
IFT 6760A - Lecture 7
Spectral Learning of Weighted Automata / HMMs

Scribe(s): Mahmoud Nassif, Bhairav Mehta, Mostafa Abdelnaim Instructor: Guillaume Rabusseau

1 Summary
In the previous lecture we went over PCA, CCA and wrapped up with a discussion about Locally Linear Embedding
(LLE).

In this lecture we will introduce HMMs and Weighted Automata (WA). This will lead us to a deep dive into how they
work and how they relate to one another. We will then conclude with the spectral learning algorithm.

2 Intuition
Let’s start off with a general form of the function that we are trying to approximate with a WA:

∈X :sequences︷ ︸︸ ︷
x1, x2, ..., xk 7→ f (x1, ..., xk)

f is a function that maps sequences of elements from an input space X to some output space Y . We will only focus
on the case where X is a discrete alphabet and Y = R. This has various practical usages. (i.e. it can represent the
probability that a sequence of words might form a meaningful sentence, it can represent the confidence of a robot
about its location given a sequence of probing data, etc.).

To state the problem formally, we would also need to define a few other elements. Let Σ be a finite alphabet
(Σ = {a, b}) and we let Σ∗ be the set of all sequences built on Σ (e.g. Σ∗ = {λ, a, ab, aa, baab, ...}) where λ
represents the empty word.

Ultimately, we want to learn a function f : Σ∗ → R.

1

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

3 [Quick Review] HMMs

Figure 1: graphical model representing a HMM

Hidden Markov model or HMM is a statistical Markov model with hidden states. In other words, it is a system that
has a stochastic internal state that randomly changes. State transitions in an HMM are Markovian, which means that
their state transitions only depend on the current state they are in, rather than depending on the current and past states.

For example, imagine a robot in a maze with a set of definite locations represented as squares on the floor. Let’s as-
sume that the robot has an internal state h(t), which denotes its true position in the world. These internal hidden states
are analogous to the ones described above, but the robot gets only observations o(t), from which it has to deduce what
the underlying h(t) is. Assume that its current belief is that it is in an alley, which happens to be in accordance with
the scanning data of its laser sensor o(t) that senses open space in opposing direction but walls on the orthogonal axis.
At t+ 1, the robot moves to another square, the observation changes o(t+ 1) and now the laser sensor identifies open
space in 2 orthogonal directions and walls in the other directions. With only the current observation and the previous
state, if well calibrated, the robot is more confidence that its current state h(t + 1) → φ(h(t), o(t + 1)) is that it has
reached the curb at the end of the alley. Depending on how many of these curbs exist in the maze, the robot will set
a higher probability of being in those locations rather than anywhere else in the maze. The more observations it has,
the higher the confidence about its location will be as it tries to retrofit the sequence of observations to the sequence
of possible hidden states (locations) that can generate those observations.

Since the observations ot can be noisy, we want to estimate the true hidden states ht from the observations, which in
the robot’s case, can help us localize the robot.

2

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

4 Automata
Before we describe how weighted automata and HMMs are related, we will introduce some notation that will formally
define the weighted automata model.

Definition 1 (Weighted Automata). A weighted automata (WA) with m states over Σ (finite alphabet), is a tuple

A = (α0, {Aσ}σ∈Σ,α∞)

where:

• α0 ∈ Rm is the initial weight vector

• α∞ ∈ Rm is the final weight vector

• Aσ ∈ Rm×m is the transition matrix for each σ ∈ Σ

The weighted automata (WA) A computes a function

fA : Σ∗ → R
x1x2...xk︸ ︷︷ ︸
X∈Σ∗

→ α>0 Ax1Ax2 ...Axk︸ ︷︷ ︸
Ax

α∞

It is important to note that the number of states m does not necessarily have to equal the cardinality of the alphabet Σ.
For those familiar with recurrent networks in deep learning, α0 can be though of as the initial hidden state, α∞ as the
output weights, and the Aσ as the recurrent weights.

Example
In this example we will implement a WA that is capable of counting the number of letters ’a’ in a sentence fed as an
input. Our WA requirements will have two states: a state that keeps track of the increment and a state that keeps track
of the number of times the letter ’a’ was encountered. Let’s call them h

(t)
1 and h(t)

2 respectively. In the event that ’a’
occurred, the new states h(t+1)

1 and h(t+1)
2 can be determined by the previous states h(t)

1 and h(t)
2 .

