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Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

Classical learning algorithms assume X = Rd and Y = Rp.
How to handle input/output structured data?

I Tensor structured data: Images, videos, spatio-temporal data, ...
I Discrete structured data: strings, trees, graphs, ...

In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Outline

1 Preliminaries: Tensors and Multilinear Algebra

2 Tensorized Random Projections

3 Adaptive Learning of Tensor Decomposition Models
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Tensors and Machine Learning
(i) Data has a tensor structure: color image, video, multivariate time

series...

(ii) Tensors as parameters of a model: polynomial regression, higher-order
RNNs, weighted automata on trees and graphs...
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(iii) Tensors as tools: tensor method of moments [Anandkumar et al.,
2014], layer compression in neural networks [Novikov et al., 2015],
deep learning theoretical analysis [Cohen et al., 2015]...
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Tensors are not easy...

MOST TENSOR PROBLEMS ARE NP HARD

CHRISTOPHER J. HILLAR AND LEK-HENG LIM

Abstract. The idea that one might extend numerical linear algebra, the collection of matrix com-
putational methods that form the workhorse of scientific and engineering computing, to numeri-
cal multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears
very promising and has attracted a lot of attention recently. We examine here the computational
tractability of some core problems in numerical multilinear algebra. We show that tensor analogues
of several standard problems that are readily computable in the matrix (i.e. 2-tensor) case are NP
hard. Our list here includes: determining the feasibility of a system of bilinear equations, determin-
ing an eigenvalue, a singular value, or the spectral norm of a 3-tensor, determining a best rank-1
approximation to a 3-tensor, determining the rank of a 3-tensor over R or C. Hence making tensor
computations feasible is likely to be a challenge.

[Hillar and Lim, Most tensor problems are NP-hard, Journal of the ACM, 2013.]

... but training a neural network with 3 nodes is also NP hard [Blum and
Rivest, NIPS ’89]
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Forget rows and columns... Now we have fibers!

Matrices have rows and columns, tensors have fibers1:

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

1fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].
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Tensors: Multiplication with Matrices

AMB> ∈ Rm1×m2 T ×1 A×2 B×3 C ∈ Rm1×m2×m3

ex: If T ∈ Rd1×d2×d3 and B ∈ Rm2×d2 , then T ×2 B ∈ Rd1×m2×d3 and

(T ×2 B)i1,i2,i3 =
d2∑

k=1
T i1,k,i3Bi2,k for all i1 ∈ [d1], i2 ∈ [m2], i3 ∈ [d3].
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Guillaume Rabusseau Tensor networks for ML October 27, 2020 10 / 51



Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Matrix product:

A Bm n p (AB)i1,i2 =
∑n

k=1 Ai1kBki2
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Inner product:

u vn u>v =
∑n

k=1 ukvk
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Trace of an n × n matrix:

M1 2

n

Tr(M) =
∑n

i=1 Mii
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Tensor times matrices:

TA

B

C

m1

m2

m3

n1

n2

n3

(T ×1 A×2 B×3 C)i1,i2,i3 =
n1∑

k1=1

n2∑
k2=1

n3∑
k3=1

T k1k2k3Ai1k1Bi2k2Ci3k3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Hyperedge ≡ contraction between more than 2 indices:

u v

w

d d

d ∑n
i=1 uiviwi
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Tensor Decomposition Techniques

Tensors can get huge quickly:
I 3rd order tensor of shape d × d × d : d3 parameters
I 4th order tensor of shape d × d × d × d : d4 parameters
I 10th order tensor of shape d × d × · · · × d : d10 parameters
I ...
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Tensor Decomposition Techniques

Simple idea: decompose a tensor into product of small factors.

Similar to matrix factorization:
I If M ∈ Rm×n and M = AB with A ∈ Rm×r and B ∈ Rr×n

⇒ r(m + n) parameters instead of mn...
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Tensor Decomposition Techniques
Tucker decomposition [Tucker, 1966]:

⇒ R1R2R3 + d1R1 + d2R2 + d2R2 parameters instead of d1d2d3.
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Tensor Decomposition Techniques
Tucker decomposition [Tucker, 1966]:

Td1

d2
d3 = GU1

U2

U3

d1

d2

d3

R1

R2

R3

⇒ R1R2R3 + d1R1 + d2R2 + d2R2 parameters instead of d1d2d3.
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Tensor Decomposition Techniques

CP decomposition [Hitchcock, 1927]2:

A B

C

R R

R

d1 d2

d3

X =d1 d2

d3

⇒ R(d1 + d2 + d3) parameters instead of d1d2d3.

2fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].
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Tensor Decomposition Techniques

Tensor Train decomposition [Oseledets, 2011]:

G1 G2 G3 G4T
d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

⇒ d1R1 + R1d2R2 + R2d2R3 + R3d4 parameters instead of d1d2d3d4.
If the ranks are all the same (R1 = R2 = · · · = R), can represent a
vector of size 2n with O

(
nR2) parameters!
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Tensor Decomposition Techniques

Tensor Ring decomposition [Zhao et al., 2016]:

G1

G2

G3

G4

R4

R1

R3

R2

T =d1 d3

d2

d4

d1 d3

d2

d4

⇒ R4d1R1 + R1d2R2 + R2d2R3 + R3d4R4 parameters instead of d1d2d3d4.
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Summary of Common Tensor Decomposition Models

For an Nth order tensor of size d × d × d × · · · × d , instead of dN

parameters we have
I Tucker: O

(
RN + NdR

)
parameters

I CP: O (NdR) parameters
I Tensor train (TT): O

(
NdR2) parameters

I Tensor ring (TR): O
(
NdR2) parameters

where the rank R = maxi Ri .
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Outline

1 Preliminaries: Tensors and Multilinear Algebra

2 Tensorized Random Projections

3 Adaptive Learning of Tensor Decomposition Models

Joint work with Beheshteh T. Rakhshan, published at AISTATS 2020.
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Motivation

Random projection (RP) and tensor decomposition : Two tools to
deal with high-dimensional data
But RP cannot scale to very high-dimensional inputs (e.g. high-order
tensors)
We use tensor decomposition to scale Gaussian RP to high-order
tensors
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Random Projections (RP)
Goal: find a low-dimensional projection f : Rd → Rk (k � d) that
preserves distances (with high proba.).

Johnson-Lindenstrauss Transform (or Gaussian RP).

f : x 7→ 1√
k

Mx where Mij ∼iid N (0, 1) for each i , j

Theorem (JL, 1984)
Let ε > 0 and x1, · · · , xm ∈ Rd .
If k & ε−2 log m, then, with high proba., ‖f (xi )‖ = (1± ε)‖xi‖ for all
i = 1, · · · ,m.

Applications: sketched linear regression, randomized SVD,
pre-processing step in ML pipeline, ...
Pbm: if x ∈ RdN is a high-order tensor represented in CP/TT format,
the Gaussian RP has dNk parameters...
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Objective

We want to find a RP map f : RdN → Rk such that:
I the number of parameters is linear in N
I computing f (x) is efficient when x is in the CP or TT format
I f preserves distances with high probability.

Two important properties that a RP must satisfy:
I E[‖f (x)‖2] = ‖x‖2 for all x
I limk→∞V[‖f (x)‖2] = 0

↪→ the rate at which V[[‖f (x)‖2] converges to 0 captures the quality of
a RP.
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Tensor Train RP: First Attempt

We build a Gaussian RP f : x 7→ 1
Z Mx where M ∈ Rk×dN is

represented using the TT format:

G1 G2 G3 G4 G5M
d d d d

k
=

d d

k

d d

R R R R

where the entries of each core tensor Gn are drawn iid from N (0, 1).

, O
(
R2Nd + R2k

)
parameters instead of dNk.

, Efficient computation of Mx when x is in the CP/TT format.
, We have E[‖f (x)‖2] = ‖x‖2.
/ We can show that limk→∞ V[‖f (x)‖2] > 0...
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Tensor Train Random Projection (TT-RP): Second
attempt

Tensor Train RP:
fTT (R) : x 7→ 1√

kRN
Mx

where each row of M =


—m>1 —
—m>2 —

...
—m>k —

 ∈ Rk×dN is in the TT format:

G i
1 G i

2 G i
3 G i

4mi

d d d d

=
d d d d

R R R for each i = 1, · · · , k

and the entries of each core tensor G i
n are drawn iid from N (0, 1).

, O
(
kNdR2) parameters instead of dNk.

