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Mixture Model

Definition
Let f1,--- , f, be distributions and wy, - -+ , wy be positive reals such that
k
° > imwi=1

f =wif + -+ wefe is a mixture.
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Mixture Model

Definition
Let f1,--- , fx be distributions and wx, - - - , w, be positive reals such that
k
° > imwi=1

f=wify + - + wify is a mixture.

D;: fair coin,  Djy: coin s.t. Plhead] =3/4, X ~D =0.5D; +0.5D,

o P[X = head] = 0.5+ 1/2+ 0.5 x3/4 = 5/8
o P[X =tail] =05%1/2+05x1/4=3/8
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Negative Mixture Model

Definition

Let fi,--- , f be distributions and wjy,-- -, wx be non zero reals such that
o Yl wi=1
@ wifi(x)+ -+ wife(x) > 0 for all x

f=wfi+ -+ wify is a negative (or generalized) mixture.

v
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Negative Mixture Model

Definition
Let f1,-- -, fx be distributions and wy, - - - , w, be non zero reals such that
k
o) ywi=1

o wifi(x)+ -+ wkfk(x) > 0 for all x

f=wfi+ -+ wify is a negative (or generalized) mixture.

v

D;: fair coin,  Dy: coin s.t. Plhead] =3/4, X ~D =1.5D; —0.5D,

@ P[X = head] =15%1/2—-0.5%3/4=3/8
o P[X = tail] =15%1/2—05%1/4=5/8
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Negative Mixture of Spherical Gaussians
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Negative Mixture of Spherical Gaussians

Simulating h = af — (o — 1)g by réjection sampling
REPEAT
Draw x ~ Dr and e uniformly in [0, 1]
UNTIL eaf(x) < (o —1)g(x)
RETURN x
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Probabilistic Automata

81)068
—>
b,0.2

0.5 @ b,05
_— >

b,0.5

Example:

P[bb] = 0.5%0.6%0.2%0.840.5%0.5%0.5%0.3+0.5%0.5%0.2x0.8 = 0.1255

Guillaume Rabusseau, Francois Denis (Qarma Learning Negative Mixtures October 19, 2014 7 /32



Weighted Automata

Y

a,l
0.43 % 1
N

Proposition
e r(w) >0 forall w € ©*

° ZWGZ* I’(W):].
o r¢ PA
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Expressiveness of PA's and WA's

Negative Mixtures
of PA's

Theorem

Every rational probability distribution can be generated by the negative
mixture of at most two PA’s.

Proof: Main difficulty was solved in [Bailly and Denis, 2011].
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Tensors: Preliminaries

" M

>

M c R" @ R" ~ R"™"
(M;j) € R for i,j € [n]

(Tijk) € R for i,j, k€ [n]
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Tensors: Preliminaries

n
n M
n
: i
>
MER”@R"ZR"Xh TGR"@R"@R”
(M) €R for i, j € [n] (Tix) € R for i, j, k € [n]

Outer product:
ea®becR"@R" (a®b); = ajb; (~ab")
e aRbRceR"QR"QR™ (a®b®c),-jk = a;bjc,

Guillaume Rabusseau, Francois Denis (Qarma Learning Negative Mixtures October 19, 2014

11/ 32



Tensors: Preliminaries

p
n
p
A ~ M |
n
. A rRT
0 - >
0 o
A cR™P B e R™4 A cR™P BeR™9 CeR™
M(A,B) = ATMB < RP*9 J(A,B,C) e RPRIQR"
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Learning from Data
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Learning from Data: Gaussian

N(x; p, %)

{ Elx] = H = i%?:lxi

E[x?] = o0?+p? ~
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Learning from Data: Method of Moments

E[x]
E[x?]

= (61,
= g(b1, -

E[Xk] : gk(‘91; R
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Tensor Decomposition for Learning Latent Variable Models

[Anandkumar et al., 2012]

Latent Variable Model:
F(x) = Yoiey pifi(x: ;)

|

S:{xl,... ,Xn}CRd

lStructure in the
Low Order Moments

E[x ® x| = gl(Zzzl Pikti ® W)
Ex@x®@x] = g(dimy Pitt ® p; @ p;)

l Tensor Power Method
Pi, I
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Mixture of Spherical Gaussians

@ Generative process:
» Draw a gaussian h ~ p € R¥
» Draw x ~ N(x; p, o2l)

@ The PDF of x is ptN(x; py, 0%1) + - + puN(x; p, o2l)

Theorem ([Hsu and Kakade, 2013], part 1)

The average variance 5° = fozl p,-a,-2 is the smallest eigenvalue of the
covariance matrix E[(x — E[x])(x — E[x])T].
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Mixture of Spherical Gaussians

@ Generative process:
» Draw a gaussian h ~ p € R¥
» Draw x ~ N(x; p, o2l)

@ The PDF of x is ptN(x; py, 0%1) + - + puN(x; p, o2l)
Theorem ([Hsu and Kakade, 2013], part 2)
Let v be any unit-norm eigenvector corresponding to 5° and let
m; = E[x(v' (x — E[x]))?], M, = E[x ® x| — %I, and

n

M3 ZE[X®X®X] —Z[ml®ei®ei+ei®m1®ei+e,‘®ei®m1]
i=1

where e1, - - - , e, is the coordinate basis of R". Then,

k k K
m; = ZP:‘U?H/, M, = ZPiH;@)H; ,and Mz = ZP/N/®H/®N;-
i=1 i=1 i=1

v
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Tensor Power Method: Problem Formulation

My =~ Y pi; @ p
PG i
Mz >0 pipt; @ p; @ p;

|

ﬁivﬁ’i
e k<d

® py, -, py € R? are linearly independent
@ p1,---,px € R are strictly positive real numbers
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Tensor Power Method: Orthonormalization

o M, = fozl wip; @ p; = UDUT eigendecomposition of M.
e W=UDY2cRk and 1; = /wiW ' p; € R¥.

