
IFT 6760A - Lecture 10
Tensor Decompositions - Part 2

Scribe(s): David Venuto, Junhao Wang and Nicolas Gagné Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we saw some of the basic tensor operations, such as the Kronecker product, the Khatri-Rao
product and the outer product. We saw the notion of CP decomposition and noted that the minimum CP rank approxi-
mation problem is ill-defined as the set of tensors with a rank less than k is not closed. We also covered the alternating
minimization method (ALS).

In this lecture we covered the CP decomposition and two algorithms for computing it: Jennrich’s algorithm and the
Alternating Least Squares algorithm. We then introduced the Tucker decomposition and argued that it can be seen as
a higher order SVD. After comparing the pros and cons of the CP and Tucker decompositions, we concluded with a
quick introduction to the tensor Train decomposition.

2 Canonical Polyadic (CP) Decomposition

Figure 1: CP Decomposition, Image From [4]

Rank decomposition expresses tensors as the function of a finite number of rank-one tensors. We have Canonical
Decomposition [1] and Parallel Factors Decomposition [3] methods, that overall solve the same problem and are
termed canonical polyadic decomposition methods (CPD) [4]. Recall CPD aims to represent order-d tensor T as a
linear combination of suitably large R number of rank-1 tensors. The graphical view of CP Decomposition is also
given in Figure 1, image taken from [4]. The formulation of CPD for a third-order tensor is given by:

Definition 1. The objective in CPD is to find min
T̂

∣∣T − T̂ ∣∣F where T̂ = ∑
R
r=1 ar ○ br ○ cr = JA,B,CK where

A,B,C are called factor matrices and hold the combinations of vectors from the rank-1 components as columns. For
T d1×d2×d3 , A,B,C are of size d1 ×R,d2 ×R,d3 ×R and A = [a1 a2 . . . aR].

If min
T̂

∣∣T − T̂ ∣∣F = 0 then we have the exact low rank approximation of T . If T = JA,B,CK , then the CPD of T
can also be stated as simple operations on its factor matrices using matricization of T̂ : if T̂ = JA,B,CK we have

1

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 10: February 12, 2019

T̂ (1) = (C⊙B)AT

T̂ (2) = (C⊙A)BT

T̂ (3) = (B⊙A)CT

(1)

Let T d1×d2×d3 be a tensor of CP rank R. We recall that, by definition, this means we can write:

T =
R

∑
r=1

ar ○ br ○ cr = JA,B,CK (2)

where we have matrices A,B,C. Our goal in the remaining of this section is to recover a (approximate) CP decom-
position of T given its rank R.
For the general case we have:

T̂ =
R

∑
r=1

a(1)r ○ a(2)r ○ . . .a(n)r = JA(1),A(2), . . . ,A(n)K

T̂ (i) = (A(n) ⊙ . . .⊙A(i+1) ⊙A(i−1) ⊙ . . .⊙A(1))A(i)
T

(3)

2.1 Alternating Least Squares (ALS) Algorithm
One way to compute a CP decomposition of a tensor is Alternating Least Squares Algorithm. Our objective is a
minimized least squares loss for matrices in T = JA1,A2, . . . ,AnK:

min
A1,A2,...,An

L(A1,A2, . . . ,An) (4)

where L(A1,A2, . . . ,An) = ∣∣T − JA1,A2, . . . ,AnK∣∣F
In this algorithm, all factor matrices are fixed except for one. This allow the optimization of of the non-fixed matrix.
This step of not fixing matrix i is repeated for every matrix until we meet a stopping criteria. The algorithm for ALS
is formalized as:

Algorithm 1 ALS Algorithm
Initialize A1,A2, . . . ,An Randomly
repeat

for i = 1,2, . . . , n do
Ai = argminXL(A1, . . . ,Ai−1,X,Ai+1, . . . ,An)

end for
until convergence
Return A1, . . . ,An

In the 3-way case for T = JA,B,CK, we have the following 3 steps performed until convergence criteria is met.
Recalling that T(i) is the mode-i matricization of T [4], we have:

A← argmin
A

∣∣T(1) − (C⊙B)AT
∣∣F

B← argmin
B

∣∣T(2) − (C⊙A)BT
∣∣F

C← argmin
C

∣∣T(3) − (B⊙A)CT
∣∣F

(5)

The optimal solution to thus minimization problem is given below where ∗ refers to Hadamard product:

Â = T (1)[(C⊙B)
T
]

†
= T (1)(C⊙B)(CTC ∗BTB)

†

B̂ = T (2)[(C⊙A)
T
]

†
= T (2)(C⊙A)(CTC ∗ATA)

†

Ĉ = T (3)[(B⊙A)
T
]

†
= T (3)(B⊙A)(BTB ∗ATA)

†

(6)

Note that ALS is not guaranteed to converge to the optimal solution, as the problem is NP-hard. Furthermore, a
normalization step for matrix columns can be performed for Ai at each iteration to improve numerical stability.

