
Approximate Minimization of Weighted Tree Automata

Borja Balle∗ Guillaume Rabusseau†

Mila and DIRO
Université de Montréal

September 15, 2019

Abstract

This paper studies the following approximate minimization problem: given a minimal weighted
tree automaton A with n states recognizing a weighted tree language f , can we construct a smaller
automaton Â with n̂ < n states recognizing a language f̂ that is a good approximation of f? The
corresponding problem for weighted automata on strings was recently studied by Balle et al. [16, 15],
where the authors introduced a new canonical form for weighted automata called singular value
automata inspired by spectral methods, and showed that truncating such canonical form yields a
solution for the problem satisfying a certain approximation criteria. In this paper we take a similar
approach and show that in the tree case one can obtain an analogous canonical form that we call
singular value tree automata, and use it to study the approximate minimization problem for weighted
tree automata. We first establish the existence of this canonical form for weighted tree automata and
then provide bounds on the quality of the resulting approximation method based on truncation. We
also study the problem of computing the canonical form given a minimal weighted tree automaton
and show that in the tree case this task is considerably more complicated than in the string case. In
particular, computing the canonical form reduces to solving a system of polynomial equations. By
further reducing this problem to the computation of generalized partition functions for weighted tree
automata, we propose and analyze two methods for computing the canonical form based on iterative
methods: fixed point iteration and Newton’s method. Our analysis of Newton’s method unveils a
connection between iterative methods and sequences of sets of trees satisfying a certain technical
condition that might be of independent interest.

1 Introduction

Weighted tree automata (WTA) are a natural and powerful generalization of weighted (string) automata
(WA) first considered in [19]. In the same way that weighted automata extend deterministic finite
automata recognizing regular languages to a more general class of models that can recognize regular
stochastic and weighted languages, weighted tree automata extend classical tree automata and closely
related context-free grammars to the weighted case. The expressive power of WTA and their relation
to other unweighted and weighted models, including probabilistic and weighted context-free grammars,
have been thoroughly studied in the literature (see [34] and references there-in). Broadly speaking,
results about the expressive power of classes of automata come in two flavors. One class of results
provides a qualitative understanding of the separations between classes of languages that can and cannot
be recognized by certain types of machines. The other class of results is more quantitative in nature: it
studies the expressiveness of objects within a class as a function of their complexity, typically measured
by the number of states required to capture a certain phenomenon.

A fundamental quantitative result about the expressiveness of WA with weights over a field is provided
by Fliess’ theorem [32], which can be seen as an generalization of the classic Myhill–Nerode theorem to
the weighted case. This result exactly characterizes those weighted languages that can be recognized by
a WA with n states as those whose corresponding infinite Hankel matrix has rank n. Fliess’ theorem also
provides a convenient characterization of minimality for WA: an automaton with n states is minimal if
and only if the Hankel matrix of the language it recognizes has rank n. The analog of Fliess’ theorem for
WTA is due to Bozapalidis and Louscou-Bozapalidou [21]. As in the WA case, the theorem of Bozapalidis
and Louscou-Bozapalidou provides information about the realizability of weighted tree languages and

∗Work done while at Lancaster University.
†Canada CIFAR AI chair

1

minimality of WTA. The main difference is that, in the tree-case, the Hankel matrix of Fliess’, whose
rows and columns are both indexed by finite strings, is replaced by a generalized Hankel matrix where
rows are indexed by context trees and columns are indexed by normal trees (see Section 3 for a precise
definition).

Beyond its pure language-theoretic interest, Fliess’ theorem for WA also has found a number of
applications in machine learning. The starting point of these developments stems from the realization
that constructive proofs of Fliess’ theorem can be interpreted as algorithms for recovering a WA from
(a finite sub-block of) the Hankel matrix corresponding to a weighted language. Implicitly, this idea
was first used by Bergadano and Varricchio [18] to obtain algorithms for learning WA with weights on
a field1 in the exact learning with queries model introduced by Angluin and others [4]. More recently,
a detailed analysis of noise-tolerant algorithms for recovering a WA from a (noisy) Hankel matrix have
lead to PAC learning results in the sense of Valiant [51] (see also Kearns et al. [37]) for stochastic WA
and other classes of WA with weights over the reals [8, 10]. A survey of this line of work can be found
in [14].

The cornerstone needed to make WA learning algorithms robust to noise is to compute spectral
decompositions of Hankel matrices and leverage the inherent ability of spectral representations to separate
signal from noise in the learning process. This is a classic idea in machine learning and statistics that
underlies techniques as fundamental as principal component analysis. However, it has only been during
the last decade that spectral methods have been widely applied to models with latent variables, including
WA [8, 10, 11], hidden Markov models [36, 49], and many others [44, 3, 1, 50, 43, 2], under the umbrella
term of spectral learning. From a theoretical standpoint, the main interest in these algorithms resides
in the fact that in most cases they provide the only known method for learning classes of practically
relevant models with guaranteed polynomial running time and sample complexity.

In addition to their theoretical interest, spectral methods for learning WA and related models have
been successfully applied to a variety of learning tasks involving real data. These tasks include important
application domains, like reinforcement learning, natural language processing and time-series prediction.
For example, in the context of reinforcement learning a number of spectral algorithms have been applied
to model-based learning and planning with partial observations [20, 5, 12]. In natural language processing,
spectral methods have been used for language modelling [10, 11], parsing [25, 41], and transcription and
transliteration tasks [17, 7, 47, 45]. A puzzling fact, however, is that the practical success of spectral
learning cannot be fully explained by existing theoretical analysis. Indeed, with notably few exceptions
[13], existing theoretical analysis of spectral learning only work under the assumption that the data given
to the learning algorithm was generated by an unknown automata of some form, and this is obviously
not the case in most of the applications listed above.

Motivated by this apparent mismatch between the practical success of spectral learning and its
theoretical guarantees, Balle et al. [15, 16] initiated a study of approximate minimization of weighted
automata in the string case. These works stem from the realization that spectral learning algorithms
can be interpreted as first computing a minimal WA that exactly explains the training data, and then
trying to find a smaller WA that approximates this exact WA in order to obtain a model that generalizes
to previously unseen data. Towards the goal of better understanding this approximation step, Balle
et al. unveiled a connection between spectral learning algorithms and a novel canonical form for WA
called singular value automata (SVA). The theory of SVA in the string case provides a way to implicitly
compute the singular value decomposition of an infinite Hankel matrix, and yields bounds on the quality
of approximate minimization algorithms for WA by SVA truncation. In particular, the approximation
bounds obtained in [15, 16] can be seen as a first step towards quantifying the accuracy of spectral
learning for WA from data not necessarily generated by an underlying automaton. Interestingly, similar
bounds were also obtained independently in [40].

The present paper follows on the footsteps of [15, 16], and shows that most of the theory developed
for SVA in the string case can be extended to the tree case. Our work provides a novel canonical
form for WTA which we call singular value tree automata (SVTA). The existence of this canonical
form follows from a spectral decomposition of the generalized (tree) Hankel matrix of Bozapalidis and
Louscou-Bozapalidou. In the string case, computing the SVA form can be achieved by solving a system
of linear equations. In the tree case, however, computing the SVTA form of a given WTA turns out to be
a substantially more complicated problem, since it requires finding a solution to a system of polynomial
equations. To solve the problem we propose two iterative algorithms that can be used to compute an
SVTA form to arbitrary accuracy. Finally, we consider the approximate minimization problem for WTA
and provide the first approximation bounds based on SVTA truncation. Again, the situation here is

1These type of WA are sometimes called multiplicity automata in the literature.

2

considerably more involved than in the string case, where the approximation error can be characterized
in closed form. Instead, we obtain our bounds as a function of the size of the trees being considered
by carefully analyzing the propagation of approximation errors through the computation performed by
the truncated SVTA. From a learning point of view, our theory of SVTA computation and truncation
provides an approximate minimization perspective on recent works on learning WTA and related models
like weighted and probabilistic context-free grammars using spectral methods [9, 6, 24, 23].

After recalling the necessary background and preliminaries in Section 2, we proceed to present our
contributions. These can be summarized as follows:

• We introduce SVTA as a canonical form for WTA in Section 3, thus generalizing the theory
presented in [16] from strings to trees. We show under which conditions a WTA can be brought
into SVTA canonical form and we present an algorithm to compute an SVTA from such an WTA.
Similarly to [16], our approach to compute SVTA canonical forms reduces to the computation of
the so-called Gramian matrices of the WTA.

• We present an algorithm to approximate the Gramians of a WTA to an arbitrary precision in
Section 5. This algorithm leverages the fact that the problem of computing the Gramians can
be reduced to the one of computing the generalized partition function of a WTA — a particular
vector-valued series defined by the WTA.

• In Section 4, we present two iterative algorithms to compute the generalized partition function of
a WTA and analyze their convergence rate. The first algorithm is based on a simple fixed point
iteration and the second, which achieves a faster convergence rate, is based on Newton’s method.
While the proof of convergence and analysis of the fixed point method is relatively straightforward,
the one of Newton’s method unravels an elaborate construction which may be of independent
interest. In particular, this construction gives combinatorial insights on the faster convergence
rate obtained by Newton’s method in this context and bares striking similarities with the work
of Esparza et al. on Newtonian program analysis [29] for computing fixed points of system of
equations over ω-continuous semi-rings (see Section 7 for a discussion of this connection).

• Leveraging the fact that the states of an SVTA are in one-to-one correspondence with the singular
values of the Hankel matrix, we propose a principled method for reducing the number of states of a
WTA to approximate a recognizable tree function by a model with a smaller size in Section 6. This
method consists in first converting the WTA into SVTA canonical form before removing the states
corresponding to the smaller singular values. We also provide an analysis of the error introduced
by this approximation scheme.

Finally, we present our conclusions and future work in Section 7. Some of our results appeared in
preliminary form in in the conference paper [46], where applications of approximate minimization of
WTA to speed up parsing algorithms for weighted context-free grammars were considered. The SVTA
theory developed in [46] is limited to WTA defined over binary rooted trees with leaves labeled by symbols
from a finite alphabet. Here we extend this theory to WTA over rooted trees of arbitrary arity labeled
with symbols from a finite ranked alphabet2. We also present improved analysis and faster algorithms
for computing the SVTA form of a given WTA. In particular, using Newton’s method for computing the
Gramians was not considered in [46]. The approximation bounds presented in Section 6 are also new.

2 Background and Preliminaries

We start by introducing our notations and presenting the necessary background on linear and multilinear
algebra before recalling the definitions of trees and weighted tree automata. The main notations used
throughout the paper are summarized in Table 1 for convenience.

2.1 Linear and Multilinear Algebra

For any integer p, we denote by [p] the set of integers from 1 to p. We use bold letters to denote vectors
v ∈ Rd and matrices M ∈ Rd1×d2 . Unless explicitly stated, all vectors are column vectors. We write I
for the identity matrix and diag(a1, . . . , an) for a diagonal matrix with a1, . . . , an in the diagonal. For
a matrix M ∈ Rd1×d2 , i ∈ [d1], and j ∈ [d2], we use Mi,: and M:,j to denote the ith row and the jth

2 This extension as well as the approximation bounds in Section 6 were initially presented in the PhD thesis [?].

3

column of M respectively. We will sometime use the notations M(i, j) = Mi,j , M(i, :) = Mi,:, etc. to
avoid doubling indices. Given a matrix M ∈ Rd1×d2 we denote by vec(M) ∈ Rd1·d2 the vector obtained
by concatenating the columns of M so that vec(M)(i−1)d2+j = Mi,j . Given two matrices M ∈ Rd1×d2

and M′ ∈ Rd′1×d′2 we denote their Kronecker product by M ⊗M′ ∈ Rd1d
′
1×d2d

′
2 , with entries given by

(M ⊗M′)(i−1)d′1+i′,(j−1)d′2+j′ = Mi,jM
′
i′,j′ , where i ∈ [d1], j ∈ [d2], i′ ∈ [d′1], and j′ ∈ [d′2]. A rank

factorization of a rank n matrix M ∈ Rd1×d2 is an expression of the form M = QR where Q ∈ Rd1×n

and R ∈ Rn×d2 are full-rank matrices; i.e. rank(Q) = rank(R) = rank(M) = n.
Given a matrix M ∈ Rd1×d2 of rank n, its singular value decomposition (SVD)3 is a decomposition of

the form M = UDV> where U ∈ Rd1×n, D ∈ Rn×n, and V ∈ Rd2×n are such that: U>U = V>V = I,
and D = diag(s1, . . . , sn) with s1 ≥ · · · ≥ sn > 0. The columns of U and V are thus orthonormal and are
called left and right singular vectors respectively, and the si are its singular values. The SVD is unique
(up to sign changes in associate singular vectors) whenever all inequalities between singular values are
strict.