Let’s build a matrix that can generate h(t+1) from h(t):

(h(t+1))> = (h(t))>Aa where Aa =

(
1 1
0 1

)
is the transition matrix of a

With our transition matrix, we can define all the components of the WA of interest:

Σ = {a, b} α0 =

(
1
0

)
α∞ =

(
0
1

)
Aa =

(
1 1
0 1

)
Ab =

(
1 0
0 1

)
f(aaba) =α>0 AaAaAbAaα∞

=α>0 (Aa)3α∞ = 3

Notice how the power of the transition matrix of a can be simplified:

(Aa)m =

(
1 m
0 1

)

3

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

We will now show the benefits of rewriting an HMM as a Weighted Automata. Recall, the formal definition of an
HMM:

Figure 2: graphical model representing a HMM

Definition 2 (HMM). Given a set of states S = {1, ..., n} and a set of observations Σ = {1, ..., p}, a HMM is given
by

• transition probabilities T ∈ Rn×n where Tij = P(ht+1 = j|ht = i)

• observation probabilities: O ∈ Rp×n where Oij = P(ot = i|ht = j)

• initial distribution: π ∈ Rn where πi = P(h1 = i)

An HMM defines a probability distribution over all possible sequences of observations, the probability of a given
sequence x1x2x3 . . . xk:

P(x1x2x3 . . .xk) =

n∑
i1=1

P(h1 = i1)P(o1 = x1|h1 = i1)

n∑
i2=1

P(h2 = i2|h1 = i1)P(o2 = x2|h2 = i2)

n∑
i3=1

P(h3 = i3|h2 = i2)P(o3 = x3|h3 = i3) · · ·
n∑

ik=1

P(hk = ik|hk−1 = ik−1)P(ok = xk|hk = ik)

We can rewrite this expression in matrix form using the initial state distribution vector π, as well as the transition and
observation probabilities T and O.

P(x1x2x3...) =
∑
i1

πi1Ox1,i1

∑
i2

Ti1,i2Ox2,i2

∑
i3

Ti2,i3Ox3,i3 . . .

For the last step, we notice similarities between this computation and the one of a WA. In particular, we note that the
following terms of the HMM product can be rewritten in terms of the following parameters of a WA:

α0 = π

(Ax)i,j = Ox,iTi,j

Ax = diag (Ox,1,Ox,2 . . .Ox,n) T

4

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

As a result, we transform the HMM’s product of sums above into an equivalent WA computation:

P(x1x2x3...) = α>0 Ax1Ax2 . . .Axk1 where α0 = Π, α∞ = 1

This transformation from an arbitrary HMM to a corresponding WA leads us to the following property:

Proposition 3. Any probability distribution computed by a HMM can be computed by a WA.

5 Learning WAs and HMMs
In the previous section, we showed that HMMs can be transformed into weighted automata, but how can we use this
to learn HMMs?

Traditionally, when learning an HMM, we are interested in learning the observation and transition probabilities, O
and T respectively. Since, as described, we only see observations o, we resort to attempting to learn these quantities
from data. Naively, one can use maximum likelihood estimation (MLE), but will see quickly that the MLE maximiza-
tion becomes intractable. Instead, traditionally, we use an algorithm called expectation-maximization (EM). While the
details of EM will not be covered here, the basic idea is that we estimate both quantities of interest simultaneously,
holding one constant while maximizing the other, and then switching the roles. Although EM makes the problem
tractable, it is not guaranteed to converge to the global optimum.

In the following paragraphs, we define important properties of WAs and their mappings f .

Definition 4. (Minimality of Weighted Automata)
A weighted automata is minimal if its number of states is minimal. That is, A is minimal if and only if any WA B such
that fA = fB has at least as many states as A Equivalently, a minimal WA for a function f : Σ∗ will be the smallest
model that can compute f (assuming that it exists).

Definition 5. (Rank of f)
Given a function f : Σ∗ → R, the rank of f is the number of states of a minimal WA computing f (if f cannot be
computed by a WA, we let rank(f) =∞).

