#### Multitask Spectral Learning of Weighted Automata

Guillaume Rabusseau, Borja Balle and Joelle Pineau IVADO - McGill University - Reasoning and Learning Lab



#### July 16, 2018 MAGNET Seminar - Lille

Supervised Learning:

Supervised Learning:

- Classical learning algorithms assume  $\mathcal{X} = \mathbb{R}^d$  and  $\mathcal{Y} = \mathbb{R}^p$ .
- How to handle input/output structured data?

Supervised Learning:

- Classical learning algorithms assume  $\mathcal{X} = \mathbb{R}^d$  and  $\mathcal{Y} = \mathbb{R}^p$ .
- How to handle input/output structured data?
  - ► Tensor structured data: Images, videos, spatio-temporal data, ...



$$\in \mathbb{R}^{32 \times 32 \times 3} \simeq \mathbb{R}^{3072}$$

Supervised Learning:

- Classical learning algorithms assume  $\mathcal{X} = \mathbb{R}^d$  and  $\mathcal{Y} = \mathbb{R}^p$ .
- How to handle input/output structured data?
  - ► Tensor structured data: Images, videos, spatio-temporal data, ...
  - Discrete structured data: strings, trees, graphs, ...



Supervised Learning:

- Classical learning algorithms assume  $\mathcal{X} = \mathbb{R}^d$  and  $\mathcal{Y} = \mathbb{R}^p$ .
- How to handle input/output structured data?
  - ► Tensor structured data: Images, videos, spatio-temporal data, ...
  - Discrete structured data: strings, trees, graphs, ...
- In both cases, one can leverage linear and tensor algebra to design learning algorithms.

#### Outline

- Weighted Automata (WA) and Spectral Learning
- 2 Multitask Learning of Weighted Automata
- 3 Experiments
  - 4 Conclusion

# Weighted Automata (WA) and Spectral Learning

#### **Problem Statement**

• How can one learn with structured objects such as strings and trees?



• Intersection of Theoretical Computer Science and Machine Learning...

#### **Problem Statement**

• How can one learn with structured objects such as strings and trees?



Intersection of Theoretical Computer Science and Machine Learning...

→ Weighted Automata: robust model to represent functions defined over structured objects (and in particular probability distributions).

#### **Problem Statement**

• How can one learn with structured objects such as strings and trees?



Intersection of Theoretical Computer Science and Machine Learning...

- → Weighted Automata: robust model to represent functions defined over structured objects (and in particular probability distributions).
  - String Weighted Automata (WA): generalize *Hidden Markov Models*, *Predictive State Representations* and closely related to *RNNs*.

#### String Weighted Automata (WA)

- $\Sigma$  a finite alphabet (e.g.  $\{a, b\}$ ),  $\Sigma^*$  strings on  $\Sigma$  (e.g. *abba*)
- A WA computes a function  $f: \Sigma^* \to \mathbb{R}$

#### String Weighted Automata (WA)

- $\Sigma$  a finite alphabet (e.g.  $\{a, b\}$ ),  $\Sigma^*$  strings on  $\Sigma$  (e.g. *abba*)
- A WA computes a function  $f: \Sigma^* \to \mathbb{R}$
- Weighted Automaton:  $A = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\omega})$  where

$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \sigma \in \boldsymbol{\Sigma} \end{split}$$

#### String Weighted Automata (WA)

- $\Sigma$  a finite alphabet (e.g.  $\{a, b\}$ ),  $\Sigma^*$  strings on  $\Sigma$  (e.g. *abba*)
- A WA computes a function  $f: \Sigma^* \to \mathbb{R}$
- Weighted Automaton:  $A = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\omega})$  where

$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \end{split}$$

• A computes a function  $f_A : \Sigma^* \to \mathbb{R}$  defined by

$$f_{\mathcal{A}}(\sigma_1\sigma_2\cdots\sigma_k) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2}\cdots \mathbf{A}^{\sigma_k} \boldsymbol{\omega}$$



#### Weighted Automata and Representation Learning



• A WA induces a mapping  $\phi: \Sigma^* \to \mathbb{R}^n \ (\sim \text{ word embedding})$ 