We now recall basic definitions of tensor algebra; more details can be found in [39]. A tensor T ∈
Rd1×···×dp can simply be seen as a multidimensional array (T i1,...,ip : in ∈ [dn], n ∈ [p]). We will
mostly use hyper-cubic tensors in this work, i.e. d1 = · · · = dp = d, and we denote the space of d-
dimensional hyper-cubic tensors of order p by (Rd)⊗p. The mode-n fibers of a tensor T ∈ (Rd)⊗p are
the vectors obtained by fixing all indices except the nth one, e.g. the mode-1 fibers of T are the vectors
T :,i2,...,ip ∈ Rd for i2, . . . , ip ∈ [d]. The nth mode matricization of T is the matrix having the mode-n

fibers of T for columns and is denoted by T(n) ∈ Rd×dp−1

. The vectorization of a tensor is defined by
vec(T) = vec(T(1)).

Given a tensor T ∈ (Rd)⊗p and matrices Mi ∈ Rd×di for i ∈ [p], we define the tensor T (M1,M2, . . . ,Mp) ∈
Rd1×d2×···×dp whose entries are given by

T (M1,M2, . . . ,Mp)i1,i2,...,ip =
∑

j1,j2,...,jp

T j1,j2,...,jp(M1)j1,i1(M2)j2,i2 . . . (Mp)jp,ip .

This operation corresponds to contracting T with Mi across the ith mode of the tensor for each i.
Observe that for the case of an order 2 tensor T (i.e. a matrix), we have T(M1,M2) = M>

1 TM2.
In particular, if we take M1 to be the identity matrix we can identify the matrix T with the linear
map v 7→ T(I,v) = Tv. Similarly, we can identify a tensor T ∈ (Rd)⊗(p+1) with the multilinear map
f : (Rd)p → Rd defined by f(v1,v2, . . . ,vp) = T (I,v1,v2, . . . ,vp). Given a tensor T ∈ (Rd)⊗3 and
matrices A1,A2,A3 ∈ Rd×m and B1,B2,B3 ∈ Rm×n we have the following useful identity

(T (A1,A2,A3))(B1,B2,B3) = T (A1B1,A2B2,A3B3)

which can easily be generalized to higher-order tensors.

2.2 Trees and Weighted Tree Automata

Trees on a ranked alphabet. We now introduce notations for describing trees generated by a
weighted tree automaton; see Figure 1 for some illustrative examples.

A ranked alphabet is a tuple F = (Σ,]) where Σ is a finite alphabet and] : Σ→ N is an arity function.
We denote by Fp = {g ∈ Σ :]g = p} the set of symbols with arity p. Similarly, we will denote by F≤p
(resp. F≥p) the set of symbols with arity at most p (resp. at least p).

The set of trees TF on a ranked alphabet F is the smallest set satisfying

• σ ∈ TF for any σ ∈ F0,

• g(t1, . . . , tp) ∈ TF for any p ≥ 1, g ∈ Fp and t1, . . . , tp ∈ TF .

We will call symbols in F0 leaf symbols and symbols in F≥1 internal symbols. We will sometimes simply
write T instead of TF when the ranked alphabet is clear from context. The size of a tree t ∈ TF is
denoted by |t| and defined recursively by |σ| = 1 for σ ∈ F0, and |g(t1, . . . , tp)| = 1 + |t1|+ · · ·+ |tp|; that
is, the number of nodes in the tree. Given a symbol g and a tree t we will denote by |t|g the number
of nodes in t that are labeled with g. The depth of a tree t ∈ TF is denoted by depth(t) and defined
recursively by depth(σ) = 0 for σ ∈ F0, and depth(g(t1, . . . , tp)) = 1 + max{depth(t1), . . . ,depth(tp)};

3To be more precise, this is a compact singular value decomposition, since the inner dimensions of the decomposition
are all equal to the rank. In this paper we shall always use the term SVD to mean compact SVD.

4

gt =

a b

gc1 =

* d

gc2 =

g
*

d a

gc1[t] =

g d

a b

gc2[c1] =

g g

a b * d

Figure 1: Examples of trees (t, c1[t] ∈ TF) and contexts (c1, c2, c2[c1] ∈ CF) on the ranked alphabet
F = F0 ∪ F2 where F0 = {a, b, d} and F2 = {g}. With our notations: c1[t] = g(g(a, b), d), |c1[t]| = 5,
depth(c1[t]) = 2, 〈t〉 = ab, drop(c2[c1]) = 2

that is, the distance from the root of the tree to the farthest leaf. We will denote by T≤k = {t ∈ TF |
depth(t) ≤ k} (resp. Tk,T≥k) the set of trees of depth at most (resp. equal to, at least) k.

Let F ′ = (Σ ∪ {∗},]′), where ∗ is a symbol of arity 0 not in Σ. The set of context trees is the set
CF = {c ∈ TF ′ : |c|∗ = 1}; that is, a context c ∈ CF is a tree in TF ′ in which the symbol ∗ occurs exactly
in one leaf. Note that given a context c = g(t1, . . . , tp) ∈ CF with g ∈ Fp, t1, . . . tp ∈ TF ′ the symbol ∗ can
only appear in one of the ti’s. The drop of a context c ∈ CF is the distance between the root and the leaf
labeled with ∗ in c, which can be defined recursively as drop(∗) = 0, drop(g(t1, . . . , ti, c, ti+1, . . . , tp)) =
drop(c) + 1 for any g ∈ Fp+1, t1, . . . , tp ∈ TF .

We usually think of the leaf with the symbol ∗ in a context as a placeholder where the root of another
tree or another context can be inserted. Accordingly, given t ∈ TF and c ∈ CF , we define c[t] ∈ TF as
the tree obtained by replacing the occurrence of ∗ in c with t. Similarly, given c, c′ ∈ CF we can obtain
a new context tree c[c′] by replacing the occurrence of ∗ in c with c′ (see Figure 1). We will denote by
τ ⊂ t the fact that τ is a subtree of t (i.e. that there exists a context c such that t = c[τ]).

Weighted tree automaton. A weighted tree automaton (WTA) A over trees on a ranked alphabet
F is a tuple (Rn,α, {Ag}g∈F≥1

, {ωσ}σ∈F0
) where n is the number of states, α ∈ Rn is the initial weight

vector, ωσ ∈ Rn is the final weight vector associated with the leaf symbol σ for each σ ∈ F0, and for
any symbol g of arity p ≥ 1, Ag ∈ (Rn)⊗(p+1) is the transition tensor of order p+ 1 associated with the
internal symbol g. A WTA A computes a function fA : TF → R assigning to each tree t ∈ TF the scalar
computed as fA(t) = α>ωA(t), where ωA(t) ∈ Rn is obtained recursively as ωA(σ) = ωσ, and

ωA(g(t1, . . . , tp)) = Ag(I,ωA(t1), . . . ,ωA(tp)).

In many cases we will just write ω(t) when the automaton A is clear from the context.
An arbitrary function f : TF → R is called recognizable (or rational) if there exists a WTA A such

that f = fA. The number of states of the smallest such WTA is the rank of f — we shall set rank(f) =∞
if f is not recognizable. A WTA A with n states such that fA = f and n = rank(f) is called minimal.

To conclude this section, we briefly discuss how the definition of WTA in terms of tensor algebra relates
to equivalent definitions of WTA. First, in the seminal paper of Berstel and Reutenauer [19], weighted
tree automata are defined in terms of multilinear maps acting on an F-vector space for some (commu-
tative) field F (making their definition basis independent). We focus here on the specific case of F = R
and (for reasons that will appear clearly in the sequel) we choose a strictly equivalent basis dependent
definition (i.e. each multilinear map is expressed in some fixed basis)

The formalism we use can also be directly related to the classical definition of WTA in terms of run
semantics (see e.g. [34, Section 3.2]). Formally, a WTA over a ranked alphabet F can be defined as a
tuple A = 〈Q,S, δ, λ〉 where Q is a finite set of states, S is a semi-ring, δ is a transition map, mapping
transitions (q1 . . . qp, g, q) into S where q1, . . . , qp, q ∈ Q and g ∈ Fp, and λ ∈ SQ maps each state to its
initial weight. Informally, a run of A on a tree t ∈ TF is a labeling of the nodes of t with states in Q
built using transitions in δ. The weight of a run is the product of the weights of all these transitions
along with the initial weight in λ corresponding to the state labeling the root of t (using product in S).
The weight of the tree, i.e. the value computed by A on t, is then given by the sum of the weights of all
possible runs of A on t (using addition in S). To see that this definition is equivalent to ours, one can
identify the number of states n with |Q|, α with λ, and the non-zero entries of each transition tensor Ag

and leaf vectors ωσ for g ∈ F≥1, σ ∈ F0 with the corresponding weights given by the transition map δ.
Lastly, WTA are closely related to weighted and probabilistic context free grammars. Indeed, it is well

known that the set of derivation trees of a context-free grammar forms a regular tree language, that is a
language that can be recognized by a (unweighted) tree automaton. Weighted and probabilistic context-
free grammars (WCFG and PCFG) are quantitative extensions of context-free grammars [22][48][26] and

5

[p] set of integers from 1 to p
|S|, |a| cardinal of set S, absolute value of a

a,v,A,T scalar, vector, matrix and tensor
I,M−1 identity matrix, inverse of a matrix
vec(M) vectorization of a matrix

T(1), (A + B)(1) matricization of a tensor
T (A,B,C), T (x,y, z) 3rd order tensor multiplied by matrices/vectors:

u⊗ v,A⊗B Kronecker product (for vectors or matrices)
JF,v Jacobian of F at v

s1, s2, . . . singular values of the Hankel matrix

F = (Σ,]) ranked alphabet
Fp, F≥p symbols of arity p (resp. greater than p)

TF , CF (or simply T, C) set of trees and contexts on F
∗ placeholder symbol in contexts (also the empty context)

|t|, depth(t), drop(c) size and depth of a tree and drop of a context
T≤k, Tk, T≥k set of trees of depth at most / equal to / at least k
C≤k, Ck, C≥k set of contexts of drop at most / equal to / at least k

(Rn,α, {T g}g∈F≥1
, {ωσ}σ∈F0

) Weighted Tree Automaton with n states
ωA : T→ Rn tree mapping induced by a WTA A with n states

αA : C→ Rn, ΞA : C→ Rn×n context mappings induced by a WTA A with n state
GC,GT Gramian matrices of a WTA

z = zA =
∑
t∈T ωA(t) generalized partition function of a WTA

Table 1: Summary of notations

the connection between WCFG/PCFG and WTA is of a similar nature: any weighted tree language
induced by a WCFG on derivation trees can be computed by a WTA. A proof of this result can be found
in [28, Corollary 8.7] and the interested reader can refer to e.g. [33] for more details. In [46], we leveraged
this equivalence between PCFG and WTA to use our approximate minimization method to reduce the
size of a WTA obtained from a PCFG learned on a real world natural language corpus.

3 Singular Value Tree Automaton

This section develops the fundamentals of singular value tree automata (SVTA), which provide a novel
canonical form for WTA inspired by spectral theory of linear operators. Following the development for
the string case, we first prove the existence of the canonical form by exploiting the duality between
minimal WTA and rank factorizations of the corresponding Hankel matrix. Next we show how the
computation of the SVTA form of a given WTA reduces to the computation of a pair of finite Gramian
matrices arising from rank factorizations of Hankel matrices. The computation of these Gramians in the
tree case turns out to be significantly more involved than in the string case, and is deferred to Section 5.

3.1 Rank Factorizations of Hankel Matrices

We start by recalling a crucial observation about WTAs: there exist more than one WTA computing the
same function — in fact, there exist infinitely many. An important construction along these lines is the
conjugate of a WTAA with n states by an invertible matrix Q ∈ Rn×n. IfA = (Rn,α, {Ag}g∈F≥1

, {ωσ}σ∈F0),
its conjugate by Q is

AQ = (Rn,Q>α, {Ag(Q−>,Q, . . . ,Q)}g∈F≥1
, {Q−1ωσ}σ∈F0) (1)

where Q−> = (Q>)−1 denotes the inverse of the transpose. To prove that fA = fAQ one applies an
induction argument on depth(t) to show that ωAQ(t) = Q−1ωA(t) for every t ∈ TF . The claim is obvious

6

for trees of zero depth σ ∈ Σ, and for t = g(t1, . . . , tp) we have

ωAQ(g(t1, . . . , tk)) = (Ag(Q−>,Q, . . . ,Q))(I,ωAQ(t1), . . . ,ωAQ(tp))

= (Ag(Q−>,Q, . . . ,Q))(I,Q−1ωA(t1), . . . ,Q−1ωA(tp))

= Ag(Q−>,ωA(t1), . . . ,ωA(tp))

= Q−1Ag(I,ωA(t1), . . . ,ωA(tp)) = Q−1ωA(t) ,

where we just used some simple rules of tensor algebra.
Given any f : T → R we define its Hankel matrix as the bi-infinite matrix Hf ∈ RC×T with rows

indexed by contexts, columns indexed by trees, and whose entries are given by Hf (c, t) = f(c[t]). Note
that given a tree t′ ∈ T there are exactly |t′| different ways of splitting t′ = c[t] with c ∈ C and t ∈ T.
This implies that Hf is a highly redundant representation for f , and it turns out that this redundancy
is the key to proving the following fundamental result about recognizable tree functions.

