
IFT 6760A - Lecture 6
Dimensionality Reduction

Scribe(s): Charles Onu, Mohamed Abdelsalam Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture, we reviewed the different matrix norms, and we covered the low rank approximation, including
the Ecart-Young-Mirsky theorem. We introduced as well the Rayleigh-Ritz theorem, the Courant-Fischer (Min-max)
theorem and the trace maximization/minimization.

In this lecture we review dimensionality reduction, mainly using Principal Component Analysis (PCA), Canonical
Correlation Analysis (CCA) and Locally Linear Embedding (LLE). We show as well the relationship between these
methods, and the theorems introduced during previous lectures.

2 Principal Component Analysis (PCA)
PCA is concerned with projecting some data onto a low dimensional subspace. We will present PCA from 2 perspec-
tives which were separately developed by Hotelling, 1933 [5] and Pearson, 1901 [6]:

1. Maximization of the variance [5]

2. Minimization of the reconstruction error [6]

Definition 1 (Correlation). The Pearson correlation between two random variables X and Y is defined as their co-
variance, divided by the product of their standard deviations:

ρX,Y = Cor(X,Y ) =
Cov(X,Y )√
V[X]V[Y ]

=
E[(X − E[X])(Y − E[Y ])]√

(E[X2]− E[X]2)(E[Y 2]− E[Y ]2)

Remark 2. This means that:

1. if two random variables X and Y are independent, then Cor(X,Y ) = 0

2. if X is a positive multiple of Y (X = αY for α > 0), then Cor(X,Y ) = 1
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Proof.

1. Cor(X,Y ) =
Cov(X,Y )√
V[X]V[Y ]

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY −X E[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ] (for independent variables, E[XY ] = E[X]E[Y ])

= E[X]E[Y ]− E[X]E[Y ] = 0

2. Cor(X,Y ) =
Cov(X,Y )√
V[X]V[Y ]

=
E[(X − E[X])(Y − E[Y ])]√

(E[X2]− E[X]2)(E[Y 2]− E[Y ]2)

=
E[(αY − E[αY ])(Y − E[Y ])]√

(E[α2Y 2]− E[αY ]2)(E[Y 2]− E[Y ]2)
(using the linearity of expectation)

=
αE[(Y − E[Y ])(Y − E[Y ])]

α
√
(E[Y 2]− E[Y ]2)(E[Y 2]− E[Y ]2)

=
E[(Y − E[Y ])2]√
(E[Y 2]− E[Y ]2)2

(usingV[Z] = E[(Z − E[Z])2] = E[Z2]− E[Z]2)

=
V[Y ]√
V[Y ]2

= 1

Note however that although independence implies uncorrelation, uncorrelation doesn’t necessarily imply indepen-
dence. As the correlation coefficient defined above measures only the linear association between the random variables.
For more elaboration, see [9] and [1].

2.1 Maximizing the variance
Let x ∈ Rd be a random variable, which we would like to represent by a lower dimensional variable y ∈ Rp that tries
to keep as much information about x as possible. PCA achieves that by choosing each component yi = aTi x (yi ∈ R)
so as to maximize the variance while being uncorrelated to the previous components. Thus for i = 1, ..., p, we need to
find the ai that satisfies:

ai = argmax
a∈Rd

V[aTx] such that Cor(aTx,aTj x) = 0 for all j < i

Note that for V[aTx] to be bounded, the length of a needs to be constrained, so we impose an additional constraint
||a||2 = 1, leading to:

ai = argmax
a∈Rd, ||a||2=1

Cor(aT x,aT
j x)=0 ∀ j<i

V[aTx]

We have (note that a is not a random variable):

V[aTx] = E[(aTx− E[aTx])2] (using the linearity of expectation)

= E[(aTx− aT E[x])2]
= E[aT (x− E[x])(x− E[x])Ta] (again, using the linearity of expectation)

