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Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

Classical learning algorithms assume X = Rd and Y = Rp.
How to handle input/output structured data?

I Tensor structured data: Images, videos, spatio-temporal data, ...
I Discrete structured data: strings, trees, graphs, ...

In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Introduction

How can one learn with structured objects such as strings and trees?

Intersection of Theoretical Computer Science and Machine Learning...

→ Weighted Automata: robust model to represent functions defined over
structured objects (and in particular probability distributions).
String Weighted Automata (WA): generalize Hidden Markov Models
Weighted Tree Automata (WTA): closely related to PCFGs
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Weighted Automata (WA)
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba), λ the
empty string.

Recall: a Deterministic Finite Automaton (DFA) recognizes a
language (subset of Σ∗).

↪→ a DFA computes a function f : Σ∗ → {>,⊥}.
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Weighted Automata: States and Weighted Transitions

slide credits: B. Balle, X. Carreras, A. Quattoni - ENMLP’14 tutorial
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R

Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1

Guillaume Rabusseau Automata, Tensor Networks and Learning April 1, 2020 9 / 42



String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R
Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ

A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1

Guillaume Rabusseau Automata, Tensor Networks and Learning April 1, 2020 9 / 42



String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R
Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1

Guillaume Rabusseau Automata, Tensor Networks and Learning April 1, 2020 9 / 42



Weighted Automata and Representation Learning

Σ∗

φ(x)

x

Rn

φ

A WA induces a mapping φ : Σ∗ → Rn (∼ word embedding)

The mapping φ is compositional:

φ(λ) = α>, φ(σ1) = α>Aσ1 , φ(σ1σ2) = α>Aσ1Aσ2 = φ(σ1)Aσ2 , ...

The output fA(x) = 〈φ(x),ω〉 is linear in φ(x).
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Spectral Learning of Weighted
Automata
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Hankel matrix

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


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Spectral Learning of Weighted Automata

Hf ∈ RΣ∗×Σ∗ : Hankel matrix of f : Σ∗ → R

Definition: prefix p, suffix s ⇒ (Hf )p,s = f (ps)

Fundamental theorem [Carlyle and Paz, 1971; Fliess 1974]:

rank(Hf ) <∞⇐⇒ f can be computed by a WA
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Hankel matrix and WA

slide credits: B. Balle
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Hankel matrices

In addition to the Hankel matrix

H =



a b aa ab ...

a f (aa) f (ab) . . . . . . . . .
b f (ba) f (bb) . . . . . . . . .
aa f (aaa) f (aab) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


For each σ ∈ Σ we also define

Hσ =



a b aa ab ...

a f (aσa) f (aσb) . . . . . . . . .
b f (bσa) f (bσb) . . . . . . . . .
aa f (aaσa) f (aaσb) . . . . . . . . .

ab
...

...
...

...
...

...
...

...
...

... . . .


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Hankel matrix: spectral learning

slide credits: B. Balle
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Spectral Learning of Weighted Automata (in a nutshell)

1. Choose a set of prefixes and suffixes, P,S ⊂ Σ∗.
2. Estimate the Hankel sub-blocks H and Hσ ∈ RP×S for each σ ∈ Σ

H =


a b

a f (aa) f (ab)
b f (ba) f (bb)
aa f (aaa) f (aab)

 Hσ =


a b

a f (aσa) f (aσb)
b f (bσa) f (bσb)
aa f (aaσa) f (aaσb)


3. Perform rank n decomposition H = PS
4. WA with initial/final weights α = Pλ,:, ω = S:,λ and transition

matrices Aσ = P†HσS† is a minimal WFA for f .

→ Efficient and consistent learning algorithms for weighted automata
[Hsu et al., 2009; Bailly et al. 2009; Balle et al., 2014, ...].
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Spectral Learning: when does it work?
Theorem
If the set of prefixes and suffixes P,S ⊂ Σ∗ are such that

rank(HP×S) = rank(HΣ∗×Σ∗) <∞

then the spectral learning algorithm returns a minimal WA computing f .

Suppose f is computed by a WA. By a continuity argument, if we are
given noisy estimates Ĥ = H + ξ, Ĥσ = Ĥσ + ξσ we have

lim
‖ξ‖→0, ‖ξσ‖→0

f̂ = f

where f̂ is the estimator returned by the spectral method.
↪→ When f is a probability distribution, we get an unbiased and

consistent estimator! [c.f. work of B. Balle]
(if not, then first do matrix completion, then spectral method [Balle
and Mohri, 2013])
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Open problems

Selecting prefixes and suffixes P and S from the data
Constraining the WA model (e.g. probabilistic automaton)
Extension to semi-rings
Extension to non-linear models
Extension to graphs (trees done to some extent)
Spectral method as an initialization to local optimization for
non-linear models
· · ·
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A Small Detour through Tensors
and Tensor Networks
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Matrix product: A B
1

2 1
2

(AB)i1,i2 =
∑

k
Ai1kBki2
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Trace: M1 2

Tr(M) =
∑

i
Mii
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Tensor Networks

M1 2 T1

2

3

Matrix: Mi1i2 3rd order tensor: T i1i2i3

Tensor times matrices:

TA

B

C

1

1

1

2 1

2

2

2

3

(T ×1 A×2 B×3 C)i1,i2,i3 =
∑

k1k2k3

T k1k2k3Ai1k1Bi2k2Ci3k3
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Multilinear Maps
Liner map f : Rd → Rp maps x to Wx = W×2 x for some
W ∈ Rp×d :

x 7−→ x W
1

1 2 1

Multilinear map g : Rd1 × Rd2 → Rp maps (u, v) to W ×2 u×3 v for
some W ∈ Rp×d1×d2 :

u v 7−→
1 1

W

u

v

1

2

2

2

3
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String Weighted Automata (WA)

Σ a finite alphabet (e.g. {a, b}), Σ∗ strings on Σ (e.g. abba)
A WA computes a function f : Σ∗ → R
Weighted Automaton: A = (α, {Aσ}σ∈Σ,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

Aσ ∈ Rn×n transition weights matrix for each σ ∈ Σ
A computes a function fA : Σ∗ → R defined by
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WA and Matrix Product States / Tensor Train
We can rewrite

αf (σ1σ2 · · ·σk) = Aσ1 Aσ2 · · · Aσk ω

as

α A

eσ1

A

eσ2

· · · A

eσk

ω

where A ∈ Rn×Σ×n defined by A:,σ,: = Aσ and eσ ∈ RΣ is the one-hot
encoding of σ.