#### Weighted Automata and Representation Learning



- A WA induces a mapping  $\phi: \Sigma^* \to \mathbb{R}^n \ (\sim \text{ word embedding})$
- The mapping  $\phi$  is compositional:

$$\phi(\lambda) = \boldsymbol{\alpha}^{\top}, \ \phi(\sigma_1) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1}, \ \phi(\sigma_1 \sigma_2) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} = \phi(\sigma_1) \mathbf{A}^{\sigma_2}, \ \dots$$

#### Weighted Automata and Representation Learning



- A WA induces a mapping  $\phi: \Sigma^* \to \mathbb{R}^n$  (~ word embedding)
- The mapping  $\phi$  is compositional:

$$\phi(\lambda) = \boldsymbol{\alpha}^{\top}, \ \phi(\sigma_1) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1}, \ \phi(\sigma_1 \sigma_2) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} = \phi(\sigma_1) \mathbf{A}^{\sigma_2}, \ \dots$$

• The output  $f_A(x) = \langle \phi(x), \omega \rangle$  is linear in  $\phi(x)$ .

## Spectral Learning of Weighted Automata

#### Hankel matrix

$$H \in \mathbb{R}^{\sum^{\star} \times \sum^{\star}}$$
$$p \cdot s = p' \cdot s' \Rightarrow H(p, s) = H(p', s')$$
$$f : \sum^{\star} \longrightarrow \mathbb{R}$$
$$H_f(p, s) = f(p \cdot s)$$



#### slide credits: Borja Balle

Guillaume Rabusseau

#### Hankel matrix and WA

**Theorem (Fliess '74)** The rank of a *real* Hankel matrix H equals the minimal number of states of a WFA recognizing the weighted language of H

$$A(\mathbf{p}_1\cdots\mathbf{p}_t s_1\cdots s_{t'}) = \alpha^{\top} A_{\mathbf{p}_1}\cdots A_{\mathbf{p}_t} A_{s_1}\cdots A_{s_{t'}} \beta$$



#### slide credits: Borja Balle

Guillaume Rabusseau

#### Hankel matrix: spectral learning



#### slide credits: Borja Balle

Guillaume Rabusseau

Spectral Learning of Weighted Automata

•  $\mathbf{H}_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$ : Hankel matrix of  $f : \Sigma^* \to \mathbb{R}$ 

Definition: prefix p, suffix  $s \Rightarrow (\mathbf{H}_f)_{p,s} = f(ps)$ 

• Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

 $\operatorname{rank}(\mathbf{H}_f) < \infty \iff f$  can be computed by a WA

- Proof is constructive  $\Rightarrow$  Spectral Learning of WA:
  - 1. Estimate a sub-block of  $H_f$  from training data
  - 2. Low rank decomposition  $\mathbf{H} \simeq \mathbf{PS}$
  - 3. Build WA  $\hat{A}$  using **H**, **P** and **S**.
- $\rightarrow$  Efficient and consistent learning algorithms for weighted automata [Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].

## Multitask Learning of Weighted Automata

### Multitask Learning

- Multitask learning: jointly learn multiple related functions.
  - learn to predict rain level, min and max temperatures and sun hours,
  - ▶ predict the next word in sentences in French, Spanish and Catalan.
- This work: Multitask learning of functions defined over sequences.

### Multitask Learning

- Multitask learning: jointly learn multiple related functions.
  - learn to predict rain level, min and max temperatures and sun hours,
  - ▶ predict the next word in sentences in French, Spanish and Catalan.
- This work: Multitask learning of functions defined over sequences.
- Which notion of relatedness?
  - $\rightarrow$  Tasks share a *joint representation space*.
- How to extend the spectral learning algorithm to leverage such relatedness?

#### WAs as Linear Models in a Feature Space

• Computation of a WA A on  $x \in \Sigma^*$ :

- 1. map x to feature vector  $\phi(x) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\times}$  through a compositional feature map  $\phi: \Sigma^* \to \mathbb{R}^n$
- 2. compute final value  $f_A(x) = \langle \phi(x), \omega \rangle$



•  $\phi$  is compositional:  $\phi(x\sigma)^{\top} = \phi(x)^{\top} \mathbf{A}^{\sigma}$ .

