Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning

> *Guillaume Rabusseau*, Tianyu Li, Doina Precup Université de Montréal - Mila - CIFAR CCAI chair

May 2, 2019 IACS - Stony Brook University

Supervised Learning:

Supervised Learning:

- Classical learning algorithms assume $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}^p$.
- How to handle input/output structured data?

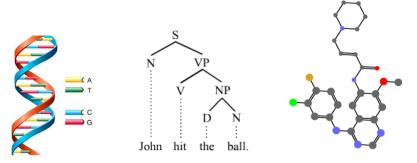
Supervised Learning:

- Classical learning algorithms assume $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}^p$.
- How to handle input/output structured data?
 - ► Tensor structured data: Images, videos, spatio-temporal data, ...

$$\in \mathbb{R}^{32 \times 32 \times 3} \simeq \mathbb{R}^{3072}$$

Supervised Learning:

- Classical learning algorithms assume $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}^p$.
- How to handle input/output structured data?
 - ► Tensor structured data: Images, videos, spatio-temporal data, ...
 - Discrete structured data: strings, trees, graphs, ...



Supervised Learning:

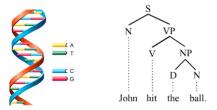
- Classical learning algorithms assume $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \mathbb{R}^p$.
- How to handle input/output structured data?
 - ► Tensor structured data: Images, videos, spatio-temporal data, ...
 - Discrete structured data: strings, trees, graphs, ...
- In both cases, one can leverage linear and tensor algebra to design learning algorithms.

Outline

- Weighted Automata (WA) and Recurrent Neural Networks (RNN)
- 2 A Small Detour through Tensors and Tensor Networks
- Spectral Learning of Linear 2-RNNs
- 4 Experiments
- 5 Conclusion

Introduction

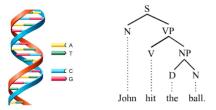
• How can one learn with structured objects such as strings and trees?



• Intersection of Theoretical Computer Science and Machine Learning...

Introduction

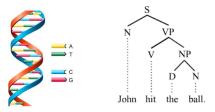
• How can one learn with structured objects such as strings and trees?



- Intersection of Theoretical Computer Science and Machine Learning...
- → Weighted Automata: robust model to represent functions defined over structured objects (and in particular probability distributions).

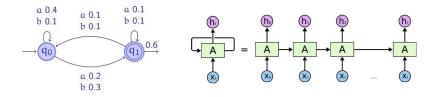
Introduction

• How can one learn with structured objects such as strings and trees?



- Intersection of Theoretical Computer Science and Machine Learning...
- → Weighted Automata: robust model to represent functions defined over structured objects (and in particular probability distributions).
 - String Weighted Automata (WA): generalize Hidden Markov Models
 - Weighted Tree Automata (WTA): closely related to PCFGs

Weighted Automata Vs. Recurrent Neural Networks



• Recurrent neural networks can also deal with sequence data

- Remarkably expressive models, impressive results in speech and audio recognition
- \ominus Less tractable than WA, limited understanding of their inner working
- Connections between WA and RNN:
 - Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
 - Can we extract finite state machines from RNNs? [Giles et al, 1992], [Weiss et al., 2018], [Ayache et al., 2018]
 - Can we combine FSMs with WA? [Rastogi et al., 2016], [Dyer et al., 2016]

Overview of the Results

In this work, we answer the following questions:

To which extent Weighted Automata are linear RNNs?

Overview of the Results

In this work, we answer the following questions:

To which extent Weighted Automata are linear RNNs?

- We show the exact equivalence of WAs and 2nd order RNNs with linear activation functions (linear 2-RNNs).
- This leads to a natural extension of WAs for sequences of continuous vectors.
- We extend the spectral learning algorithm for WAs: First provable learning algorithm for linear 2-RNNs.