We now define the crucial notion of Hankel matrix. Given f : Σ∗ → R, a Hankel matrix is a bi-infinite matrix whose
rows and columns are indexed by words on Σ, H ∈ RΣ∗×Σ∗

, defined by (Hf)uv = f(uv) for any u, v ∈ Σ∗. Here
uv represents the concatenation of u and v; we will often call u a prefix and v a suffix. In other words, the rows can
be thought of all prefixes that can be made from the alphabet, columns all the suffixes.
The following fundamental and surprising results relates the rank of the Hankel matrix with the size of a WA computing
the corresponding function.

Theorem 6. Let f : Σ∗ → R. Its Hankel matrix Hf ∈ RΣ∗×Σ∗
is a bi-infinite matrix defined by (Hf)u,v = f(uv).

We have rank(Hf) = rank(f).

From a machine learning perspective, this theorem is very relevant because its proof is constructive: given a low rank
factorization of the Hankel matrix, it shows how one can recover a WA computing the corresponding function. We
will see that this can be leveraged to recover (or approximate) an underlying WA from an estimation of the Hankel
matrix Hf . In practice, we construct a subblock of Hf , take the SVD of that subblock, and use the resulting low-rank
approximation to recover the WA that best models the training data.

Proposition 7. WAs are invariant under change of basis.

Proof. Let B = (β0, {Bσ}σ∈Σ,β∞) be the WA defined by

β>0 = α>0 M

Bσ = M−1AσM

5

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

β∞ = M−1α∞

where M is an invertible matrix. Now, we want to show that for any word x, the two functions are equivalent.
For any x,

fB = α>0 MM−1AxMM−1α∞

which, after the full multiplication, reduces to:

fB = α>0 Axα∞ = fA

So we can conclude that both WA A and B compute the same function, if B is just A under a change of basis:

fB = fA

We will now prove Theorem 6. We want to show that the rank of the Hankel matrix (Hf) is exactly equal to the rank
of the function f . We will construct this proof in two parts: since we’d like to show that x = y, we will first show that
x ≤ y, and then y ≤ x.

Proof. Here we show that rank(H) ≤ rank(f), which we do by showing that for any WA withm states that computes
f , the rank(H) is smaller than m.

1. Let weighted automata A = (α0,A
σ}σ∈Σ,α∞) with m states

2. Let Hu,v = f(u, v) = (αT0 Au)(Avα∞), which is true for all prefixes, suffixes u, v.

3. We can rewrite the Hankel matrix as H = PS, where P ∈ RΣ∗×m =

(
— αT0 Au —

)
u∈Σ∗

and S ∈

Rm×Σ∗
=

(
— Avα∞ —

)T
v∈Σ∗

, which is the rank-m factorization of the Hankel matrix.

4. We know that the rank of a matrix product AB ≤ min(rank(A), rank(B)), and since we know that the rank
of a matrix is given by themin(rows, cols), we know that the rank(H) ≤ m = rank(f), if the WA associated
with f is minimal.

From the proof above, we see that the minimal WA associated with f induces the rank of the Hankel matrix. We know
show that rank(f) ≤ rank(H).
We do this by showing that if the rank(Hf) = m, then we can find a WA with m states computer f , which will allow
us to conclude that rank(f) ≤ m (since rank(f) is the size of the smallest WA computing f).

1. For each x ∈ Σ∗, we define Hx ∈ RΣ∗×Σ∗
by (Hx)u,v = f(uxv)

2. We can now rewrite (Hx)uv = αT0 AuAxAvα∞, which gives us the factorization Hx = PAxS.

3. If we assume that P,S are full rank and are given, and that P is left-invertible, and S is right invertible, we can
recover Ax = P+HxS+, where the + superscript denotes the pseudo-inverse operation.

4. We note that since H = Hλ, where λ is the empty word, (Hx)uv = Hu,xv = Hux,v , which implies that any
row of Hx is a row of H. Similarly, any columns of Hx is a row ofH . Consequently the row space (respectively
column space) of Hx is a subspace of the row space (respectively column space) of H .

5. To prove our property of interest: that rank(f) ≤ rank(H), we let m = rank(H) and let H = PS be any
rank-m factorization of H (note that this implies that P ∈ RΣ∗×m and S ∈ Rm×Σ∗

are both full rank).