### WAs as Linear Models in a Feature Space

- Computation of a WA A on  $x \in \Sigma^*$ :
  - 1. map x to feature vector  $\phi(x) = \alpha^{\top} \mathbf{A}^{x}$  through a compositional feature map  $\phi: \Sigma^* \to \mathbb{R}^n$
  - 2. compute final value  $f_A(x) = \langle \phi(x), \omega \rangle$



- $\phi$  is compositional:  $\phi(x\sigma)^{\top} = \phi(x)^{\top} \mathbf{A}^{\sigma}$ .
- $\phi$  is minimal if  $V = \operatorname{span}(\{\phi(x)\}_{x \in \Sigma^*}) \subset \mathbb{R}^n$  is of dimension n.

#### WAs as Linear Models in a Feature Space

- Computation of a WA A on  $x \in \Sigma^*$ :
  - 1. map x to feature vector  $\phi(x) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\times}$  through a compositional feature map  $\phi: \Sigma^* \to \mathbb{R}^n$
  - 2. compute final value  $f_A(x) = \langle \phi(x), \omega \rangle$



- $\phi$  is compositional:  $\phi(x\sigma)^{\top} = \phi(x)^{\top} \mathbf{A}^{\sigma}$ .
- $\phi$  is minimal if  $V = \operatorname{span}(\{\phi(x)\}_{x \in \Sigma^*}) \subset \mathbb{R}^n$  is of dimension n.
- $\Rightarrow \phi: x \mapsto \alpha^{\top} \mathbf{A}^{x} \text{ is minimal if and only if } (\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \omega) \text{ is minimal.}$

Relatedness between WAs: to which extent two WAs can share a joint feature map  $\phi$ :

$$f_1(x) = \langle \phi(x), \omega_1 
angle \qquad f_2(x) = \langle \phi(x), \omega_2 
angle$$

Relatedness between WAs: to which extent two WAs can share a joint feature map  $\phi$ :

$$f_1(x) = \langle \phi(x), \omega_1 
angle \qquad f_2(x) = \langle \phi(x), \omega_2 
angle$$

• Let 
$$f_1, f_2: \Sigma^* \to \mathbb{R}$$
 of rank  $n_1$  and  $n_2$ . with feature maps  
 $\phi_1: \Sigma^* \to \mathbb{R}^{n_1}$  and  $\phi_2: \Sigma^* \to \mathbb{R}^{n_2}$ .  
•  $\phi = \phi_1 \oplus \phi_2: \Sigma^* \to \mathbb{R}^{n_1+n_2}$  is a joint feature map for  $f_1$  and  $f_2$ :  
 $f_1(x) = \langle \phi(x), \omega_1 \oplus \mathbf{0} \rangle$  and  $f_2(x) = \langle \phi(x), \mathbf{0} \oplus \omega_2 \rangle$ 

Relatedness between WAs: to which extent two WAs can share a joint feature map  $\phi$ :

$$f_1(x) = \langle \phi(x), \omega_1 
angle \qquad f_2(x) = \langle \phi(x), \omega_2 
angle$$

• Let 
$$f_1, f_2: \Sigma^* \to \mathbb{R}$$
 of rank  $n_1$  and  $n_2$ . with feature maps  
 $\phi_1: \Sigma^* \to \mathbb{R}^{n_1}$  and  $\phi_2: \Sigma^* \to \mathbb{R}^{n_2}$ .  
•  $\phi = \phi_1 \oplus \phi_2: \Sigma^* \to \mathbb{R}^{n_1+n_2}$  is a joint feature map for  $f_1$  and  $f_2$ :  
 $f_1(x) = \langle \phi(x), \omega_1 \oplus \mathbf{0} \rangle$  and  $f_2(x) = \langle \phi(x), \mathbf{0} \oplus \omega_2 \rangle$ 

but it may not be minimal.

 $\rightarrow$  there may exist another feature map of dimension  $n < n_1 + n_2$ .

Relatedness between WAs: to which extent two WAs can share a joint feature map  $\phi$ :

$$f_1(x) = \langle \phi(x), \omega_1 
angle \qquad f_2(x) = \langle \phi(x), \omega_2 
angle$$

#### but it may not be minimal.

- $\rightarrow$  there may exist another feature map of dimension  $n < n_1 + n_2$ .
  - The smaller n is, the more related  $f_1$  and  $f_2$  are.

