
IFT 6760A - Lecture 12
More on the Tensor-Train decomposition and Tensor Networks

Scribe(s): Tobi Carvallo, Aayushi Kulshrestha, Faruk Ahmed Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we introduced a third kind of tensor decomposition which is the Tensor Train (TT) decomposi-
tion. We covered the definition, tensor diagram notation, as well as basic algebraic operations in a TT-decomposition
(addition, point wise multiplication and contraction). We have seen how this decomposition can be advantageous,
specially with high-dimensionsional tensors; the number of parameters in a TT representation is O(ndR2) compared
to theO(dn) storage for a naive representation. We did an overview of applications in machine learning where higher
dimensions are beneficial for solving certain problems with linear models. Finally, we discussed learning the parame-
ters of a weight tensor, when it is expressed as a tensor train.

In this lecture, we begin by introducing TT-SVD, an algorithm used to transform a dense tensor into a tensor-train
(TT) format. The TT-format is advantageous for enabling efficient operations in downstream tasks such as learning
with very high-dimensional projections of data, which we shall see. This representation can also be a starting point
to finding low-rank approximations by reducing the intermediate ranks of the tensor train. We then show how to
perform SVD efficiently in a tensor train, with repeated QR-decompositions of cores and merging operations, which
leads to significant improvement in efficiency compared to equivalently performing SVD on a dense matricization of
the tensor. Finally, we reprise the discussion of learning weight tensors in their decomposed representation, via the
alternating minimization and DMRG-like algorithms.

2 Introduction to TT-SVD
As seen in the previous class, the tensor network obtained using TT-decomposition scales linearly with the order of
the tensor, as opposed to exponentially when using dense tensors or the Tucker decomposition. In this section, we
first focus on introducing the algorithm for obtaining TT-format of a tensor network, known as TT-SVD which can be
further used to generate quasi-low rank approximations.
To formally define TT-SVD, we first define the TT-rank of a tensor.

Definition 1 (TT Rank). The TT rank of T ∈ Rd1×d2×....dn is the smallest (R1,R2,⋯,Rp−1) such that T has a tensor
train decomposition of rank (R1,⋯,Rp−1).

For the sake of simplicity we shall assume from this point on that all the dimension of the tensor are of the same
dimension (hypercubic). There is no loss of generality since everything extends to tensors of arbitrary dimensions.

Definition 2 (Matricization along several modes). The mode-(1,⋯, k) matricization of an order-p tensor T is defined
as T (1,⋯,k) = RESHAPE(T , dk × dp−k) for all k = 1,⋯, p.

See Figure 2 for an illustrative example.

Theorem 3. Let Ri = rank(T (1,⋯,i)) for each i = 1, . . . , p − 1. Then the TT rank of T is (R1,R2,⋯,Rp−1).

1

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

Figure 1: Pictorial Representation of a TT-decomposition using TT-SVD and of the result of TT-rounding.

Figure 2: The above picture shows mode-2 matricization where p = 4, k = 2. This will thus give us a d2 × d2 matrix

Figure 3: A visual interpretation of Theorem 3

As shown in Figure 3, by splitting the tensor network at R2 and performing matricization, we see that the resulting
matrix is formed by the product of two matrices of dimension d2 ×R2 over their dimension R2. The result is then a
d2 × d2 matrix of maximum rank R2 (since d2 > d > R2). This logic can be applied at every Ri to see that the TT rank
of T is indeed (R1,R2,⋯,Rp−1).

This observation allows us to see that given the TT-rank of a tensor, we can infer the ranks of the matricizations
over the p modes. In the following section, where we discuss the TT-SVD algorithm, we shall see the other direction
of this theorem: given a set of desired ranks for truncating intermediate SVDs of matricizations, we can design a tensor
train with the equivalent rank.

2

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

2.1 Performing TT-SVD
We shall provide a high-level overview of the TT-SVD algorithm before describing it more formally. Let us say we
are given a 4-way tensor T that we shall decompose into a tensor train.

We take as input the tensor T ∈ Rd1×d2×d3×d4 , and a set of 3 target ranks (R1,R2,R3). Our goal is to compute
a tensor train decomposition of T such that it is decomposed into a train of 4 cores G1,G2,G3,G4, with dangling
dimensions d1, d2, d3, d4 and bond dimensions R1,R2,R3.

The steps consist of repeated matricizations, and truncated-SVDs of the matrices under rank-Ri approximations, as
illustrated in the following diagram.

If it so happens that the TT-rank of T is actually (R1,R2,R3) then the approximations would be equalities, and the
decomposition would be exact.