Theorem 1 ([21]). For any f : TF → R we have rank(f) = rank(Hf).

The theorem above implies that the rank of Hf is finite if and only if f is recognizable. When the rank
of Hf is indeed finite — say rank(Hf) = n — one can find two rank n matrices P ∈ RC×n, S ∈ Rn×T
such that Hf = PS. In this case we say that P and S give a rank factorization of Hf . We shall now
refine Theorem 1 by showing that when f is recognizable, the set of all possible rank factorizations of
Hf is in direct correspondence with the set of minimal WTA computing f .

The first step is to show that any minimal WTA A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0) computing

f induces a rank factorization Hf = PASA. We build SA ∈ Rn×T by setting the column corre-
sponding to a tree t to SA(:, t) = ωA(t). In order to define PA we need to introduce a new map-
ping ΞA : C → Rn×n assigning a matrix to every context as follows: ΞA(∗) = I and for any context
c = g(t1, . . . , ti−1, c

′, ti+1, . . . , tp) where p ≥ 1, g ∈ Fp, tj ∈ T for j 6= i and c′ ∈ C

ΞA(c) = Ag(I,ωA(t1), . . . ,ωA(ti−1),ΞA(c′),ωA(ti+1), . . . ,ωA(tp)). (2)

If we now define αA : C → Rn as αA(c)> = α>ΞA(c), we can set the row of PA corresponding to
c to be PA(c, :) = αA(c)>. With these definitions one can easily show by induction on drop(c) that
ΞA(c)ωA(t) = ωA(c[t]) for any c ∈ C and t ∈ T. Then it is immediate to check that Hf = PASA:

n∑
i=1

PA(c, i)SA(i, t) = αA(c)>ωA(t) = α>ΞA(c)ωA(t)

= α>ωA(c[t]) = fA(c[t]) = Hf (c, t) . (3)

As before, we will sometimes just write Ξ(c) and α(c) when A is clear from the context. We can now
state the main result of this section, which generalizes similar results in [10, 15] for weighted automata
on strings.

Theorem 2. Let f : T → R be recognizable. If Hf = PS is a rank factorization, then there exists a
minimal WTA A computing f such that PA = P and SA = S.

Proof. Let n = rank(f). Let B = (Rn,α, {Bg}g∈F≥1
, {ωσ}σ∈F0

) be an arbitrary minimal WTA comput-
ing f . Suppose B induces the rank factorization Hf = P′S′. Since the columns of both P and P′ are basis
for the column-span of Hf , there exists a change of basis Q ∈ Rn×n between P and P′. That is, Q is an
invertible matrix such that P′Q = P. Furthermore, since P′S′ = Hf = PS = P′QS and P′ has full col-
umn rank, we must have S′ = QS, or equivalently, Q−1S′ = S. Thus, we let A = BQ, which immediately
satisfies fA = fB = f . It remains to show that A induces the rank factorization Hf = PS. Note that
when proving the equivalence fA = fB we already showed ωA(t) = Q−1ωB(t), thus SA = Q−1S′ = S.
To show PA = P′Q we need to show that for any c ∈ C we have αA(c)> = αB(c)>Q. This will imme-
diately follow if we show that ΞA(c) = Q−1ΞB(c)Q. If we proceed by induction on drop(c), we see that
the case c = ∗ is immediate. For c = g(c′, t1, . . . , tp) where c′ ∈ C, p ≥ 0, g ∈ Fp+1 and t1, . . . , tp ∈ T,
we get

ΞA(g(c′, t1, . . . , tp)) = Ag(I,ΞA(c′),ωA(t1), . . . ,ωA(tp))

= (Bg(Q−>,Q, . . . ,Q))(I,Q−1ΞB(c′)Q,Q−1ωB(t1), . . . ,Q−1ωB(tp))

= Bg(Q−>,ΞB(c′)Q,ωB(t1), . . . ,ωB(tp))

= Q−1Bg(I,ΞB(c′),ωB(t1), . . . ,ωB(tp))Q = Q−1ΞB(c)Q .

7

Applying the same argument mutatis mutandis for contexts of the form c = g(t1, . . . , tl−1, c
′, tl, . . . , tp)

completes the proof.

3.2 SVTA: Definition and Existence

Suppose f : T → R is a rank n recognizable function whose Hankel matrix admits a reduced singular
value decomposition Hf = UDV>. Then we have that P = UD1/2 and S = D1/2V> is a rank
decomposition for Hf , and by Theorem 2 there exists some minimal WTA A with fA = f , PA = UD1/2

and SA = D1/2V>. We call such A a singular value tree automaton (SVTA) for f . However, these are
not defined for every recognizable function f , because the fact that the columns of U and V must be
unitary vectors (i.e. U>U = V>V = I) imposes some restrictions on which infinite Hankel matrices
Hf admit an SVD — this phenomenon is related to the distinction between compact and non-compact
operators in functional analysis. Our next theorem gives a sufficient condition for the existence of an
SVD of Hf .

We say that a function f : TF → R is strongly convergent if the series
∑
t∈TF |t||f(t)| converges. To

see the intuitive meaning of this condition, assume that f is a probability distribution over trees in T. In
this case, strong convergence is equivalent to saying that the expected size of trees generated from the
distribution f is finite. It turns out that strong convergence of f is a sufficient condition to guarantee
the existence of an SVD for Hf .

Theorem 3. If f : TΣ → R is recognizable and strongly convergent, then Hf admits a singular value
decomposition.

Proof. The result will follow if we show that Hf is the matrix of a compact operator between Hilbert
spaces [35, Theorem 4.3.5]. We start by defining the Hilbert spaces of square-summable series indexed
by trees and contexts. Given two functions g, g′ : TΣ → R we define their inner product to be 〈g, g′〉T =∑
t∈TΣ

g(t)g′(t) (whenever the sum converges). Let ‖g‖T =
√
〈g, g〉T be the induced norm. We denote

by `2T be the real vector space of functions {g : T→ R | ‖g‖T <∞}, which is a separable Hilbert space
because the set T is countable. Similarly, given functions g, g′ : CΣ → R we define an inner product
〈g, g′〉C =

∑
c∈CΣ

g(c)g′(c), a norm ‖g‖C =
√
〈g, g〉C, and a separable Hilbert space `2C = {g : C → R |

‖g‖C < ∞}. With this notation it is possible to see that Hf is the matrix under the standard basis on
`2T and `2C of the operator Hf : `2T → `2C given by (Hfg)(c) =

∑
t∈TΣ

f(c[t])g(t). Since f is recognizable,
Hf is a finite-rank matrix and therefore Hf is a finite-rank operator. Thus, to show the compactness of
Hf it only remains to show that Hf is bounded.

Given f ∈ `2T and c ∈ CΣ we define a new function fc ∈ `2T given by fc(t) = f(c[t]) for t ∈ TΣ. Now
let g ∈ `2T with ‖g‖T = 1 and recall that Hf is bounded if ‖Hfg‖C <∞ for every g ∈ `2T with ‖g‖T = 1.
To show that Hf is bounded observe that

‖Hfg‖2C =
∑
c∈CΣ

(Hfg)(c)2 =
∑
c∈CΣ

(∑
t∈TΣ

f(c[t])g(t)

)2

=
∑
c∈CΣ

〈fc, g〉2T ≤ ‖g‖
2
T

∑
c∈CΣ

‖fc‖2T

=
∑
c∈CΣ

∑
t∈TΣ

fc(t)
2 =

∑
c∈CΣ

∑
t∈TΣ

f(c[t])2

=
∑
t∈TΣ

|t|f(t)2 ≤ sup
t∈TΣ

|f(t)| ·
∑
t∈TΣ

|t||f(t)|

<∞ ,

where we used the Cauchy–Schwarz inequality, and the fact that supt∈TΣ
|f(t)| is bounded when f is

strongly convergent.

Together, Theorems 2 and 3 imply that every recognizable strongly convergent f : T → R can be
represented by an SVTA A. Since the singular value decomposition admits strong uniqueness properties
(eg. if all the singular values are distinct, the decomposition is unique up to sign changes in corresponding
pairs of singular vectors), the SVTA representation inherits these same uniqueness properties, and thus
allows us to consider it as a canonical representation. Next we address the question of computing this
canonical representation starting from an arbitrary WTA.

8

3.3 Gramian Matrices of WTA

The definition of SVTA suggests that computing the canonical form is equivalent to computing the SVD
of the infinite Hankel matrix Hf . From a purely algebraic perspective, the proof of Theorem 2 shows that
if we know both the rank factorization induced by the SVD of Hf and the rank factorization induced
by an arbitrary minimal WTA, then computing the SVTA amounts to finding the corresponding change
of basis. However, this approach works with infinite matrices and it is not immediate how to convert
it into an effective algorithm. In the string case, [15, 16] reduces this computation to a problem about
finite matrices by using appropriately defined Gramian matrices. The same strategy also works in the
tree case, with some caveats that will be discussed at the end of this section. In the next section, we
will show how to compute an SVTA canonical form when given access to the Gramian matrices of an
arbitrary minimal WTA.

Suppose A is a minimal WTA. The Gramian matrices of A, defined in terms of the rank factorization
Hf = PASA induced by A, are given by GC = P>APA and GT = SAS>A. Observe that if A has n states,
then both these Gramians are n× n matrices. Unfolding these definitions we observe that the Gramian
matrices satisfy the following:

GC = P>APA =
∑
c∈C

αA(c)αA(c)> and GT = SAS>A =
∑
t∈T

ωA(t)ωA(t)> .

An equivalent characterization of these infinite series in terms of fixed point equations can be obtained
as follows. Let A = (Rn,α, {Ag}g∈F≥1

, {ωσ}σ∈F0) be a strongly convergent WTA of dimension n
computing a function f .

Theorem 4. The Gramian matrices GT =
∑
t∈T ω(t)ω(t)> and GC =

∑
c∈Cα(c)α(c)> satisfy the

following fixed point equations:

GT =
∑
σ∈F0

ωσωσ> +
∑
p≥1

∑
g∈Fp

Ag
(1)(GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p times

)Ag
(1)

>
, (4)

GC = αα> +
∑
p≥1

∑
g∈Fp

p∑
i=1

Ag
(i+1)(GC ⊗GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p−1 times

)Ag
(i+1)

>
. (5)

Proof. Using the fact that any tree t of depth greater than 1 can be written as g(t1, . . . , tp) for some
p ≥ 1, g ∈ Fp and t1, . . . , tp ∈ T we have

GT =
∑
t∈T

ω(t)ω(t)> =
∑
σ∈F0

ωσω
>
σ +

∑
t∈T : depth(t)≥1

ω(t)ω(t)>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

∑
t1,...,tp∈T

ω(g(t1, . . . , tp))ω(g(t1, . . . , tp))
>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

∑
t1,...,tp∈T

Ag(I,ω(t1), . . . ,ω(tp))Ag(I,ω(t1), . . . ,ω(tp))
>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

Ag
(1)

∑
t1,...,tp∈T

(ω(t1)⊗ · · · ⊗ ω(tp))(ω(t1)⊗ · · · ⊗ ω(tp))
>Ag

(1)

>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

Ag
(1)(GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p times

)Ag
(1)

>
.

To derive a fixed point equation for the Gramian matrices for contexts we use the fact that any
context c ∈ C of drop greater than 1 can be written as c′[g(t1, . . . , ti−1, ∗, ti, . . . , tp−1)] for some c′ ∈ C,

9

p ≥ 1, g ∈ Fp and t1, . . . , tp−1 ∈ T. Using the notation v◦2 = vv> for any vector v we have

GC =
∑
c∈C

α(c)α(c)> = α(∗)α(∗)> +
∑

c∈C : drop(c)≥1

α(c)α(c)>

= αα> +
∑

p≥1, g∈Fp, c∈C,

t1,...,tp−1∈T

p∑
i=1

α(c[g(t1, . . . , ti−1, ∗, ti, . . . , tp−1)])◦2

= αα> +
∑

p≥1, g∈Fp, c∈C,

t1,...,tp−1∈T

p∑
i=1

(
Ag(α(c),ω(t1), . . . ,ω(ti−1), I,ω(ti), . . . ,ω(tp−1))

)◦2

= αα> +
∑

p≥1, g∈Fp

p∑
i=1

∑
c∈C,

t1,...,tp−1∈T

(
Ag

(i+1)(α(c)⊗ ω(t1)⊗ · · · ⊗ ω(tp−1))

)◦2

= αα> +
∑
p≥1

∑
g∈Fp

p∑
i=1

Ag
(i+1)(GC ⊗GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p−1 times

)Ag
(i+1)

>
.

Treating GT as an unknown, we see that (4) is a polynomial equation of degree P = max{p : Fp 6= ∅}
in the entries of GT. The coefficients of these equations depend only on the weights of the WTA A.
Equation (5) provides a polynomial relationship between the entries of GT and GC. In this case, given
GT the resulting equation in the coefficients of GC is linear. This behavior is qualitatively different
to the one observed for the corresponding fixed-point equations that characterize the Gramians in the
string case (cf. [16, Theorem 20]). In the tree case, the Gramian equations simplify to two independent
systems of linear equations when P = 1, which corresponds to the case where there is no branching, i.e.
the WTA recognize a language over strings. In general, however, the Gramian equations do not admit a
closed-form solution in the tree case. How to solve these fixed-point equations using iterative algorithms
will be discussed in Section 5.

