Learning Negative Mixture Models by Tensor Decomposition

Guillaume Rabusseau, François Denis

October 19, 2014

Overview

- Negative Mixtures
- 2 Learning by Tensor Decomposition
- 3 Learning Negative Mixtures
- 4 Experiments
- Conclusion

Overview

- Negative Mixtures
 - Definition
 - Negative Mixture of Spherical Gaussians
 - Rational Distribution on Strings
- 2 Learning by Tensor Decomposition
 - Tensors: Preliminaries
 - Learning from Data
 - Tensor Decomposition for Latent Variable Models
- 3 Learning Negative Mixtures
 - Negative Mixture of Spherical Gaussians
 - Generalized Tensor Power Method
- 4 Experiments
- Conclusion

Mixture Model

Definition

Let f_1, \dots, f_k be distributions and w_1, \dots, w_k be positive reals such that

•
$$\sum_{i=1}^{k} w_i = 1$$

$$f = w_1 f_1 + \cdots + w_k f_k$$
 is a **mixture**.

Mixture Model

Definition

Let f_1, \dots, f_k be distributions and w_1, \dots, w_k be positive reals such that

•
$$\sum_{i=1}^{k} w_i = 1$$

$$f = w_1 f_1 + \cdots + w_k f_k$$
 is a **mixture**.

$$\mathcal{D}_1$$
: fair coin, \mathcal{D}_2 : coin s.t. $\mathbb{P}[head] = 3/4$, $X \sim \mathcal{D} = 0.5\mathcal{D}_1 + 0.5\mathcal{D}_2$

- $\mathbb{P}[X = head] = 0.5 * 1/2 + 0.5 * 3/4 = 5/8$
- $\mathbb{P}[X = tail] = 0.5 * 1/2 + 0.5 * 1/4 = 3/8$

Negative Mixture Model

Definition

Let f_1, \dots, f_k be distributions and w_1, \dots, w_k be non zero reals such that

- $\sum_{i=1}^{k} w_i = 1$
- $w_1 f_1(x) + \cdots + w_k f_k(x) \ge 0$ for all x

 $f = w_1 f_1 + \cdots + w_k f_k$ is a negative (or generalized) mixture.

Negative Mixture Model

Definition

Let f_1, \dots, f_k be distributions and w_1, \dots, w_k be non zero reals such that

- $\sum_{i=1}^{k} w_i = 1$
- $w_1 f_1(x) + \cdots + w_k f_k(x) \ge 0$ for all x

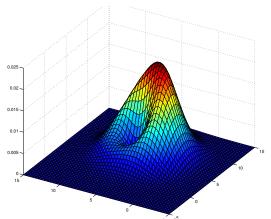
 $f = w_1 f_1 + \cdots + w_k f_k$ is a negative (or generalized) mixture.

$$\mathcal{D}_1$$
: fair coin, \mathcal{D}_2 : coin s.t. $\mathbb{P}[\textit{head}] = 3/4$, $X \sim \mathcal{D} = 1.5 \mathcal{D}_1 - 0.5 \mathcal{D}_2$

- $\mathbb{P}[X = head] = 1.5 * 1/2 0.5 * 3/4 = 3/8$
- $\mathbb{P}[X = tail] = 1.5 * 1/2 0.5 * 1/4 = 5/8$

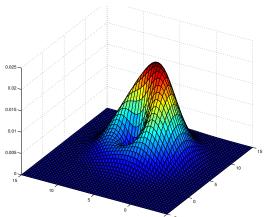
◆ロト ◆卸 ▶ ◆差 ▶ ◆差 ▶ ・差 ・ 釣 Q (*)

Negative Mixture of Spherical Gaussians



$$f(\mathbf{x}) = 1.5 \mathcal{N}\left(\mathbf{x}, \begin{bmatrix} 11.4 \\ -3.4 \end{bmatrix}, 8\mathbf{I}\right) - 0.5 \mathcal{N}\left(\mathbf{x}, \begin{bmatrix} 11.9 \\ -1.9 \end{bmatrix}, 4\mathbf{I}\right)$$