Weighted Automata (WA) and Recurrent Neural Networks (RNN)

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- Weighted Automaton: $A = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\omega})$ where

$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \sigma \in \boldsymbol{\Sigma} \end{split}$$

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- Weighted Automaton: $A = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\omega})$ where

$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \end{split}$$

• A computes a function $f_A : \Sigma^* \to \mathbb{R}$ defined by

$$f_{\mathcal{A}}(\sigma_{1}\sigma_{2}\cdots\sigma_{k})=\alpha^{\top}\mathbf{A}^{\sigma_{1}}\mathbf{A}^{\sigma_{2}}\cdots\mathbf{A}^{\sigma_{k}}\boldsymbol{\omega}$$

Weighted Automata: States and Transitions

a 0 1

Example with 2 states and alphabet $\Sigma = \{a, b\}$

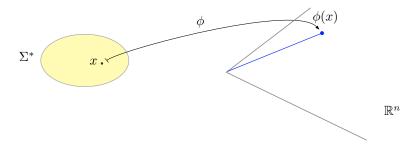
Operator Representation

$$\begin{array}{c} \mathbf{a} \ 0.4 & \mathbf{a} \ 0.1 & \mathbf{b} \ 0.1 & \mathbf{c} \ 0.1$$

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP'14 tutorial

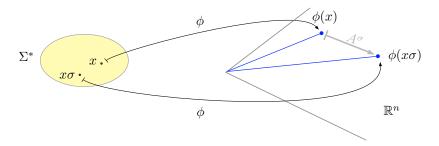
a 0 4

Weighted Automata and Representation Learning



• A WA induces a mapping $\phi: \Sigma^* \to \mathbb{R}^n \ (\sim \text{ word embedding})$

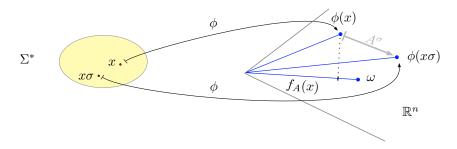
Weighted Automata and Representation Learning



- A WA induces a mapping $\phi: \Sigma^* \to \mathbb{R}^n \ (\sim \text{ word embedding})$
- The mapping ϕ is compositional:

$$\phi(\lambda) = \boldsymbol{\alpha}^{\top}, \ \phi(\sigma_1) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1}, \ \phi(\sigma_1 \sigma_2) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} = \phi(\sigma_1) \mathbf{A}^{\sigma_2}, \ \dots$$

Weighted Automata and Representation Learning



- A WA induces a mapping $\phi: \Sigma^* \to \mathbb{R}^n$ (~ word embedding)
- The mapping ϕ is compositional:

$$\phi(\lambda) = \boldsymbol{\alpha}^{\top}, \ \phi(\sigma_1) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1}, \ \phi(\sigma_1 \sigma_2) = \boldsymbol{\alpha}^{\top} \mathbf{A}^{\sigma_1} \mathbf{A}^{\sigma_2} = \phi(\sigma_1) \mathbf{A}^{\sigma_2}, \ \dots$$

• The output $f_A(x) = \langle \phi(x), \omega \rangle$ is linear in $\phi(x)$.

- Σ a finite alphabet (e.g. $\{a, b\}$), Σ^* strings on Σ (e.g. *abba*)
- A WA computes a function $f: \Sigma^* \to \mathbb{R}$
- Weighted Automaton: $A = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\omega})$ where

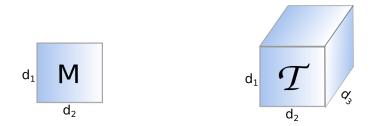
$$\begin{split} & \boldsymbol{\alpha} \in \mathbb{R}^n \text{ initial weights vector} \\ & \boldsymbol{\omega} \in \mathbb{R}^n \text{ final weights vector} \\ & \mathbf{A}^{\sigma} \in \mathbb{R}^{n \times n} \text{ transition weights matrix for each } \boldsymbol{\sigma} \in \boldsymbol{\Sigma} \end{split}$$