3.4 Computing the Singular Value WTA

Now we show that if we are given an arbitrary minimal WTA A admitting an SVTA representation,
then we can transform A into the corresponding SVTA efficiently4 provided that we have an oracle
for computing the Gramian matrices of A. In other words, given a representation of Hf as a WTA,
we can compute its SVD without the need to operate on infinite matrices. The key observation is to
reduce the computation of the SVD of Hf to the computation of spectral properties of the Gramians
GC = P>P and GT = SS> associated with the rank factorization Hf = PS induced by some minimal
WTA computing f . This is captured by the following proposition.

Proposition 5. Let f : T → R be a recognizable function such that its Hankel matrix Hf admits an
SVD. Let A be a minimal WTA with n states computing f and inducing the rank factorization Hf = PS,
and let GC = P>P ∈ Rn×n and GT = SS> ∈ Rn×n be the corresponding Gramian matrices.

Let LC,LT ∈ Rn×n be such that GC = L>C LC and GT = L>TLT and let LCL>T = UDV> be a singular
value decomposition.

Then, the conjugate WTA AQ where Q = L−1
C UD1/2 is an SVTA computing f .

Proof. First observe that since the Gramian matrices are symmetric positive semi-definite there exist
matrices LC,LT ∈ Rn×n such that GC = L>C LC and GT = L>TLT (one can use Cholesy factorization
or eigendecomposition to obtain such matrices). Moreover, since A is a minimal WTA the Gramian
matrices are of full rank and LC and LT are non-singular.

The conjugate WTA AQ induces the factorization Hf = P′S′ with P′ = PQ and S′ = Q−1S. It is

easy to check that Q−1 = D1/2V>L−>T , thus P′ = ŨD1/2 and S′ = D1/2Ṽ> with Ũ = PL−1
C U and

Ṽ> = V>L−>T S. Hence, to show that AQ is an SVTA it suffices to show that Hf = P′S′ = ŨDṼ> is

an SVD which boils down to checking that Ũ and Ṽ are column-wise orthogonal matrices. Indeed, we
have

Ũ>Ũ = U>L−>C P>PL−1
C U = U>L−>C GCL−1

C U = U>U = I

4If the WTA given to the algorithm is not minimal, a pre-processing step can be used to minimize the input using the
algorithm from e.g. [38].

10

and
Ṽ>Ṽ = V>L−>T SS>L−1

T V = V>L−>T GTL−1
T V = V>V = I

where we used the fact that the matrices U and V are orthogonal.

Algorithm 1 summarizes the overall procedure to construct the SVTA corresponding to a minimal
WTA computing a strongly convergent function. Note that the algorithm depends on an oracle for
computing the Gramian matrices GT and GC.

Algorithm 1 ComputeSVTA

Input: A strongly convergent minimal WTA A
Output: The corresponding SVTA

1: GC,GT ← GramMatrices(A)
2: Compute LC,LT ∈ Rn×n such that GC = L>C LC and GT = L>TLT (using e.g. Cholesky factorizations

or eigendecompositions)
3: Let LCL>T = UDV> be an SVD
4: return AQ where Q = L−1

C UD1/2

In order to implement an efficient oracle to compute the Gramian matrices of a minimal WTA A we
will further reduce the computation to the solution of a more general problem: compute the generalized
partition function of a WTA. This problem is tackled in the next section.

4 Computing Generalized Partition Functions of WTA

Recall that any WTA (Rn,α, {T g}g∈F≥1
, {ωσ}σ∈F0) induces a mapping ω : TF → Rn. In this section,

we tackle the problem of computing the sum
∑
t∈TF ω(t) ∈ Rn for a given WTA (assuming that this

series converges). We will denote the limit of this series by zA, or simply z if the WTA is clear from
context, and we will refer to this quantity as the generalized partition function5 of the WTA A. We will
show in the next section that computing the Gramian matrices of a WTA can be reduced to the problem
of computing a generalized partition function.

While it is not possible to obtain a closed-form expression for the sum
∑
t∈TF ω(t) in general, we will

show that it can be efficiently approximated to an arbitrary precision using either a fixed-point iterative
method or Newton’s method (the latter providing a faster convergence rate, potentially at the cost of an
increased computational complexity for each iteration).

Suppose A = (Rn,α, {T g}g∈F≥1
, {ωσ}σ∈F0

) is a minimal WTA computing an absolutely convergent
function f . We start by showing that the series

∑
t∈TF ω(t) converges.

Proposition 6. If A is a minimal WTA computing an absolutely convergent function f (i.e.
∑
t |f(t)| <

∞), then the series
∑
t∈TF ωA(t) converges and we denote its limit by zA.

Proof. Let n be the rank of f . Since A is minimal, there exist n contexts c1, . . . , cn ∈ C such that
(Ξ(ci)

>α)i=1,...,n is a basis of Rn. For any i ∈ [n], we have∑
t

∣∣α>Ξ(ci)ω(t)
∣∣ =

∑
t

|f(ci[t])| ≤
∑
t

|f(t)| <∞ .

Hence for each i the series
∑
tα
>Ξ(ci)ω(t) is absolutely convergent, thus this series is also convergent,

which shows the claim of the proposition.

We now show that z is a fixed point of the polynomial map F : Rn → Rn defined by

F (v) =
∑
σ∈F0

ωσ +
∑
p≥1

∑
g∈Fp

Ag(I,v, . . . ,v). (6)

This is the fundamental observation from which we will derive the two algorithms for computing z.

5We use the adjective generalized to emphasize the facts that (i) zA is a vector (whereas the term partition function in
statistical physics usually refers to a scalar) and (ii) the components of zA do not have a probabilistic interpretation for
arbitrary WTA (whereas it is the case for stochastic WTA and related models such as (latent) probabilistic context-free
grammars [30]).

11

Theorem 7. For any integer k ≥ 0, we have F k+1(0) =
∑
t∈T≤k ω(t) where T≤k = {t ∈ TF | depth(t) ≤

k} is the set of trees of depth at most k.
Consequently, the generalized partition function z =

∑
t∈T ω(t) ∈ Rn is a fixed point of F and 0 is

in the basin of attraction of z.

Proof. We proceed by induction on k. We have F (0) =
∑
σ∈F0

ωσ =
∑
t∈T:depth(t)≤0 ω(t). Suppose that

the claim holds for any integer up to k, we have

F k+1(0) = F (F k(0))

= F

 ∑
t∈T≤k

ω(t)

=
∑
σ∈F0

ωσ +
∑
p≥1

∑
g∈Fp

∑
t1,...,tp∈T≤k

Ag(I,ω(t1), . . . ,ω(tp))

=
∑
σ∈F0

ωσ +
∑

t:1≤depth(t)≤k+1

ω(t)

=
∑

t∈T≤k+1

ω(t).

For the second part of the theorem, we have F k(0) =
∑
t:depth(t)<k ω(t) for any integer k ≥ 1, from

which it follows that limk→∞ F k(0) =
∑
t∈TF ω(t) = z, showing both claims by continuity of F .

Fixed point iteration We are now ready to derive the two algorithms to approximate z. We start
with the straightforward fixed point iteration method:

f0 = F (0) =
∑
σ∈F0

ωσ, fk+1 = F (fk) for k ≥ 0. (7)

From a classical result on fixed point theory, this iteration will converge linearly to z if the spectral radius
of the Jacobian of F at z is less than 1:

Theorem 8. Let A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

) be a WTA and suppose that the series
∑
t∈TF ωA(t)

converges (to the generalized partition function z). Let F : Rn → Rn be the polynomial map defined in
Eq. (6).

Then, the iteration defined in Eq. (7) is such that ‖fk − z‖2 ≤ O
(
ρk
)

for all k ≥ 1, where ρ is the
spectral radius of the Jacobian of F at z. In particular, if ρ < 1 the sequence (fk)k converges linearly to
z.

Proof. The convergence of the fixed point iteration follows directly from Theorem 7 and the convergence
rate follows from classical results from numerical analysis (see e.g. [42, Theorem 8.1.7]).

We will see in the next section that the assumption on the spectral radius of the Jacobian in the
previous theorem is always satisfied when computing the Gramian matrices of a strongly convergent
WTA by estimating a generalized partition function. We now give an expression of the Jacobian of the
mapping F at any point v.

Proposition 9. The Jacobian of F defined in Eq. (6) at a point v ∈ Rn, denoted by JF,v ∈ Rn×n (or
simply Jv if F is clear from context), is given by

JF,v =
∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ag(I,v, . . . ,v︸ ︷︷ ︸
i times

, I, v, . . . ,v︸ ︷︷ ︸
p−1−i times

). (8)

12

Proof. By expanding F (v + h) and isolating the terms that are linear in h we get

F (v + h) =
∑
σ∈F0

ωσ +
∑
p≥1

∑
g∈Fp

Ag(I,v + h, . . . ,v + h)

=
∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ag(I,v, . . . ,v︸ ︷︷ ︸
i times

,h, v, . . . ,v︸ ︷︷ ︸
p−1−i times

) + ε(h)

=

∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ag(I,v, . . . ,v︸ ︷︷ ︸
i times

, I, v, . . . ,v︸ ︷︷ ︸
p−1−i times

)

h + ε(h)

where ε(h) gather the terms that are at least quadratic in the components of h.

Newton’s method In order to obtain a better convergence rate, we can use Newton’s method to find
the vanishing points of the map G : v 7→ F (v) − v. Starting with the initial guess F (0) =

∑
σ∈F0

ωσ,
the Newton iteration is defined by

n0 =
∑
σ∈F0

ωσ, nk+1 = nk − (Jnk,G)−1G(nk). (9)

One can easily check that this can be rewritten as

nk+1 = nk + (I− Jnk,F)−1(F (nk)− nk). (10)

The convergence of this procedure is established in the following theorem. The proof of the theorem will
occupy the remainder of this section.

Theorem 10. Let A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

) be a WTA and suppose that the series z =∑
t∈TF ωA(t) converges. Let F : Rn → Rn be the polynomial map defined in Eq. (6).
Then, under the assumptions that

1. the Jacobian Jz,F of F at the fixed point has spectral radius less than one,

2. the iteration defined in Eq. (9) is such that Jnk,G is invertible for all k ≥ 0,

the sequence (nk)k converges quadratically to z, i.e. there exists 0 < ρ̄ < 1 such that ‖nk−z‖2 ≤ O
(
ρ̄2k
)

.

The two algorithms for computing the generalized partition function of a strongly convergent WTA
are summarized in Algorithms 2 and 3. From the convergence rates of these algorithms it is immediate
to see that that O(log log 1/ε) iteration of Newton’s method suffice to compute the generalized partition
function to a desired accuracy ε, while the fixed point iteration method requires O(log 1/ε) iterations
to achieve the same accuracy. To make the comparison more precise, one also needs to understand the
per-iteration complexity of each of these two methods. The computational complexity of the fixed point
iteration is in O

(
|F|nP

)
, where n is the number of states of the WTA and P is the maximal arity

of symbols in F , while the complexity of Newton’s method is in O
(
|F|nP + n3

)
(where the additional

polynomial term in n comes from inverting the Jacobian of G). It is interesting to observe that (i) the
complexity of computing the Jacobian is the same as the one of computing the mapping F and (ii) as
soon as the alphabet F contains symbols of arity greater than 3, the two algorithms have the same
asymptotic complexity. In particular, Newton’s method is asymptotically more efficient than the fixed
point iteration when F contains symbols of arity greater than 3.

Proof of Theorem 10 The remainder of this section will be devoted to proving the convergence
of Newton’s method starting at n0, the convergence rate in Theorem 10 then directly follows from
classical results on Newton’s method6 (see e.g. [42, Section 8.1.10]). In addition, similarly to the case
of the fixed point iteration, we will show in the next section that the assumption on the Jacobian of
G in Theorem 10 is satisfied when computing the Gramian matrices of a strongly convergent WTA by
estimating a generalized partition function.