2

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 10: February 12, 2019

2.2 Jennrich’s algorithm
Another way of retrieving the CP decomposition JA,B,CK of a rank R tensor T is the Jennrich’s algorithm. In this
subsection, we will assume that A and B are full rank with rank R ≤min(d1, d2). The Jennrich’s algorithm works as
follows.

First, we let x,y ∈ Rd3 be two random vectors. Hitting T with random vector x ∈ Rd3 , we define Mx = T ●3 x =

∑
R
r=1⟨cr,x⟩ ar ○br = AΛxB⊺, where Λx = Diag(⟨cr,x⟩) ∈ RR×R and and ar, br and cr are the respective column

vectors of A, B and C. Then, we take another slice throught the tensor by hitting it with the random vector y ∈ Rd3 :
My = T ●3 y = AΛyB

⊺, where Λy = Diag(⟨cr,y⟩) ∈ RR×R. To recover A, we look at

MxM†
y = AΛxB⊺ (B⊺)

†
Λ−1

y A†
= AΛxΛ−1

y A†. (7)

This means that the columns of A are the eigenvectors of MxM†
y . Further assuming that no columns of C are

multiples of another, we have that, since the vectors x and y were random, all the elements of ΛxΛ−1
y are distinct with

probability 1. 1 We can therefore recover A with probability 1.
To recover B with probability 1, we proceed analogously by looking at

(M†
xMy)

T
= BΛyΛ

−1
x B†. (8)

Lastly, to recover C, we pair the columns of A and B and solve the resulting linear system:

T (3) = C (B⊙A)
⊺
. (9)

While working well for some problems, Jennrich’s algorithm only takes random slices of a tensor and hence does not
use the full tensor structure. Moreover, it requires good eigen-gap on the eigendecompositions of the factor matrices,
the lack of which could lead to numerical instability.
We have shown two algorithms—the ALS algorithm and the Jennrich’s algorithm— for retrieving a CP decomposition
of T , but is the CP decomposition unique?

2.3 Uniqueness
For a tensor T of rank R, we can write T = ∑

R
r=1 ar ○ br ○ cr = JA,B,CK. Since the product is invariant under

permutation and rescaling, this decomposition is not unique. Indeed, we have

T = JA,B,CK = JAΠ,BΠ,CΠK = JAD1,BD2,CD3K,

for a permutation matrix Π and for diagonal matrices D1,D2 and D3 satisfying D1D2D3 = I. Modulo those two
operations, is a decomposition unique? If in addition to assuming that A and B have full rank, we further assume
that no columns of C is a multiple of another column, the answer is yes! Indeed, we get the following uniqueness
theorem [3].

Theorem 2 (Harshman). If T = JA,B,CK is a CP decomposition of rank R, with R ≤min(d1, d2, d3), A,B are full
rank and no columns of C is a multiple of another column, then the decomposition T = JA,B,CK is unique.

The proof follows from Jennrich’s algorithm presetned earlier. We next introduce another form of decomposition.

3 Tucker decomposition
The Tucker decomposition decomposes a tensor into a so-called “core tensor” and multiple matrices which correspond
to different core scalings along each mode. The model gives a summary of the information in the data, in the same
way as principal components analysis does for two-way data. Therefore, the Tucker decomposition can be seen as a
higher-order PCA. More formally, we have the following definition.

1Note that if a column of C is a multiple of another column, say cj = Kci (K ≠ 0), then we have not distinct entries as we have:
⟨ci,x⟩⟨ci,y⟩−1 = ⟨Kcj ,x⟩⟨Kcj ,y⟩−1 =K⟨cj ,x⟩K−1⟨cj ,y⟩−1 = ⟨cj ,x⟩⟨cj ,y⟩−1.