Negative Mixture of Spherical Gaussians



Simulating $h = \alpha f - (\alpha - 1)g$ by rejection sampling

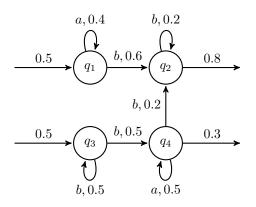
Repeat

Draw $x \sim \mathcal{D}_f$ and e uniformly in [0,1]

Until $e\alpha f(x) < (\alpha - 1)g(x)$

Return x

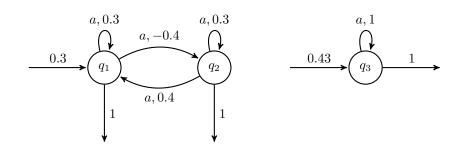
Probabilistic Automata



Example:

$$\mathbb{P}[bb] = 0.5*0.6*0.2*0.8+0.5*0.5*0.5*0.3+0.5*0.5*0.2*0.8 = 0.1255$$

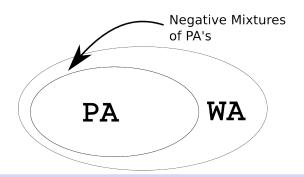
Weighted Automata



Proposition

- $r(w) \ge 0$ for all $w \in \Sigma^*$
- $\bullet \sum_{w \in \Sigma^*} r(w) = 1$
- $r \notin PA$

Expressiveness of PA's and WA's



Theorem

Every rational probability distribution can be generated by the negative mixture of at most two PA's.

Proof: Main difficulty was solved in [Bailly and Denis, 2011].

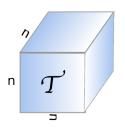
Overview

- Negative Mixtures
 - Definition
 - Negative Mixture of Spherical Gaussians
 - Rational Distribution on Strings
- 2 Learning by Tensor Decomposition
 - Tensors: Preliminaries
 - Learning from Data
 - Tensor Decomposition for Latent Variable Models
- Learning Negative Mixtures
 - Negative Mixture of Spherical Gaussians
 - Generalized Tensor Power Method
- 4 Experiments
- 5 Conclusion

Tensors: Preliminaries

$$\mathbf{M} \in \mathbb{R}^n \otimes \mathbb{R}^n \simeq \mathbb{R}^{n \times n}$$

 $(\mathbf{M}_{ij}) \in \mathbb{R} \text{ for } i, j \in [n]$



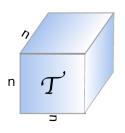
$$\mathfrak{T} \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$$

 $(\mathfrak{T}_{ijk}) \in \mathbb{R} \text{ for } i, j, k \in [n]$

Tensors: Preliminaries

$$\mathbf{M} \in \mathbb{R}^n \otimes \mathbb{R}^n \simeq \mathbb{R}^{n \times n}$$

 $(\mathbf{M}_{ii}) \in \mathbb{R} \text{ for } i, j \in [n]$



$$\mathfrak{T} \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$$

 $(\mathfrak{T}_{ijk}) \in \mathbb{R} \text{ for } i, j, k \in [n]$

Outer product:

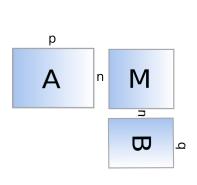
•
$$\mathbf{a} \otimes \mathbf{b} \in \mathbb{R}^n \otimes \mathbb{R}^n$$
:

$$(\mathbf{a} \otimes \mathbf{b})_{ii} = \mathbf{a}_i \mathbf{b}_i$$

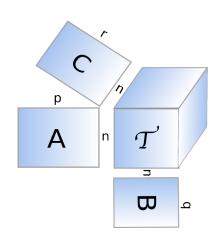
$$(\simeq \mathsf{ab}^{ op})$$

•
$$\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c} \in \mathbb{R}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^n$$
: $(\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c})_{ijk} = \mathbf{a}_i \mathbf{b}_j \mathbf{c}_k$