Connections between HMMs and MPS already noticed by Critch et al.
around 2013 (and likely even before)
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Weighted Automata Vs. RNNs
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Weighted Automata Vs. Recurrent Neural Networks

Recurrent neural networks can also deal with sequence data
⊕ Remarkably expressive models, impressive results in speech and audio

recognition
	 Less tractable than WA, limited understanding of their inner working

Connections between WA and RNN:
I Can RNN learn regular languages? [Giles et al, 1992], [Avcu et al., 2018]
I Can we extract finite state machines from RNNs? [Giles et al, 1992],

[Weiss et al., 2018], [Ayache et al., 2018]
I Can we combine FSMs with WA? [Rastogi et al., 2016], [Dyer et al., 2016]
I To which extent Weighted Automata are linear RNNs?
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2nd order RNNs

Recurrent Neural Network (RNN):

(x1, x2, x3, · · · ) 7→ (y1, y2, y3, · · · )

Vanilla RNN:

ht = g(Uxt + Vht−1), yt = g(Mht)

Second-order RNN [Giles et al., NIPS’90]:

ht = g(W ×2 xt ×3 ht−1)

→ order 2 multiplicative interactions: [ht ]i = g
(∑

j,k W ijk [xt ]j [ht−1]k
)

.
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Weighted Automata and Recurrent Neural Networks

The hidden state of a second-order RNN is computed by

ht = g(W ×2 xt ×3 ht−1)

h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α Aσ1 Aσ2 Aσ3 ω
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h0 W

x1

W

x2

W

x3

g g g

The computation of a weighted automaton is very similar!

α A

eσ1

A

eσ2

A

eσ3

ω

(where A ∈ Rn×Σ×n defined by A:,σ,: = Aσ)
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WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs for
computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!
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Continuous WA / linear 2-RNN

Definition
A continuous WA is a tuple A = (α,A,ω) where

α ∈ Rn initial weights vector
ω ∈ Rn final weights vector

A ∈ Rn×d×n is the transition tensor.

A computes a function fA : (Rd )∗ → R defined by

αf (x1, x2, · · · , xk) = A

x1

A

x2

· · · A

xk

ω
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WAs ≡ linear 2-RNNs

Theorem
WAs are expressively equivalent to second-order linear RNNs (linear
2-RNNs) for computing functions over sequences of discrete symbols.

But 2-RNNs can compute functions over sequences of continuous
vectors (e.g., word embeddings), what about WAs?

↪→ We can extend the definitions of WAs to continuous vectors!

Can we learn linear 2-RNNs from data?
? Over sequences of discrete symbols?
↪→ Yes: spectral learning of WA
? Over sequences of continuous vectors?
↪→ Yes: technical contribution of [AISTATS’19]
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Beyond Strings and Trees: Graph
Weighted Models
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A Look Back on String Weighted Automata

A Weighted Automaton A = (α, {Aσ}σ∈Σ,ω) computes a function

fA : Σ∗ → R defined by

fA(σ1σ2 · · ·σk) = α>Aσ1Aσ2 · · ·Aσkω

α Aσ1 Aσ2 · · · Aσk ω1 1 2 1 2 1 2 1 2 1
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Beyond Strings: Weighted Tree Automata
A weighted tree automaton (WTA) is a tuple A = 〈α,T , {ωσ}σ∈Σ〉

α ∈ Rn : vector of initial weights
T ∈ Rn×n×n : tensor of transition weights

ωσ ∈ Rn : vector of final weights associated with σ ∈ Σ

A WTA computes a function fA : TΣ → R.
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·), h(·, ·), g(·, ·, ·)}
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Figure: A graph on the ranked alphabet F = {a(·), h(·, ·), g(·, ·, ·)}.

GWM: vector Ma ∈ Rn, matrix Mh ∈ Rn×n, tensor Mg ∈ Rn×n×n
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {α(·), a(·, ·), b(·, ·), ω(·)}
GWM: Mα,Mω ∈ Rn, Ma,Mb ∈ Rn×n

α a b b a ω1 1 2 1 2 1 2 1 2 1

Mα Ma Mb Mb Ma Mω1 1 2 1 2 1 2 1 2 1
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Graph Weighted Models [R. Bailly∗, GR∗, F. Denis, LATA’15/JCSS’18]

F = {a(·, ·), b(·, ·)}
GWM: Ma,Mb ∈ Rn×n
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Learning Graph Weighted Models

Long term objective: extend the spectral learning algorithm to
functions defined over graphs.
→ learning general GWMs is very challenging.

First step: study the problem of learning GWMs defined over simple
families of graphs (circular strings, 2D grids).

Minimization of GWMs over circular strings [GR, FoSSaCS’18]:
I Minimizing WA ↔ linear algebra
I Minimizing GWMs ↔ theory of finite dimensional algebras

Guillaume Rabusseau Automata, Tensor Networks and Learning April 1, 2020 41 / 42



Thank you! Questions?
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