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Understanding spectral clustering

Motivations:

e K-means limitations:

e Clustering definition: “The intuition of clustering is to separate points in different groups according
to their similarities”




Understanding spectral clustering

Finding connected components in the perfect case:

Assumption: The datais already given with the knowledge of pairwise similarity

=== Number of clusters = number of connected components in the graph (« perfect case »)
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Understanding spectral clustering

Indicator vectors

Given asubset of vertices 4 ( 1/ we define:

0 otherwise

]-A:(fla...,fn)T where fi:{lifiEA

(indicator vector)



Understanding spectral clustering

Finding connected components in the perfect case:

15] -

OO =R O M

Definition: * Graphlaplacian [ =D —w with D = diag(W1) ;

1 the vector of ones ;
W the adjacency matrix

Theorem: The multiplicity k of the eigenvalue O of the graph Laplacian Lis equal to the

number of W- connected components. The eigenspace of the eigenvalue O is spanned by the
indicator vectors of those connected components.

Note: There are other possible definitions of L , we will stick to the simplest one



Understanding spectral clustering

Finding connected components in the perfect case:

Outline of the Proof:

-Withk =1, we assume that @ is an eigenvector of O

0= Lo =37 wij(pi —9;)* = (Vi,j:wij #0),0: = @;
Then, the eigenspace of the eigenvalue O of Lis spanned by the vector 1
- For any k, if we name L ; the graph Laplacian of the i-th component, we have:
L,
Ly k
L~ | = {1 = U{A

1=1
L,

Then, the eigenspace of the eigenvalue O of Lis spanned by the vectors 15i



Understanding spectral clustering

Finding connected components in the perfect case:

—
(%)
I
OO = O =

Implications:  Inour example, let’s take @1and @, the 2 orthogonal eigenvectors for O (L is symmetric, positive semi-definite).

Then: o} oy
of of
Y1 = Zf:l O‘El)lsi = 04(11) ;P2 = Zf:l a§2)lsl = 0152)
a(zl) O‘g) /agl) a?) \
) ol NONINC
And if we concatenate the two vectors in the same matrix ¢ : ¢ = agl) a:(f)
ag) agz)




Understanding spectral clustering

& ) L =) - )

0.08

0.04

Q‘Cz
Finding connected components in the perfect case: :
Implications:
Now, if we take the rows of ¢, we end up with 6 new vectors:
le) 052)
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2 2 (1) (1) (1) (1) (1)
. a L [0 QL L
2 0 2 d): CY[ll) CY[lz) =Y = (a(l.z)>ay2: (a(zz))ay.'l: (a(lz))ay-l: (a(22)>ay.’): <a(zz)>
(a) 1 @ 1 2 1 2 2
CY2 a2
s oV o
s S In this new space, we have: Y1 =Y3; Y2 =Y+ = Y5 ...which does look like our clusters!
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Understanding spectral clustering

What do we do in reality ?

Algorithm: INPUT: Cloud of N points

e Find the similarities, build the adjacency matrix Wand compute L
Compute the k eigenvectors of L for the eigenvalue O
Concatenate them in a matrix

Run the k-means algorithm in the N rows of

Return the labels of the clusters for each point

Questions: * How do we define the notion of similarity ? How do we build a good adjacency matrix ?

* What if the graph we build is not « perfect »? The method still works ? Why ?
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Understanding spectral clustering

Defining a good notion of similarity

* Assumption: N data points are sampled from a manifold with k connected components
* Goal: Recover the manifold by building a graph and identify the connected components
* How? Define the notion of similarity between pairs of points (x,~, xj) with a kernel like:

R—— o
Wi = b (u) N { 1 if z<1
=

0 otherwise.

e—+0=>k=N
e>+oo=k=1
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Understanding spectral clustering

Why does it work in practice ?

Connected clusters Gaussian Kernel

h(z) = e %4 = W has no 0
= only 1 cluster ?

Ok
o "%

e Graph cut: This spectral method is used to solve a relaxed problem of graph cut Q@

* Perturbation theory: The matrices we are working with are not too far from the ideal ones

= |tstill works
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Limits of the method and how to overcome them

Limits: « Necessity to use another clustering method in the last step
* Necessity to tune an hyperparameter ¢ to find a good number of clusters

« Method doesn’t cope with different density of points within the clusters ( € is global)

\_/

8%

<%® ®

F1G. 3.1. An example with varying densities. Any spectral method that relies on a
single global bandwidth (denoted by the circles) cannot properly divide the example into
three clusters.

U
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Limits of the method and how to overcome them

Avoiding the use of an other clustering algorithm .."

. * C
» What we have access to: 1 (2 \ e 7
agn agz) ( a;’ oy .
1 2
agl) a(22) a(2) ag)
o=k agnls’_ —|a® | ;5 p= vk 0622)15, = | a® ¢ = agl) a?)
o) af
(1) (2) 1 2
4 . \of? ol
«  What we want to have: A matrix C containing, for each data point (i.e row), the one-hot encoding of its cluster
1 0
0 1
C=1]1 0
0 1
0 1 14



Limits of the method and how to overcome them

Avoiding the use of an other clustering algorithm

10 1 0
0 1 0 1
« Wewant: c=11 o but remember that Ig=|[1] 15=1|0 . c
0 1 0 1 ‘_2
n 1 .
0 1
(o) o) 10
w2
“2 % 01|/ m o
Then, if we re-write what we have: ¢ = agl) a?) =11 o ( :1) 22) ) =Cx A
ORNE) 0 1| \%2 %
O(2 (12 01

With A the mixing matrix. Then, if we manageto find what Ais, finding Ciseasy: (0 — qﬁA—l

« Whatis A?...the concatenation of the linearly independent rows of ¢) emsmms easyto find !
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Limits of the method and how to overcome them

Using persistence to find the right number of clusters

We: = h <||1: - -".I'H.z)
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Limits of the method and how to overcome them

Defining a local kernel to counter the effect of hon-uniform sampling

otherwise.