6 Note that the quadratic rate of convergence of Newton’s method relies on the invertibility of the Jacobian Jz,G of G
at the solution, which is guaranteed by assumption 1 in Theorem 10

13

Algorithm 2 Generalized Partition Function - Fixed Point

Input: A strongly convergent minimal WTA A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

)
Output: Generalized partition function zA =

∑
t∈TF ωA(t)

1: f ←
∑
σ∈F0

ωσ ∈ Rn // Initialization
2: repeat
3: f ←

∑
σ∈F0

ωσ +
∑
p≥1

∑
g∈Fp

Ag(I, f , . . . , f) // fk+1 = F (fk)
4: until convergence
5: return f

Algorithm 3 Generalized Partition Function - Newton

Input: A strongly convergent minimal WTA A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

)
Output: Generalized partition function zA =

∑
t∈TF ωA(t)

1: n←
∑
σ∈F0

ωσ ∈ Rn // Initialization
2: repeat
3: f ←

∑
σ∈F0

ωσ +
∑
p≥1

∑
g∈Fp

Ag(I,n, . . . ,n) // f = F (n)

4: M←
∑
p≥1

∑
g∈Fp

∑p−1
i=0 Ag(I,n, . . . ,n︸ ︷︷ ︸

i times

, I, n, . . . ,n︸ ︷︷ ︸
p−1−i times

) // M = JF,n

5: n← n + (I−M)−1(f − n) // nnew = n + (I− JF,n)−1(F (n)− n)
6: until convergence
7: return n

Let us first recall that the convergence of the fixed point iteration defined in Eq. (7) follows from
the fact that fk = F k+1(0) =

∑
t∈T≤k ω(t) (see Theorem 7). Intuitively, the fixed point iteration can be

seen as a naive method to compute z where, at each iteration k, the set of trees of depth k is added to
the current estimate:

z =
∑
t∈T

ω(t) =
∑

t : depth(t)=0

ω(t)

︸ ︷︷ ︸
f0

+
∑

t : depth(t)=1

ω(t)

︸ ︷︷ ︸
f1−f0

+
∑

t : depth(t)=2

ω(t)

︸ ︷︷ ︸
f2−f1

+

This decomposition in terms of a telescoping series shows that the fixed point iteration method only
adds a finite set of trees to the current estimate at every step. In contrast, we will show that Newton’s
method corresponds to adding an infinite number of trees at each iteration. This observation provides
an intuitive explanation for the faster convergence of Newton’s method.

We start by introducing the notion of contexts built on a subset of T, as well as two fundamental
operations on subsets of trees.

Definition 11. Given a set of trees S ⊂ T, the set of S-contexts C(S) ⊂ C is the smallest set satisfying

(i) ∗ ∈ C(S)

(ii) g(t1, . . . , ti−1, c, ti+1, . . . , tp) ∈ C(S) for all c ∈ C(S), p ≥ 1, g ∈ Fp, and t1, . . . , tp ∈ S.

Definition 12. Given any set of contexts C ⊂ C and any set of trees S ⊂ T, we define

C[S] = {c[t] | c ∈ C, t ∈ S} and F(S) = {g(t1, . . . , tp) | p ≥ 0, g ∈ Fp, t1, . . . , tp ∈ S}.

One can easily check that C = C(T) and F0 ⊂ F(S) for any S ⊂ T. Before diving further into the
convergence of Newton’s method, let us observe that the set of trees can be expressed using the operator
F with TF = ∪k≥0Fk(∅). This definition of the set of trees is intrinsically related to the mapping F
defined in Eq. (6) and to the fixed point iteration in the sense that fk = F k(0) =

∑
t∈Fk(∅) ω(t) for all

k ≥ 0.
We are now ready to show how Newton iteration can be expressed, similarly to the fixed point

iteration, as successive sums over growing subsets of T. We consider the sequence (Sk)k of subsets of T
defined by

S0 = F0, Sk+1 = C(Sk)[Sk] for all k ≥ 0. (11)

We will prove the convergence of Newton’s method by showing that TF = ∪k≥0Sk and nk =
∑
t∈Sk

ω(t)
for all k ≥ 0. Hence, whereas the fixed point iteration can be interpreted as successive summations over

14

finite sets of trees, Newton’s method corresponds to successive summations over infinite sets of trees.
For example, S1 is the set of all trees whose internal nodes all have at most one child that is not a leaf7.

We first prove two fundamental properties of S-contexts in the following proposition.

Proposition 13. Let S ⊂ T be closed under subtree, i.e. such that for any tree t ∈ S, all the subtrees
of t belong to S, and let c ∈ C(S). The following hold

(i) any subtree τ of c is either a tree in S or a context in C(S),

(ii) if c = c1[c2] for some contexts c1, c2 ∈ C, then c1 ∈ C(S).

In particular, the proposition holds whenever S is any element Sk ⊂ T of the sequence defined in Equa-
tion (11).

Proof. The comment about the sequence (Sk)k follows from the fact that each Sk is closed under subtree,
which can be shown by induction on k.
(i) We proceed by induction on drop(c). If c = ∗ then τ = c ∈ C(S) by definition of C(S). Suppose now
that the result holds for any context in C(S) of drop less than k and let c be a context of drop k + 1.
Then, by definition of C(S), c = g(t1, . . . , ti−1, c

′, ti+1, . . . , tp) for some p ≥ 1, g ∈ Fp, t1, . . . , tp ∈ S and
some c′ ∈ C(S) of drop k. Let τ ⊂ c be a subtree of c. Then, one of three cases can occur:

• either τ = c ∈ C(S),

• or τ ⊂ ti ∈ S for some i, in which case τ ∈ S since S is closed under subtree,

• or τ is a subtree of c′, in which case the result holds by the induction hypothesis.

(ii) We proceed by induction on drop(c1). The result is trivial for c1 = ∗. Suppose now that c1 =
g(t1, . . . , ti−1, c

′, ti+1, . . . , tp) for some p ≥ 1, g ∈ Fp, t1, . . . , tp ∈ S and some c′ ∈ C. Then c′[c2] is a
subtree of c, hence it belongs to C(S) by (i), from which c′ ∈ C(S) follows using the induction hypothesis,
and we thus have c1 ∈ C(S) by definition of C(S).

We now show several properties of the sequence (Sk)k, including the crucial fact that T = ∪k≥0Sk.

Proposition 14. Let k ≥ 1. The following hold:

(i) Sk ⊂ Sk+1,

(ii) t ∈ Sk if and only if any subtree of t belongs to Sk,

(iii) Sk ⊂ F(Sk),

(iv) ∪k≥0Sk = T.

Proof. (i) This directly follows from the fact that ∗ ∈ C(Sk).
(ii) We proceed by induction on k. The case k = 1 is immediate. Suppose that the result holds for
integers up to k and let t ∈ Sk+1. By definition of Sk+1 we have t = c[t′] for some c ∈ C(Sk) and some
t′ ∈ Sk. Let τ be a subtree of t. One of three cases can occur:

• τ is a subtree of t′, in which case τ ∈ Sk by the induction hypothesis (since t′ ∈ Sk) and τ ∈ Sk+1

by (i),

• t′ is a subtree of τ , in which case τ = c′[t′] for some context c′ which is a subtree of c, hence
τ ∈ C(Sk)[Sk] = Sk+1 since c′ ∈ C(Sk) by Proposition 13.(i),

• τ is a subtree of c which is not a context, in which case τ ∈ Sk by Proposition 13.(i), hence τ ∈ Sk+1

by (i).

7It is worth mentioning that the trees in Sk almost coincides with the set of trees of dimension at most k, using the
notion of dimension of a tree introduced in [29]. The difference between the two resides in the treatment of arity one
symbols. For example, if f is a symbol of arity one and a a symbol of arity 0, the tree f(f(f(a))) has dimension zero but
belongs to the set S3. If there are no symbols of arity one in F , then Sk is exactly the set of trees of dimension at most k.

15

(iii) Let t ∈ Sk. Suppose first that t ∈ F0; then t ∈ F(Sk) since F0 ⊂ F(S) for any S ⊂ T. Now if
t 6∈ F0, we can write t = g(t1, . . . , tp) for some p ≥ 1, g ∈ Fp and t1, . . . , tp ∈ T. It then follows from (ii)
that ti ∈ Sk for all i (since they are all subtrees of t ∈ Sk) and thus t ∈ F(Sk).
(iv) We show that for any tree t, there exists a k such that t ∈ Sk, from which the result follows. We
proceed by induction on |t|. If t = σ then t ∈ F0 = S0. Now suppose t = g(t1, . . . , tp) for some p ≥ 1,
g ∈ Fp, t1, . . . , tp ∈ T. By induction hypothesis and using (i) we have t1, . . . , tp ∈ Sk for some integer
k. We can write t = c[t1] with c = g(∗, t2, . . . , tp). We have c ∈ C(Sk) (by definition of C(Sk) and using
t2, . . . , tp ∈ Sk). Hence t = c[t1] ∈ CSk = Sk+1 (using t1 ∈ Sk).

It remains to show that nk =
∑
t∈Sk

ω(t) for all k ≥ 0. We start by showing how the operations
introduced in Definition 12 relate to the operator F and to its Jacobian.

Proposition 15. Let v =
∑
t∈S ω(t) for some S ⊂ T. Then the mapping F defined in Eq. (6) and its

Jacobian around v (see Eq. (8)) satisfy

(i) F (v) =
∑
t∈F(S) ω(t),

(ii) (Jv,F)k =
∑
c∈C(S)∩Ck Ξ(c) for all k ≥ 1, where Ck denote the set of contexts of drop k.

Proof. (i) directly follows from the definitions of F and F(S). For (ii), we proceed by induction on k.
The case k = 0 is immediate since C0 = {∗} and Ξ(∗) = I. Suppose the result holds for integers up to
k. First observe that

Jv,F =
∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ag(I,v, . . . ,v︸ ︷︷ ︸
i times

, I, v, . . . ,v︸ ︷︷ ︸
p−1−i times

)

=
∑
p≥1

∑
g∈Fp

p−1∑
i=0

∑
t1,...,tp−1∈S

Ag(I,ω(t1), . . . ,ω(ti), I,ω(ti+1), . . . ,ω(tp−1))

=
∑
p≥1

∑
g∈Fp

p−1∑
i=0

∑
t1,...,tp−1∈S

Ξ(g(t1, . . . , ti, ∗, ti+1, . . . , tp−1))

=
∑

c∈C(S)∩C1

Ξ(c).

We then have

(Jv,F)k+1 = Jv,F (Jv,F)k

=
∑

c1∈C(S)∩C1

Ξ(c1)
∑

c2∈C(S)∩Ck

Ξ(c2)

=
∑

c1∈C(S)∩C1

∑
c2∈C(S)∩Ck

Ξ(c1[c2])

=
∑

c∈C(S)∩Ck+1

Ξ(c)

where we used the induction hypothesis for the second equality and the last equality comes from the fact
that, for any family of contexts C ⊂ C, the map (c1, c2) 7→ c1[c2] is an isomorphism between C∩C1×C∩Ck
and C ∩ Ck+1.

Finally, we will need the following technical lemma.

Lemma 16. For any k ≥ 1, we have

C(Sk)× (F(Sk) \ Sk) ∼= C(Sk)[Sk] \ Sk

and the map φ : (c, t) 7→ c[t] is an isomorphism between the two sets.

Proof. We first show that φ is injective. Let (c, t), (c′, t′) ∈ C(Sk)×(F(Sk) \ Sk) be such that c[t] = c′[t′].
First observe that t′ cannot be a subtree of c: indeed since c is in C(Sk), all of its subtrees are in Sk
by Proposition 13.(i). Hence we have that either t is a subtree of t′, or t′ is a subtree of t. Suppose

16

the latter (a symmetric argument can be used for the former). We have t = g(t1, . . . , tp) for some
p ≥ 0, g ∈ Fp, t1, . . . , tp ∈ Sk by definition of F(Sk). Since t 6∈ Sk and F0 ⊂ Sk we must have p ≥ 1.
Furthermore, by Proposition 14.(ii), t′ cannot be a subtree of one of the ti ∈ Sk since it does not belong
to Sk, hence the only way for t′ to be a subtree of t is if t′ = t, from which c′ = c follows.

We now show that φ is surjective. Let t = c[t′] ∈ C(Sk)[Sk]\Sk with (c, t′) ∈ C(Sk)×Sk. We show that
t = c′[s] for some c′ ∈ C(Sk) and some s ∈ F(Sk)\Sk. Let τ be the largest subtree of t satisfying both τ ∈
Sk and t′ is a subtree of τ . Since t 6∈ Sk we have τ 6= t and we can write t = c′[g(t1, . . . , ti−1, τ, ti+1, . . . , tp)]
for some p ≥ 1, g ∈ Fp, t1, . . . , tp ∈ T and some context c′. Since t1, . . . , tp are subtrees of c they all
belong to Sk by Proposition 13.(i), hence s = g(t1, . . . , ti−1, τ, ti+1, . . . , tp) ∈ F(Sk) and moreover s 6∈ Sk
since τ is maximal. It remains to show that c′ ∈ C(Sk), which follows from observing that c = c′[c′′] for
some context c′′ and applying Proposition 13.(ii).

We can now prove the convergence of Newton’s method.

Theorem 17. Under the assumption of Theorem 10, the Newton sequence (nk)k defined in Eq. (9) is
such that

nk =
∑
t∈Sk

ω(t) for all k ≥ 0 .

Consequently, limk→∞ nk = z.

