A Tutorial on Spectral Clustering

By Ulrike von Luxburg, 2007 Max Planck Institute for Biological Cybernetics

Presented by Samy Coulombe, Shenyang (Andy) Huang 2020.3.24

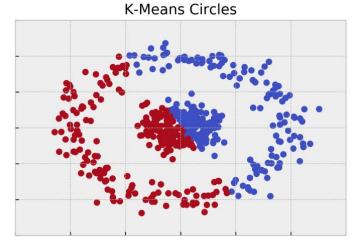
Agenda

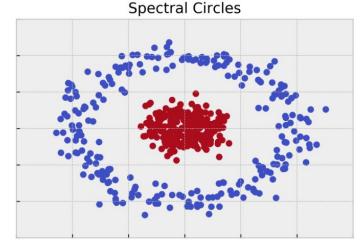
- 1. Motivation for the paper
- 2. Intro to similarity graphs and notation
- 3. Graph Laplacian and their basic properties
- 4. Spectral Clustering Algorithm
- 5. Connection to Perturbation theory

Motivation and background (2007)

Aim: a self-contained introduction to spectral clustering.

- Graph Laplacian and Spectral Clustering algorithm
- Spectral Clustering and its connections to various areas





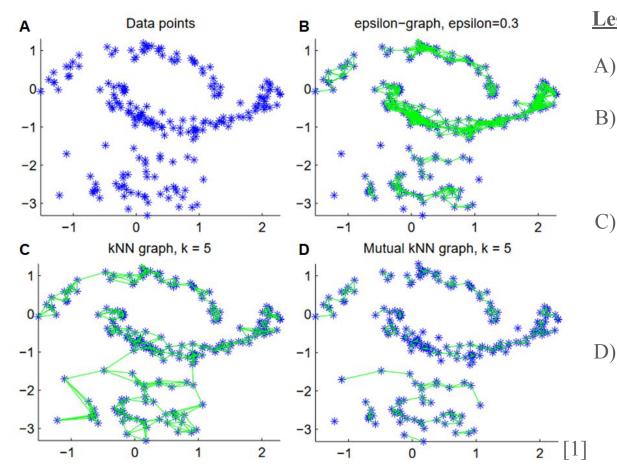
Comparison between results of k-means clustering and spectral clustering (Colour indicates cluster assignment) [2]

Clustering Setting

Goal: 1). High within-group similarity,2). Low between-group similarity

- Given a set of data points, x₁, x₂, ..., x_n and a similarity measure^{*}
 S: x ∈ ℝ^d, y ∈ ℝ^d → ℝ⁺ (S_{i,j} ≥ 0) between all pairs of data points
- Construct a similarity graph: $\mathbf{G} = (\mathbf{V}, \mathbf{E})$

Types of similarity graphs



<u>Legend</u>

- A) Data points
- B) **\varepsilon-neighborhood graph:** edge (v_i, v_j) exists if distance $(v_i, v_j) \le \varepsilon$
 - **kNN graph**: edge (v_i, v_j) exists if v_j is among v_i 's k nearest nodes
- D) Mutual kNN graph: edge (v_i, v_j) exists if v_j is among v_j 's k nearest nodes and vice versa.

Similarity Graphs and the Graph Laplacian

From the similarity graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$, we can define the following:

• G's weighted adjacency matrix W

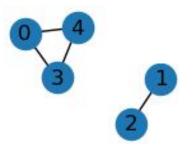
• The degree of a node *i*,
$$d_i = \sum_{j=1}^n w_{i,j}$$
, and **G**'s diagonal degree matrix $\mathbf{D}_{ii} = d_i$