= aT E[(x− E[x])(x− E[x])T ]a
= aTCxxa (Cxx = Cov(x,x))
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hence we have:
a1 = argmax

a∈Rd, ||a||2=1

aTCxxa

Therefore, a1 is the unit eigenvector associated with the top eigenvalue of Cxx

Theorem 3. ai is the unit eigenvector associated with the ith eigenvalue of Cxx

Proof. For the base case of i = 1, we can rewrite

a1 = argmax
a∈Rd, ||a||2=1

aTCxxa

using Lagrange multipliers as: (see [4] for a review on Lagrange multipliers)

a1 = argmax
a∈Rd

L = argmax
a∈Rd

aTCxxa + α(1− aTa)

we can get the maximum by differentiating L with respect to a and setting the result to zero

dL

da
= 2aTCxx − 2αaT = 0

aTCxx = αaT (taking the transpose, and as Cxx is symmetric)
Cxxa = αa

hence substituting the (unit) eigenvector/eigenvalue pairs for a and α satisfy the stationary points, with the top eigen-
value and its corresponding eigenvector giving the maximum. This gave the result for a1, for the subsequent ai, we
have to satisfy another condition:

Cor(aTi x,aTj x) = 0 for all j < i

Cov(aTi x,aTj x)√
V[aTi x]V[aTj x]

= 0

Cov(aTi x,aTj x) = 0

aTi Cxxaj = 0 (using the result obtained above, Cxxaj = λjaj)

λja
T
i aj = 0

aTi aj = 0

which can be satisfied by choosing ai to be the ith unit eigenvector of Cxx (remember that Cxx is a symmetric matrix
with d orthogonal eigenvectors). For more details, see [8]

Another way to look at the previous proof is by using the Rayleigh-Ritz theorem, which states that:

max
||x||2=1

xTAx = λ1 with x = e1

max
||x||2=1

x∈span(e1,..,ei−1)
T

xTAx = λi with x = ei

Where ei is the unit eigenvector corresponding to the ith eigenvalue.

PCA in Practice
Let’s say we have an input X ∈ Rd×N , where X =

(
x1 · · · xN

)
, with xi ∈ Rd. We would like to have an output

Y =
(
y1 · · · yN

)
, with yi ∈ Rp, capturing as much information about X as we can while keeping p << d.
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First, we would like to make sure that our data is centered (i.e.
∑N
i=1 = 0), which can easily be done during

preprocessing. This way, the empirical estimate of the covariance ĈXX matrix could be calculated as ĈXX =
1
NXXT = 1

N

∑N
i=1 xix

T
i .

As ĈXX is a symmetric matrix, we can compute an eigenvalue decomposition for it:

ĈXX = UDUT

U =
(
e1 · · · ep · · · ed

)
=
(
Up Ũ

)
Where Up contains the first p eigenvectors as its columns. Therefore Y can be obtained using Y = UT

p X.

Another way for applying PCA is through using Singular Value Decomposition (SVD):

X = UΣVT =
(
Up Ũ

)(Σp

Σ̃

)(
VT
p

ṼT

)

ĈXX =
1

N
XXT =

1

N
UΣVTVΣUT =

1

N
UΣ2UT

Which means that the columns of U are still the principal directions, and the relationship between the eigenvalues of
ĈXX and its singular values is D = 1

NΣ. Y can be obtained through:

Y = UT
p X = UT

p

(
Up Ũ

)(Σp

Σ̃

)(
VT
p

ṼT

)
=
(
UT
p Up UT

p Ũ
)(Σp

Σ̃

)(
VT
p

ṼT

)
=
(
Ip 0

)(Σp

Σ̃

)(
VT
p

ṼT

)
= ΣpV

T
p

2.2 PCA as a Minimization Problem
PCA also can be thought of as a minimization of the reconstruction error. We would like to find a projection Π = UUT

that projects our data in Rd onto a p-dimensional subspace in Rd, where U ∈ Rd×p is an orthogonal matrix. We want
to minimize the following loss:

l =

N∑
i=1

||Π(xi)− xi||2

= ||ΠX−X||2F (remember, X ∈ Rd×N )

= Tr((ΠX−X)T (ΠX−X))

