
IFT 6760A - Lecture 13
Latent Variable Models and Method of Moments

Scribe(s): Bogdan Mazoure, Alex Zhang, Adam Ibrahim Instructor: Guillaume Rabusseau

1 Summary
This lecture covers latent variable models, in which observed variables are linked with some hidden representation
which we want to infer. As opposed to traditional maximum likelihood methods such as Expectation Maximization,
we might opt for a parametric Method of Moments (MoM) approach[1]. As an example, Gaussian mixture models
and single topics models are used to show the method.

2 Latent Variable Models
A latent variable model is a statistical model which relates a set of observed variables to a set of latent, or hidden
variables.
Notable examples of latent variable models include hidden Markov models (HMM) and mixture of Gaussians. A con-
crete example of a mixture of multinomial (or categorical) distributions widely used in NLP is the single topic model
discussed below.
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Figure 1: Hidden Markov model with k observations and k latent variables.

2.1 Single topic model
Let the topic be a discrete random variable taking values 1, .., k with probability w1, ..,wk. Moreover, let the vocab-
ulary V = {v1, .., vd} be a set of d words. To each value of the topic, we associate a distribution over the vocabulary
µh ∈ Rd, h = 1, .., k.

Definition 1 (Probability simplex). The d−dimensional probability simplex is defined to be the set:

∆d = {u ∈ Rd∣
d

∑
i=1

ui = 1,ui ≥ 0, i = 1, .., d} (1)
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A vector u ∈ Rd is said to lie on the probability simplex if u ∈ ∆d. Since each µh is a probability distribution by
definition, it hence lies on a d−dimensional simplex.
Finally, a document of length l is a collection of l words v1, v2,⋯, vl ∈ V . By assumption, every document can follow
only one topic to enforce a simple latent variable model.
In order to sample a a document of length l, one proceeds as follows:

• Draw a random topic h ∼ Categorical(w1, ..,wk), where P(h = i) = wi;

• Draw l words independently and identically distributed (iid) from the corresponding vocabulary distribution µh.

In the single topic model, the parameter set consists of the topic weights and vocabulary distributions, that is w =
{w1, ..,wk} ∈ ∆k and µ1, ..,µk ∈ ∆d. The documents are considered as observations, while the topic corresponding
to each document is a latent variable. The challenge is to recover the topic corresponding to a given document.
It is important to observe here that the words in a document are not independent. However, conditioned on a given
topic, they become independent: if x1 and x2 denote the first two words in the document, we have

P[x1 = i, x2 = i] ≠ P[x1 = i]P[x2 = i] but P[x1 = i, x2 = i ∣ topic = h] = P[x1 = i ∣ topic = h]P[x2 = i ∣ topic = h]

2.2 Mixture of spherical Gaussians
Assume, as in the single topic model, a discrete component random variable taking values from 1 to k with probability
w1, ..,wk. The probabilities are also known as mixing weights. We consider a mixture of k Gaussians with different
means µ1, ..,µk ∈ Rd and identical covariance matrix σ2I ∈ Rd×d.
Drawing an observation from this model can be performed in two steps:

• Pick a Gaussian component h ∼ Categorical(w1, ..,wk);

• Draw x ∼ N (µh, σ2I).

Note how in both settings, learning the model is equivalent to learning the mixing weights (in both cases, a categorical
distribution) and the component parameters (which is a categorical with d parameters in the single topic and a Gaussian
with two parameters in the GMM setting).

3 Method of Moments
Recall that statistical inference techniques can be classified in roughly three categories: maximum likelihood estima-
tion (MLE), (generalized) method of momends (MoM) and Bayesian estimation of the posterior.
Below is a recall of the definition of maximum likelihood estimation for discrete random variables:

Definition 2 (Maximum Likelihood Estimation (MLE)). Let X be a random variable with probability functiona fθ
parameterized by a parameter vector θ. Assume that a collection of independent and identically distributed observa-
tions S = {x1, .., xN} drawn from fθ is observed. Then, the MLE estimate of θ can be found through maximization of
the joint probability of S:

θMLE = argmax
θ

fθ[S] = argmax
θ

N

∏
i=1
fθ[xi] (2)

afθ is either the probability mass function of if X is a discrete random variable, or the probability density function if X is continuous.

MLE involves local searches, which may yield suboptimal solutions. However, the method of moments yields global
solutions if the system of equations involved can be solved.
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Definition 3 (Method of Moments[2]). Let X be a random variable with a parameterized probability function fθ.
Let the parameter set be a k-dimensional vector θ, such that the k first moments of the distribution µ1 = E[X], µ2 =
E[X2], ... can be computed from θ by solving the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ1 = g1(θ)
µ2 = g2(θ)

...

µk = gk(θ)

The method of moments (MoM) consists in approximating θ by computing the k first moments µ̂i from a sample of the
data, and solving for θ̂ in the system of equations given by µ̂i = gi(θ̂) for i = 1, ..., k.

As an example, let us look at a Gaussian distribution, in which case we have θ = (µ,σ2). If x ∼ N (µ,σ2), then

g1(µ,σ2) ≜ E[x] = µ
g2(µ,σ2) ≜ E[x2] = µ2 + σ2

Using the method of moments and a training set S = {x1, ..., xn} drawn i.i.d fromN (µ,σ2), we find µ̂, σ̂2 by solving
the system of equations:

ÊS[x] =
1

n

n

∑
i=1
xi = µ̂

ÊS[x2] =
1

n

n

∑
i=1
x2i = µ̂2 + σ̂2

which yields µ̂ = Ês[x] and σ̂2 = Ês[x2] − µ̂2.
Remark: While method of moments is a parametric estimation technique, non-parametric extensions with the use of
kernel density estimates have been studied [4].