Graph Laplacian (L) of G: L = D - W

- **D** is the degree matrix
- W is the weighted adjacency matrix

Similarity Graphs and the Graph Laplacian

From the similarity graph $\mathbf{G} = (\mathbf{V}, \mathbf{E})$,



• Degree matrix **D**,

(2	0	0	0	0)	
0	1	0		0	
0	0	1	0	0	
0	0	0	2	0	
0	0	0	0	2/	

Adjacency matrix **W**,

Graph Laplacian L

2	0	0	-1	-1)
0	1	-1	0	0
0	-1	1	0	0
-1	0	0	2	-1
-1	0	0	-1	2 /

Properties of Graph Laplacian

L satisfies the following properties:

• vector $f \in \mathbb{R}^n$:

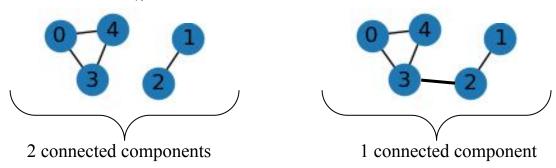
•
$$f^{\top}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{i,j} (f_i - f_j)^2$$

- L is symmetric and positive semi-definite
- Leigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

0 eigenvalues and the connected components

Proposition (number of connected components): Let *G* be an undirected graph with non-negative weight matrix **W**. Then,

• The multiplicity k of the eigenvalue 0 of L equals the number of connected components C_1, \ldots, C_k in the graph.



• The eigenspace of eigenvalue 0 is spanned by *k* indicator vectors which map the *n* nodes to the *k* clusters.

Proof

Base Case: k = 1 (connected graph)
Assuming f is an eigenvector with eigenvalue 0.
By definition of eigenvalue and eigenvector:

$$Lf = \lambda f = 0 \cdot f = 0$$

We know from the properties of the Laplacian that:

$$f^{\top}Lf = \sum_{i,j=1}^{n} w_{i,j}(f_i - f_j)^2 = 0$$

Proof

Base Case: k = 1 (connected graph)

Assuming f is an eigenvector with eigenvalue 0. We know from property of Laplacian that:

$$f^{\top}Lf = \sum_{i,j=1}^{n} w_{i,j}(f_i - f_j)^2 = 0$$

- If vertices \mathcal{V}_i and \mathcal{V}_j are connected ($w_{i,j} > 0$), the $f_i = f_j$
- Because all nodes are connected by a path, we must have $f_1 = f_2 = \ldots = f_n$

• Therefore f is a constant **normalized one vector 1** for a **connected component**

Proof continued

Case: k connected components

- Assume the vertices are ordered according to the connected components they belong to.
- Weighted adjacency W and Laplacian L have a block diagonal form.

$$\mathbf{W} = \begin{bmatrix} \mathbf{W}_1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{W}_k \end{bmatrix} \qquad \mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{L}_k \end{bmatrix}$$

• Each L_i is the Laplacian of *i*-th connected component

Proof continued

- **Case: k connected components**
- both adjacency W and Laplacian L have a block diagonal form.

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \mathbf{L}_k \end{bmatrix}$$

- The spectrum of block diagonal matrix L is the union of the spectrums of L_i
- From base case, every L_i has eigenvalue 0 with multiplicity 1, and the corresponding eigenvector is an **indicator vector** for the *i*-th connected component.

Spectral Clustering algorithm

Input: Similarity matrix $S \in \mathbb{R}^{n imes n}$, number of clusters \mathbf{k}

- 1. Compute the Laplacian matrix *L*
- 2. Compute the first k smallest non-zero eigenvectors $v_1, ..., v_k$
- 3. Let $\mathbf{V} \in \mathbb{R}^{n \times k}$ be the matrix formed by the eigenvectors, each row vector $y_i \in \mathbb{R}^k$ and these form data points to cluster C_1, \ldots, C_k
- 4. Cluster y_i with k-means algorithm into clusters

Output: Clusters (A_1, A_2, \dots, A_k) where $A_i = \{j | y_j \in C_i\}$

Spectral Clustering algorithm

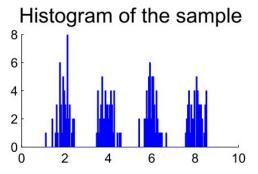
Core idea of Spectral Clustering:

Project dataset into a nice low dimensional embedding space, then cluster

Questions you might have:

- 1. Why use the *k* smallest eigenvectors of the Laplacian matrix?
 - a. See upcoming slides
- 2. Why use k-means for clustering?
 - a. Actually any other clustering algorithm can be used
 - b. But the Euclidean distance assumption of k-means is actually motivated here

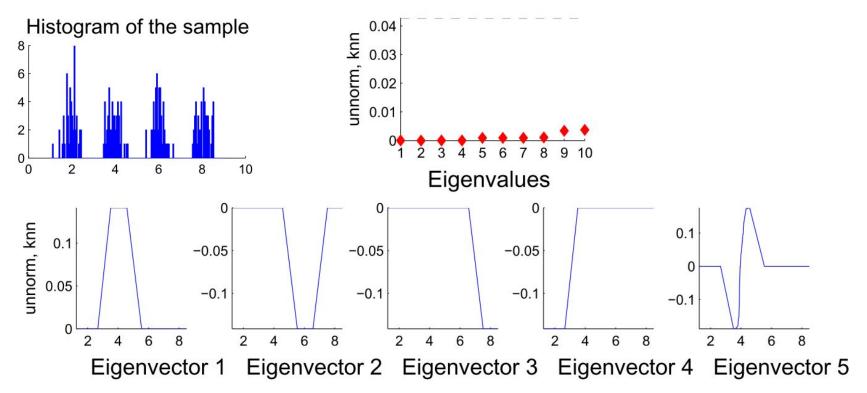
Spectral Clustering Algorithm in Action



Toy example: 200 random points drawn from a mixture of 4 Gaussians

Similarity function: Gaussian similarity $s(x_i, x_j) = exp(-\frac{|x_i - x_j|^2}{2\sigma^2})$ (non-Euclidean) Construct K-nearest neighbor graph spectral clustering using k-means detected the correct clusterings

Spectral Clustering Algorithm in Action: Eigenvalue and eigenvectors of Laplacian



Perturbation theory point of view

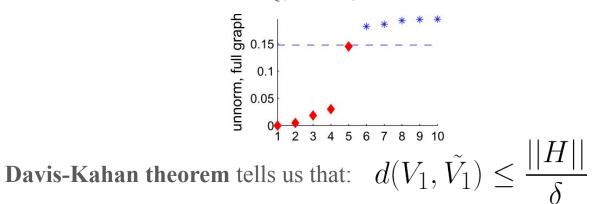
- ideally: *k* disconnected components
- reality: a connected graph with small between-cluster connectivity
- k smallest eigenvectors still similar to ideal case

Consider a perturbed symmetric matrix $\tilde{A} = A + H$

Davis-Kahan Theorem

• Distance between two Eigenspaces $V_1, \tilde{V_1} : d(V_1, \tilde{V_1})$

• Spectral Gap is $\delta = min\{|\lambda - s|; \lambda \text{ is eigenvalue of } A, \lambda \notin S_1, s \in S_1\}$



 \circ The norm is the Frobenius norm or the Two-norm

Comments on perturbation theory

For spectral clustering to work properly

- There should be an ideal case where A is block diagonal
- A should be a symmetric matrix
- The entries of eigenvectors **away from 0**.

More covered in the paper

1. Connection to Graph Cut problems

$$RatioCut(A_1, \dots, A_k) = \sum_{i=1}^k \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

- 2. Symmetric and Random-Walk Normalized Graph Laplacians (normalize by degree)
- 3. Connection to Random Walk Matrices
- 4. Many practical tips for spectral clustering

Thank you for listening :)

References

- 1. <u>A Tutorial on Spectral Clustering</u>
- 2. Image taken from https://towardsdatascience.com/spectral-clustering-aba2640c0d5b