#### Vector-Valued WA

- A *d*-dimensional vector-valued weighted finite automaton (vv-WA) with *n* states is a tuple  $A = (\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \mathbf{\Omega})$  where
  - $\alpha \in \mathbb{R}^n$  is the initial weights vector
  - $\mathbf{\Omega} \in \mathbb{R}^{n \times d}$  is the matrix of final weights
  - $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$  is the transition matrix for each  $\sigma \in \Sigma$ .
- A vv-WA computes a function  $\vec{f}_A : \Sigma^* \to \mathbb{R}^d$  defined for each word  $x = x_1 x_2 \cdots x_k \in \Sigma^*$  by

$$ec{f}_{\mathcal{A}}(x_1x_2\cdots x_k)=lpha^{ op}\mathbf{A}^{x_1}\mathbf{A}^{x_2}\cdots\mathbf{A}^{x_k}\mathbf{\Omega}=lpha^{ op}\mathbf{A}^{x}\mathbf{\Omega}.$$

#### Vector-Valued WA

- A *d*-dimensional vector-valued weighted finite automaton (vv-WA) with *n* states is a tuple  $A = (\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \Omega)$  where
  - $\alpha \in \mathbb{R}^n$  is the initial weights vector
  - $\mathbf{\Omega} \in \mathbb{R}^{n \times d}$  is the matrix of final weights
  - $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$  is the transition matrix for each  $\sigma \in \Sigma$ .
- A vv-WA computes a function  $\vec{f}_A : \Sigma^* \to \mathbb{R}^d$  defined for each word  $x = x_1 x_2 \cdots x_k \in \Sigma^*$  by

$$ec{f}_{\mathcal{A}}(x_1x_2\cdots x_k)= oldsymbol{lpha}^{ op}oldsymbol{\mathsf{A}}^{x_1}oldsymbol{\mathsf{A}}^{x_2}\cdotsoldsymbol{\mathsf{A}}^{x_k}oldsymbol{\Omega}=oldsymbol{lpha}^{ op}oldsymbol{\mathsf{A}}^{x}oldsymbol{\Omega}.$$

⇒ Rank of  $\vec{f} = [f_1, f_2] : \Sigma^* \to \mathbb{R}^2$  equal dimension of a minimal joint feature map for  $f_1$  and  $f_2$ .

#### Vector-Valued WA

- A *d*-dimensional vector-valued weighted finite automaton (vv-WA) with *n* states is a tuple  $A = (\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \Omega)$  where
  - $\alpha \in \mathbb{R}^n$  is the initial weights vector
  - $\mathbf{\Omega} \in \mathbb{R}^{n \times d}$  is the matrix of final weights
  - $\mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n}$  is the transition matrix for each  $\sigma \in \Sigma$ .
- A vv-WA computes a function  $\vec{f}_A : \Sigma^* \to \mathbb{R}^d$  defined for each word  $x = x_1 x_2 \cdots x_k \in \Sigma^*$  by

$$ec{f}_{\mathcal{A}}(x_1x_2\cdots x_k)= oldsymbol{lpha}^{ op}oldsymbol{\mathsf{A}}^{x_1}oldsymbol{\mathsf{A}}^{x_2}\cdotsoldsymbol{\mathsf{A}}^{x_k}oldsymbol{\Omega}=oldsymbol{lpha}^{ op}oldsymbol{\mathsf{A}}^{x}oldsymbol{\Omega}.$$

- ⇒ Rank of  $\vec{f} = [f_1, f_2] : \Sigma^* \to \mathbb{R}^2$  equal dimension of a minimal joint feature map for  $f_1$  and  $f_2$ .
- $\Rightarrow \max\{\operatorname{rank}(f_1), \operatorname{rank}(f_2)\} \leq \operatorname{rank}([f_1, f_2]) \leq \operatorname{rank}(f_1) + \operatorname{rank}(f_2).$

#### Example

• Consider the following count functions:

$$\begin{cases} f_1(x) = 0.5|x|_a + 0.5|x|_b \\ f_2(x) = 0.3|x|_b - 0.6|x|_c \\ f_3(x) = |x|_c \end{cases}$$

#### Example

• Consider the following count functions:

$$\begin{cases} f_1(x) = 0.5|x|_a + 0.5|x|_b \\ f_2(x) = 0.3|x|_b - 0.6|x|_c \\ f_3(x) = |x|_c \end{cases}$$

