SPECTRAL CLUSTERING FROM A GEOMETRICAL VIEWPOINT

Tyrus Berry, Timothy Sauer

Outline of the presentation

- Understanding the classical algorithm for spectral clustering
- 3 limits of the classical method and how to overcome them
- Conclusion

Motivations:

• <u>K-means limitations:</u>

• <u>Clustering definition</u>: "The intuition of clustering is to separate points in different groups according to their similarities"

Finding connected components in the perfect case:

Assumption: The data is already given with the knowledge of pairwise similarity

Number of clusters = number of connected components in the graph (« perfect case »)

 $\boldsymbol{W} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$

5 points in the plane with their similarity links form 2 clusters

Corresponding adjacency matrix

Indicator vectors

Given a subset of vertices $\,A \subset V\,$ we define:

$$\mathbf{1}_A = (f_1, \dots, f_n)^ op$$
 where $f_i = egin{cases} 1 ext{ if } i \in A \ 0 ext{ otherwise} \end{cases}$ (indicator vector)

Finding connected components in the perfect case: $1_{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$

Definition: • Graph Laplacian L = D - W with D = diag(W1); 1 the vector of ones; W the adjacency matrix

<u>Theorem</u>: The multiplicity k of the eigenvalue 0 of the graph Laplacian L is equal to the number of W- connected components. The eigenspace of the eigenvalue 0 is spanned by the indicator vectors of those connected components.

Note: There are other possible definitions of L, we will stick to the simplest one

Finding connected components in the perfect case:

<u>Outline of the Proof:</u> - With $\underline{k} = 1$, we assume that φ is an eigenvector of 0

$$0 = oldsymbol{arphi}^ op oldsymbol{L} oldsymbol{arphi} = \sum_{i,j=1}^n w_{ij} (arphi_i - arphi_j)^2 \Rightarrow (orall i,j:w_{ij}
eq 0), arphi_i = arphi_j$$

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vector 1

- For <u>any k</u>, if we name L_i the graph Laplacian of the i-th component, we have:

$$egin{array}{cccc} oldsymbol{L}\sim egin{pmatrix}oldsymbol{L}_1&&&\&oldsymbol{L}_2&&\&&\ddots&\&&&oldsymbol{L}_k\end{pmatrix} &\Rightarrow \{\lambda\}_L = igcup_{i=1}^k \{\lambda\}_{L_i} \ \end{array}$$

Then, the eigenspace of the eigenvalue 0 of L is spanned by the vectors $\mathbf{1}_{S_i}$

Finding connected components in the perfect case: $1_{S_1} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

 $\langle \alpha^{(1)} \rangle$

Then:

Then:

$$\varphi_{1} = \sum_{i=1}^{k} \alpha_{i}^{(1)} \mathbf{1}_{S_{i}} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2}^{(1)} \\ \alpha_{1}^{(1)} \\ \alpha_{2}^{(1)} \\ \alpha_{2}^{(1)} \end{pmatrix}; \quad \varphi_{2} = \sum_{i=1}^{k} \alpha_{i}^{(2)} \mathbf{1}_{S_{i}} = \begin{pmatrix} \alpha_{1} \\ \alpha_{2}^{(2)} \\ \alpha_{1}^{(2)} \\ \alpha_{2}^{(2)} \\ \alpha_{2}^{(2)} \end{pmatrix}$$
And if we concatenate the two vectors in the same matrix $\boldsymbol{\phi}$:

$$\phi = \begin{pmatrix} \alpha_{1}^{(1)} & \alpha_{1}^{(2)} \\ \alpha_{2}^{(1)} & \alpha_{2}^{(2)} \\ \alpha_{1}^{(1)} & \alpha_{1}^{(2)} \end{pmatrix}$$

; $1_{S_2} =$

 $\langle \alpha^{(2)} \rangle$

0

8

Finding connected components in the perfect case:

Implications:

Now, if we take the rows of ϕ , we end up with 6 new vectors:

$$\phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} \Rightarrow y_1 = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_1^{(2)} \end{pmatrix}, y_2 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}, y_3 = \begin{pmatrix} \alpha_1^{(1)} \\ \alpha_1^{(2)} \end{pmatrix}, y_4 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}, y_5 = \begin{pmatrix} \alpha_2^{(1)} \\ \alpha_2^{(2)} \end{pmatrix}$$

In this new space, we have: $y_1 = y_3$; $y_2 = y_4 = y_5$... which does look like our clusters!