• A computes a function $f_A: \Sigma^* \to \mathbb{R}$ defined by

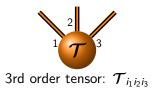
$$f_{\mathcal{A}}(\sigma_{1}\sigma_{2}\cdots\sigma_{k})=\alpha^{\top}\mathbf{A}^{\sigma_{1}}\mathbf{A}^{\sigma_{2}}\cdots\mathbf{A}^{\sigma_{k}}\boldsymbol{\omega}$$

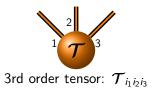
A Small Detour through Tensors and Tensor Networks

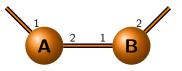
Tensors



$$\begin{split} \mathbf{M} \in \mathbb{R}^{d_1 \times d_2} & \mathcal{T} \in \mathbb{R}^{d_1 \times d_2 \times d_3} \\ \mathbf{M}_{ij} \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2] & (\mathcal{T}_{ijk}) \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2], k \in [d_3] \end{split}$$

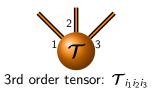


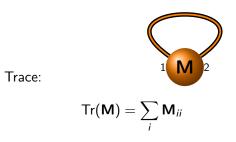


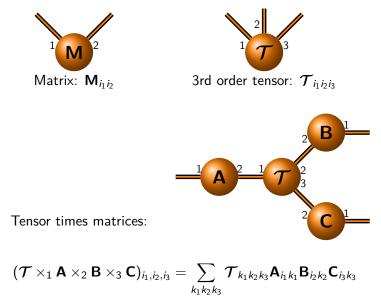


Matrix product:

$$(\mathsf{AB})_{i_1,i_2} = \sum_k \mathsf{A}_{i_1k} \mathsf{B}_{ki_2}$$







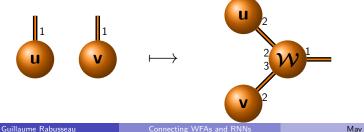
Multilinear Maps

• Liner map $f : \mathbb{R}^d \to \mathbb{R}^p$ maps **x** to $\mathbf{W}\mathbf{x} = \mathbf{W} \times_2 \mathbf{x}$ for some $\mathbf{W} \in \mathbb{R}^{p \times d}$:

Multilinear Maps

• Liner map $f : \mathbb{R}^d \to \mathbb{R}^p$ maps **x** to $\mathbf{W}\mathbf{x} = \mathbf{W} \times_2 \mathbf{x}$ for some $\mathbf{W} \in \mathbb{R}^{p \times d}$:

Multilinear map g: ℝ^d₁ × ℝ^d₂ → ℝ^p maps (u, v) to W ×₂ u ×₃ v for some W ∈ ℝ^{p×d₁×d₂}:



Example: Multilinear Maps in Higher-Order RNNs

• Recurrent Neural Network (RNN):

$$(\mathsf{x}_1,\mathsf{x}_2,\mathsf{x}_3,\cdots)\mapsto (\mathsf{y}_1,\mathsf{y}_2,\mathsf{y}_3,\cdots)$$

• Simple RNN:

$$\mathbf{h}_t = g(\mathbf{U}\mathbf{x}_t + \mathbf{V}\mathbf{h}_{t-1}), \quad \mathbf{y}_t = g(\mathbf{M}\mathbf{h}_t)$$

Example: Multilinear Maps in Higher-Order RNNs

• Recurrent Neural Network (RNN):

$$(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \cdots) \mapsto (\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \cdots)$$

• Simple RNN:

$$\mathbf{h}_t = g(\mathbf{U}\mathbf{x}_t + \mathbf{V}\mathbf{h}_{t-1}), \quad \mathbf{y}_t = g(\mathbf{M}\mathbf{h}_t)$$

• Second-order RNN [Giles et al., NIPS'90]:

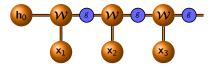
$$\mathbf{h}_t = g(\boldsymbol{\mathcal{W}} \times_2 \mathbf{x}_t \times_3 \mathbf{h}_{t-1})$$

 \rightarrow order 2 multiplicative interactions: $[\mathbf{h}_t]_i = g\left(\sum_{j,k} \mathcal{W}_{ijk}[\mathbf{x}_t]_j[\mathbf{h}_{t-1}]_k\right)$.