= Tr(XTΠTΠX−XTΠTX−XTΠX + XTX) (ΠT = Π, ΠTΠ = UUTUUT = UUT = Π)

= Tr(XTX−XTΠX) (Trace is a linear mapping)

= Tr(XTX)− Tr(XTΠX)

= Tr(XTX)− Tr(XTUUTX)
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We can now re-express the minimization problem as follows:

argmin
U∈Rd×p

UT U=I

l = argmin
U∈Rd×p

UT U=I

(Tr(XTX)− Tr(XTUUTX)) (XTX is not a function of U)

= argmin
U∈Rd×p

UT U=I

(−Tr(XTUUTX))

= argmax
U∈Rd×p

UT U=I

Tr(XTUUTX) (using cyclic property of trace)

= argmax
U∈Rd×p

UT U=I

Tr(UTXXTU)

= argmax
U∈Rd×p

UT U=I

NTr(UTCxxU)

From the Trace maximization theorem we saw in the previous lecture, we can get that the columns of the resulting U
consists of the unit eigenvectors corresponding to the p highest eigenvalues of Cxx.

3 Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA) provides another framework for dimensionality reduction. Here we have 2
random variables x ∈ Rd1 and y ∈ Rd2 for which we want to derive 2 low-dimensional representations x̃, ỹ ∈ Rp
whose correlation is maximized. One can think of x and y as two views of the same object; for example CCA can
be used to combine information from both audio and lip features in a speaker identification task [3]. More examples
of practical problems where this framework applies to can be found for example in [2]. The idea behind CCA is very
close to PCA: we want to find uncorrelated components for each view, so as to maximize the correlation between the
components from the two views (instead of maximizing the variance in PCA). Formally,

(ui,vi) = argmax
u∈Rd1 , v∈Rd2

Cor(uT x,uT
j x)=0∀j<i

Cor(vT y,vT
j y)=0∀j<i

Cor(uTx,vTy)

Let us assume, without loss of generality, that E[x] = 0 and E[y] = 0, then

Cor(uTx,vTy) =
E[(uTx)(vTy)]√

E[(uTx)2]E[(vTy)2]

=
uT [xyT ]v√

uTE[xxT ]u
√

vTE[yyT ]v

=
uTCxyv√

uTCxxu
√

vTCyyv

We can re-write our objective as:

(ui,vi) = argmax
u∈Rd1 , v∈Rd2

uT Cxxu=1
vT Cyyv=1

uTCxyv

Let Cxx
1
2 ∈ Rd1×d1 and Cyy

1
2 ∈ Rd2×d2 be such that Cxx = (Cxx

1
2 )TCxx

1
2 and Cyy = (Cyy

1
2 )TCyy

1
2 . Observe

that the existence of such matrices follows from the fact that Cxx and Cyy are positive semi-definite. Now let us set
a = Cxx

1
2 u and b = Cyy

1
2 v. Then, we have that:
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(ai,bi) = argmax
a∈Rd1 , b∈Rd2

||a||=1, ||b||=1

aT Cxx
− 1

2 CxyCyy
− 1

2︸ ︷︷ ︸
Ω

b

We assumed here that Cxx and Cyy are invertible/full rank, which is a valid assumption as we can always get rid of any
redundant variables beforehand (for example using PCA and discarding components associated with zero eigenvalues
of the covariance matrix). Then we have:

(ai,bi) = argmax
a∈Rd1 , b∈Rd2

||a||=1, ||b||=1

aTΩb

The solution (a1,b1) is given by the top left/right singular vectors of Ω. More generally, The solution (ai,bi) is given
by the left/right singular vectors corresponding to the top ith singular value of Ω.

