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Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

Classical learning algorithms assume X = Rd and Y = Rp.
How to handle input/output structured data?

I Tensor structured data: Images, videos, spatio-temporal data, ...
I Discrete structured data: strings, trees, graphs, ...

In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]

Guillaume Rabusseau ML, Tensors & Structured Data June 11, 2018 3 / 45



Tensors and Machine Learning
(i) Data has a tensor structure: color image, video, multivariate time

series...

(ii) Tensors as parameters of a model: polynomial regression, higher-order
RNNs, weighted automata on trees and graphs...

a b

T

ωa ωb

1

2

1

3

1
ωA

(iii) Tensors as tools: tensor method of moments [Anandkumar et al.,
2014], layer compression in neural networks [Novikov et al., 2015],
deep learning theoretical analysis [Cohen et al., 2015]...
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Contributions
Low rank regression for tensor data [NIPS’16, arXiv’17]

Weighted automata for learning with discrete structured data
[NIPS’17-a, AISTATS’18, JCSS’18, FoSSaCS’18]
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Tensor Method of Moments [NIPS’17-b, CAP’14]
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Outline

1 Preliminaries: Tensors and Multilinear Algebra
2 Low-Rank Regression with Tensor Responses
3 Weighted Automata for Learning with Structured Data
4 Conclusion and Future Lines of Research
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3
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Tensor Networks

M1 2 T1

2
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Matrix: Mi1i2 3rd order tensor: T i1i2i3

Matrix product: A B
1

2 1
2

(AB)i1,i2 =
∑

k
Ai1kBki2
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Trace: M1 2

Tr(M) =
∑

i
Mii
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Tensor times matrices:

TA
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(T ×1 A×2 B×3 C)i1,i2,i3 =
∑

k1k2k3

T k1k2k3Ai1k1Bi2k2Ci3k3
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Multilinear Maps
Liner map f : Rd → Rp maps x to Wx = W×2 x for some
W ∈ Rp×d :

x 7−→ x W
1

1 2 1

Multilinear map g : Rd1 × Rd2 → Rp maps (u, v) to W ×2 u×3 v for
some W ∈ Rp×d1×d2 :

u v 7−→
1 1

W
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v
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Example: Multilinear Maps in Higher-Order RNNs

Recurrent Neural Network (RNN):

(x1, x2, x3, · · · ) 7→ (y1, y2, y3, · · · )

Simple RNN:

ht = g(Uxt + Vht−1), yt = g(Mht)

Second-order RNN [Giles et al., NIPS’90]:

ht = g(W ×2 xt ×3 ht−1)

→ order 2 multiplicative interactions: [ht ]i = g
(∑

j,k W ijk [xt ]j [ht−1]k
)

.
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Tensor Decomposition Techniques
Matrix Decomposition:

UM
m 1 2 n

= V
m 1

2 R 1
n2

⇒ Rank of M: smallest R such that M = UV
(with U ∈ Rm×R , V ∈ RR×n).

Tucker decomposition [Tucker, 1966 / Hitchcock, 1927]:

⇒ Multilinear rank of T : smallest (R1,R2,R3) such that
T = G ×1 U1 ×2 U2 ×3 U3
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Outline

1 Preliminaries: Tensors and Multilinear Algebra
2 Low-Rank Regression with Tensor Responses

Problem Setting
Higher-Order Low-Rank Regression
Theoretical Guarantees
Experiments
Discussion

3 Weighted Automata for Learning with Structured Data
4 Conclusion and Future Lines of Research
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Tensor Structured Data
Data with tensor structure: EEG, hyperspectral images, videos, ...
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Problem
Learn f : Rd0 → Rd1×···×dp from {(x(n),Y(n))}Nn=1 where Y(n) ' f (x(n)).
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Problem
Learn f : Rd0 → Rd1×···×dp from {(x(n),Y(n))}Nn=1 where Y(n) ' f (x(n)).

Multilinear Multitask Learning [Romera-Paredes et al., 2013]

f (x) ∈ R(Restaurant Critics) × (Evaluation Criteria)

Rest. 1 Critic 1 Critic 2 Critic 3
food quality 5 3 6

service quality 7 8 6.5
overall rating 5 6.5 4

Rest. 2 Critic 1 Critic 2 Critic 3
food quality 7 8 6

service quality 8.5 9 9
overall rating 8 9.5 7

· · ·
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Multivariate Regression

Learn f : Rd → Rp from samples {(x(n), y(n))}Nn=1 where y(n) ' f (x(n)).