6. We construct a weighted automata A = (α0, {Aσ}σ∈Σ,α∞) with m states that computes f .

7. For each σ ∈ Σ, let Aσ ∈ Rm×m = P+HσS+, αT0 = Pλ,: (first row), and α∞ = S:,λ (first column).

6

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

8. We claim that for any word x = x1x2...xk ∈ Σ∗, we have Ax = Ax1Ax2 ..Axk = P+HxS+. First, for any
x ∈ Σ∗ let Πx ∈ RΣ∗×Σ∗

be defined by Πu,v = 1 if u = xv and 0 otherwise, for all u, v ∈ Σ∗. One can easily
check that Hx = HΠx and Πxy = ΠxΠy for all x, y,∈ Σ∗. Now, suppose the hypothesis true for given words
x and y (the base case for the induction is immediate), we have

Axy = AxAy = P+HxS+P+HyS+.

Using the fact that Hy = HΠy = PSΠy it follows that

Axy = P+HxS+SΠyS+

but since S+S is the projection onto the row space of H, which contains the row space of Hx, it follows that
HxS+S = Hx and

Axy = P+HxΠyS+ = P+HΠxΠyS+ = P+HΠxyS+ = P+HxyS+.

9. It follows from the previous step that

fA(x) = αT0 P+HxS+α∞ = (PP+HxS+S)λ,λ = (Hx)λ,λ = f(λxλ) = f(x)

for all x ∈ Σ∗.

The last step of the proof deserves a closer look. Why within (PP+HxS+S)λ,λ, do PP+ and S+S act like the
identity, when we know they are not the identity?

From previous lectures, we know that PP+ and S+S are projection matrices, but since PP+ is a projection onto the
range of H, and since the range of Hx is a subspace of the range of H (same with S+S with the rowspace), we know
that they operate like the identity on these subspaces.

This shows us that if we had the Hankel matrix, we could recover the associated weighted automata. But, since we
don’t have the Hankel matrix, what can we do to approximate it? In particular, we can never hope to have access to
the infinite Hankel matrix. The following corollary shows that having access to only a sub-block of the Hankel matrix
is sufficient.

Corollary 8. Let f : Σ∗ → R be a function of rank m. Let P,S ⊆ Σ∗ be such that λ ∈ P ∩ S and such that the
subblock H̃f ∈ RP×S of the full Hankel matrix satisfies rank(H̃f) = rank(Hf) = m

Then, for any rank-m factorization H̃f = PS, the WA A = (α0, {Aσ}σ∈Σ,α∞), where αT0 = Pλ,: (first
row), and α∞ = S:,λ (first column), Aσ = P+H̃σS+, where H̃σ ∈ RP×S are the matrices defined by
(H̃σ)u,v = f(uσv) for all u ∈ P, v ∈ S, is such that fA = f .

6 Practical Considerations
In the basic setup where the data are strings sampled from probability distribution on Σ∗, Hankel matrix is estimated
by empirical probabilities, and factorization and low-rank approximation is computed using SVD, the overall learning
process can be summarized as following:

(i) Choose P,S ⊆ Σ∗

(ii) Estimate H,Hσ ∈ RP×S from the training data.

(iii) Perform rank m factorization (m can be considered as the hyper-parameter) H ≈ PS (using SVD)

(iv) α>0 = Pλ,:, and α∞ = S:,λ and Aσ = P+H̃σS+

7

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

We give some important notes about the previous steps (i) and (ii) above. First, the pairP,S defining the sub-block and
are called basis, P must contain strings reaching each possible state of the WA and S must contain string producing
different outcomes for each pair of states in the WA; which are prefixes and suffixes respectively. There are some
approaches to choose them, the following are different approaches for doing that

(i) (a) Choose all words of length ≤ K for P and S [3]

(b) Identify all prefixes and suffixes in the training data. [1]

(c) Take K most frequent prefixes and suffixes [2]

(ii) In this note will discuss how can we estimate the Hankel matrix: if f is a probability distribution, this would
be an easy task as we can just use empirical probabilities in the training data to fill the entries of H. For
example, suppose that the training data is of the form D = (aa, aa, ab, abb, abb, a, ab, λ, λ, ...), we can use
the empirical probability distribution of the training set to build the Hankel matrix with rows represent P and
columns represent S which we have identified from the training data, and the matrix values will be the empirical
frequencies:

H̃ =


0.02 0.15

...
...