@ We have

k k
I = My(W,W) =W’ <Z Wi:“i:“?) W=> hin;
i=1 i=1

hence ﬁj—rﬁ; = gj; for all i,j.

—~ 1 - -
e Ms = M3(W,W,W) = Zf—;l W”i Q p; Q ;.
i
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Tensor Power Method

Theorem ([Anandkumar et al., 2012])

Let T € ®3 RY have an orthonormal decomposition

1.
TZZENinNi@Ni’
=1

Let 6o € RY, suppose that | L fi] 00| > | L fis 0| > -+ > |2 Jiy 60| > 0.
Fort=1,2 ---, define

‘:T(Ia 0t—17 01.‘—1)

0, = and M\t =TJ(0 70 70
' ||:T(I50t—1,0t_1)” t ( ty Ut t)

Then, 0; — 1y and ¢ —
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Overview
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Learning Negative Mixtures by Tensor Decomposition

Negative Mixture Model:
F(x) = iy wifi(x; ;)

|

S={x1, - ,xn} C R

lStructure in the
Low Order Moments

E[x ® x] = g1(Z;-::1 Wik ® ;)
Ex®x@x] = g(dli—y wik; @ p; ® p;)
lGeneraIized Tensor
Power Method

Wi, [
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Negative Mixture of Spherical Gaussians

k
0 = > Wil g o). wi 0
i=1
Let ¢ be the number of negative coefficients.

Theorem (part 1)

. - k
o The average variance 5° = Y ;| w;o?

¢ is an eigenvalue of the
covariance matrix E[(x — E[x])(x — E[x])"].

o Furthermore, 52 is either the (-th or (£ + 1)-th smallest eigenvalue of
the covariance matrix.

v
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Negative Mixture of Spherical Gaussians

k

f(X) = Z WI'N(X; ui701'2|)7 Wi 7é 0
i=1
Let ¢ be the number of negative coefficients.

Theorem (part 2)

Let v be any unit-norm eigenvector corresponding to 5° and let

m; = E[x(v' (x — E[x]))?], M, = E[x ® x| — 3%l, and

n

M3ZE[X®X®X]—Z[ml®ei®ei+ei®m1®ei+e,‘®ei®m1]

i=1
where e1, - - - , e, is the coordinate basis of R". Then,
k k k
m; = Z wiotp;, My = Z wip;@p; , and Mz = Z Wit @ p; @ ;.
i=1 i=1 i=1
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Generalized Tensor Power Method: Problem Formulation

My =% wip ®p,
=5 K
Mz >0 wip; @ p; @

|

Wi, b

o k<d
® py, -, py € R? are linearly independent
® wy, -+ ,wx € R are non zero
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Generalized Tensor Power Method:
Pseudo-Orthonormalization

o My = Zf-;l wip; @ p; = UDUT eigendecomposition of M.
o W=UD12¢cC%and z; = ,/wiW T p; € CX.

o We have
k k
i=1 i=1
~T~ ..
hence p; p; = 6; for all i j.
— 1 -
o Mz = Mz(W, W, W) =3k LI T C Ck @ Ck @ CK)
1
() () # 17 ;€ C

Example: if x=(1 /)T andy = (14 1) thenx'x=0andy'y = 1+2i.
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Generalized Tensor Power Method: Complex Tensors

Theorem

Let T € ®3 C" have a pseudo-orthonormal decomposition

1.
TZZWI_N,'@@N/@M-

Let 0g € C", suppose that | .- ~T00| > | ﬁz 6o >--- > |Wlk.ﬁ200| > 0.
Fort=1,2,---, define

0. — JT(1,0:1,0: 1)
p =
[T(/a 9t—17 et—l)TT(/a 9t—17 et—l)]

and )\t = T(Ot,et,et)

N=

Then, 0; — £y and Ay — +4-.
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Generalized Tensor Power Method: Overall Procedure

Algorithm 1 Negative Mixture Estimation

Input: k €N, My € ®%R", M3 € ®°R"
Output: wy, - wi, pog, -, By
UDU' «+ M2 (k truncated eig. decomp.);
W« UD™ 9’<—M3(WWW)
fori=1to k do

Draw 0 at random in Ck;

repeat

0+ 7(1,0,6); 0 — —2 .
(676)2

until stabilization
A<T(0,0,0), T+ T -X0R60:0,
wi 1/ p; — A(WT)T6;

end for
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Learning Negative Mixtures of Spherical Gaussians
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Figure : Negative mixture of 2 spherical Gaussians in dimension 6.
Estimation error as a function of the dataset size.
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Conclusion

o Contributions
> Negative mixture models appear naturally
> Generalized tensor power method and direct recovery via matrix
diagonalization
» Application to negative mixture of spherical Gaussians
@ Perspectives
> Investigate other fields of ML where these models occur
» Understand the relations between the two methods (and merge them?)
» Robustness analysis
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