Linear model: f (x) = W>x (W ∈ Rd×p)
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Multivariate Regression

Learn f : Rd → Rp from samples {(x(n), y(n))}Nn=1 where y(n) ' f (x(n)).

Linear model: f (x) = W>x (W ∈ Rd×p)
Ordinary Least Squares

Ŵ = arg min
W∈Rd×p

‖XW− Y‖2
F (X ∈ RN×d ,Y ∈ RN×p)
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Linear model: f (x) = W>x (W ∈ Rd×p)
Ordinary Least Squares

Ŵ = arg min
W∈Rd×p

‖XW− Y‖2
F (X ∈ RN×d ,Y ∈ RN×p)

⇒ Equivalent to perform p independent linear regressions!
How can we capture linear dependencies in the output?
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Multivariate Regression

Learn f : Rd → Rp from samples {(x(n), y(n))}Nn=1 where y(n) ' f (x(n)).

Linear model: f (x) = W>x (W ∈ Rd×p)
Ordinary Least Squares

Ŵ = arg min
W∈Rd×p

‖XW− Y‖2
F (X ∈ RN×d ,Y ∈ RN×p)

Reduced Rank Regression (Izenman, 1975)

Ŵ = arg min
W∈Rd×p

‖XW− Y‖2
F s.t. rank(W) ≤ R
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Tensor-valued Regression

Learn f : Rd0 → Rd1×d2 from {(x(n),Y(n))}Nn=1 where Y(n) ' f (x(n)).

Vectorize outputs and use reduced rank regression?
→ Need to capture higher order dependencies: multilinear rank

constraint.
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Tensor-valued Regression [GR, H. Kadri, NIPS’16]

Learn f : Rd0 → Rd1×d2 from {(x(n),Y(n))}Nn=1 where Y(n) ' f (x(n)).

Linear model: f (x) = W ×1 x (W ∈ Rd0×d1×d2)
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Tensor-valued Regression [GR, H. Kadri, NIPS’16]

Learn f : Rd0 → Rd1×d2 from {(x(n),Y(n))}Nn=1 where Y(n) ' f (x(n)).

Linear model: f (x) = W ×1 x (W ∈ Rd0×d1×d2)
Low-Rank Regression for Tensor Structured Response

arg min
W∈Rd0×d1×d2

‖W ×1 X−Y‖2
F s.t. rankml (W) ≤ (R0,R1,R2)
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Solving the Minimization Problem [GR, H. Kadri, NIPS’16]

Problem
arg min

W∈Rd0×d1×d2
‖W ×1 X−Y‖2

F s.t. rankml (W) ≤ (R0,R1,R2)

is equivalent to:

Problem
arg min
U0,U1,U2

‖Y ×1 Π0 ×2 Π1 ×3 Π2 −Y‖2
F w.r.t. Ui ∈ Rdi×Ri

s.t. U>i Ui = I for 0 ≤ i ≤ 2, Π0 = XU0
(
U>0 X>XU0

)−1 U>0 XT , Πi = Ui U>i for i = 1, 2

Find 3 low-dimensional subspaces U0,U1,U2 such that projecting Y
along the corresponding modes is close to Y .
NP-hard... Solve arg minUi ‖Y ×i+1 Πi −Y‖2

F instead.
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Theoretical Guarantees [GR, H. Kadri, NIPS’16]

Problem
(∗) arg min

W∈Rd0×d1×d2
‖W ×1 X−Y‖2

F s.t. rankml (W) ≤ (R0,R1,R2)

HOLRR is an order 3 approximation algorithm:

Theorem
Let W∗ be a solution of (∗) and let Ŵ be the regression tensor returned
by HOLRR. Then,

‖Ŵ ×1 X−Y‖2
F ≤ 3‖W∗ ×1 X−Y‖2

F .
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Theoretical Guarantees (cont’d) [GR, H. Kadri, NIPS’16]

Problem
(∗) arg min

W∈Rd0×d1×d2
‖W ×1 X−Y‖2

F s.t. rankml (W) ≤ (R0,R1,R2)

HOLRR is statistically consistent

Generalization bound for the class of functions

Fml = {x 7→W ×1 x : rankml (W) = (R0,R1,R2)} .

→ VC-dimension of Fml is in O
(√

R0R1R2 log(d1d2d3)
)

instead of
O
(√

d1d2d3
)
.
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Image Reconstruction from Noisy Measurements
W ∈ R3×50×50 is an RGB image.
Data is generated by Y = W ×1 x + ξ where x ∼ N (0, I) and
ξij ∼ N (0, 1).
Training set of size 200.