112 o
“'U - h <||Jl .)-IJH ) ) \\"h.ere h(.l‘) — { é lf T < 1
€

Whatwe want:  W;;= 1if x; similar to x;,0 otherwise

Solution: Define alocal notion of « density » q and rescale the kernel with it !

: ||z — y||? )
Wz, y) =} - — |
(z:9) I(f-’(q(-r)q(y))“‘fl

Question: How do wefindq ?
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Limits of the method and how to overcome them

Defining a local kernel to counter the effect of hon-uniform sampling

2. Find a kernel density estimate ¢(z;). For example:

(a) Define the ad hoc bandwidth function p; = \/Zle \|zi — z1iil|?
where I(1, j) is the index of the j-th nearest neighbor of z;.
Tune the bandwidth for the kernel density estimate in steps (b)-(f).
(b) Let & = 2! for I = —30,—29.9, ..., 9.9, 10.

2 ] 0 4 S N = - ‘II_I)l‘.‘:
(c) Compute T; =Y.', _, exp (W)

o - ' log T; —log T} _
(d) Estimate the local power law T; = 4 at each [ by a; = L Eibe s 2{5

logd;—logd;—, -
(e) Estimate the intrinsic dimension d = maxs{a;} and set § =
argmax; {a; }.
(f) Estimate the density
(N — (Aes222\=d/2 -1 5N ==zl
g = q(z;) = (470°p;)~“/*N Z_,:l exp (—;>

46-’,;,[))
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Conclusion
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Similarity graphs

How to construct a graph matrix from a dataset of points given pairwise similarities (or distances)?

: o O
e-neigborhood graph a, © connect if distance << €
. OO0 | 00 O .
k_neares‘[ nelghbor graph 8@ % 6@ C (e.g. 2-nearest, S|mple or mutual)

fully connected graph : connect all points with pairwise similarities > 0

k-nearest and fully connected => weight the connected edges with pairwise similarities
epsilon-neighborhood => unweighted graph
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Weighted adjacency matrices

%ﬁa 2| 2 Directed graph

@/*A\G) 2 | 1 3 W Undirected graph

’UJ”ZO
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Degree matrices

3 15 3

n 5
Degree of avertex v; € V': d; = Z Wi j [ & 3 ] dy = 4
J=1




Graph Laplacian matrices

Given an n x n symmetric weight matrix describing the affinity between pairs of points

(for example: Wz'j =1if HSIZz — :IZJH < € or VVij — 8($i,$j) — eXp_”x;;fjH )
D =W1 Unnormalized Lynw=D—-W

: _ 1 p—1/2 —~1/2
2y =1 1 Symmetric Lsym =1—-D WD
VAV B l“) e Random walk L. =1—D 1w
D =MW1 rw — 4

Diffusion map Lawm = I — f)—lw
24



L has the following properties:

2
Graph Laplacian matrices QF@

n p£T 1 n 2
* VEER", f Lf=35> -1 wij(fi — f;)
° L is symmetric and positive semi-definite
® The smallest eigenvalue is O, the corresponding eigenvector is 1

° 0:)\1§)\2§§)\n
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JLf=§'Df = fWf =3 dif? = 3 fufywi
=1 5,j=1
de _QZfzfwaJ+de wa fj)
i,j=1 BI=E

=> L is positive definite. It is symmetric from the symmetry of W and D.

The smallest eigenvalue is O with the eigenvector 1 because L=D-W (and diagonal elements of D
are sums of row elements of W)

Since L is positive positive semi-definite, its eigenvalues are >=0
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W-connected components

; ”/*P
Classes of points jS such that aji ~ ZCJ lf ’L] # O forsomep >0

; 0| 1] 0 1 [ o | 1
@ 1 [ o | 1 \:(> o | 1| o
0| 1] 0 1 [ o | 1

v
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].A:(fl,...,fn)T where fi:{lifieA

0 otherwise

L=D-WwW

W-connected components

THEOREM - The multiplicity k of the eigenvalue O of L is the number of W-connected components.

Moreover, for: Lun , the eigenspace associated with 0 is spanned by the indicator functions

Lrw ISZ- i=1..k
Ldm of the W-connected components SZ-
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VEER", FTLf =35>0 wi(fi — ;)

W-connected components

PROOF (1/2) - with k = 1, we assume that x is an eigenvector of O:

0= " Lo =737 wijlpi —¢;)* = (Vi,j 1 wi; # 0),0: = ¢;

=> if two vertices V;, U; are connected (and, recursively, if they are in the same connected
component), the corresponding f; and f; must be equal.

k=1= f — 1 (eigenvector of 0)
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W-connected components

PROOF (2/2) - with k distinct connected components

L, L; :graphlaplacian of the i-th connected component

= k= Ui

And the corresponding eigenvectors are the IS-
1
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