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Outline of the presentation

● Understanding the classical algorithm for spectral clustering

● 3 limits of the classical method and how to overcome them

● Conclusion
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Understanding spectral clustering

● K-means limitations: 
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● Clustering definition: “The intuition of clustering is to separate points in different groups according
         to their similarities”

Motivations:



Understanding spectral clustering
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Finding connected components in the perfect case:

Assumption: The data is already given with the knowledge of pairwise similarity
 

   Number of clusters = number of connected components in the graph (« perfect case ») 

Corresponding adjacency matrix

 

 

5 points in the plane with their similarity links form 2 clusters

 
 

 
 

 

 

 



Indicator vectors

Given a subset of vertices                              we define:

(indicator vector)

where
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Understanding spectral clustering
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Finding connected components in the perfect case:

Definition: • Graph Laplacian 

Theorem: The multiplicity k of the eigenvalue 0 of the graph Laplacian L is equal to the 
number of W - connected components. The eigenspace of the eigenvalue 0 is spanned by the 
indicator vectors of those connected components.

Note: There are other possible definitions of L  , we will stick to the simplest one
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Finding connected components in the perfect case:

Outline of the Proof: - With k = 1, we assume that         is an eigenvector of 0

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vector 1

- For any k, if we name          the graph Laplacian of the i-th component, we have: 

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vectors  
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Finding connected components in the perfect case:

Implications: In our example, let’s take        and         the 2 orthogonal eigenvectors for 0 (L is symmetric, positive  semi-definite).

Then:

And if we concatenate the two vectors in the same matrix          :
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Finding connected components in the perfect case:

Implications: 

Now, if we take the rows of       , we end up with 6 new vectors:

In this new space, we have:                                                                      … which does look like our clusters!

Run a k-mean (with k=2) algorithm on the yi                       Identification of the clusters
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What do we do in reality ?

Algorithm: INPUT: Cloud of N points

• Find the similarities, build the adjacency matrix W and compute L
• Compute the k eigenvectors of L for the eigenvalue 0
• Concatenate them in a matrix
• Run the k-means algorithm in the N rows of 
• Return the labels of the clusters for each point

 
 

Questions: • How do we define the notion of similarity ? How do we build a good adjacency matrix ?

• What if the graph  we build is not « perfect »? The method still works ? Why ?
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Defining a good notion of similarity

• Assumption:    N data points are sampled from a manifold with k connected components

• Goal:  Recover the manifold by building a graph and identify the connected components

• How ?  Define the notion of similarity between pairs of points                  with a kernel like:  



Understanding spectral clustering
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Why does it work in practice ?

Connected clusters Gaussian Kernel

• Graph cut:  This spectral method is used to solve a relaxed problem of graph cut

•  Perturbation theory: The matrices we are working with are not too far from the ideal ones

                 It still works
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Limits:  

Limits of the method and how to overcome them



Limits of the method and how to overcome them
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Avoiding the use of an other clustering algorithm

• What we have access to:

• What we want to have: A matrix C containing, for each data point (i.e row), the one-hot encoding of its cluster

 
 

 
 

 

 

 



Limits of the method and how to overcome them
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Avoiding the use of an other clustering algorithm

 
  

 
 

 
 

 

 

 



Limits of the method and how to overcome them
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Using persistence to find the right number of clusters



Limits of the method and how to overcome them
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Defining a local kernel to counter the effect of non-uniform sampling

 



Limits of the method and how to overcome them
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Defining a local kernel to counter the effect of non-uniform sampling



Conclusion
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Similarity graphs

How to construct a graph matrix from a dataset of points given pairwise similarities (or distances)?

: connect all points with pairwise similarities

(e.g. 2-nearest, simple or mutual)

k-nearest and fully connected => weight the connected edges with pairwise similarities
epsilon-neighborhood => unweighted graph

connect if distance
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Weighted adjacency matrices

Directed graph

Undirected graph
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Degree matrices

Degree of a vertex                       :
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Graph Laplacian matrices

Given an n x n symmetric weight matrix describing the affinity between pairs of points

(for example:                                                                                                 or                                                                                                                     )

Unnormalized

Symmetric

Random walk

Diffusion map
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Graph Laplacian matrices

has the following properties:

●  

●  

●  

●   

is symmetric and positive semi-definite

The smallest eigenvalue is 0, the corresponding eigenvector is
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● => L is positive definite. It is symmetric from the symmetry of W and D.
● The smallest eigenvalue is 0 with the eigenvector 1 because L=D-W (and diagonal elements of D 

are sums of row elements of W)
● Since L is positive positive semi-definite, its eigenvalues are >= 0

26



W-connected components

Classes of points                such that                                                                                                         for some p > 0    

27



W-connected components

THEOREM - The multiplicity k of the eigenvalue 0 of L is the number of W-connected components.             

Moreover, for:                  , the eigenspace associated with 0 is spanned by the indicator functions

of the W-connected components

where
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W-connected components
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PROOF (1/2) - with k = 1, we assume that x is an eigenvector of 0:

=> if two vertices                 are connected (and, recursively, if they are in the same connected 
component), the corresponding       and       must be equal.

(eigenvector of 0)



W-connected components
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PROOF (2/2) - with k distinct connected components

: graph laplacian of the i-th connected component

And the corresponding eigenvectors are the