Tensors: Preliminaries

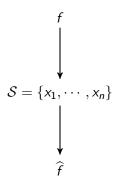


 $\mathbf{A} \in \mathbb{R}^{n \times p}, \mathbf{B} \in \mathbb{R}^{n \times q}$ $M(A, B) = A^{\top}MB \in \mathbb{R}^{p \times q}$

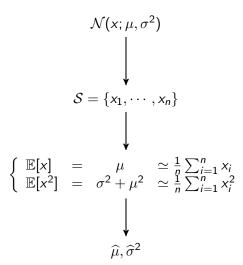


 $\mathbf{A} \in \mathbb{R}^{n \times p}, \mathbf{B} \in \mathbb{R}^{n \times q}, \mathbf{C} \in \mathbb{R}^{n \times r}$ $\mathfrak{I}(\mathsf{A},\mathsf{B},\mathsf{C}) \in \mathbb{R}^p \otimes \mathbb{R}^q \otimes \mathbb{R}^r$

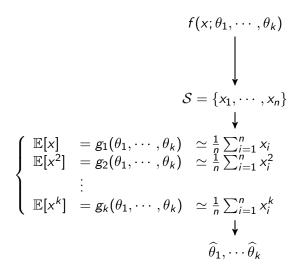
Learning from Data



Learning from Data: Gaussian



Learning from Data: Method of Moments



Tensor Decomposition for Learning Latent Variable Models [Anandkumar et al., 2012]

Latent Variable Model:
$$f(\mathbf{x}) = \sum_{i=1}^k p_i f_i(\mathbf{x}; \boldsymbol{\mu}_i)$$

$$\downarrow$$

$$\mathcal{S} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \subset \mathbb{R}^d$$

$$\downarrow \text{Structure in the}$$

$$\downarrow \text{Low Order Moments}$$

$$\left\{ \begin{array}{l} \mathbb{E}[\mathbf{x} \otimes \mathbf{x}] &= g_1(\sum_{i=1}^k p_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \\ \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] &= g_2(\sum_{i=1}^k p_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \end{array} \right.$$

$$\downarrow \text{Tensor Power Method}$$

$$\widehat{p}_i, \widehat{\boldsymbol{\mu}}_i$$

Mixture of Spherical Gaussians

- Generative process:
 - ▶ Draw a gaussian $h \sim \mathbf{p} \in \mathbb{R}^k$
 - ▶ Draw $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_h, \sigma_h^2 \mathbf{I})$
- The PDF of **x** is $p_1\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \sigma_1^2 \mathbf{I}) + \cdots + p_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \sigma_k^2 \mathbf{I})$

Theorem ([Hsu and Kakade, 2013], part 1)

The average variance $\bar{\sigma}^2 = \sum_{i=1}^k p_i \sigma_i^2$ is the smallest eigenvalue of the covariance matrix $\mathbb{E}[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\top}]$.

Mixture of Spherical Gaussians

- Generative process:
 - ▶ Draw a gaussian $h \sim \mathbf{p} \in \mathbb{R}^k$
 - ▶ Draw $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_h, \sigma_h^2 \mathbf{I})$
- The PDF of **x** is $p_1\mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_1, \sigma_1^2 \mathbf{I}) + \cdots + p_k \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_k, \sigma_k^2 \mathbf{I})$

Theorem ([Hsu and Kakade, 2013], part 2)

Let ${\bf v}$ be any unit-norm eigenvector corresponding to $\bar{\sigma}^2$ and let

$$\mathbf{m}_1 = \mathbb{E}[\mathbf{x}(\mathbf{v}^\top(\mathbf{x} - \mathbb{E}[\mathbf{x}]))^2], \qquad \mathbf{M}_2 = \mathbb{E}[\mathbf{x} \otimes \mathbf{x}] - \bar{\sigma}^2 \mathbf{I}, \quad \text{and} \quad$$

$$\mathfrak{M}_3 = \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] - \sum_{i=1}^{n} [\mathbf{m}_1 \otimes \mathbf{e}_i \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \mathbf{m}_1 \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{m}_1]$$

where $\mathbf{e}_1, \cdots, \mathbf{e}_n$ is the coordinate basis of \mathbb{R}^n . Then,

$$\mathbf{m}_1 = \sum_{i=1}^k p_i \sigma_i^2 \boldsymbol{\mu}_i, \quad \mathbf{M}_2 = \sum_{i=1}^k p_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \ , \ \mathit{and} \quad \mathfrak{M}_3 = \sum_{i=1}^k p_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i.$$