3

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 10: February 12, 2019

T

d1d2 d3

G

R1R2 R3

A

d1

B

d2

C

d3

Figure 2: A diagram of Tucker decomposition

Definition 3. Let T ∈ Rd1×d2×d3 , then a decomposition of the form T = ∑
R1

i=1∑
R2

j=1∑
R3

k=1Gijk ai ○ bj ○ ck =

G ×1 A ×2 B ×3 C with G ∈ RR1×R2×R3 , A ∈ Rd1×R1 , B ∈ Rd2×R2 , C ∈ Rd3×R3 with corresponding column vectors
ai,bj ,ck, is called a Tucker decomposition. a

aNote that we can assume that A, B, C are orthogonal.

Terminology 1. The matrices A, B, C are called factor matrices and the tensor G is called the core tensor.

We note that the core tensor G is a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of
T .
There is a low rank approximation problem that is naturally assoicated with the Tucker decomposition. For instance,
for an order 3 tensor, the Tucker decomposition is the solution to the following optimization problem:

argmin
T̂

∣∣T̂ − T ∣∣ subject to T̂ =
R2

∑
i=1

R2

∑
j=1

R3

∑
k=1
Gijk ai ⊙ bj ⊙ ck.

Given a tensor decomposition, it is natural to ask what is the “smallest” such decomposition. The following definition
captures this idea.

Definition 4. The multilinear rank of T is the smallest (R1,R2,R3) such that T = G ×1 A ×2 B ×3 C with G ∈

RR1×R2×R3 .

Contrary to the CP rank, the multilinear rank is easy to compute. The following proposition is our first clue.

Proposition 5. The multilinear rank of T is given by rank(T (i)) for i = 1,2,3.

Proof. Let G(i) be mode-i matricization of G. If T = G ×1 A×2 B×3 C, then T (1) = A
®

d1×R1

G(1) (C⊗B)
⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1×d2d3

and hence

we have rank(T (1)) ≤ R1. Conversely, if rank(T (i)) = Ri for i = 1,2,3, then let T (i) = UiDiV
⊺
i be a truncated

SVD of T (i) with Ui ∈ Rdi×Ri . We have

T = T ×1 U1U
⊺
1 ×2 U2U

⊺
2 ×3 U3U

⊺
3 (10)

= (T ×1 U⊺
1 ×2 U⊺

2 ×3 U⊺
3) ×1 U1 ×2 U2 ×3 U3 (11)

= G ×1 U1 ×2 U2 ×3 U3 (12)

For (10), we have (T ×1 U1U
⊺
1)(1) = U1U

⊺
1T (1) = U1U

⊺
1V1D1V

⊺
1 = U1D1V

⊺
1 = T (1), and similarly for the other

modes.

Note that the “converse” part of the above proof is constructive. This suggests an algorithm:

4

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 10: February 12, 2019

3.1 HOSVD (Higher order SVD)
The higher order singular value decomposition (HOSVD) algorithm takes as input a tensor T ∈ Rd1×d2×d3 and a target
rank (R1,R2,R3) and returns a core tensor G ∈ RR1×R2×R3 and factor matrices A ∈ Rd1×R1 ,B ∈ Rd2×R2 ,C ∈ Rd3×R3

such that T ≈ G ×1 A ×2 B ×3 C.

The algorithm is simple and works as follows. We let T (i) be the mode-i matricization of T and let UiDV⊺
i be the

rank Ri truncated SVD of T (i) and then simply return T ×1 U⊺
1 ×2 U⊺

2 ×3 U⊺
3 as the core tensor G and U1,U2,U3

as the factor matrices A1,A2,A3.

Algorithm 2 HOSVD Algorithm
Input T ,R1, . . . ,Rn

for all i = 1,2, . . . , n do
Ui = Ri leading left singular vectors of T (i)

end for
G ← T ×1 UT

1 ×2 . . . ×n UT
n

Return G,U1 . . .Un

Of course, the error depends on the values of the singular values that we truncated. Even if HOSVD might not return
the very best solution, we next see that it is fortunately never too far from the optimal solution.

3.2 Quasi-optimality of HOSVD
Given tensor T , consider the problem:

min
T̂

∥T̂ − T ∥F subject to rank(T̂) ≤ (R1,R2,R3) (13)

This problem is NP-hard. Fortunately, if we let T̃ be the ouput of HOSVD and let T ∗ be the solution of (13),
then ∥T̃ − T ∥F ≤

√
3∥T ∗ − T ∥F . We therefore say that HOSVD is a quasi-optimal algorithm for the low-rank

approximation problem.
Before moving to the tensor train decomposition, we note that we can recycle algorithm 1— the alternating min-
imization procedure— to solve problem (13). This alternating minimization approach is termed the Higher Order
Orthogonal Iteration (HOOI) algorithm. It reformulates problem (13) as

min
G,U1,U2,U3

∥T −G ×1 U1 ×2 U2 ×3 U3∥
2
F

subject to: G ∈ RR1×R2×R3 and orthogonal U1,U2,U3.