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4rank = 1 rank = 2 rank = 3 rank = 4ridge
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Experiments on Real Data

METEO-UK CCDS
0.54
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0.60
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0.68
RM

SE

Convex relaxation
Higher-order partial least squares
HOLRR
K-HOLRR

running time
100

101

102

se
co

nd
s

Figure: Task: predict meteorological variables in different locations from their
values in the preceding 3 time steps (average over 10 runs). Output is of size
17× 125 for CCDS and 5× 16× 5 for METEO-UK.
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Discussion

Multilinear extension of low/reduced-rank regression.
Approximation algorithm rather than convex relaxation.
Kernel extension → nonlinear setting.
Fast, efficient, theoretical guarantees.

Leverage the tensor structure ⇒
{

faster algorithms
better sample efficiency
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Outline

1 Preliminaries: Tensors and Multilinear Algebra
2 Low-Rank Regression with Tensor Responses
3 Weighted Automata for Learning with Structured Data

Weighted Automata (WA) and Spectral Learning
Connections betweens WAs and RNNs
Beyond Strings and Trees: Graph Weighted Models

4 Conclusion and Future Lines of Research
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Problem Statement

How can one learn with structured objects such as strings and trees?

Intersection of Theoretical Computer Science and Machine Learning...

→ Weighted Automata: robust model to represent functions defined over
structured objects (for example probability distributions).
String Weighted Automata (WA): generalize Hidden Markov Models,
Predictive State Representations and closely related to RNNs.
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1
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Weighted Automata and Representation Learning

Σ∗

φ(x)

x

Rn

φ

A WA induces a mapping φ : Σ∗ → Rn (∼ word embedding)

The mapping φ is compositional:

φ(λ) = α>, φ(σ1) = α>Aσ1 , φ(σ1σ2) = α>Aσ1Aσ2 = φ(σ1)Aσ2 , ...

The output fA(x) = 〈φ(x),ω〉 is linear in φ(x).
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Spectral Learning of Weighted Automata

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)

Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf ) <∞⇐⇒ f can be computed by a WA

Proof is constructive ⇒ Spectral Learning of WA:
1. Estimate a sub-block of Hf from training data
2. Low rank decomposition H ' PS
3. Build WA Â using H,P and S.

→ Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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3. Build WA Â using H,P and S.

→ Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Connections betweens WAs and
RNNs
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Weighted Automata and Recurrent Neural Networks

Recall that the hidden state of a second-order RNN (2-RNN) is
computed by

ht = g(W ×2 xt ×3 ht−1)

Similarly, the feature map of a WA (α, {Aσ}σ∈Σ,ω) can be written as

φ(xσ) = A×2 eσ ×3 φ(x)

where
I A ∈ Rn×Σ×n is defined by A:,σ,: = (Aσ)>,
I eσ is the one-hot encoding of σ.
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Spectral Learning of Linear 2-RNNs [ GR, T.Li, D. Precup]

For sequences of discrete symbols, WAs and second-order RNNs with
linear activation functions are equivalent!

⇒ For the discrete case, the spectral learning algorithm is a consistent
learning algorithm for linear second-order RNNs.

What about sequences of continuous vectors?
→ Can we extend the spectral learning algorithm to linear 2-RNNs defined

over continuous vectors?
YES! By leveraging multilinear properties of linear RNNs and tensor
sensing techniques.
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS’18]

WA A = (α, {Aσ}σ∈Σ,ω): linear transition maps and linear
termination function...

Non-linear Weighted Automaton: (α, {Gσ}σ∈Σ,F )
I α is the initial latent state
I Gσ : Rn → Rn are non-linear transition maps
I F : Rn → R is a non-linear termination function

Two-stage learning algorithm:
I Learning φ : Σ∗ → Rn using an encoder-decoder network to non-linearly

decompose the Hankel matrix Hf .
I Learning Gσ: feed-forward neural networks.
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Non-Linear Weighted Automata [T.Li, GR, D. Precup, AISTATS’18]

Experiments on Penn Tree Bank data: 5, 987 sentences over an
alphabet of 33 symbols.
Two evaluation metrics:

Table: Pautomac Score (∼ perplexity) on test data.

Sample Size SP EM RNN NL-WA
1000 9.098 4.252 4.765 2.937
2000 4.995 3.723 4.6053 2.923
3000 4.532 3.570 4.398 2.894
4000 4.235 3.542 4.244 2.880
ALL 4.234 3.496 4.191 2.748

Table: Word error rate (one-step ahead prediction) on test data.