Tensor Power Method: Problem Formulation

$$\begin{cases} \widehat{\mathbf{M}}_{2} & \simeq \sum_{i=1}^{k} p_{i} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \\ \widehat{\mathbf{M}}_{3} & \simeq \sum_{i=1}^{k} p_{i} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \end{cases}$$

$$\downarrow ?$$

$$\widehat{p}_{i}, \widehat{\boldsymbol{\mu}}_{i}$$

- k < d
- $oldsymbol{\mu}_1,\cdots,oldsymbol{\mu}_k\in\mathbb{R}^d$ are linearly independent
- $p_1, \cdots, p_k \in \mathbb{R}$ are strictly positive real numbers

Tensor Power Method: Orthonormalization

- $\mathbf{M}_2 = \sum_{i=1}^k w_i \mu_i \otimes \mu_i = \mathbf{U} \mathbf{D} \mathbf{U}^{\top}$ eigendecomposition of \mathbf{M}_2 .
- $\mathbf{W} = \mathbf{U} \mathbf{D}^{-1/2} \in \mathbb{R}^{d \times k}$ and $\widetilde{\boldsymbol{\mu}_i} = \sqrt{w_i} \mathbf{W}^{\top} \boldsymbol{\mu}_i \in \mathbb{R}^k$.
- We have

$$\mathbf{I} = \mathbf{M}_2(\mathbf{W}, \mathbf{W}) = \mathbf{W}^{\top} \left(\sum_{i=1}^k w_i \mu_i \mu_i^{\top} \right) \mathbf{W} = \sum_{i=1}^k \widetilde{\mu_i} \widetilde{\mu_i}^{\top}$$

hence $\widetilde{\mu_i}^{\top} \widetilde{\mu_j} = \delta_{ij}$ for all i, j.

• $\widetilde{\mathfrak{M}}_3 = \mathfrak{M}_3(\mathsf{W}, \mathsf{W}, \mathsf{W}) = \sum_{i=1}^k \frac{1}{w_i} \widetilde{\mu_i} \otimes \widetilde{\mu_i} \otimes \widetilde{\mu_i}.$

Tensor Power Method

Theorem ([Anandkumar et al., 2012])

Let $\mathfrak{T} \in igotimes^3 \mathbb{R}^d$ have an orthonormal decomposition

$$\mathfrak{T} = \sum_{i=1}^k \frac{1}{w_i} \widetilde{\mu}_i \otimes \widetilde{\mu}_i \otimes \widetilde{\mu}_i.$$

Let $\theta_0 \in \mathbb{R}^d$, suppose that $|\frac{1}{w_1}.\widetilde{\mu}_1^{\top}\theta_0| > |\frac{1}{w_2}.\widetilde{\mu}_2^{\top}\theta_0| \ge \cdots \ge |\frac{1}{w_k}.\widetilde{\mu}_k^{\top}\theta_0| > 0$. For $t = 1, 2, \cdots$, define

$$oldsymbol{ heta}_t = rac{\mathfrak{I}(I,oldsymbol{ heta}_{t-1},oldsymbol{ heta}_{t-1})}{\|\mathfrak{I}(I,oldsymbol{ heta}_{t-1},oldsymbol{ heta}_{t-1})\|} \quad ext{and} \quad \lambda_t = \mathfrak{I}(oldsymbol{ heta}_t,oldsymbol{ heta}_t)$$

Then, $oldsymbol{ heta}_t
ightarrow \widetilde{oldsymbol{\mu}}_1$ and $\lambda_t
ightarrow rac{1}{w_1}.$