We have

- rank(f<sub>2</sub>) = 4 = rank([f<sub>2</sub>, f<sub>3</sub>])
   rank([f<sub>1</sub>, f<sub>3</sub>]) = 6 = rank(f<sub>1</sub>) + rank(f<sub>3</sub>)
   rank(f<sub>1</sub>) = rank(f<sub>1</sub>) ≤ rank(f<sub>1</sub>) = rank(f<sub>1</sub>) = rank(f<sub>1</sub>) = rank(f<sub>2</sub>) = rank(f<sub>1</sub>) = rank(f<sub>2</sub>) = rank(f<sub>1</sub>) = rank(f<sub>2</sub>) = rank(f<sub>1</sub>) = rank(f<sub>1</sub>) = rank(f<sub>2</sub>) = rank(f<sub>2</sub>) = rank(f<sub>1</sub>) = rank(f<sub>2</sub>) = rank(f<sub>2</sub>) = rank(f<sub>1</sub>) = rank(f<sub>1</sub>
- ▶  $rank(f_1) = rank(f_2) < rank([f_1, f_2]) < rank(f_1) + rank(f_2)$

# Spectral Learning of Vector-Valued Weighted Automata

#### Spectral Learning of vv-WAs

• Hankel tensor  $\mathcal{H} \in \mathbb{R}^{\Sigma^* \times d \times \Sigma^*}$  associated with a function  $\vec{f} : \Sigma^* \to \mathbb{R}^d$ 

$$\mathcal{H}_{u,:,v} = ec{f}(uv) \;\; ext{for all} \;\;\; u,v \in \Sigma^*.$$

**Theorem** [Vector-Valued Fliess Theorem] For any  $\vec{f} : \Sigma^* \to \mathbb{R}^d$ , rank $(\vec{f}) = \operatorname{rank}(\mathcal{H}_{(1)})$ , where  $\mathcal{H}_{(1)} = [\mathcal{H}_{:,1,:} \ \mathcal{H}_{:,2,:} \ \cdots \ \mathcal{H}_{:,d,:}]$  is the flattening of the Hankel tensor.

#### Spectral Learning of vv-WAs

• Hankel tensor  $\mathcal{H} \in \mathbb{R}^{\Sigma^* \times d \times \Sigma^*}$  associated with a function  $\vec{f} : \Sigma^* \to \mathbb{R}^d$ 

$$\mathcal{H}_{u,:,v}=ec{f}(uv)$$
 for all  $u,v\in\Sigma^*.$ 

**Theorem** [Vector-Valued Fliess Theorem] For any  $\vec{f} : \Sigma^* \to \mathbb{R}^d$ , rank $(\vec{f}) = \operatorname{rank}(\mathcal{H}_{(1)})$ , where  $\mathcal{H}_{(1)} = [\mathcal{H}_{:,1,:} \ \mathcal{H}_{:,2,:} \ \cdots \ \mathcal{H}_{:,d,:}]$  is the flattening of the Hankel tensor.

- Spectral learning of vv-WAs. A vv-WA computing  $\vec{f}$  can be recovered from any rank *n* factorization of  $\mathcal{H}_{(1)}$ :
  - 1. Let  $\mathcal{H}_{(1)} = \mathbf{P}\mathcal{S}_{(1)}$  with  $\mathbf{P} \in \mathbb{R}^{\Sigma^* \times n}$  and  $\mathcal{S} \in \mathbb{R}^{n \times d \times \Sigma^*}$ .

2. For each 
$$\sigma \in \Sigma$$
, let  $\mathcal{H}^{\sigma} \in \mathbb{R}^{\Sigma^* \times d \times \Sigma^*}$  be defined by  $\mathcal{H}^{\sigma}_{u,:,v} = \vec{f}(u\sigma v)$  for all  $u, v \in \Sigma^*$ .

3. The vv-WA  $A = (\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \Omega)$  where  $\alpha^{\top} = \mathbf{P}_{\lambda,:}, \Omega = \mathcal{S}_{:,:,\lambda}$ , and  $\mathbf{A}^{\sigma} = \mathbf{P}^{\dagger} \mathcal{H}^{\sigma}_{(1)}(\mathcal{S}_{(1)})^{\dagger}$  is a minimal vv-WA for  $\vec{f}$ .

## Experiments

#### Experiments

- We compare MT-SL with classical spectral learning (SL).
- Evaluation metrics:
  - Perplexity per character:  $perp(h) = 2^{-\frac{1}{M}\sum_{x \in T} log(h(x))}$  where *M* is the number of symbols in the test set *T*.
  - Word error rate (WER): proportion of mis-predicted symbols averaged over all prefixes in the test set (when the most likely symbol is predicted).