We have some results for quantifying the loss of precision when performing TT-SVD, and the main theorem is as
follows:

Theorem 4. If T (1,2,....,k) =Mk +Ek for each k = 1,⋯, (p − 1), where Mk is of rank Rk and ∥Ek∥F ≤ εk, then the
output of TT-SVD, T̂ satisfies :

∥T − T̂ ∥
2

F ≤

p−1

∑
k=1

ε2

This theorem defines the upper bound for loss of information when applying TT-SVD algorithm to a tensor.
Note that instead of specifying a set of ranks (R1,R2,⋯,Rp−1) as input to TT-SVD algorithm, we can now provide
an error budget and discover intermediate ranks accordingly.

Corollary 5. If T ∗ is the best approximation of T of TT rank (R1,R2,⋯,Rp−1), then ∥T − T̂ ∥F ≤
√
p − 1∥T − T ∗

∥F

As we saw, the TT-SVD algorithm consists of alternating steps of matricization and performing low-rank approximated
SVD on the matrices. Let us now give a more formal description of this algorithm:

Algorithm 1 Algorithm for generating TT-format using TT-SVD

Let T (1) ≈UDVT be a rank R1 truncated SVD, where T (1) ∈ Rd×d3

,U ∈ Rd×R1 ,DVT ∈ RR1×d
3

Let G1
=U and A = RESHAPE(DV⊺,R1d × d

2)

Let A ≈UDV⊺ be a rank R2 truncated SVD
Let G2

= RESHAPE(U,R1 × d ×R2)

B = RESHAPE(DV⊺,R2d × d)
...so on and so forth for the number of cores required.

3

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

Note, that in the above algorithm, the coresG1,G2,⋯,Gp−2 are all left-orthogonal by construction. That is, (G1
(2))

⊺G1
(2) =

I and (Gi
(3))

⊺Gi
(3) = I for all i = 1, . . . , p − 2.

Naively performing SVD is exponential in the dimension of the tensor,O(pdp+1) [1]. In the next section we introduce
an efficient technique for the intermediate SVDs of the matricizations which scales linearly with the dimension of the
tensor.

3 Efficient SVD in TT format
Definition 6 (Left-right Orthogonality). A core G ∈ RR×d×R is said to be left orthogonal if its left matricization G(3)
is orthogonal i.e. G(3)G⊺(3) = I . Similarly, it is said to be right orthogonal if its right matricization G(1) is orthogonal
i.e. G(1)G(1)⊺ = I:

Any core can be decomposed into two parts, one of which is orthogonal, using QR decomposition as demonstrated
below:

QR decomposition of G(3)

QR decomposition of G(1)

As shown in Figure 4, by using QR decomposition on a TT decomposition it’s possible to propagate the left/right
orthogonality up until the last core by recursively doing the the QR decomposition of a core, merging the R part with
the next core which we then QR-decompose and so on.

Using this strategy, an efficient SVD decomposition can be designed. As shown in Figure 5, QR decomposition can
be made on either side of the TT decomposition of the tensor T up to the middle where we do an SVD decomposition
of the central matrix (which resulted from the multiplication of last R propagated from the left and right orthogonal-
ization). Taking the result of the decomposition as UDV⊺, it can be seen that everything left of D is left orthogonal
and then can be regrouped as Û which is still left orthogonal (since the contraction of a left orthogonal tensor stay left
orthogonal, and respectively for right orthogonal tensors; see Figure 6). Similarly, the same thing can be done with
the right side and regrouped as V̂

⊺

. We then have an SVD decomposition ÛD̂V̂
⊺

of T (where D̂ is simplyD).

Looking at the complexity of each step, we have that each QR decomposition takes O(R3d) since the cores are

4

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

Figure 4: QR propagation

of sizeR×d×R, which in total takesO(pR3d) (where p is the order of the tensor). As for the SVD decomposition the
complexity is in O(R3). The overall complexity is then O(pR3d). We see that using this strategy is efficient being
only linear with the dimension of the tensor.

4 Learning with Tensor-Trains

4.1 Background
Goal: In this section, we are interested in learning a linear function f , which maps from a high-dimensional dm space
to a scalar,

f ∶ Rdm

z→ R. (1)

This mapping is learned by fitting a weight matrix W, and predictions are then performed by a product with the input
x,

f(x) =Wx, (2)

where W ∈ R1×dm

.

In order to learn the mapping, we would like to follow the standard procedure of defining a loss function, and perform-
ing gradient descent over the parameters, in this case the elements of W, to minimize our loss over a given training
set of data.

Standard learning setup: In general, given a set of (lower-)dimensional training dataD = {(x1,y1), (x2,y2),⋯, (xN ,yN)},
with x ∈ Rm,y ∈ Ro, and a specified loss function `(x,y), our objective is to minimize the average loss over the train-
ing set,

min
1

N

N

∑
n=1

`(Wx,y), (3)

where W ∈ Ro×m.

5

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

Figure 5: Efficient SVD using QR decomposition

Figure 6: Conservation of left/right orthogonality through contractions of left/right tensors.