Overview

- Negative Mixtures
 - Definition
 - Negative Mixture of Spherical Gaussians
 - Rational Distribution on Strings
- 2 Learning by Tensor Decomposition
 - Tensors: Preliminaries
 - Learning from Data
 - Tensor Decomposition for Latent Variable Models
- 3 Learning Negative Mixtures
 - Negative Mixture of Spherical Gaussians
 - Generalized Tensor Power Method
- 4 Experiments
- Conclusion

Learning Negative Mixtures by Tensor Decomposition

Negative Mixture Model:
$$f(x) = \sum_{i=1}^k w_i f_i(x; \boldsymbol{\mu}_i)$$

$$\downarrow$$

$$\mathcal{S} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\} \subset \mathbb{R}^d$$

$$\downarrow \text{Structure in the}$$

$$\downarrow \text{Low Order Moments}$$

$$\left\{ \begin{array}{l} \mathbb{E}[\mathbf{x} \otimes \mathbf{x}] &= g_1(\sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \\ \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] &= g_2(\sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \end{array} \right.$$

$$\left\{ \begin{array}{l} \mathbb{E}[\mathbf{x} \otimes \mathbf{x}] &= g_2(\sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \\ \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] &= g_2(\sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i) \end{array} \right.$$

$$\left. \begin{array}{l} \text{Generalized Tensor} \\ \text{Power Method} \\ \widehat{w}_i, \widehat{\boldsymbol{\mu}}_i \end{array} \right.$$

Negative Mixture of Spherical Gaussians

$$f(\mathbf{x}) = \sum_{i=1}^{k} w_i \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_i, \sigma_i^2 \mathbf{I}), \quad w_i \neq 0$$

Let ℓ be the number of negative coefficients.

Theorem (part 1)

- The average variance $\bar{\sigma}^2 = \sum_{i=1}^k w_i \sigma_i^2$ is an eigenvalue of the covariance matrix $\mathbb{E}[(\mathbf{x} \mathbb{E}[\mathbf{x}])(\mathbf{x} \mathbb{E}[\mathbf{x}])^{\top}]$.
- Furthermore, $\bar{\sigma}^2$ is either the ℓ -th or $(\ell+1)$ -th smallest eigenvalue of the covariance matrix.

Negative Mixture of Spherical Gaussians

$$f(\mathbf{x}) = \sum_{i=1}^{k} w_i \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}_i, \sigma_i^2 \mathbf{I}), \quad w_i \neq 0$$

Let ℓ be the number of negative coefficients.

Theorem (part 2)

Let ${\bf v}$ be any unit-norm eigenvector corresponding to $\bar{\sigma}^2$ and let

$$\mathbf{m}_1 = \mathbb{E}[\mathbf{x}(\mathbf{v}^\top(\mathbf{x} - \mathbb{E}[\mathbf{x}]))^2], \qquad \mathbf{M}_2 = \mathbb{E}[\mathbf{x} \otimes \mathbf{x}] - \bar{\sigma}^2 \mathbf{I}, \ \ \text{and}$$

$$\mathcal{M}_3 = \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}] - \sum_{i=1}^n [\mathbf{m}_1 \otimes \mathbf{e}_i \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \mathbf{m}_1 \otimes \mathbf{e}_i + \mathbf{e}_i \otimes \mathbf{e}_i \otimes \mathbf{m}_1]$$

where $\mathbf{e}_1, \cdots, \mathbf{e}_n$ is the coordinate basis of \mathbb{R}^n . Then,

$$\mathbf{m}_1 = \sum_{i=1}^k w_i \sigma_i^2 \boldsymbol{\mu}_i, \quad \mathbf{M}_2 = \sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i , \text{ and } \quad \mathfrak{M}_3 = \sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i.$$