Run a k-mean (with k=2) algorithm on the yi \implies Identification of the clusters

What do we do in reality?

<u>Algorithm:</u> INPUT: Cloud of N points

- Find the similarities, build the adjacency matrix W and compute L
- Compute the k eigenvectors of L for the eigenvalue 0
- Concatenate them in a matrix ϕ
- **Run** the k-means algorithm in the N rows of ϕ
- Return the labels of the clusters for each point

<u>Questions:</u>

- How do we define the notion of similarity ? How do we build a good adjacency matrix ?
 - What if the graph we build is not « perfect »? The method still works ? Why ?

Defining a good notion of similarity

- Assumption: N data points are sampled from a manifold with k connected components
- <u>Goal:</u> Recover the manifold by building a graph and identify the connected components
- <u>How</u>? Define the notion of similarity between pairs of points (x_i, x_j) with a kernel like:

$$W_{ij} = h\left(\frac{||x_i - x_j||^2}{\epsilon^2}\right), \quad \text{where} \quad h(x) = \begin{cases} 1 & \text{if } x < 1\\ 0 & \text{otherwise.} \end{cases}$$

$$egin{array}{ll} \epsilon
ightarrow 0 \Rightarrow k = N \ \epsilon
ightarrow +\infty \Rightarrow k = 1 \end{array}$$

Why does it work in practice ?

Connected clusters

Gaussian Kernel

$$egin{aligned} h(x) &= e^{-x/4} \Rightarrow W \ has \ no \ 0 \ &\Rightarrow only \ 1 \ cluster \ ? \end{aligned}$$

• **Perturbation theory:** The matrices we are working with are not *too far* from the ideal ones

- <u>Limits:</u> Necessity to use another clustering method in the last step
 - Necessity to tune an hyperparameter ϵ to find a good number of clusters
 - Method doesn't cope with different density of points within the clusters (ϵ is global)

FIG. 3.1. An example with varying densities. Any spectral method that relies on a single global bandwidth (denoted by the circles) cannot properly divide the example into three clusters.

Avoiding the use of an other clustering algorithm

- <u>What we have access to:</u> $\varphi_{1} = \sum_{i=1}^{k} \alpha_{i}^{(1)} \mathbf{1}_{S_{i}} = \begin{pmatrix} \alpha_{1}^{(1)} \\ \alpha_{2}^{(1)} \\ \alpha_{1}^{(1)} \\ \alpha_{2}^{(1)} \\ \alpha_{2}^{(1)} \\ \alpha_{2}^{(1)} \end{pmatrix}; \quad \varphi_{2} = \sum_{i=1}^{k} \alpha_{i}^{(2)} \mathbf{1}_{S_{i}} = \begin{pmatrix} \alpha_{1}^{(2)} \\ \alpha_{2}^{(2)} \\ \alpha_{1}^{(2)} \\ \alpha_{2}^{(2)} \\ \alpha_{2}^{(2)} \\ \alpha_{2}^{(2)} \\ \alpha_{2}^{(2)} \end{pmatrix} \qquad \phi = \begin{pmatrix} \alpha_{1}^{(1)} & \alpha_{1}^{(2)} \\ \alpha_{2}^{(1)} & \alpha_{2}^{(2)} \\ \alpha_{1}^{(1)} & \alpha_{1}^{(2)} \\ \alpha_{2}^{(1)} & \alpha_{2}^{(2)} \end{pmatrix}$
- <u>What we want to have</u>: A matrix **C** containing, for each data point (i.e row), the one-hot encoding of its cluster

$$C = egin{pmatrix} 1 & 0 \ 0 & 1 \ 1 & 0 \ 0 & 1 \ 0 & 1 \ 0 & 1 \end{pmatrix}$$