Proof. We proceed by induction on k. The case k = 0 is immediate. Suppose that the result holds for
integers up to k. We have

nk+1 = nk + (I− Jnk,F)−1(F (nk)− nk)

= nk +
∑
i≥0

(Jnk,F)i(F (nk)− nk)

= nk +
∑
i≥0

∑
c∈C(Sk)∩Ci

Ξ[c](F (nk)− nk)

= nk +
∑

c∈C(Sk)

Ξ[c](F (nk)− nk).

where we used the fact that the spectral radius of (I − Jnk,F) is less than one (see assumption 1 in
Theorem 10) and Proposition 15.(ii). Now, using Proposition 15.(i), the fact that Sk ⊂ F(Sk) (see
Proposition 14.(iii)) and the induction hypothesis, we have F (nk)− nk =

∑
t∈F(Sk)\Sk

ω(t), hence

nk+1 =
∑
t∈Sk

ω(t) +
∑

c∈C(Sk)

∑
t∈F(Sk)\Sk

ω(c[t]).

The result then follows by observing that Lemma 16 implies∑
c∈C(Sk)

∑
t∈F(Sk)\Sk

ω(c[t]) =
∑

t∈C(Sk)[Sk]\Sk

ω(t) =
∑

t∈Sk+1\Sk

ω(t).

We thus showed that nk =
∑
t∈Sk

ω(t) for all k and limk→∞ nk = z follows by Proposition 14.(iv).

5 Computation of the Gramian Matrices

We now show how the results obtained in the previous section can be leveraged to design an efficient
algorithm to approximate the Gramian matrices of a strongly convergent WTA. Let f : T → R be
a strongly convergent recognizable function and recall that, given the rank factorization Hf = PASA
induced by some minimal WTA A = (Rn,α, {T g}g∈F≥1

, {ωσ}σ∈F0
) computing f , the Gramian matrices

satisfy

GC = P>APA =
∑
c∈C

αA(c)αA(c)> and GT = SAS>A =
∑
t∈T

ωA(t)ωA(t)>.

We will show that the vectorization of the Gramian matrix GT is the generalized partition function of
the product WTA A⊗ = (Rn2

, α̃, {Ãg}g∈F≥1
, {ω̃σ}σ∈F0

) defined by

• α̃ = α⊗α,

17

• Ãg = Ag ⊗Ag ∈ Rn2×···×n2

for all p ≥ 1, g ∈ Fp and

• ω̃σ = ωσ ⊗ ωσ for all σ ∈ F0.

One can easily check that A⊗ computes the function fA⊗ : t 7→ f(t)2 (see e.g. [19]). For the sake
of brevity let ω = ωA, α = αA, ω̃ = ωA⊗ and α̃ = αA⊗ . Let also z̃ =

∑
t∈T ω̃(t). Now, since

GT =
∑
t∈T ω(t)ω(t)> and ω̃(t) = vec(ω(t)ω(t)>), we have z̃ = vec(GT) and computing the Gramian

matrix GT boils down to computing the vector z̃, which can be performed efficiently using either the
fixed point or the Newton iterations derived in the previous section. In order to apply Theorem 7 and
Theorem 10, we need to show that the assumptions on the Jacobian of the polynomial map F in these
theorems hold in this setting; this is done in the following theorem.

Theorem 18. Let A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0) be a minimal WTA computing a strongly con-

vergent function f and let A⊗ = (Rn2

, α̃, {Ãg}g∈F≥1
, {ω̃σ}σ∈F0

) where α̃ = α ⊗ α, Ãg = Ag ⊗Ag ∈
Rn2×···×n2

for all p ≥ 1, g ∈ Fp and ω̃σ = ωσ ⊗ ωσ for all σ ∈ F0.

We denote by F̃ the mapping defined in Eq. (6) for the WTA A⊗, i.e.

F̃ : v 7→
∑
σ∈F0

ω̃σ +
∑
p≥1

∑
g∈Fp

Ãg(I,v, . . . ,v). (12)

Then, for any set of trees S ⊂ T, the spectral radius of the Jacobian JF̃ ,s of F̃ at s =
∑
t∈S ω̃(t) is

strictly smaller than 1 and, consequently, the matrix I− JF̃ ,s is invertible.

Proof. Let E = JF̃ ,s. Since A is minimal, there exist trees t1, . . . , tn ∈ T and contexts c1, . . . , cn ∈ C
such that both {ω(ti)}i∈[n] and {α(ci)}i∈[n] are sets of linear independent vectors in Rn [9]. Therefore,

the sets {ω(ti) ⊗ ω(tj)}i,j∈[n] and {α(ci) ⊗ α(cj)}i,j∈[n] are sets of linear independent vectors in Rn2

.

Let v ∈ Rn2

be an eigenvector of E with eigenvalue λ 6= 0, and let v =
∑
i,j∈[n] βi,j(ω(ti)⊗ω(tj)) be its

expression in terms of the basis (ω(ti)⊗ω(tj))i,j=1,...,n. For any i, j ∈ [n], the vector u = α(ci)⊗α(cj)
is such that

lim
k→∞

u>Ekv ≤ lim
k→∞

|u>Ekv| ≤
∑
i,j∈[n]

|βi,j | lim
k→∞

|u>Ek(ω(ti)⊗ ω(tj))| = 0 ,

where we used Lemma 19 (see below) in the last equality. Since this is true for any vector u in the basis

(α(ci)⊗α(cj))i,j=1,...,n of Rn2

, we have limk→∞Ekv = limk→∞ λkv = 0, hence |λ| < 1. This reasoning
holds for any eigenvalue of E, hence ρ(E) < 1.

Lemma 19. Under the hypothesis (and using the notations) of Theorem 18, for any c1, c2 ∈ C, any
t1, t2 ∈ T and any S ⊂ T we have

lim
k→∞

|(α(c1)⊗α(c2))>(JF̃ ,s)
k(ω(t1)⊗ ω(t2))| = 0

where s =
∑
t∈S ω̃(t).

Proof. Let E = JF̃ ,s and let Ξ̃ : C → Rn2×n2

be the context mapping associated with the WTA A⊗;

i.e. Ξ̃ = ΞA⊗ . We start by proving by induction on drop(c) that Ξ̃(c) = Ξ(c) ⊗ Ξ(c) for all c ∈ C. Let
Ck denote the set of contexts c ∈ C with drop(c) = k. The statement is trivial for c ∈ C0. Assume the
statement is true for all naturals up to k − 1 and let c = g(c′, t1, . . . , tp) ∈ Cd for some p ≥ 0, g ∈ Fp+1,
t1, . . . , tp ∈ T and c′ ∈ Ck−1. Then using our induction hypothesis and the fact that ω̃(t) = ω(t)⊗ ω(t)
for any tree t, we have

Ξ̃(c) = Ãg(In2 , Ξ̃(c′), ω̃(t1), . . . , ω̃(tp))

= Ãg(In2 ,Ξ(c′)⊗Ξ(c′),ω(t1)⊗ ω(t1), . . . ,ω(tp)⊗ ω(tp))

= Ag(In,Ξ(c′),ω(t1), . . . ,ω(tp))⊗Ag(In,Ξ(c′),ω(t1), . . . ,ω(tp))

= Ξ(c)⊗Ξ(c).

The case c = g(t1, . . . , ti−1, c
′, ti, . . . , tp) for i > 1 follows from an identical argument.

18

Using the fact that Ek =
∑
c∈C(S)∩Ck Ξ̃(c) (see Proposition 15) and writing dc = min(drop(c1),drop(c2))

and dt = min(depth(t1),depth(t2)), we have

∣∣(α(c1)⊗α(c2))>Ek(ω(t1)⊗ ω(t2))
∣∣ =

∣∣∣∣∣∣
∑

c∈C(S)∩Ck

(α(c1)⊗α(c2))>Ξ̃(c)(ω(t1)⊗ ω(t2))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

c∈C(S)∩Ck

(α(c1)⊗α(c2))>(Ξ(c)⊗Ξ(c))(ω(t1)⊗ ω(t2))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

c∈C(S)∩Ck

(α(c1)>Ξ(c)ω(t1)) · (α(c2)>Ξ(c)ω(t2))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

c∈C(S)∩Ck

f(c1[c[t1]])f(c2[c[t2]])

∣∣∣∣∣∣
≤

 ∑
c∈C(S)∩Ck

|f(c1[c[t1]])|

 ∑
c∈C(S)∩Ck

|f(c2[c[t2]])|

≤

∑
c∈Ck

|f(c1[c[t1]])|

∑
c∈Ck

|f(c2[c[t2]])|

≤

 ∑
t∈T≥dc+dt+k

|t||f(t)|

2

which tends to 0 with k →∞ since f is strongly convergent. To prove the last inequality, check that any
tree of the form t′ = c[c′[t]] satisfies depth(t′) ≥ drop(c) + drop(c′) + depth(t), and that for fixed c ∈ C
and t, t′ ∈ T we have |{c′ ∈ C : c[c′[t]] = t′}| ≤ |t′| (indeed, a factorization t′ = c[c′[t]] is fixed once the
root of t is chosen in t′, which can be done in at most |t′| different ways).

It follows that we can approximate the Gramian matrix GT to an arbitrary precision by computing the
generalized partition function of A⊗, benefiting from the convergence rates given in Theorems 8 and 10.
Though we could derive a similar iterative algorithm to compute GC, it turns out that knowledge of
z̃ = vec(GT) provides an alternative procedure to obtain GC. As before, we have GC = P>P =∑
c∈C α(c)α(c)> and α̃ = α(c) ⊗ α(c) for all c ∈ C, hence q , vec(GC) =

∑
c∈C α̃(c). First observe

that the Jacobian of the mapping F̃ , defined in Eq. (12), at the generalized partition function z̃ is given
by

JF̃ ,z̃ =
∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ãg(I, z̃, . . . , z̃︸ ︷︷ ︸
i times

, I, z̃, . . . , z̃︸ ︷︷ ︸
p−1−i times

), (13)

which only depends on the tensors {Ag}g∈F≥1
and z̃. We can thus use the expression α̃(c) = ΞA⊗(c)>α̃

to get

q> =
∑
c∈C

α̃>ΞA⊗(c) = α̃>
∑
k≥0

(JF̃ ,z̃)
k = α̃>(I− JF̃ ,z̃)

−1,

where we used the facts that (JF̃ ,z̃)
k =

∑
c∈C:drop(c)=k ΞA⊗(c) (which follows from Proposition 15) and

that the spectral radius of JF̃ ,z̃ is strictly less than 1 (see Theorem 18).
Algorithm 4 summarizes the overall approximation procedure for the Gramian matrices, which can

be done to an arbitrary precision. There, reshape(·, n× n) is an operation that takes an n2-dimensional
vector and returns the n× n matrix whose first column contains the first n entries in the vector and so
on. Theoretical guarantees on the convergence rate of this algorithm are summarized in the following
theorem.

19

Theorem 20. There exist ρ, ρ̄ ∈ (0, 1) such that, after k iterations of the iterative method used to

compute the generalized partition function in line 7 of Algorithm 4, the approximations ĜC and ĜT

satisfy
‖GC − ĜC‖F ≤ O(ρk) and ‖GT − ĜT‖F ≤ O(ρk)

when using the fixed-point iteration method, and

‖GC − ĜC‖F ≤ O(ρ̄2k

) and ‖GT − ĜT‖F ≤ O(ρ̄2k

)

when using Newton’s method.

Proof. The result for the Gramian matrix GT directly follows from applying Theorems 8 and 10, whose
assumptions are satisfied by Theorem 18. We now show how the error in the approximation of GT =
reshape(s, n × n) affects the approximation of q = (α⊗)>(I − E)−1 = vec(GC). Let ŝ ∈ Rn2

be such
that ‖s− ŝ‖ ≤ ε, let

Ê =
∑
p≥1

∑
g∈Fp

p−1∑
i=0

Ãg(I, ŝ, . . . , ŝ︸ ︷︷ ︸
i times

, I, ŝ, . . . , ŝ︸ ︷︷ ︸
p−1−i times

)

and let q = α̃>(I− Ê)−1. We first bound the distance between E and Ê. For any vector v we denote by
v⊗k = v ⊗ v ⊗ · · · ⊗ v (k times) its kth Kronecker power. Using the fact that for any symbol g of arity

p we have ‖Ãg(I, s, . . . , s, I, s, . . . , s) − Ãg(I, ŝ, . . . , ŝ, I, ŝ, . . . , ŝ)‖F = ‖A(s⊗p−1 − ŝ⊗p−1)‖F where A is

the matricization of Ãg obtained by mapping the two modes multiplied by I to rows and the remaining
modes to columns, we obtain

‖E− Ê‖F ≤
∑
p≥1

∑
g∈Fp

p‖Ãg‖F ‖s⊗p−1 − ŝ⊗p−1‖

≤

∑
p≥1

∑
g∈Fp

p‖Ãg‖F (‖s‖+ ‖ŝ‖)p−2

 ‖s− ŝ‖

≤

∑
p≥1

∑
g∈Fp

p‖Ãg‖F (2‖s‖+ ε)p−2

 ε

= O (ε)

as ε→ 0, where we used the inequality ‖x⊗k − y⊗k‖ ≤ (‖x‖+ ‖y‖)k−1‖x− y‖ for any k ≥ 1.