Generalized Tensor Power Method: Problem Formulation

$$\begin{cases} \widehat{\mathbf{M}}_{2} & \simeq \sum_{i=1}^{k} w_{i} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \\ \widehat{\mathbf{M}}_{3} & \simeq \sum_{i=1}^{k} w_{i} \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \otimes \boldsymbol{\mu}_{i} \end{cases}$$

$$\downarrow ?$$

$$\widehat{w}_{i}, \widehat{\boldsymbol{\mu}}_{j}$$

- $k \leq d$
- $oldsymbol{\mu}_1,\cdots,oldsymbol{\mu}_k\in\mathbb{R}^d$ are linearly independent
- $w_1, \cdots, w_k \in \mathbb{R}$ are **non zero**

Generalized Tensor Power Method:

Pseudo-Orthonormalization

- $\mathbf{M}_2 = \sum_{i=1}^k w_i \boldsymbol{\mu}_i \otimes \boldsymbol{\mu}_i = \mathbf{U} \mathbf{D} \mathbf{U}^{\top}$ eigendecomposition of \mathbf{M}_2 .
- $\mathbf{W} = \mathbf{U}\mathbf{D}^{-1/2} \in \mathbb{C}^{d \times k}$ and $\widetilde{\mu_i} = \sqrt{w_i}\mathbf{W}^{\top}\mu_i \in \mathbb{C}^k$.
- We have

$$\mathbf{I} = \mathbf{M}_2(\mathbf{W}, \mathbf{W}) = \mathbf{W}^{\top} \left(\sum_{i=1}^k w_i \mu_i \mu_i^{\top} \right) \mathbf{W} = \sum_{i=1}^k \widetilde{\mu_i} \widetilde{\mu_i}^{\top}$$

hence $\widetilde{\mu_i}^{\top} \widetilde{\mu_j} = \delta_{ij}$ for all i, j.

•
$$\widetilde{\mathfrak{M}}_3 = \mathfrak{M}_3(\mathbf{W}, \mathbf{W}, \mathbf{W}) = \sum_{i=1}^k \frac{1}{w_i} \widetilde{\mu_i} \otimes \widetilde{\mu_i} \otimes \widetilde{\mu_i} \quad (\in \mathbb{C}^k \otimes \mathbb{C}^k \otimes \mathbb{C}^k)$$

$$(!) \ \langle \widetilde{\boldsymbol{\mu}_i}, \widetilde{\boldsymbol{\mu}_j} \rangle \neq \widetilde{\boldsymbol{\mu}_i}^{\top} \widetilde{\boldsymbol{\mu}_j} \in \mathbb{C}$$

Example: if $\mathbf{x} = (1 \ i)^{\top}$ and $\mathbf{y} = (1+i \ 1)^{\top}$ then $\mathbf{x}^{\top}\mathbf{x} = 0$ and $\mathbf{y}^{\top}\mathbf{y} = 1+2i$.

Generalized Tensor Power Method: Complex Tensors

Theorem

Let $\mathfrak{T} \in \bigotimes^3 \mathbb{C}^n$ have a pseudo-orthonormal decomposition

$$\mathfrak{T}=\sum_{i=1}^k\frac{1}{w_i}\widetilde{\mu}_i\otimes\widetilde{\mu}_i\otimes\widetilde{\mu}_i.$$

Let $\theta_0 \in \mathbb{C}^n$, suppose that $|\frac{1}{w_1}.\widetilde{\mu}_1^{\top}\theta_0| > |\frac{1}{w_2}.\widetilde{\mu}_2^{\top}\theta_0| \ge \cdots \ge |\frac{1}{w_k}.\widetilde{\mu}_k^{\top}\theta_0| > 0$. For $t = 1, 2, \cdots$, define

$$\boldsymbol{\theta}_t = \frac{\mathfrak{T}(I,\boldsymbol{\theta}_{t-1},\boldsymbol{\theta}_{t-1})}{[\mathfrak{T}(I,\boldsymbol{\theta}_{t-1},\boldsymbol{\theta}_{t-1})^{\top}\mathfrak{T}(I,\boldsymbol{\theta}_{t-1},\boldsymbol{\theta}_{t-1})]^{\frac{1}{2}}} \quad \text{and} \quad \lambda_t = \mathfrak{T}(\boldsymbol{\theta}_t,\boldsymbol{\theta}_t,\boldsymbol{\theta}_t)$$

Then, $oldsymbol{ heta}_t
ightarrow \pm \widetilde{oldsymbol{\mu}}_1$ and $\lambda_t
ightarrow \pm rac{1}{w_1}$.

