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Problem

• Recurrent Neural Networks (RNN) are

very successful for sequence modeling

• But are difficult to train for very high

dimensional inputs due to large

input-hidden weight matrix

• E.g. Input video frame of size

160x120x3 (57, 600 features) would

require 5,760,000 weights for a hidden

layer of 100 neurons.
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Possible Approaches

• CNN-RNN model: CNN extracts compact representation and RNN

learns temporal information.

• Impractical for large video datasets.

• Focus on the CNN, and constrain the sequence length of the RNN1:

• Cannot scale to long videos.

• Use embeddings from pretrained CNN as input2

• Not trained end-to-end, suboptimal parameters

• CNNs are pretrained on image datasets, which can be of totally

different nature than video frames

1Donahue et al. (2015), and Srivastava et al. (2015)
2Donahue et al. (2015), Ng et al. (2015), and Sharma et al.
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Proposed Solution

• Reduce the number of parameters in input-to-hidden layer by

factorizing the Weight matrix using Tensor-Train decomposition

(a) Allows the use of raw pixels as the input to the RNN

(b) Can be easily trained end-to-end

(c) Captures the correlation between spatial and temporal patterns, as

the input-to-hidden and hidden-to-hidden are trained jointly
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Some kind of history

1. Oseledets (2011) introduced Tensor-Train Decomposition in 2011

2. Lebedev et al. (2014) used CP factorization in order to compress the

convolutional layers in a network, which is then finetuned.

3. Novikov et al. (2015) used TT Decomposition to compress the Fully

Connected layers of a network, which is then trained from scratch.

4. Garipov et al. (2016) extended the work of Novikov et al. (2015) and

used TT decomposition to compress Convolutional Layers as well.

5. This work extended the work of Novikov et al. (2015) and used TT

decomposition to factorize the input-to-hidden mapping in RNN, so

as to succeed in using RNNs with videos.
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TT-train factorization

For T ∈ Rd1×d2×···×dd :

T

d1 d2

dd

G 1

d1

r1
G 2

d2

r2
G d

dd

rd−1

Where r1, r2, · · · , rd−1 are the TT-ranks (r0 and rd are always 1)
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TT-MLP

Before reshaping and TT, input x ∈ RM , output y ∈ RN , weights

W ∈ RM×N , biases b ∈ RN :

xW + b = y

x

M
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N

W

M

N

b

N
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TT-MLP

After reshaping and TT, X ∈ Rm1×m2×···×md , Y ∈ Rn1×n2×···×nd ,

W ∈ R(m1×n1)×(m2×n2)×···×(md×nd ), B ∈ Rn1×n2×···×nd
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Recurrent Neural Networks

In a simple RNN, the cell A is defined as:

h[t] = tanh(Wx[t] + Uh[t−1] + b)
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Gated Recurrent Unit (GRU)

• In practice, A is typically a GRU (or LSTM cell).

• For GRU:

r [t] = σ(Wrx[t] + Urh[t−1] + br )

z [t] = σ(Wzx[t] + Uzh[t−1] + bz)

h̃[t] = tanh(Wdx[t] + Ud(r [t] ∗ h[t−1]) + bd)

h[t] = (1− z [t]) ∗ h[t−1] + z [t] ∗ h̃[t]
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Tensor-Train GRU (TT-GRU)

• We replace the input-to-hidden layer connection with a Tensor-Train

layer (TTL)

r [t] = σ(TTL(Wr , x[t]) + Urh[t−1] + br )

z [t] = σ(TTL(Wz , x[t]) + Uzh[t−1] + bz)

h̃[t] = tanh(TTL(Wd , x[t]) + Ud(r [t] ∗ h[t−1]) + bd)

h[t] = (1− z [t]) ∗ h[t−1] + z [t] ∗ h̃[t]

• Compression rate

r =

∑d
k=1 mknk rk−1rk∏d

k=1 mknk
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TT-GRU Implementation Trick

• Concatenate the gates as one output tensor.

• TT-GRU factorizes this tensor once, instead of factorizing each gate

successively.

• Parallelizes computation and further reduces number of parameters

r∗ =

∑d
k=1 mknk rk−1rk + (c − 1)(m1n1r0r1)

c .
∏d

k=1 mknk

where c is the number of TTLs
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Video Classification

For a classification task (eg video classification):

P(yi = 1|{x [t]i }
Ti
t=1) = φ(h

[Ti ]
i )
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Compression with TT-RNNs

• Consider video frames of size 160x120x3 = 57, 600 pixels reshaped

as 8x20x20x18

• Hidden layer of size 256, reshaped as 4x4x4x4

Figure 1: Number of parameters for the different settings
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Experiment 1

UCF11 Dataset

• 1600 video clips

• 11 classes (basketball shooting, biking, diving, etc)
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Experiment 1

Figure 2: Experimental results

Figure 3: Comparison to state-of-the-art results
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Experiment 2

Hollywood2 Dataset

• 1707 video clips from 69 movies

• 12 (non-exclusive) classes. E.g. answering the phone, driving,

eating, fighting, etc
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Experiment 2

Figure 4: Experimental results

Figure 5: Comparison to state-of-the-art results
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Experiment 3

YouTube Celebrities Face Data

• 1910 YouTube video clips

• 47 prominent individuals such as movie stars and politicians
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Experiment 3

Figure 6: Experimental results

Figure 7: Comparison to state-of-the-art results
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Summary

• Compressing input-hidden weights in RNN using TT factorization.

• Drastic reduction in number of parameters, still with competitive

performance.

• Applicable to other kind of data, not just video.

• Ideas extend beyond RNN - MLP, CNNs as well.

• Other applications:

• Deployment of DL models to smart devices.

• Faster iteration in scientific process.
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Questions?
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