Weighted Automata and Recurrent Neural Networks

• The hidden state of a second-order RNN is computed by

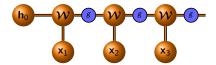
$$\mathbf{h}_t = g(\boldsymbol{\mathcal{W}} \times_2 \mathbf{x}_t \times_3 \mathbf{h}_{t-1})$$



Weighted Automata and Recurrent Neural Networks

• The hidden state of a second-order RNN is computed by

$$\mathbf{h}_t = g(\boldsymbol{\mathcal{W}} \times_2 \mathbf{x}_t \times_3 \mathbf{h}_{t-1})$$

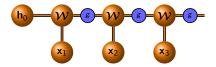


• The computation of a weighted automaton is very similar!

Weighted Automata and Recurrent Neural Networks

• The hidden state of a second-order RNN is computed by

$$\mathbf{h}_t = g(\boldsymbol{\mathcal{W}} \times_2 \mathbf{x}_t \times_3 \mathbf{h}_{t-1})$$



• The computation of a weighted automaton is very similar!

$$\mathcal{A} \leftarrow \mathcal{A} \leftarrow$$

(where

Our first result: WAs \equiv linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs for computing functions over sequences of discrete symbols.

Our first result: WAs \equiv linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs for computing functions over sequences of discrete symbols.

- But 2-RNNs can compute functions over sequences of continuous vectors (e.g., word embeddings), what about WAs?
- \hookrightarrow We can extend the definitions of WAs to continuous vectors!

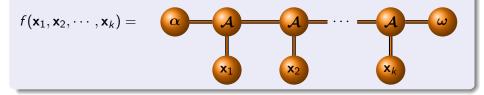
Continuous WA / linear 2-RNN

Definition

A continuous WA is a tuple $A = (\alpha, \mathcal{A}, \omega)$ where

 $oldsymbol{lpha} \in \mathbb{R}^n$ initial weights vector $oldsymbol{\omega} \in \mathbb{R}^n$ final weights vector $oldsymbol{\mathcal{A}} \in \mathbb{R}^{n imes d imes n}$ is the transition tensor.

A computes a function $f_A:(\mathbb{R}^d)^* o \mathbb{R}$ defined by



Our first result: WAs \equiv linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs (linear 2-RNNs) for computing functions over sequences of discrete symbols.

• But 2-RNNs can compute functions over sequences of continuous vectors (e.g., word embeddings), what about WAs?

\hookrightarrow We can extend the definitions of WAs to continuous vectors!

Our first result: WAs \equiv linear 2-RNNs

Theorem

WAs are expressively equivalent to second-order linear RNNs (linear 2-RNNs) for computing functions over sequences of discrete symbols.

- But 2-RNNs can compute functions over sequences of continuous vectors (e.g., word embeddings), what about WAs?
- \hookrightarrow We can extend the definitions of WAs to continuous vectors!
 - Can we learn linear 2-RNNs from data?
 - * Over sequences of discrete symbols?
 - $\,\hookrightarrow\,$ Yes: spectral learning of WA
 - * Over sequences of continuous vectors?
 - \hookrightarrow Yes: technical contribution of [AISTATS'19]

Spectral Learning of Weighted Automata

Hankel matrix

H_f ∈ ℝ^{Σ*×Σ*}: Hankel matrix of f : Σ* → ℝ
 Definition: prefix p, suffix s ⇒ (H_f)_{p,s} = f(ps)

	а	Ь	aa	ab		
а	f(aa) f(ba)	f(ab)]	
Ь	f(ba)	f(bb)				
aa	f(aaa)	f(aab)				
ab	÷	÷	÷	÷	÷	
÷	Ŀ	:	÷	÷	·	

Spectral Learning of Weighted Automata

• $\mathbf{H}_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$: Hankel matrix of $f : \Sigma^* \to \mathbb{R}$

