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Supervised Learning with Generalized Tensor Networks

SBS adds a node corresponding to the label, and corresponding tensors
which connect it to the rest of the tensor network. Taken from [1]

EPS output is a tensor that can be combined with a linear classifier. Taken
from [1] 20/28



LEARNING FEATURE VECTORS OF
DATA



Learning features vectors of data

• Strategies that can be used to deal with data that is not discrete
• An approach is to map the real data to a higher dimensional feature
space. Each variable is independently mapped to a vector of length (at
least) two in order to be contracted with the open legs of the tensor
network

(a) Real inputs Xi are mapped to a feature vector. Taken from [1]

x→
(

cos2
(
π
2
x
)

sin2
(
π
2
x
)) (9)
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Learning features vectors of data

Dataset with two features (X1, X2) and two classes (colors) that cannot be
learned by a MPS of bond dimension 2 using Eq.9) Taken from [1]

Two normalized features learned by a tensor classifying the previous data
set with a MPS of bond dimension 2. Taken from [1]
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Learning features vectors of data

CNN used as feature vector extractors from real data. The output of the CNN
is seen as an image with a third dimension collecting the different features.
For each pixel of this image, the vector of features is contracted with the
open legs of a tensor network. Taken from [1]
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NUMERICAL EXPERIMENTS



Numerical experiments

MNIST data set. Taken from [1]

Test set accuracy of different
generalized tensor networks on the
MNIST data set. Taken from [1]
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Numerical experiments

UrbanSound8K data set. Taken from
[1]

Training and testing accuracy of a MPS
and a SBS with 4 strings on the
UrbanSound8K data set. The density
of parameters is the total number of
parameters divided by 174 (the length
of the strings). Taken from [1]
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Conclusions



Conclusions

• The authors show the relation between tensor network
structures and graphical models such as RBM and SBS .

• One can generalize tensor networks to apply on data with vector
features and strategies were discussed to use TN with
real-valued data.

• Provide algorithms to train the models in supervised learning
tasks, even when coupled with neural networks.

• The GTN show a better accuracy in multiclass classification tasks
than regular TN and can be used as well in sound recognition.
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