Sample Size SP EM RNN NL-WA
1000 0.8432 0.808 0.806 0.7630
2000 0.8342 0.793 0.788 0.7332
3000 0.8195 0.781 0.736 0.7134
4000 0.8141 0.776 0.692 0.6935
ALL 0.8033 0.753 0.669 0.6831
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Beyond Strings and Trees
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A Look Back on String Weighted Automata

A Weighted Automaton A = (α, {Aσ}σ∈Σ,ω) computes a function

fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1
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Beyond Strings: Weighted Tree Automata
A weighted tree automaton (WTA) is a tuple A = 〈α,T , {ωσ}σ∈Σ〉

α ∈ Rn : vector of initial weights
T ∈ Rn×n×n : tensor of transition weights

ωσ ∈ Rn : vector of final weights associated with σ ∈ Σ

A WTA computes a function fA : TΣ → R.

a b c d

T

α

T

ωa ωb

T

ωc ωd

1
1

2

1

3

1

2
1

3
1

2
1

3
1
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·), h(·, ·), g(·, ·, ·)}

hv1

h v2

g

v3

a v4
2

1

1 2

2

1

3 1

Figure: A graph on the ranked alphabet F = {a(·), h(·, ·), g(·, ·, ·)}.

GWM: vector Ma ∈ Rn, matrix Mh ∈ Rn×n, tensor Mg ∈ Rn×n×n

Guillaume Rabusseau ML, Tensors & Structured Data June 11, 2018 37 / 45



Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·), h(·, ·), g(·, ·, ·)}

hv1

h v2

g

v3

a v4
2

1

1 2

2

1

3 1

Figure: A graph on the ranked alphabet F = {a(·), h(·, ·), g(·, ·, ·)}.

GWM: vector Ma ∈ Rn, matrix Mh ∈ Rn×n, tensor Mg ∈ Rn×n×n

Guillaume Rabusseau ML, Tensors & Structured Data June 11, 2018 37 / 45



Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {α(·), a(·, ·), b(·, ·), ω(·)}
GWM: Mα,Mω ∈ Rn, Ma,Mb ∈ Rn×n

α a b b a ω1 1 2 1 2 1 2 1 2 1

Mα Ma Mb Mb Ma Mω1 1 2 1 2 1 2 1 2 1

fM

fM(G) =
∑

i1,i2,i3,i4,i5∈[n]
Mα

i1M
a
i1,i2M

b
i2,i3M

b
i3,i4M

a
i4,i5M

ω
i5

= α>MaMbMbMaω
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·, ·), b(·, ·)}
GWM: Ma,Mb ∈ Rn×n
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Learning Graph Weighted Models

Long term objective: extend the spectral learning algorithm to
functions defined over graphs.
→ learning general GWMs is very challenging.

First step: study the problem of learning GWMs defined over simple
families of graphs (circular strings, 2D grids).

Minimization of GWMs over circular strings [GR, FoSSaCS’18]:
I Minimizing WA ↔ linear algebra
I Minimizing GWMs ↔ theory of finite dimensional algebras

Guillaume Rabusseau ML, Tensors & Structured Data June 11, 2018 41 / 45



Outline
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2 Low-Rank Regression with Tensor Responses
3 Weighted Automata for Learning with Structured Data
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Conclusion

Spectral methods for tensor and discrete structured data.

⇒ Leverage fundamental algebraic properties for learning:
I Take tensor structure into account for better generalization.
I Learning for structured data with weighted automata.
I Spectral learning: efficient and consistent learning algorithms.

Multilinear algebra ↔ powerful models for learning with structured data.
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Future Research Directions

Learning with graphs.
I Develop efficient learning algorithms for graph structured data.
I Spectral learning of GWM ⇒ consistent learning algorithm.
I Explore connections with graph neural networks (TCS insight).

Fast and scalable learning algorithms.
I Tensor networks have been successfully used in numerical analysis and

quantum physics to perform very large scale linear algebra.
I Wide range of potential applications in ML.

Nonlinear tensor learning.
I Combine the power of tensor algebra and deep learning.
I Revisit higher-order RNN through the lens of multilinear algebra.
I Both directions, e.g. non-linear extensions of tensor decomposition

techniques / multilinear regularization in deep networks.
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Thank you for your attention.
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Image Reconstruction from Noisy Measurements
W ∈ R3×50×50 is an RGB image.
Data is generated by Y = W ×1 x + ξ where x ∼ N (0, I) and
ξij ∼ N (0, 1).
Training set of size 200.

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4
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Image Reconstruction from Noisy Measurements

W ∈ R3×70×70 is an RGB image.
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Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear
model. Journal of Multivariate Analysis, 5(2):248–264.
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