Definition: prefix p, suffix $s \Rightarrow (\mathbf{H}_f)_{p,s} = f(ps)$

• Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

 $\operatorname{rank}(\mathbf{H}_f) < \infty \iff f$ can be computed by a WA

Hankel matrix and WA

Theorem (Fliess '74) The rank of a *real* Hankel matrix H equals the minimal number of states of a WFA recognizing the weighted language of H

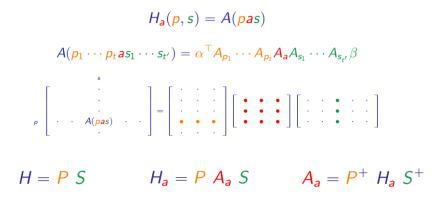
$$A(\mathbf{p}_1\cdots\mathbf{p}_t s_1\cdots s_{t'}) = \alpha^{\top} A_{\mathbf{p}_1}\cdots A_{\mathbf{p}_t} A_{s_1}\cdots A_{s_{t'}} \beta$$

slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP'14 tutorial

	busseau

Connecting WFAs and RNNs

Hankel matrix: spectral learning



slide credits: B. Balle, X. Carreras, A. Quattoni - EMNLP'14 tutorial

Spectral Learning of Weighted Automata (in a nutshell)

- 1. Choose a set of prefixes and suffixes, $\mathcal{P}, \mathcal{S} \subset \Sigma^*.$
- 2. Estimate the Hankel sub-blocks **H** and $\mathbf{H}^{\sigma} \in \mathbb{R}^{\mathcal{P} \times S}$ for each $\sigma \in \Sigma$

$$\mathbf{H} = \begin{bmatrix} a & b & a & b \\ f(aa) & f(ab) \\ f(ba) & f(bb) \\ f(aaa) & f(aab) \end{bmatrix} \quad \mathbf{H}^{\sigma} = \begin{bmatrix} f(a\sigma a) & f(a\sigma b) \\ f(b\sigma a) & f(b\sigma b) \\ aa \end{bmatrix}$$

- 3. Perform rank *n* decomposition $\mathbf{H} = \mathbf{PS}$
- 4. WA with initial/final weights $\boldsymbol{\alpha} = \mathbf{P}_{\lambda,:}$, $\boldsymbol{\omega} = \mathbf{S}_{:,\lambda}$ and transition matrices $\mathbf{A}^{\sigma} = \mathbf{P}^{\dagger} \mathbf{H}^{\sigma} \mathbf{S}^{\dagger}$ is a minimal WFA for f.
- $\rightarrow\,$ Efficient and consistent learning algorithms for weighted automata [Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].

Our second result: a consistent learning algorithm for linear 2-RNNs

Our second result: a consistent learning algorithm for linear 2-RNNs

Theorem

The spectral learning algorithm is a consistent learning algorithm for probability distributions over **sequences of discrete symbols** computed by second-order RNNs with linear activation functions.

Spectral Learning of Linear 2-RNNs

Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

If inputs are one-hot encodings, we can use the spectral learning algorithm for WAs...

 $\,\hookrightarrow\,$ What about sequences of **continuous** vectors?

Learning linear 2-RNNs

Problem: learn a linear 2-RNNs from training data.

If inputs are one-hot encodings, we can use the spectral learning algorithm for WAs...

 \hookrightarrow What about sequences of **continuous** vectors?