14

Avoiding the use of an other clustering algorithm • <u>We want:</u> $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$ but remember that $1_{S_1} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$; $1_{S_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$ Then, if we re-write what we have: $\phi = \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha_1^{(1)} & \alpha_1^{(2)} \\ \alpha_2^{(1)} & \alpha_2^{(2)} \end{pmatrix} := C \times A$

With **A** the mixing matrix. Then, if we manage to find what **A** is, finding **C** is easy: $C=\phi A^{-1}$

• <u>What is A</u>?....the concatenation of the linearly independent rows of ϕ **easy** to find !

Using persistence to find the right number of clusters

Defining a local kernel to counter the effect of non-uniform sampling

$$W_{ij} = h\left(\frac{||x_i - x_j||^2}{\epsilon^2}\right), \text{ where } h(x) = \begin{cases} 1 & \text{if } x < 1\\ 0 & \text{otherwise.} \end{cases}$$

<u>What we want:</u> $W_{ij} = 1$ if x_i similar to x_j , 0 otherwise

Solution: Define a local notion of « density » q and rescale the kernel with it !

$$W_{\epsilon}(x,y) = h\left(\frac{||x-y||^2}{\epsilon^2(q(x)q(y))^{-1/2}}\right),$$

<u>Question:</u> How do we find q?

Defining a local kernel to counter the effect of non-uniform sampling

- 2. Find a kernel density estimate $q(x_i)$. For example:
 - (a) Define the ad hoc bandwidth function $\hat{\rho}_i = \sqrt{\sum_{j=1}^k ||x_i x_{I(i,j)}||^2}$ where I(i, j) is the index of the *j*-th nearest neighbor of x_i . Tune the bandwidth for the kernel density estimate in steps (b)-(f).
 - (b) Let $\delta_l = 2^l$ for l = -30, -29.9, ..., 9.9, 10.
 - (c) Compute $T_l = \sum_{i,j=1}^N \exp\left(\frac{-||x_i x_j||^2}{4\delta_l^2 \hat{\rho}_i \hat{\rho}_j}\right)$.
 - (d) Estimate the local power law $T_l = \delta_l^a$ at each l by $a_l = \frac{\log T_l \log T_{l-1}}{\log \delta_l \log \delta_{l-1}}$.
 - (e) Estimate the intrinsic dimension $d = \max_{\delta_l} \{a_l\}$ and set $\delta = \operatorname{argmax}_{\delta_l} \{a_l\}$.
 - (f) Estimate the density

$$q_i = q(x_i) = (4\pi\delta^2 \hat{\rho}_i^2)^{-d/2} N^{-1} \sum_{j=1}^N \exp\left(\frac{-||x_i - x_j||^2}{4\delta^2 \hat{\rho}_i \hat{\rho}_j}\right).$$

Conclusion

Bibliography

- Tyrus Berry, Timothy sauer, Spectral clustering from a geometric viewpoint (2015)
- Ulrike Von Luxburg, A tutorial on spectral clustering (2007)

Appendix

Similarity graphs

How to construct a graph matrix from a dataset of points given pairwise similarities (or distances)?