Generalized Tensor Power Method: Overall Procedure

Algorithm 1 Negative Mixture Estimation

Input:
$$k \in \mathbb{N}$$
, $\widehat{\mathbf{M}}_2 \in \bigotimes^2 \mathbb{R}^n$, $\widehat{\mathbf{M}}_3 \in \bigotimes^3 \mathbb{R}^n$
Output: $w_1, \cdots, w_k, \mu_1, \cdots, \mu_k$
UDU $^{\top} \leftarrow \widehat{\mathbf{M}}_2$ (k -truncated eig. decomp.);
 $\mathbf{W} \leftarrow \mathbf{UD}^{-\frac{1}{2}}$; $\mathcal{T} \leftarrow \widehat{\mathcal{M}}_3(\mathbf{W}, \mathbf{W}, \mathbf{W})$;
for $i=1$ to k do
Draw θ at random in \mathbb{C}^k ;
repeat
 $\theta \leftarrow \mathcal{T}(I, \theta, \theta)$; $\theta \leftarrow \frac{\theta}{(\theta^{\top}\theta)^{\frac{1}{2}}}$;
until stabilization
 $\lambda \leftarrow \mathcal{T}(\theta, \theta, \theta)$; $\mathcal{T} \leftarrow \mathcal{T} - \lambda.\theta \otimes \theta \otimes \theta$;
 $w_i \leftarrow 1/\lambda^2$; $\mu_i \leftarrow \lambda(\mathbf{W}^{\top})^+\theta$;
end for

Overview

- Negative Mixtures
 - Definition
 - Negative Mixture of Spherical Gaussians
 - Rational Distribution on Strings
- 2 Learning by Tensor Decomposition
 - Tensors: Preliminaries
 - Learning from Data
 - Tensor Decomposition for Latent Variable Models
- Learning Negative Mixtures
 - Negative Mixture of Spherical Gaussians
 - Generalized Tensor Power Method
- 4 Experiments
- Conclusion

Learning Negative Mixtures of Spherical Gaussians

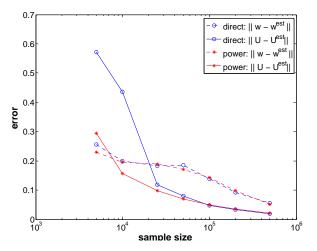


Figure: Negative mixture of 2 spherical Gaussians in dimension 6. Estimation error as a function of the dataset size.

Overview

- Negative Mixtures
 - Definition
 - Negative Mixture of Spherical Gaussians
 - Rational Distribution on Strings
- 2 Learning by Tensor Decomposition
 - Tensors: Preliminaries
 - Learning from Data
 - Tensor Decomposition for Latent Variable Models
- Learning Negative Mixtures
 - Negative Mixture of Spherical Gaussians
 - Generalized Tensor Power Method
- 4 Experiments
- Conclusion

Conclusion

Contributions

- Negative mixture models appear naturally
- Generalized tensor power method and direct recovery via matrix diagonalization
- Application to negative mixture of spherical Gaussians
- Perspectives
 - Investigate other fields of ML where these models occur
 - Understand the relations between the two methods (and merge them?)
 - Robustness analysis

Tensor decompositions for learning latent variable models. CoRR, abs/1210.7559.

Bailly, R. and Denis, F. (2011).

Absolute convergence of rational series is semi-decidable. Inf. Comput., 209(3):280-295.

Hsu, D. and Kakade, S. M. (2013).

Learning mixtures of spherical gaussians: Moment methods and spectral decompositions.

In Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS '13, pages 11–20, New York, NY, USA. ACM.