Proof. Using the Lagrangian form of the maximization problem, we have:

L = aTΩb + α(1− aTa) + β(1− bTb)

By differentiation with respect to a and b and setting the result to zero, we get:

Ωb = αa

ΩTa = βb

Multiplying both by aT and bT , we get:
aTΩb = αaTa = α

bTΩTa = βbTb = β

from which it follows that α = β is a singular value of ω with corresponding left and right singular vectors a and b.
Consequently, the solution to the maximization problem (a1,b1) is given by the top left/right singular vectors.
For the subsequent (ai,bi), we have:

Cor(uTi x,uTj x) = Cor((Cxx

−1
2 ai)

Tx, (Cxx

−1
2 aj)

Tx) = aTi aj = 0 for all j < i

Cor(vTi y,vTj y) = Cor((Cyy

−1
2 bi)

Ty, (Cyy

−1
2 bj)

Ty) = bTi bj = 0 for all j < i

Which can be satisfied (along with the maximization problem) by choosing (ai,bi) as the left/right singular vectors
corresponding to the top ith singular value.

4 Locally Linear Embedding (LLE)
Whereas PCA and CCA are linear dimensionality reduction techniques, LLE or locally linear embedding [7] is a
framework for non-linear dimensionality reduction. The principal idea is, given a set of points in high dimension, we
reconstruct each point as a linear combination of its k neighbours.
Given N points x1, ...,xN ∈ Rd, we want to find low-dimensional embeddings y1, ...,yN ∈ Rp (where p << d) that
preserve the local structure of the original points. To do this, we will carry out 2 main steps:

1. Compute the weights wij which best reconstruct each point xi from its k neighbours.

E(W) =

N∑
i=1

||xi −
N∑
j=1

wijxj ||2 (1)

subject to wij 6= 0 ⇐⇒ xj is a neighbour of xi and ∀i,
∑N
j=1 wij = 1

Remark: It can be shown mathematically from the objective function that the solution of minW E(W) is
invariant to scaling, rotation, and translation.
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2. Then, find the low-dimensional representations y1, ...,yN ∈ Rp which minimize

min
y1,...,yN∈Rp

N∑
i=1

||yi −
N∑
j=1

wijyj ||2 (2)

We will now show how both optimization problem can be solved easily using tools from linear algebra we saw in
previous lectures. To solve for (2), let us express the objective with matrices:

min
Y∈RN×p

||Y −WY||2F

where the rows of Y are the low-dimensional embeddings y1, ...,yN we are seeking.
This objective is not well-posed because we can choose the trivial embedding of all zeros Y = 0 which solves it.
However observe that, similarly to the first optimization function, the cost function in Eq. (2) is invariant to translations,
rotations and scaling, we can thus without loss of generality enforce that the embeddings are centered (

∑N
i=1 yi = 0)

and that they have unit covariance (
∑N
i=1 yiy

T
i = I). Therefore, we consider the constrained optimization problem

min
Y∈RN×p

YTY=I
YT1=0

||Y −WY||2F = min
Y∈RN×p

YTY=I
YT1=0

Tr(YT (I−W)T (I−W)︸ ︷︷ ︸
M

Y) = min
Y∈RN×p

YTY=I
YT1=0

Tr(YTMY)

where 1 ∈ RN is the vector of all ones. Using again the trace maximization/minimization result from the previous
lecture, the solution of this problem will be given by choosing the bottom eigenvectors of the matrix M. To con-
clude, first observe that 1 is an eigenvector of M for the eigenvalue 0 since W1 = 1. We can thus take the p + 1
bottom eigenvectors v1, · · · ,vp+1 ∈ RN of M and discard the first one: since all the remaining eigenvectors will be
orthogonal to v1 = 1 we have that the constraint YT1 = 0 is satisfied as well.
To solve for (1), let x be one of the points, and let η1,η2, ...,ηk ∈ Rd be its k neighbours. We want to solve

min
w1,..,wk∈R∑k

j=1 wj=1

||x−
N∑
j=1

wjηj ||2 = min
w1,..,wk∈R∑k

j=1 wj=1

||
N∑
j=1

wj(x− ηj)||2 = min
w1,..,wk∈R∑k

j=1 wj=1

wTCw

where w ∈ Rk and the matrix C ∈ Rk×k is defined by Cij = (x− ηi)
T (x− ηj). We first form the lagrangian

L = wTCw + λ(1Tw − 1)

By setting∇wL = 0 and ∂
∂λL = 0 we obtain

w =
C−1

1TC−11
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