It can be shown [2] that the optimal G is given by G = T ×1 U⊺
1 ×2 U⊺

2 ×3 U⊺
3 and that it is sufficient to find Ui

satisfying U⊺
i U = I that maximizes ∥G∥2F . One then solves the above problem by following the ALS algorithm, i.e.,

by sequentially optimizing each component while keeping the other components fixed. Let Y(i) be the mode-i matri-
cization of Y .

Algorithm 3 HOOI Algorithm

Input T ∈ Rd1×⋅⋅⋅×dn ,R1, . . . ,Rn

Initialize U1 ∈ Rd1×R1 . . .Un ∈ Rdn×Rn using HOSVD
repeat

for i = 1,2, . . . , n do
Y = T ×1 UT

1 ×2 . . . ×i−1 UT
i−1 ×i+1 UT

i+1 . . . ×n UT
n

Ui = Ri leading left singular vectors of Y(i)
end for

until convergence
G ← T ×1 UT

1 ×2 . . . ×n UT
n

Return G,U1 . . .Un

5

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 10: February 12, 2019

In contrast to the CPD, the Tucker decomposition is generally not unique. This intuitively follows from the fact that the
core tensor G can be arbitrarily structured and might allow interactions between any component. Imposing additional
constraints on the structure of G can therefore lead to more relaxed uniqueness properties. The HOSVD generates an
all-orthogonal core tensor and hence relies on one type of special core structure.
Having covered the Tucker decomposition, the multilinear rank and algorithms (HOSVD and HOOI) for computing
low rank approximations to the Tucker decomposition, we are now ready to introduce our next tensor decomposition.

4 Tensor train decomposition (TT)
To understand why we want to introduce yet another tensor decomposition, we first look at the pros and cons between
the CP decomposition and the tucker decomposition:

CP Tucker

Parameters R∑
k
i=1 di ∑

k
i=1Ri +∑

k
i=1Ridi

Computing the rank NP-hard Polynomial
Space of low-rank tensors Not closed Closed
Low-rank approximations ? Quasi-optimal algorithm (HOSVD)

One can notice that, on one hand, the number of parameters scales better in the case of the CP decomposition than the
Tucker decomposition. On the other hand, the Tucker decomposition has many other advantages. Perhaps we can find
a new decomposition that has the best of both worlds? Next lecture we will see that the tensor train decomposition has
the combined benefits of the CP and Tucker decomposition.

Definition 6. The tensor train decomposition of T ∈ Rd1×d2×d3×d4 is

T

d1 d2 d3 d4

G1

d1

R1 G2

d2

R2 G3

d3

R3 G4

d4

where G1 ∈ Rd1×R1 , G2
∈ RR1×d2×R2 , G3

∈ RR2×d3×R3 and G4 ∈ RR3×d4 .

A note on notation: we write T = ⟪G1,G2,G3,G4
⟫ as a shortcut for the train

T i1,i2,i3,i4 =
R1

∑
r1=1

R2

∑
r2=1

R3

∑
r3=1
G1

i1,r1G
2
r1,i2,r3G

3
r2,i3,r3G

4
r3,i4 .

We conclude by introducing the rank associated to the tensor train decomposition.

Definition 7 (TT-rank decomposition). The TT-rank decomposition of T is the smallest (R1,R2,R3) such that T =

⟪G1,G2,G3,G4
⟫ is a TT decomposition of size (R1,R2,R3).

References
[1] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling via an n-way gener-

alization of eckart-young decomposition. Psychometrika, 35(3):283–319, 1970.

[2] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM journal on
Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[3] R. A. Harshman et al. Foundations of the parafac procedure: Models and conditions for an” explanatory” multi-
modal factor analysis. 1970.

[4] S. Rabanser and Gunnemann. Introduction to tensor decompositions and their applications in machine learning.
2017.

6

	Summary
	Canonical Polyadic (CP) Decomposition
	Alternating Least Squares (ALS) Algorithm
	Jennrich's algorithm
	Uniqueness

	Tucker decomposition
	HOSVD (Higher order SVD)
	Quasi-optimality of HOSVD

	Tensor train decomposition (TT)