What would be the equivalent of the Hankel matrix for $f : (\mathbb{R}^d)^* \to \mathbb{R}$?

$$\mathbf{H} \in \mathbb{R}^{(\mathbb{R}^d)^* \times (\mathbb{R}^d)^*} \quad ?$$

Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

$$f(\mathbf{x}_1,\ldots,\sum_i\alpha_i\mathbf{u}_i,\ldots,\mathbf{x}_k)=\sum_i\alpha_i f(\mathbf{x}_1,\ldots,\mathbf{u}_i,\ldots,\mathbf{x}_k)$$

Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

$$f(\mathbf{x}_1,\ldots,\sum_i \alpha_i \mathbf{u}_i,\ldots,\mathbf{x}_k) = \sum_i \alpha_i f(\mathbf{x}_1,\ldots,\mathbf{u}_i,\ldots,\mathbf{x}_k)$$

 \Rightarrow learning the restriction of *f* to basis vectors is enough:

$$f(\mathbf{a}, \mathbf{b}) = f\left(\sum_{i} \alpha_{i} \mathbf{e}_{i}, \sum_{j} \beta_{j} \mathbf{e}_{j}\right) = \sum_{i,j} \alpha_{i} \beta_{j} f(\mathbf{e}_{i}, \mathbf{e}_{j})$$

Multi-linearity of linear 2-RNNs

Observation: Linear 2-RNNs are multilinear.

$$f(\mathbf{x}_1,\ldots,\sum_i \alpha_i \mathbf{u}_i,\ldots,\mathbf{x}_k) = \sum_i \alpha_i f(\mathbf{x}_1,\ldots,\mathbf{u}_i,\ldots,\mathbf{x}_k)$$

 \Rightarrow learning the restriction of f to basis vectors is enough:

$$f(\mathbf{a}, \mathbf{b}) = f\left(\sum_{i} \alpha_{i} \mathbf{e}_{i}, \sum_{j} \beta_{j} \mathbf{e}_{j}\right) = \sum_{i,j} \alpha_{i} \beta_{j} f(\mathbf{e}_{i}, \mathbf{e}_{j})$$

We only need to learn the function $ilde{f}:\{1,2,\cdots,d\}^*
ightarrow\mathbb{R}$

$$\tilde{f}: i_1 i_2 \cdots i_k \mapsto f(\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \dots, \mathbf{e}_{i_k})$$

Idea: Use the spectral learning algorithm to learn \tilde{f} .

Hankel Matrix Recovery from Linear Measurements

Choosing $\mathcal{P} = \mathcal{S} = \{1, \cdots, d\}^L$, we need to estimate the Hankel matrix $\mathbf{H} \in \mathbb{R}^{d^L \times d^L}$ defined by

$$\mathbf{H}_{i_1i_2\cdots i_L, j_1j_2\cdots j_L} = f(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_L}, \mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_L})$$

 \hookrightarrow How to estimate **H** from input-output examples?

Hankel Matrix Recovery from Linear Measurements

Choosing $\mathcal{P} = \mathcal{S} = \{1, \cdots, d\}^L$, we need to estimate the Hankel matrix $\mathbf{H} \in \mathbb{R}^{d^L \times d^L}$ defined by

$$\mathbf{H}_{i_1i_2\cdots i_L, j_1j_2\cdots j_L} = f(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_L}, \mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_L})$$

 \hookrightarrow How to estimate **H** from input-output examples?

Given an input sequence $(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{2L})$ and its output $y \simeq f(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{2L})$ we have

$$\begin{split} y &\simeq \sum_{i_1, \cdots, i_{2L}} [\mathbf{x}_1]_{i_1} \dots [\mathbf{x}_{2L}]_{i_{2L}} f(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_{2L}}) \\ &= (\mathbf{x}_1 \otimes \cdots \otimes \mathbf{x}_{2L})^\top \text{vec}(\mathbf{H}) \end{split}$$

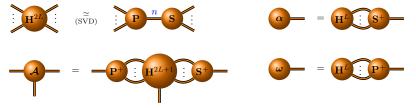
 \Rightarrow Each input-output example is a linear measurement of **H**.