3.1 Single topic model with Method of Moments
Within the scope of the problem, we let θ = {µ1, ...,µk,w1, ...,wk} be the parameters of a single topic model (which
is parameterized by the vocabulary distributions for each topic and mixing probabilities). Given a document, we make
use of the conditional independence of words in the document given a known topic h:

Pθ [words i, j ∣ topic h] = Pθ [word i ∣ topic h]Pθ [word j ∣ topic h]
= (µh)i(µh)j (3)
= (µh ○µh)i,j

Thus,

Pθ[words i, j] =
k

∑
h=1

Pθ [word i, j ∣ topic h]Pθ[topic h
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

wh

]

=
k

∑
h=1

wh(µh ○µh)i,j

≜ Mi,j , (4)

where we marginalize over the unknown topic.
Similarly,

Pθ[words i1, i2, i3] =
k

∑
h=1

wk(µh ○µh ○µh)i1,i2,i3

≜ T i1,i2,i3 (5)
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We can estimate M ∈ Rd×d and T ∈ Rd×d×d from data and then try to solve the system.

⎧⎪⎪⎨⎪⎪⎩

M̂ ≈ ∑kh=1 ŵh (µ̂h ○ µ̂h)
T̂ ≈ ∑kh=1 ŵh (µ̂h ○ µ̂h ○ µ̂h)

(6)

Note that if x1,x2,x3 ∈ Rd denote the one-hot encoding of the first 3 words in a document, we have M = E[x1 ○ x2]
and T = E[x1 ○ x2 ○ x3].

4 Tensor Method of Moments
Re-using the notation from the single topic example, we aim to solve the following system of equations

Mi,j =
k

∑
h=1

wh(µh ○µh)i,j ∈ Rd×d (7)

T i1,i2,i3 =
k

∑
h=1

wh(µh ○µh ○µh)i1,i2,i3 ∈ Rd×d×d (8)

for (w1, ..,wk) ∈ ∆k,µ1, ..,µk ∈ Rd.

4.1 Jennrich’s algorithm
When the vectors µi are linearly independent, this system of equations can be solved using Jennrich’s algorithm by
operating directly on the order 3 tensor T . In the classical derivation, µ from (8) is assumed to be full column rank.
First, write

T =
k

∑
h=1

(w1/3
h µh) ○ (w

1/3
h µh) ○ (w

1/3
h µh) (9)

= JA,A,AK,

where
A = [w1/3

1 µ1 ⋯ w
1/3
k µk]

The idea behind Jennrich’s algorithm is to take the inner product along some dimension with two random vectors (in
order to guarantee uniqueness of the diagonal matrix), and then run an SVD on their product, which would recover the
values of µ.
For instance, let x,y be two independently sampled noise vectors. Then,

T ●3 x = AΛxAT (10)

T ●3 y = AΛyAT ,

where

(Λx)i,j =
⎧⎪⎪⎨⎪⎪⎩

⟨xi,w1/3
j µj⟩ i = j

0 i ≠ j

If we examine the quantity (T ●3 x)(T ●3 y)†
, it simplifies to

(T ●3 x)(T ●3 y)† = AΛxΛ†
yA†

= AΛA† (11)

where we combine ΛxΛy = Λ. The eigenvectors of the matrix in (11) are in fact the columns of A, allowing us to
recover ±w1/3

h µh. In the single topic model case, we can stop at this point, since we know that each µh lies on a
simplex and hence separating them from wh can be done through re-normalization. However, this approach does not
allow to recover the µi in the Gaussian mixture case. In the next sections, we will show how knowledge of the 2nd
order moment matrix M can help us deal with this case.
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4.2 Orthogonalization of T
Remark: Let T = ∑kh=1 λhah ○ ah ○ ah such that ⟨ai,aj⟩ = 0 for all i ≠ j and 1 otherwise (pairwise orthonormal).
Then, it is possible to recover the weights λh and vectors ah by a simple eigendecomposition of T ●3 x for some
random vector x. Indeed, in this case the eigenvectors of T ●3 x are the columns of A.
Claim: Let M and T be defined as in (4) and (5), respectively. If we let M = UDUT be the eigendecomposition of
M and W = D−1/2UT , then

T̃ = T ×1 W ×2 W ×3 W =
k

∑
h=1

w̃hµ̃h ○ µ̃h ○ µ̃h ∈ Rk×k×k, (12)

where w̃h = 1√
wh

and µ̃h =
√
wh Wµh

, is an orthogonal decomposition, i.e., the µ̃h are pairwise orthogonal (proof
is outlined below).

Proof. Let Ũ ∈ Rk×k be the matrix having the vectors µ̃h as columns. We have

ŨŨ⊺ =
k

∑
h=1

µ̃hµ̃
⊺
h =

k

∑
h=1

Wµµ⊺W⊺ = WMWT = I

and since Ũ is square we also have Ũ⊺Ũ = I which shows the claim.

Thus we can solve the system of equations (7)-(8) in the general case as follows:

1. use the second order moment matrix M to orthogonalize the tensor T to obtain T̃

2. recover the vectors µ̃i and weights w̃i using an eigendecomposition of T̃ ●3 x for some random vector x

3. recover the original weights wi and µi from the µ̃i and w̃i

In practice, step (2) can be very unstable and sensitive to noise. Better robustness can be obtained by performing
simultaneous diagonalization of several random projections [3] or by using the robust tensor power method proposed
in [1].
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