, Efficient computation of Mx when x is in the CP/TT format.
, We have E[‖fTT (R)(x)‖2] = ‖x‖2.
, We have limk→∞ V[‖fTT (R)(x)‖2] = 0...
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CP Random projection (CP-RP)
CP Random Projection:

fCP(R) : x 7→ 1√
kRN

Mx

where each row of M =


—m>1 —
—m>2 —

...
—m>k —

 ∈ Rk×dN is in the CP format:

G i
1 G i

2 G i
3 G i

4mi

d d d d

=
d d d d

R R
R R

for each i = 1, · · · , k

and the entries of each core tensor G i
n are drawn iid from N (0, 1).

, O (kNdR) parameters instead of dNk.
, Efficient computation of Mx when x is in the CP/TT format.
, We have E[‖fCP(R)‖2] = ‖x‖2.
, We have limk→∞ V[‖fCP(R)(x)‖2] = 0...
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Main Result

Theorem
Let x ∈ RdN and R ∈ Ncal.
The RP maps fTT (R) and fCP(R) satisfy the following properties:

E[‖fCP(R)(x)‖2] = E[‖fTT (R)(x)‖2] = ‖x‖2

V[‖fTT (R)(x)2‖] ≤ 1
k (3

(
1 + 2

R

)N−1
− 1) ‖x‖4

V[‖fCP(R)(x)2‖] ≤ 1
k

(
3N−1

(
1 + 2

R

)
− 1

)
‖x‖4
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V[‖fTT (R)(x)2‖] ≤ 1
k (3
(

1 + 2
R

)N−1
− 1) ‖x‖4

V[‖fCP(R)(x)2‖] ≤ 1
k

(
3N−1

(
1 + 2

R

)
− 1

)
‖x‖4

↪→ The bounds on the variances are substantially different...
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Comparison between fCP and fTT

fCP(R) : RdN → Rk fTT (R) : RdN → Rk

Number of parameters O (kNdR) O
(
kNdR2)

Computing f (x)
x in CP with rank R̃ O

(
kNd max(r , R̃2

)
O
(
kNd max(r , R̃3

)
Computing f (x)

x in TT with rank R̃ O
(
kNd max(r , R̃3

)
O
(
kNd max(r , R̃3

)
With proba ≥ 1− δ,

P(‖f (x)‖2 = (1± ε) ‖x‖2)
as soon as k & · · ·

3N−1(1+2/R)
ε2 log2N

(
1
δ

)
(1+2/R)N

ε2 log2N
(

1
δ

)

Lower bounds on k suggest that fTT is a better RP than fCP .
Classical Gaussian RP needs k & 1

ε2 log
(

1
δ

)
.

Comparisons with other approaches: see paper on arXiv and
Beheshteh Rakhshan’s talk at AISTATS 2020.
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Experiment Setup

Compare fTT , fCP and classical Gaussian RP to project dN

dimensional vectors
I small order: d = 15,N = 3
I medium order: d = 3,N = 12
I higher order: d = 3,N = 25

Input x is a random unit-norm TT vector with rank R̃ = 10.
Metric: distortion ratio ‖f (x)‖2

‖x‖2 − 1
Report averages over 100 trials
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Experiment Results
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Conclusion

We proposed an efficient way to tensorize classical Gaussian RP
Theory and experiments suggest that TT is better suited than CP for
very high dimensional RP

Future work:
I Leverage results to design efficient linear regression and SVD algorithms
I Beyond classical tensor decomposition: other TN structures better

suited for RP?
I Study of statistical properties of TT vectors with random Gaussian

cores
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Outline

1 Preliminaries: Tensors and Multilinear Algebra

2 Tensorized Random Projections

3 Adaptive Learning of Tensor Decomposition Models

Joint work with Meraj Hashemizadeh, Michelle Liu and Jacob Miller
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Tensor Decomposition Techniques
Lots of ways to decompose a tensor:

⇒ How to choose the right decomposition model for a given ML
problem?

⇒ Can we design adaptive algorithms, learning the decomposition
structure from data?

⇒ What are the different implicit bias encoded in each decomposition
model?

⇒ ...
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Tensor based optimization problems

A lot of tensor problems can be formulated as

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

where L is a loss function and rank is some notion of tensor rank (e.g.
TT, TR, CP, ...).