#### Synthetic Data

- Randomly generated stochastic WAs following the PAutomaC competition process [Verwer et al., 2012].
- Related WAs: joint feature space of dimension  $d_S = 10$  and task specific space of dimension  $d_T$  (i.e.  $\operatorname{rank}(f_i) = d_S + d_T$  and  $\operatorname{rank}(\vec{f}) = \operatorname{rank}([f_1, \cdots, f_m]) = d_S + md_T)$ .
- Training sample drawn from target task  $f_1$  and training samples of size 5,000 for tasks  $f_2, \dots, f_m$ .

#### Synthetic Data



#### Real Data

- Universal Dependencies treebank [Nivre et al., 2016]: sentences from 33 languages labeled with 17 PoS tags.
- ⇒ Samples drawn from 33 distributions over strings on an alphabet of size 17.
  - For each language, (80%, 10%, 10%)-split between training, validation and test sets.
  - Two ways of selecting related tasks:
    - 1. use all other languages
    - 2. select the 4 closest languages w.r.t. the distance between the (top-50) left singular subspaces of the Hankel matrices.

### Real Data (cont'd)

| Training size     | 100                                                                             | 500                              | 1000                             | 5000                             | all available data               |  |
|-------------------|---------------------------------------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
|                   | Related tasks: all other languages                                              |                                  |                                  |                                  |                                  |  |
| Perplexity        | 7.0744 (±7.76)                                                                  | 3.6666 (±5.22)                   | 3.2879 (±5.17)                   | 3.4187 (±5.57)                   | 3.1574 (±5.48)                   |  |
| WER               | 1.4919 (±2.37)                                                                  | 1.3786 (±2.94)                   | 1.2281 (±2.62)                   | 1.4964 (±2.70)                   | 1.4932 (±2.77)                   |  |
|                   | Related tasks: 4 closest languages                                              |                                  |                                  |                                  |                                  |  |
| Perplexity<br>WER | $\begin{array}{c} 6.0069 \ ( \ \pm 6.76 ) \\ 2.0883 \ ( \pm 3.26 ) \end{array}$ | 4.3670 (±5.83)<br>1.5175 (±2.87) | 4.4049 (±5.50)<br>1.2961 (±2.57) | 2.9689 (±5.87)<br>1.3080 (±2.55) | 2.8229 (±5.90)<br>1.2160 (±2.31) |  |

Table: Average relative improvement over all languages (in %) of MT-SL vs. SL on the UNIDEP dataset (e.g. for perplexity we report  $100 \cdot (p_{\rm SL} - p_{\rm MT-SL})/p_{\rm SL}$ ).

• Cherry picked example: on the Basque task with a training set of size 500, the WER was reduced from  $\sim 77\%$  for SL to  $\sim 71\%$  using all other languages as related tasks, and to  $\sim 68\%$  using the 4 closest tasks (Finnish, Polish, Czech and Indonesian).

### Real Data (cont'd)

Target task

| sian |
|------|
|      |
|      |
| lese |
|      |
|      |
|      |
|      |
| n    |
|      |

4 closest tasks w.r.t. subspace distance (closest first)

Table: Some related tasks used in the UNIDEP experiment.

- Multitask extension of the spectral learning algorithm.
  - A bit of theoretical analysis and experiment details in the paper.
- "Novel" model of vector-valued weighted automata.

- Multitask extension of the spectral learning algorithm.
  - A bit of theoretical analysis and experiment details in the paper.
- "Novel" model of vector-valued weighted automata.
- Potential applications in reinforcement learning.
- Extension to weighted tree automata should be easy.

- Multitask extension of the spectral learning algorithm.
  - A bit of theoretical analysis and experiment details in the paper.
- "Novel" model of vector-valued weighted automata.
- Potential applications in reinforcement learning.
- Extension to weighted tree automata should be easy.

## Thank you! Questions?

- Joakim Nivre, Zeljko Agić, Lars Ahrenberg, et al. Universal dependencies 1.4, 2016. URL http://hdl.handle.net/11234/1-1827. LINDAT/CLARIN digital library at the Institute of Formal and Applied Linguistics, Charles University.
- Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. Results of the pautomac probabilistic automaton learning competition. In **ICGI**, pages 243–248, 2012.