Let δ = ‖E− Ê‖ and let s be the smallest nonzero eigenvalue of the matrix I−E. It follows from [27,

Equation 7.2] that if δ < s then ‖(I−E)−1−(I− Ê)−1‖ ≤ δ/(s(s−δ)). Since δ = O(ε) from our previous
bound, the condition δ ≤ s/2 will be eventually satisfied as ε→ 0, in which case we can conclude that

‖GC − ĜC‖F = ‖q− q̂‖ ≤ ‖(I−E)−1 − (I− Ê)−1‖‖α̃‖ ≤ 2δ

s2
‖α̃‖ = O(ε).

6 Approximate Minimization of Weighted Tree Automata

We now turn back to the problem of approximate minimization: given a WTA A with n states, can we
find a WTA Â with n̂ < n states that is a good approximation of A, that is, such that fA is close to fÂ?
We propose a principled way to approach this problem that consists in removing states from the SVTA
computing fA and analyze the approximation error induced by this truncation.

6.1 SVTA Truncation

Let f be a recognizable function and let A be a WTA computing f . Recall that the value fA(c[t]) is given
by the inner product 〈αA(c),ωA(t)〉 =

∑
i(αA(c))i(ωA(t))i. Thus, (αA(c))i and (ωA(t))i quantify the

influence of state i in the computation of fA(c[t]). By extension, given the rank factorization Hf = PASA,
one can use ‖PA(:, i)‖ and ‖SA(i, :)‖ to measure the overall influence of state i in fA. Since our goal

20

Algorithm 4 GramMatrices

Input: A strongly convergent minimal WTA A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

)

Output: Gramian matrices ĜC '
∑
c∈C αA(c)αA(c)> and ĜT '

∑
t∈T ωA(t)ωA(t)>

1: // Initialization of the parameters of the product WTA A⊗

2: α̃← α⊗α
3: Ãg ← Ag ⊗Ag ∈ (Rn2

)⊗(]g+1) for each g ∈ F≥1.

4: ω̃σ ← ωσ ⊗ ωσ ∈ Rn2

for each σ ∈ F0.
5: // Iterative method to approximate s = vec(GT)

6: Define the product WTA A⊗ = (Rn2

, α̃, {Ãg}g∈F≥1
, {ω̃σ}σ∈F0)

7: Compute the generalized partition function s '
∑
t∈T ωA⊗(t) of A⊗ using Algorithm 2 or 3.

8: // Approximation of q = vec(GC)

9: E←
∑
p≥1

∑
g∈Fp

∑p−1
i=0 Ãg(I, s, . . . , s︸ ︷︷ ︸

i times

, I, s, . . . , s︸ ︷︷ ︸
p−1−i times

)

10: q← (α⊗α)> (I−E)
−1

11: ĜT ← reshape(s, n× n)

12: ĜC ← reshape(q, n× n)

13: return ĜC, ĜT

is to approximate a given WTA by a smaller WTA obtained by removing some states in the original
one, we shall proceed by removing those states with overall less influence on the computation of f . But
because there are infinitely many WTAs computing f , we need to first fix a particular representation
for f before we can remove the less influential states. In particular, we seek a representation where
each state is decoupled as much as possible from each other state, and where there is a clear ranking of
states in terms of overall influence: the SVTA canonical form is thus a perfect candidate. Indeed, let
Ã be the SVTA computing f and let Hf = UDV> be the SVD of Hf . If rank(f) = n, then Ã has n
states and for every i ∈ [n] the ith state contributes to Hf by generating the ith left and right singular
vectors weighted by

√
si, where si = Di,i is the ith singular value. Thus, if we want to obtain a good

approximation f̂ to f with n̂ states, we can take the WTA Â obtained by removing the last n− n̂ states
from Ã, which corresponds to removing from f the contribution of the smallest singular values of Hf .

We call such Â an SVTA truncation.

6.2 Approximation Error of an SVTA Truncation

In this section, we analyze the approximation error induced by the truncation of an SVTA. Given an
SVTA A = (Rn,α, {Ag}g∈F≥1

, {ωσ}σ∈F0
), its truncation to n̂ states is the automaton

Â = (Rn̂,Πα, {Ag(Π>, . . . ,Π>)}g∈F≥1
, {Πωσ}σ∈F0

)

where Π =
[
In̂ 0

]
∈ Rn̂×n is the projection matrix that removes the states associated with the n − n̂

smallest singular values of the Hankel matrix.
Intuitively, the states associated with the smaller singular values are the ones with the less influence

on the Hankel matrix, thus they should also be the states having the less effect on the computation of
the SVTA. The following theorem supports this intuition by showing a fundamental relation between
the singular values of the Hankel matrix of a recognizable function f and the parameters of the SVTA
computing it.

Proposition 21. Let A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

) be an SVTA with n states computing a func-
tion f and let s1 ≥ s2 ≥ · · · ≥ sn be the singular values of the Hankel matrix Hf .

Then, for all indices i, i1, . . . , ip+1 ∈ [n], the following hold:

• |ω(t)i| ≤
√
si for any t ∈ T,

• |α(c)i| ≤
√
si for any c ∈ C, and

• |Ag
i1...ip+1

| ≤ mink∈[p+1]
sik√

si1 . . . sip+1

for any p ≥ 1, g ∈ Fp.

21

Proof. For the first point, let UDV> be the SVD of Hf . Since A is an SVTA we have

ω(t)2
i = (Si,t)

2 = (D1/2V>)2
i,t = si(Vt,i)

2

and since the rows of V are orthonormal we have (Vt,i)
2 ≤ 1. The inequality for contexts is proved

similarly by reasoning on the rows of UD1/2.
The third point is a direct consequence of the fixed point equations for GT and GC given in Theorem 4.

Indeed, since A is an SVTA we have (GT)i,i = (GC)i,i = si, it is then easy to check that the fixed point
equations imply

si =
∑
σ∈Σ

(ωσ)2
i +

∑
p≥1

∑
g∈Fp

n∑
j1,...,jp=1

(Ag
i,j1,...,jp

)2sj1sj2 . . . sjp

and

si = α2
i +

∑
p≥1

∑
g∈Fp

n∑
j1,...,jp=1

((Ag
j1,i,j2,...,jp

)2 + (Ag
j1,j2,i,j3,...,jp

)2 + · · ·+ (Ag
j1,...,jp,i

)2)sj1 . . . sjp

for all i ∈ [n]. The result follows from observing that all the summands in the two equations are
positive.

Two important properties of SVTAs follow from this proposition. First, the fact that |ω(t)i| ≤
√
si

implies that the weights associated with states corresponding to small singular values are small. Second,
this proposition gives us some intuition on how the states of an SVTA interact with each other. To see
this, let g ∈ F2 be a symbol of arity 2 and let M = Ag(α, I, I). Then for a tree t = g(t1, t2) ∈ T we have
fA(t) = ω(t1)>Mω(t2). Using the previous proposition one can show8 that

|Mij | ≤ n

√
min{si, sj}
max{si, sj}

,

which tells us that two states corresponding to singular values far away from each other have very little
interaction in the computations of the automata.

Proposition 21 is key to proving the following theorem, which is the main result of this section. It
shows how the approximation error induced by the truncation of an SVTA is impacted by the magnitudes
of the singular values associated with the removed states.

Theorem 22. Let P = maxg∈Σ]g be the maximum arity of symbols in F = (Σ,]). Let f : TF → R be

a function computed by an SVTA with n states and let f̂ be the function computed by its truncation to
n̂ states. Then, for any tree t ∈ T we have |f(t)− f̂(t)| ≤ nP |t|sn̂+1.

Proof. The proof of this theorem is postponed to the end of this section.

Since sn̂+1 > sn̂+2 > · · · > sn, this theorem shows that the smaller the singular values associated
with the removed states are, the better will be the approximation. As a direct consequence, the error
introduced by the truncation grows with the number of states removed. The dependence on the size
of the trees comes from the propagation of the error during the contractions of the tensor T̂ of the
truncated SVTA. One can easily use this theorem to show that, when the singular value sn̂+1 is small,
the truncated SVTA will achieve low approximation error on all trees up to some maximal size: for any
ε > sn̂+1 and any tree t ∈ T of size at most log ε−log sn̂+1

P logn , we have |f(t)− f̂(t)| ≤ ε.
The decay of singular values can be very slow in the worst case, but in practice it is not unusual to

observe an exponential decay on the tail. Assuming such an exponential decay of the form si = Cθi for
some 0 < θ < 1, the bound above on the size of the trees for which |f(t)− f̂(t)| < ε specializes to

log(ε) + (n̂+ 1) log(1/θ)− log(C)

P log n
.

It is interesting to observe that the dependence of this bound on the number of total/removed states is
O (n̂/ log(n)).

8Indeed, we have |Mi,j | = | (Ag(α, I, I))i,j | ≤
∑n

k=1 |A
g
k,i,j | |αk|, hence it follows from Proposition 21 that |Mi,j | ≤∑n

k=1 min{
√

si/(sjsk),
√

sj/(sisk)}√sk = n ·min{
√

si/sj ,
√

sj/si}.

22

Proof of Theorem 22 Let A = (Rn,α, {Ag}g∈F≥1
, {ωσ}σ∈F0

) be an SVTA with n states computing
a function f and let 1 ≤ n̂ < n. We consider the WTA with n states

Â = (Rn, α̂ = Πα, {Âg = Ag(I,Π, . . . ,Π)}g∈F≥1
, {ω̂σ = ωσ}σ∈F0

)

where Π ∈ Rn×n is the projection matrix defined by Πi,i = 1 if i ≤ n̂ and 0 otherwise. It is easy to

check that the function f̂ computed by the WTA Â is equal to the one computed by the truncation of
the SVTA A to n̂ states. Note that for any tree t we have

|f(t)− f̂(t)| = |α>ω(t)− α̂>ω̂(t)| = |α>(ω(t)−Πω̂(t))|.

We start by bounding the magnitude of the components of the vectors ω̂(t) and (ω(t)−Πω̂(t)) for any
tree t in the following lemmas.

Lemma 23. For any tree t ∈ T and any i ∈ [n] we have |ω̂(t)i| ≤ n|t|−1√si.

Proof. We proceed by induction on the size of t. If t = σ ∈ F0 we have |ω̂(σ)i| = |ω(σ)i| ≤
√
si by

Proposition 21. Suppose the result holds for trees of size at most m and let t = g(t1, . . . , tp) be a tree of
size m+ 1. We have

|ω̂(t)i| = |(Ag(I,Πω̂(t1), . . . ,Πω̂(tp)))i|

=

∣∣∣∣∣∣
n∑

j1,...,jp=1

Ag
i,j1,...,jp

(Πω̂(t1))j1 . . . (Πω̂(tp))jp

∣∣∣∣∣∣
≤

n∑
j1,...,jp=1

∣∣∣Ag
i,j1,...,jp

∣∣∣ |ω̂(t1)j1 | . . .
∣∣ω̂(tp)jp

∣∣
≤

n∑
j1,...,jp=1

√
si√

sj1 . . . sjp
n|t1|−1√sj1 . . . n|tp|−1√sjp

= npn|t1|−1 . . . n|tp|−1√si = n|t|−1√si

where we used the induction hypothesis and Proposition 21 for the last inequality.

Lemma 24. Let P = maxg∈Σ]g be the maximum arity of symbols in F = (Σ,]). Then for any tree t
and any i ∈ [n] we have |ω(t)i − (Πω̂(t))i| ≤ nP (|t|−1) sn̂+1√

si
.

Proof. If i > n̂ then |ω(t)i − (Πω̂(t))i| = |ω(t)i| ≤
√
si ≤ sn̂+1√

si
(where we used Proposition 21 for

the first inequality). For i ≤ n̂ we proceed by induction on the size of t. If t = σ ∈ F0 we have
|ω(t)i−(Πω̂(t))i| = |ω(t)i−ω̂(t)i| = 0 because ω̂σ = ωσ. Suppose the result holds for trees of size at most
m and let t = g(t1, . . . , tp) be a tree of size m+ 1. Since i ≤ n̂ we have ω(t)i− (Πω̂(t))i = (ω(t)− ω̂(t))i.
First, we have

ω(t)− ω̂(t) = Ag(I,ω(t1), . . . ,ω(tp))− Âg(I, ω̂(t1), . . . , ω̂(tp))

= Ag(I,ω(t1), . . . ,ω(tp))−Ag(I,Πω̂(t1), . . . ,Πω̂(tp))

= Ag(I,ω(t1)−Πω̂(t1),ω(t2), . . . ,ω(tp))

+ Ag(I,Πω̂(t1),ω(t2)−Πω̂(t2),ω(t3), . . . ,ω(tp))

+ · · ·+ Ag(I,Πω̂(t1), . . . ,Πω̂(tp−1),ω(tp)−Πω̂(tp)).