 ϵ -neigborhood graph

k-nearest neighbor graph

connect if distance $<\epsilon$

(e.g. 2-nearest, simple or mutual)

fully connected graph : connect all points with pairwise similarities > 0

k-nearest and fully connected => weight the connected edges with pairwise similarities epsilon-neighborhood => unweighted graph

Weighted adjacency matrices

 $oldsymbol{W}_{ ext{Directed graph}}$

 $oldsymbol{w}_{ij} \geq 0$

Degree matrices

Degree of a vertex
$$v_i \in V$$
: $d_i = \sum_{j=1}^n w_{ij}$

$$D = \begin{pmatrix} d_1 \\ d_2 \\ & \ddots \\ & & d_n \end{pmatrix}$$

$$d_2 = 4$$

1 2 3 4

4

Graph Laplacian matrices

Given an n x n symmetric weight matrix describing the affinity between pairs of points

(for example:
$$W_{ij}=1$$
 if $||x_i-x_j||<\epsilon$ or $W_{ij}=s(x_i,x_j)=\exprac{-\|x_i-x_j\|^2}{2\sigma^2}$)

 $D = W\mathbf{1}$ $\hat{W} = D^{-1}WD^{-1}$ $\hat{D} = \hat{W}\mathbf{1}$

Unnormalized

Symmetric

Random walk

Diffusion map

$$L_{un} = D - W$$

$$L_{sym} = I - D^{-1/2} W D^{-1/2}$$

$$L_{rw} = I - D^{-1} W$$

$$L_{dm} = I - \hat{D}^{-1} \hat{W}$$

L = D - W

Graph Laplacian matrices

	1	2	3	4
1	3.5	-1	-1.5	-1
2	-1	4	-3	
3	-1.5	-3	4.5	6
4	-1	8	3	1

L has the following properties:

•
$$orall oldsymbol{f} \in \mathbb{R}^n, oldsymbol{f}^ op oldsymbol{L}oldsymbol{f} = rac{1}{2}\sum_{i,j=1}^n w_{ij}(f_i-f_j)^2$$

- **L** is symmetric and positive semi-definite
- \bullet The smallest eigenvalue is 0, the corresponding eigenvector is ${f 1}$
- $\bullet \quad \ \ 0=\lambda_1\leq\lambda_2\leq\ldots\leq\lambda_n$

L = D - W

$$f'Lf = f'Df - f'Wf = \sum_{i=1}^{n} d_i f_i^2 - \sum_{i,j=1}^{n} f_i f_j w_{ij}$$
$$= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$

- => L is positive definite. It is symmetric from the symmetry of W and D.
- The smallest eigenvalue is 0 with the eigenvector **1** because L=D-W (and diagonal elements of D are sums of row elements of W)
- Since L is positive positive semi-definite, its eigenvalues are >= 0

W-connected components

Classes of points $\, x_i \,$ such that $\, x_i \, \sim \, x_j \,$ $\, ext{if} \, W^p_{ij} \,
eq 0 \,$ for some p > 0

 $\mathbf{1}_A = (f_1, \dots, f_n)^ op$ where $f_i = egin{cases} 1 ext{ if } i \in A \ 0 ext{ otherwise} \ L = D - W \end{cases}$

W-connected components

$$orall oldsymbol{f} \in \mathbb{R}^n, oldsymbol{f}^ op oldsymbol{L}oldsymbol{f} = rac{1}{2}\sum_{i,j=1}^n w_{ij}(f_i-f_j)^2$$

W-connected components

PROOF (1/2) - with $\underline{k = 1}$, we assume that **x** is an eigenvector of 0:

$$0 = oldsymbol{arphi}^ op oldsymbol{L} oldsymbol{arphi} = \sum_{i,j=1}^n w_{ij} (arphi_i - arphi_j)^2 \Rightarrow (orall i,j:w_{ij}
eq 0), arphi_i = arphi_j$$

=> if two vertices v_i , v_j are connected (and, recursively, if they are in the same connected component), the corresponding f_i and f_j must be equal.

 $k=1\Rightarrow oldsymbol{f}=oldsymbol{1}$ (eigenvector of 0)

L = D - W

W-connected components

PROOF (2/2) - with k distinct connected components

And the corresponding eigenvectors are the $\mathbf{1}_{S_i}$