I Tensor Decomposition

L(W) = ‖T −W‖2
F

I Tensor Regression

L(W) = ‖W ×1 X−Y‖2
F

I Tensor Completion
I ...
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Matrix and tensor completion

Here L(W) =
∑

(i ,j)∈Ω(Wi ,j − Xi ,j)2 where Ω is the set of observed
entries and the minimization problem is

min
W∈Rn×m

L(W) s.t. rank(W) ≤ k

which is equivalent to:

min
U∈Rn×k ,V∈Rk×m

L(UV)

figure credits: Heartbeat Fritz AI: Recommender systems with Python
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A greedy algorithm for adaptive learning of TN structures

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

We do not want to assume a fixed decomposition model.
We want an algorithm that can adaptively find the best
decomposition model for the task at hand.

↪→ We optimize the loss both with respect to the TN structure and the
core tensors of the TN:

min
Tensor Network Structure TN

min
G(1),··· ,G(p)

L(TN(G(1), · · · ,G(p)))

s.t. size(G(1), · · · ,G(p)) ≤ C

Guillaume Rabusseau Tensor networks for ML October 27, 2020 35 / 51



A greedy algorithm for adaptive learning of TN structures

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

We do not want to assume a fixed decomposition model.
We want an algorithm that can adaptively find the best
decomposition model for the task at hand.

↪→ We optimize the loss both with respect to the TN structure and the
core tensors of the TN:

min
Tensor Network Structure TN

min
G(1),··· ,G(p)

L(TN(G(1), · · · ,G(p)))

s.t. size(G(1), · · · ,G(p)) ≤ C

Guillaume Rabusseau Tensor networks for ML October 27, 2020 35 / 51



A greedy algorithm for adaptive learning of TN structures

min
Tensor Network Structure TN

min
G(1),··· ,G(p)

L(TN(G(1), · · · ,G(p)))

s.t. size(G(1), · · · ,G(p)) ≤ C

Pbm: the space of TN structures is exponentially large...
We propose a simple greedy approach:

I Start with a rank one tensor
I Optimize the loss wrt the core tensors.
I Greedily choose an edge to increment in the TN.
I Repeat until the parameters budget is reached.
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Greedy Algorithm Overview

Start with a random rank one tensor.

W =

d

d

d
W
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Greedy Algorithm Overview

Optimize the loss wrt the core tensors.

W =

d

d

d
W

L(W) = 0.9
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Greedy Algorithm Overview

Consider all possible rank one increments on internal edges.

W =

d

d

d
W

L(W) = 0.9

W =

d

d

d
W

2

W =

d

d

d
W

2

W =

d

d

d
W 2
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Greedy Algorithm Overview

Optimize the loss wrt core tensors for each possible increment.

W =
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d
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W
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Greedy Algorithm Overview

Select the most promising rank increment and repeat...

W =
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d
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Implementation Details and Limitations

At each iteration of greedy, we restart the optimization from the
previous solution.
No internal nodes are added to the initial TN structure (cannot
represent Tucker).
No hyperedge (cannot represent CP).
Computationally expensive.
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Experiment: Tensor decomposition

Objective: compress a given tensor (with unknown tensor network
structure) by decomposing it.
Target tensors:
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Experiment: Tensor decomposition

0 1000 2000 3000 4000
parameters

0.0

0.2

0.4

0.6

re
co

ns
tru

ct
io

n 
er

ro
r

TT target tensor
Greedy
Random walk
CP
Tucker
TT

0 1000 2000 3000 4000
parameters

0.0

0.2

0.4

0.6

0.8

1.0

re
co

ns
tru

ct
io

n 
er

ro
r

TR target tensor
Greedy
Random walk
CP
Tucker
TT

0 1000 2000 3000 4000
parameters

0.0

0.1

0.2

0.3

re
co

ns
tru

ct
io

n 
er

ro
r

Triangle target tensor
Greedy
Random walk
CP
Tucker
TT

Guillaume Rabusseau Tensor networks for ML October 27, 2020 46 / 51



Experiment: Tensor completion
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Experiment: Tensor completion
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Experiment: Tensor completion
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Conclusion

We propose a general adaptive learning algorithm for tensor problem
First step towards algorithms for general TN rather than specific
tensor decomposition models
Experimental results are very encouraging
Related to the work of Chao Li and Zhun Sun at ICML 2020

Future directions (ongoing):
I Theory: we can show an exponential convergence rate to a solution

achieving the optimal loss
I Add support for internal nodes and hyperedges
I Beyond Greedy:

F develop heuristics for more efficient search
F backtracking (e.g. A∗ algorithm)

I experiments on compressing neural networks
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Thank you! Questions?
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