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Agenda

1. Motivation for the paper
2. Intro to similarity graphs and notation
3. Graph Laplacian and their basic properties
4. Spectral Clustering Algorithm
5. Connection to Perturbation theory 
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Motivation and background (2007)
Aim: a self-contained introduction to spectral clustering. 
● Graph Laplacian and Spectral Clustering algorithm 

● Spectral Clustering and its connections to various areas
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Comparison between results of k-means clustering and spectral clustering 
(Colour indicates cluster assignment) [2]



● Given a set of data points,                              and a similarity measure* 

○      (                   )  between all pairs of data points

● Construct a similarity graph:

Clustering Setting

Goal: 1). High within-group similarity, 
    2). Low between-group similarity
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*domain dependent choice



Types of similarity graphs 
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Legend

A) Data points

B) ε-neighborhood graph:
edge (        ,       ) exists if 
distance(      ,     ) ≤ ε 

C) kNN graph:
edge (     ,       ) exists if 
      is among      ‘s k nearest 
nodes 

D) Mutual kNN graph:
edge (     ,      ) exists if 
       is among      ’s k nearest 
nodes and vice versa.

[1]



Similarity Graphs and the Graph Laplacian

From the similarity graph                  , we can define the following:
● G’s weighted adjacency matrix W

● The degree of a node i,                      , and G’s diagonal degree matrix  Dii = di
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Graph Laplacian (L) of G: 

● D is the degree matrix 
● W is the weighted adjacency matrix 



Similarity Graphs and the Graph Laplacian

From the similarity graph                  , 

● Degree matrix D,      Adjacency matrix W,          Graph Laplacian L
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Properties of Graph Laplacian
L satisfies the following properties:
● vector            :

○

● L  is symmetric and positive semi-definite 

● L eigenvalues
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0 eigenvalues and the connected components
Proposition (number of connected components): Let G be an undirected graph with 
non-negative weight matrix W. Then,
● The multiplicity k  of the eigenvalue 0 of  L equals the number of connected 

components  in the graph. 

● The eigenspace of eigenvalue 0 is spanned by k indicator vectors which map the n 
nodes to the k clusters. 
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Proof
Base Case: k = 1 (connected graph)
Assuming f is an eigenvector with eigenvalue 0. 
By definition of eigenvalue and eigenvector: 

We know from the properties of the Laplacian that:
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Proof
Base Case: k = 1 (connected graph)
Assuming f is an eigenvector with eigenvalue 0. We know from property of Laplacian that:

● If vertices       and       are connected (                 ), the

● Because all nodes are connected by a path, we must have 

● Therefore      is a constant normalized one vector       for a connected component
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Proof continued
Case: k connected components
● Assume the vertices are ordered according to the connected components they belong to. 
● Weighted adjacency W and Laplacian L have a block diagonal form.

● Each         is the Laplacian of i-th connected component
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Proof continued
Case: k connected components
● both adjacency W and Laplacian L have a block diagonal form.

● The spectrum of block diagonal matrix L is the union of the spectrums of 

● From base case, every       has eigenvalue 0 with multiplicity 1, and the corresponding 
eigenvector is an indicator vector for the  i-th connected component. 
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Spectral Clustering algorithm
Input: Similarity matrix ,  number of clusters k

1. Compute the Laplacian matrix L

2. Compute the first k smallest non-zero eigenvectors

3. Let                       be the matrix formed by the eigenvectors, each row vector                
and  these form data points to cluster 

4. Cluster          with k-means algorithm into clusters

Output: Clusters           where 
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Spectral Clustering algorithm
Core idea of Spectral Clustering:

Project dataset into a nice low dimensional embedding space, then cluster

Questions you might have:

1. Why use the k smallest eigenvectors of the Laplacian matrix?
a. See upcoming slides

2. Why use k-means for clustering?
a. Actually any other clustering algorithm can be used 
b. But the Euclidean distance assumption of k-means is actually motivated here
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Spectral Clustering Algorithm in Action

Toy example: 200 random points drawn from a mixture of 4 Gaussians 

Similarity function: Gaussian similarity (non-Euclidean)
Construct K-nearest neighbor graph
spectral clustering using k-means detected the correct clusterings
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Spectral Clustering Algorithm in Action:
Eigenvalue and eigenvectors of Laplacian
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Perturbation theory point of view 

● ideally: k disconnected components 

● reality: a connected graph with small between-cluster connectivity

● k smallest eigenvectors still similar to ideal case

Consider a perturbed symmetric matrix 
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Davis-Kahan Theorem
● Distance between two Eigenspaces                 :

● Spectral Gap is 

● Davis-Kahan theorem tells us that: 

○ The norm is the Frobenius norm or the Two-norm
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Comments on perturbation theory
For spectral clustering to work properly

● There should be an ideal case where A is block diagonal 

● A should be a symmetric matrix

● The entries of eigenvectors away from 0.
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More covered in the paper
1. Connection to Graph Cut problems 

2. Symmetric and Random-Walk Normalized Graph Laplacians (normalize by degree)
3. Connection to Random Walk Matrices
4. Many practical tips for spectral clustering
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Thank you for listening :)
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