...
...

...
...

...
...

...
...

...
...


Let us now consider the case where f is not a probability distribution. In this case, we can assume that our
training data consists of pairs of input/output examples, but in this case there are entries in the Hankel matrix
corresponding to words that we never saw in the training data. What should we do here? (note that when f was
a probability it made sense to put 0 for words that we did not see in the training data). Let’s look at the following
example: D = {(a, 0.5), (b, 1), (aa, 2), ...} ⊆ Σ∗R. The the Hankel matrix would look like

H̃ =

 ? 0.5 −1
0.5 2 ?
−1 ? ?


Here, we need to guess the blanks in the data matrix, denoted by (?), i.e. we need to perform matrix completion
on the Hankel matrix H before performing the SVD step of the spectral method.

The task of matrix completion is often encountered in recommender systems, where the entries of a matrix are,
for instance, categorical values of ratings. Suppose that we have the following matrix with missing entries:

M =

 1 2 4
? 4 ?
−1 ? ?


The task of matrix completion asks to fill the missing entries in this matrix. Without further assumptions, this is
an ill-posed problem, we could put whatever values we want to fill the missing entries! However, if you know
that the rank of M is 1, then there is now a unique choice of values to use for filling the blanks... This is the
main idea between matrix completion: one can leverage the fact the a matrix is of low rank to fill its missing
entries. Ideally, if a matrix is of rank R, we would like to be able to recover all of its entries after observing only
O(nR) entries (which is the order of the number of parameters needed to specify a rank R matrix, using e.g.
the SVD parametrization).

7 WAs as recurrent models
In this last section, we briefly show a high level view of WA showing how they relate to other models such as RNNs.
We also present how the WA model can naturally be extended to the setting of input sequences of continuous vectors
instead of discrete symbols.
Let us give a generic definition of a recurrent model subsuming both WAs, RNNs and HMMs:

8

IFT 6760A - Matrix and tensor factorization for machine learning Lecture 7: January 31, 2019

Definition 9. Recurrent model
A recurrent model maps a sequence of inputs x1,x2, ...,xk ∈ X to:

(i) A sequence of latent states h1,h2, ...,hk ∈ Rn where
ht = φ(ht−1,xt) for some recurrent function φ : Rm ×X → Rm

(ii) Sequence of outputs y1,y2, ...,yk ∈ Rp where
yt = ψ(ht) for some output function ψ : Rm → Rp

Example: for a WA A = (α0,A
σ,α∞)

h0 = α0

ht = φ(ht−1, σt) = (Aσ)>ht−1 (*)

yt = ψ(ht) = α>∞ht

Now, let T ∈ RΣ×m×m be defined by Tσ,:,: = Aσ for each σ ∈ Σ. We can rewrite equation (*) as:

ht = T •1 eσ •2 ht−1

where eσ ∈ RΣ is the one hot encoding of the symbol σ.This suggests a natural generalization of WA where instead
of restricting inputs to be one-hot encodings of symbols from a discrete alphabet, we allow continuous vectors as
inputs [4]:
Continuous WA: A continuous WA is a tuple A = (α0, T ,α∞) where T ∈ Rd×m×m computing the function

fA(x1,x2, ...,xk) = h>k α∞

where each xi ∈ Rd is a vector and teh sequence of latent states Hi is recursaively defined by

h0 = α0

ht = T •1 xt •2 ht−1

References
[1] R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component analysis problem. In

Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pages 33–40, 2009.
ISBN 978-1-60558-516-1.

[2] B. Balle, X. Carreras, F. M. Luque, and A. Quattoni. Spectral learning of weighted automata. Machine Learning,
96:33–63, 2013.

[3] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov models, 2008.

[4] G. Rabusseau, T. Li, and D. Precup. Connecting weighted automata and recurrent neural networks through spectral
learning. arXiv preprint arXiv:1807.01406, 2018.

9

	Summary
	Intuition
	[Quick Review] HMMs
	Automata
	Learning WAs and HMMs
	Practical Considerations
	WAs as recurrent models