Learning Algorithm

Input: Train datasets D_L, D_{2L}, D_{2L+1} . Number of states *n*. 1: From $D_I = \{((\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, \cdots, \mathbf{x}_l^{(i)}), y^{(i)})\}_{i=1}^{N_l} \subset (\mathbb{R}^d)^l \times \mathbb{R}$, solve

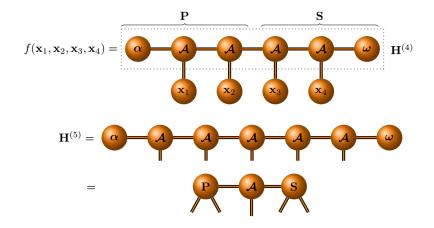
$$\mathbf{H}^{(l)} = \arg\min_{\mathbf{H}} \sum_{i=1}^{N_l} \left(\mathbf{x}_1^{(i)} \otimes \mathbf{x}_2^{(i)} \otimes \cdots \otimes \mathbf{x}_l^{(i)} \right)^\top \operatorname{vec}(\mathbf{H}) - y^{(i)}) \right)^2$$

2: Rank *n* factorization and parameter estimation:



3: return Linear 2-RNN $\langle \mathbf{h}_0, \boldsymbol{\mathcal{A}}, \mathbf{w} \rangle$.

Intuition on why this works



Our 3rd result: a provable learning algorithm for 2-RNNs

Our learning algorithm computes a consistent estimator for linear 2-RNNs:

Theorem

- Let $(\mathbf{h}_0, \mathcal{A}, \mathbf{w})$ be a minimal linear 2-RNN with n hidden units computing a function $f : (\mathbb{R}^d)^* \to \mathbb{R}$
- Let L be such that $rank(\mathbf{H}^{(2L)}) = n$
- Suppose the entries of $\mathbf{x}_{j}^{(i)}$ are drawn at random and each $y^{(i)} = f(\mathbf{x}_{1}^{(i)}, \mathbf{x}_{2}^{(i)}, \cdots, \mathbf{x}_{l}^{(i)}).$

If $N_l \ge d^l$ for l = L, 2L, 2L + 1, the 2-RNN returned by our algorithm computes f with probability one.

Experiments

Experiment on synthetic data

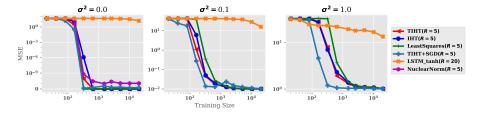


Figure: Learning a random 2-RNN from noisy data

Experiment on real data

Table 1: One-hour-ahead Speed Prediction Performance Comparisons						
Method	TIHT	TIHT+SGD	Regression Automata	ARIMA	RNN	Persistence
RMSE	0.573	0.519	0.500	0.496	0.606	0.508
MAPE	21.35	18.79	18.58	18.74	24.48	18.61
MAE	0.412	0.376	0.363	0.361	0.471	0.367

Table 2: Three-hour-ahead Speed Prediction Performance Comparisons

Method	TIHT	TIHT+SGD	Regression Automata	ARIMA	RNN	Persistence
RMSE	0.868	0.854	0.872	0.882	1.002	0.893
MAPE	33.98	31.70	32.52	33.165	37.24	33.29
MAE	0.632	0.624	0.632	0.642	0.764	0.649

Figure: Wind Speed Prediction

• We proposed a natural extension of WA to the continuous case along with a consistent learning algorithm.

- We proposed a natural extension of WA to the continuous case along with a consistent learning algorithm.
- This potentially addresses the limitation of spectral learning to small alphabets (we can now use word embeddings with WA!)
- Opens up a lot of questions on the formal language theory side about continuous WAs.
- Leverage the tensor structure of the Hankel matrix: more structure than just a low rank matrix.
- Use spectral learning as an initialization to BPTT, even for non-linear RNNs!
- Extension to weighted tree automata, polynomial weighted automata, etc.

- We proposed a natural extension of WA to the continuous case along with a consistent learning algorithm.
- This potentially addresses the limitation of spectral learning to small alphabets (we can now use word embeddings with WA!)
- Opens up a lot of questions on the formal language theory side about continuous WAs.
- Leverage the tensor structure of the Hankel matrix: more structure than just a low rank matrix.
- Use spectral learning as an initialization to BPTT, even for non-linear RNNs!
- Extension to weighted tree automata, polynomial weighted automata, etc.

Thank you! Questions?