Now for any k ∈ [p], using the induction hypothesis and the bounds |ω(t)i| ≤
√
si, |Ag

i1...ip+1
| ≤

23

mink∈[p+1]
sik√

si1 ...sip+1

(from Proposition 21) and |ω̂(t)i| ≤ n|t|−1√si (from the previous lemma) we get

|Ag(I,Πω̂(t1), . . . ,Πω̂(tk−1),ω(tk)−Πω̂(tk),ω(tk+1), . . . ,ω(tp))i|

≤
n∑

j1,...,jp=1

∣∣∣Ag
i,j1,...,jp

∣∣∣(k−1∏
r=1

|(Πω̂(tr))jr |

)
|(ω(tk)−Πω̂(tk))jk |

(
p∏

r=k+1

|ω(tr)jr |

)

≤
n∑

j1,...,jp=1

√
sjk√

sisj1 . . . sjk−1
sjk+1

. . . sjp

(
k−1∏
r=1

n|tr|−1√sjr

)
nP (|tk|−1) sn̂+1√

sjk

(
p∏

r=k+1

√
sjr

)

=
sn̂+1√

si
np

(
k−1∏
r=1

n|tr|−1

)
nP (|tk|−1)

≤ sn̂+1√
si
nP |tk|

(
k−1∏
r=1

n|tr|−1

)
.

It follows that

|(ω(t)−Πω̂(t))i| ≤
sn̂+1√

si

p∑
k=1

nP |tk|

(
k−1∏
r=1

n|tr|−1

)
.

Using the fact that n ≥ 2, one can check by induction on p that

p∑
k=1

nP |tk|

(
k−1∏
r=1

n|tr|−1

)
=

p∑
k=1

nP |tk|+|tk−1|+···+|t1|−k+1 ≤ nP (|tk|+|tk−1|+···+|t1|) = nP (|t|−1),

which concludes the proof.

We can now combine the previous lemma with Proposition 21 to show Theorem 22. Indeed, for any
tree t we have

|f(t)− f̂(t)| = |α>(ω(t)−Πω̂(t))|

≤
n∑
i=1

|αi| |ω(t)i − (Πω̂(t))i|

≤
n∑
i=1

√
si n

P (|t|−1) sn̂+1√
si

≤ nP |t|sn̂+1.

7 Conclusion

We described a technique for approximate minimization of WTA, yielding a model smaller than the
original one which retains good approximation properties. We introduced a canonical form of WTA
in which the states of the automaton are associated with singular values of the corresponding Hankel
matrix. This canonical form allowed us to achieve approximate minimization in a principled way by
removing states corresponding to small singular values of the Hankel matrix. We also provided theoretical
approximation guarantees for this minimization scheme. Our main algorithm relies on a singular value
decomposition of the infinite Hankel matrix induced by the WTA, and the main technical difficulty to
extend the method proposed in [15] to the tree case resided in the computation of the Gramian matrices
associated with the WTA. Even though these Gramian matrices do not have a closed form solution in
the tree case, we proposed an efficient algorithm to approximate them to an arbitrary precision. This
algorithm relies on an iterative procedure to compute the generalized partition function of a WTA,
a problem which may be of independent interest. We considered two approaches for computing the
generalized partition function, one based on a simple fixed point iteration and a second one based on
Newton’s method which allowed us to obtain faster convergence rates.

In future work, we will try to obtain better approximation guarantees of an SVTA truncation. In [16],
Balle et al. obtained the following bound in the string case:

‖f − f̂‖22 ≤ s2
n̂+1 + · · ·+ s2

n.

24

In comparison to the tree case (Theorem 22), this bound does not exhibit any dependency on the size of
the strings. We conjecture that this bound should also hold in the tree case but, even though simulation
studies suggest that this is the case, we did not yet manage to derive such a bound for WTA.

We also believe that the combinatorial construction unraveled in the proof of convergence of Newton’s
method in Section 4 may be of independent interest and is worth exploring further. In particular, we
plan to revisit this construction in other contexts where the problem of computing a generalized partition
function appears, for example when performing marginalization operations on probabilistic context free
grammars or for reachability analysis of branching Markov decision processes [31]. As mentioned in
the introduction, this construction bares a striking similarity with the technique developed in [29] for
computing fixed points of system of equations over ω-continuous semi-rings. In this work, Esperza et
al. proposes an extension of Newton’s method for ω-continuous semi-rings and show that its iterates
correspond to successive summations over (infinite) subset of derivation trees of bounded dimension.
While the similarity with Theorem 17 is striking, the two methods are incomparable since our results
extend beyond ω-continuous semi-rings while being restricted to the computation of generalized partition
functions for weighted tree automata. Nonetheless, a more fundamental relation between Newton’s
method, the notion of dimension of derivation trees, and the duality between contexts and trees may be
at play here, and potentially deserves further investigation.

Acknowledgments

Guillaume Rabusseau gratefully acknowledges the support of the Canadian Institute for Advanced Re-
search (CIFAR CCAI program) and of the Natural Sciences and Engineering Research Council of Canada.

References

[1] A. Anandkumar, D. P. Foster, D. Hsu, S. M. Kakade, and Y. Liu. A spectral algorithm for latent
Dirichlet allocation. In Advances in Neural Information Processing Systems, pages 917–925, 2012.

[2] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for
learning latent variable models. Journal of Machine Learning Research, 15(1):2773–2832, 2014.

[3] A. Anandkumar, D. Hsu, F. Huang, and S. M. Kakade. Learning mixtures of tree graphical models.
In Advances in Neural Information Processing Systems, pages 1052–1060, 2012.

[4] D. Angluin. Learning regular sets from queries and counterexamples. Information and computation,
75(2), 1987.

[5] P.-L. Bacon, B. Balle, and D. Precup. Learning and planning with timing information in Markov
decision processes. In Conference on Uncertainty in Artificial Intelligence, pages 111–120, 2015.

[6] R. Bailly, X. Carreras, F. Luque, and A. Quattoni. Unsupervised spectral learning of WCFG as
low-rank matrix completion. In Conference on Empirical Methods in Natural Language Processing,
2013.

[7] R. Bailly, X. Carreras, and A. Quattoni. Unsupervised spectral learning of finite state transducers.
In Conference on Uncertainty in Artificial Intelligence, 2013.

[8] R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component analysis
problem. In International Conference on Machine Learning, pages 33–40, 2009.

[9] R. Bailly, A. Habrard, and F. Denis. A spectral approach for probabilistic grammatical inference
on trees. In Algorithmic Learning Theory, pages 74–88. Springer, 2010.

[10] B. Balle, X. Carreras, F. M. Luque, and A. Quattoni. Spectral learning of weighted automata.
Machine learning, 96(1-2):33–63, 2014.

[11] B. Balle, W. Hamilton, and J. Pineau. Methods of moments for learning stochastic languages:
Unified presentation and empirical comparison. In International Conference on Machine Learning,
2014.

[12] B. Balle and O.-A. Maillard. Spectral learning from a single trajectory under finite-state policies.
In International Conference on Machine Learning, 2017.

25

[13] B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained matrix
completion. In Advances in Neural Information Processing Systems, pages 2159–2167, 2012.

[14] B. Balle and M. Mohri. Learning weighted automata. In International Conference on Algebraic
Informatics, pages 1–21. Springer, 2015.

[15] B. Balle, P. Panangaden, and D. Precup. A canonical form for weighted automata and applications
to approximate minimization. In Logic in Computer Science (LICS), 2015 30th Annual ACM/IEEE
Symposium on, pages 701–712. IEEE, 2015.

[16] B. Balle, P. Panangaden, and D. Precup. Singular value automata and approximate minimization.
Mathematical Structures in Computer Science, page 1–35, 2019.

[17] B. Balle, A. Quattoni, and X. Carreras. A spectral learning algorithm for finite state transducers.
In European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2011.

[18] F. Bergadano and S. Varricchio. Learning behaviors of automata from multiplicity and equivalence
queries. In International Conference on Algorithms and Complexity, volume 778. Springer, 1994.

[19] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoretical Computer
Science, 18(2):115–148, 1982.

[20] B. Boots, S. M. Siddiqi, and G. J. Gordon. Closing the learning-planning loop with predictive state
representations. The International Journal of Robotics Research, 30(7):954–966, 2011.

[21] S. Bozapalidis and O. Louscou-Bozapalidou. The rank of a formal tree power series. Theoretical
Computer Science, 27(1):211–215, 1983.

[22] N. Chomsky and M. P. Schützenberger. The algebraic theory of context-free languages. In Studies
in Logic and the Foundations of Mathematics, volume 26, pages 118–161. Elsevier, 1959.

[23] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. Ungar. Spectral learning of latent-
variable PCFGs: Algorithms and sample complexity. The Journal of Machine Learning Research,
15(1):2399–2449, 2014.

[24] S. B. Cohen, K. Stratos, M. Collins, D. P. Foster, and L. H. Ungar. Experiments with spectral
learning of latent-variable PCFGs. In Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 148–157, 2013.

[25] M. Collins and S. B. Cohen. Tensor decomposition for fast parsing with latent-variable PCFGs. In
Advances in Neural Information Processing Systems, pages 2519–2527, 2012.

[26] M. Droste and H. Vogler. The Chomsky-Schützenberger theorem for quantitative context-free lan-
guages. International Journal of Foundations of Computer Science, 25(08):955–969, 2014.

[27] L. El Ghaoui. Inversion error, condition number, and approximate inverses of uncertain matrices.
Linear algebra and its applications, 343:171–193, 2002.

[28] Z. Ésik and W. Kuich. Formal tree series. BRICS Report Series (see also J. of Automata, Languages,
and Combinatorics, 8(2):219–285, 2003), (21), 2002.

[29] J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. Journal of the ACM
(JACM), 57(6):33, 2010.

[30] K. Etessami, A. Stewart, and M. Yannakakis. Polynomial time algorithms for multi-type branching
processes and stochastic context-free grammars. In Symposium on Theory of Computing, pages
579–588. ACM, 2012.

[31] K. Etessami, A. Stewart, and M. Yannakakis. Greatest fixed points of probabilistic min/max poly-
nomial equations, and reachability for branching Markov decision processes. Information and Com-
putation, 261:355–382, 2018.

[32] M. Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 1974.

26

[33] Z. Fülöp and Z. Gazdag. Weighted languages recognizable by weighted tree automata. Acta Cyber-
netica, 23(3):867–886, 2018.

[34] Z. Fülöp and H. Vogler. Weighted tree automata and tree transducers. In Handbook of Weighted
Automata, pages 313–403. Springer, 2009.

[35] T. Hsing and R. Eubank. Theoretical foundations of functional data analysis, with an introduction
to linear operators. John Wiley & Sons, 2015.

[36] D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden Markov models.
Journal of Computer and System Sciences, 78(5), 2012.

[37] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Symposium on Theory of Computing, pages 273–282. ACM, 1994.

[38] S. Kiefer, I. Marusic, and J. Worrell. Minimisation of multiplicity tree automata, pages 297–311.
2015.

[39] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500,
2009.

[40] A. Kulesza, N. R. Rao, and S. Singh. Low-rank spectral learning. In International Conference on
Artificial Intelligence and Statistics, pages 522–530, 2014.

[41] F. M. Luque, A. Quattoni, B. Balle, and X. Carreras. Spectral learning for non-deterministic
dependency parsing. In Conference of the European Chapter of the Association for Computational
Linguistics, 2012.

[42] J. M. Ortega. Numerical analysis: a second course, volume 3. Siam, 1990.

[43] A. Parikh, L. Song, M. Ishteva, G. Teodoru, and E. Xing. A spectral algorithm for latent junction
trees. In Conference on Uncertainty in Artificial Intelligence, 2012.

[44] A. P. Parikh, L. Song, and E. P. Xing. A spectral algorithm for latent tree graphical models. In
International Conference on Machine Learning, pages 1065–1072, 2011.

[45] A. Quattoni, B. Balle, X. Carreras, and A. Globerson. Spectral regularization for max-margin
sequence tagging. In International Conference on Machine Learning, 2014.

[46] G. Rabusseau, B. Balle, and S. B. Cohen. Low-Rank Approximation of Weighted Tree Automata.
In International Conference on Artificial Intelligence and Statistics, pages 839–847, 2016.

[47] A. Recasens and A. Quattoni. Spectral learning of sequence taggers over continuous sequences. In
European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, 2013.

[48] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal power series. Springer-Verlag,
1978.

[49] S. M. Siddiqi, B. Boots, and G. Gordon. Reduced-rank hidden Markov models. In International
Conference on Artificial Intelligence and Statistics, 2010.

[50] L. Song, M. Ishteva, A. Parikh, E. Xing, and H. Park. Hierarchical tensor decomposition of latent
tree graphical models. In International Conference on Machine Learning, 2013.

[51] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11), 1984.

27

	Introduction
	Background and Preliminaries
	Linear and Multilinear Algebra
	Trees and Weighted Tree Automata

	Singular Value Tree Automaton
	Rank Factorizations of Hankel Matrices
	SVTA: Definition and Existence
	Gramian Matrices of WTA
	Computing the Singular Value WTA

	Computing Generalized Partition Functions of WTA
	Computation of the Gramian Matrices
	Approximate Minimization of Weighted Tree Automata
	SVTA Truncation
	Approximation Error of an SVTA Truncation

	Conclusion