Projecting to higher dimensions: Discriminative tasks become easier in higher-dimensional spaces, with the in-
tuition that it is easier to draw boundaries bewteen data points if they are “pulled apart” through projection into a
higher dimensional space. For example, think of trying to draw a linear separator between ⋆s and ○s on a 1-D sub-
space such that they are placed alternatingly − ⋆ − ○ − ⋆ −○ (it is impossible). If these points are now projected into
a 2-D space such that the ⋆s and ○s are pulled apart in the second dimension, it becomes possible to draw a plane
separating the pairs.

4.2 Tensorizing learning
With this motivation for operating in high-dimensional spaces, we shall concern ourselves with the computational
challenge of learning in (projected) high dimensions. The solution is, of course, to use tensor factorizations. We shall
project x into a high dimensional space

x ∈ Rm
z→ X ∈ R

m times
³ ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹· ¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
d×d×⋯×d,

and learnW in the Tensor-Train format, meaning we shall solve (3) under a factorization ofW into a train of cores.

6

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

Note: For simplicity, we shall assume here that the predicted variable y is a scalar. All of the discussion extends to the
case when it is a vector, with an extra edge added toW .

Projecting x to X : For projecting x ∈ Rm to X ∈ Rd×d×⋯×d, we shall use a dimension-wise projection operator
φ and compute the final projection with outer-products over the dimension-wise projections as follows,

X = φ(x1) ○ φ(x2) ○ ⋯ ○ φ(xm). (4)

For example, a φ ∶ R z→ R2 can be constructed as φ(a) = [a 1]⊺, and the subsequent projection dimension would
be 2m.

Alternating Minimization: Given the tensor factorization of W (from a choice of ranks R1,⋯,Rm−1), we can
perform alternating minimization where we optimize over the subset of parameters in every core at a time until con-
vergence.

Algorithm 2 Alternating Minimization

Require: Initial cores G1,⋯,Gm, loss function `, dataset D, learning rate η
repeat {over data}

for each core Gi do
Gi
← Gi

− η∇Gi`

Optional: Orthogonalize Gi

end for
until convergence

DMRG-inspired alternating minimization: Another more flexible algorithm is inspired from the density matrix
renormalization group in quantum physics, and was presented by Stoudenmire and Schwab in [2].

The basic idea is that alternating style minimization is carried out over coupled pairs of cores. In order to improve
computational efficiency further, the update is carried out over the merged pair, but the updated marged-pair is then
decomposed back into two cores but under a pre-specified rank-budget and tolerance. This has the added advan-
tage of adaptively learning a low-rank tensor train through training. The algorithm is shown below (red lines denote
dimension-edges in the tensor diagram).

Algorithm 3 DMRG-based Alternating Minimization

Require: Initial cores G1,⋯,Gm, loss function `, dataset D, learning rate η, rank budget Rmax, tolerance ε
repeat {over data}

for each coupled core pair Gi, Gi+1 do
>B< = >Gi

−Gi+1
<

B̂ ← B − η∇B`
>B̂< ≈ >Ĝ

iRmax— Ĝ
i+1

< (using truncated-SVD, for example)
Gi
← Ĝi;Gi+1

← Ĝ
i+1

end for
until convergence

7

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 12: February 19, 2019

5 Additional utilities
The contraction linear dependency with respect to the tensor dimension of the TT decomposition make it useful in a
multitude of situation. Here are a couple of examples:

1. As seen previously, the TT decomposition is an efficient way to linearly solve regression problems by projecting
to a higher-dimensional space. The same strategy can be applied in the context of multi-classification algorithms
by simply adding an additional dimension to the tensor corresponding the output. By contracting over all the
mappings of X , the result is then the output vector where each entry corresponds to one of the classes.

Figure 7: Multi-classification using TT decomposition

2. It can also be used similarly for convolution to connect the pixels of a picture but following a certain pattern.
The pattern can be space filling curve, straight up normal convolution like in CNN, or even more complex one
like tensor ring which have periodic boundary condition.

Figure 8: Connection patterns

References
[1] B. Huber, R. Schneider, and S. Wolf. A Randomized Tensor Train Singular Value Decomposition. Springer

International Publishing, Cham, 2017. ISBN 978-3-319-69802-1. doi: 10.1007/978-3-319-69802-1 9. URL
https://doi.org/10.1007/978-3-319-69802-1_9.

[2] E. Stoudenmire and D. J. Schwab. Supervised learning with tensor networks. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 29, pages 4799–4807. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6211-supervised-learning-with-tensor-networks.pdf.

8

https://doi.org/10.1007/978-3-319-69802-1_9
http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf
http://papers.nips.cc/paper/6211-supervised-learning-with-tensor-networks.pdf

	Summary
	Introduction to TT-SVD
	Performing TT-SVD

	Efficient SVD in TT format
	Learning with Tensor-Trains
	Background
	Tensorizing learning

	Additional utilities

