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Abstract

We introduce the notion of Hypergraph Weighted Model (HWM), a compu-
tational model that generically associates a tensor network to a graph or a
hypergraph and then computes a value by generalized tensor contractions
directed by its hyperedges. A series r defined on a hypergraph family is
said to be recognizable if there exists a HWM that computes it. This model
generalizes the notion of recognizable series on strings and trees. We present
some examples on non classical graphs families such as circular strings and
pictures and we study properties of the model such as closure properties and
recognizability of finite support series. We conclude by a section exploring
the learnability of HWMs defined over the family of circular strings.
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1. Introduction

Real-valued functions whose domains are composed of syntactical struc-
tures, such as strings, trees or graphs, are widely used in computer science.
One way to handle such functions is by means of devices computing them.
Weighted automata, which are able to jointly analyze the structure of a syn-
tactical input and to compute an associated output value, are such a com-
puting device. They give rise to the notion of recognizable series. Weighted
automata have been defined for strings and trees, but their extension to
graphs is challenging.

Alternatively, recognizable series defined on strings and trees have equiv-
alent algebraic characterizations. Roughly speaking, defining an automaton
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is equivalent to associating linear or multilinear operators with each element
of the underlying alphabet (according to their arity); then the automaton’s
computation boils down to composing the operators associated with the in-
put. We show in this paper that this algebraic formalism can be naturally
extended to graphs (and hypergraphs).

More precisely, we define the notion of Hypergraph Weighted Model (HWM),
a computational model that generically associates a tensor network to a hy-
pergraph and that computes a value by successive generalized tensor contrac-
tions directed by its hyperedges. We say that a series r defined on a hyper-
graph family is HWM-recognizable if there exists a HWM M that computes
it: we then denote r by rM .

Tensors can be seen as multi-arrays composed of elements taken from a
commutative semiring K and as it is defined, a HWM computes a series that
takes its values in K. It would be interesting to develop a study of HWM in
this most general case. However, as we are mainly interested in numerical
applications of HWMs, we will make the supposition that K = R or K = C.

We show that when K = C, the model can be quite simplified and that
a computation over a general hypergraph essentially boils down to the con-
traction of a tensor network associated with a closed graph (Section 3.2).
Then, we show that the notion of HWM extends several models defined on
particular families of graphs: this is the case for the classical notion of rec-
ognizable series on strings and trees, as well as for the more recent model
of recognizable picture series (Section 3.3). We then investigate to what ex-
tent HWMs inherit fundamental properties that are satisfied by the classical
notions of recognizable series on strings and trees. We will see that some
of these properties are satisfied by HWMs in general, while others are not.
When faced which such a property that is not satisfied in general, we will
try to identify smaller families of graphs for which this property holds. For
example, we show that HWMs satisfy two important closure properties: if r
and s are two recognizable series defined on a family H of connected hyper-
graphs, then r + s and r · s, respectively defined for every graph G ∈ H by
(r + s)(G) = r(G) + s(G) and (r · s)(G) = r(G)s(G) (the Hadamard prod-
uct1), are HWM-recognizable. However, HWM-recognizable series defined
on general families of hypergraphs are not closed under scalar multiplication.

1The Hadamard product is also often denoted by� but this symbol will have a different
meaning in this paper.
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Nonetheless, we show that HWM-recognizable series are closed under scalar
multiplication for any family of rooted graphs (Section 3.4).

Then, we develop some examples (Section 4) that show how HWMs can be
used to compute series on non classical, albeit natural, graphs families such
as rooted circular strings or pictures. In particular, we show that the fact
that HWM can deal with complex syntactical structures may entail sparse
description of computation models: d-dimensional HWM can compute d2-
dimensional string rational series.

Recognizable series on strings and trees include polynomials (or finite
support series), i.e. series that take a non zero value on only a finite number
of hypergraphs. This is not always the case for recognizable series defined
on more general families of hypergraphs. For example, we show that finite
support series are not recognizable on the family of circular strings. The
example generalizes to the case of any families of connected graphs that
contain cycles. The main reason is that if a recognizable series is not null on
some hypergraph G, it must be also different from zero on some coverings of
G, i.e. connected hypergraphs made of copies of G (a notion that is close to
the classical notion of covering for unlabeled graphs). We show that if a graph
family is covering-free, then finite support series are recognizable (Section 5).
Strings and trees, as any family of rooted hypergraphs, are covering-free.

The last section is devoted to give some insight on the issues that have
motivated the present study and to describe some of our perspectives. In
machine learning, a classical problem consists in inferring an unknown rec-
ognizable series f from examples (x, f(x)) of this function. The systematical
use of algebraic representations for rational series on strings and trees has
entailed the development of several successful methods, such as the so-called
spectral methods, which try first to estimate several algebraic characteristics
(spectrum, eigenspaces, singular vectors, etc) of the underlying operators
from learning data, from which the target can be reconstructed. We ex-
pect that similar learning schemes for HWM-recognizable graph series can
be developed. As an illustration of this general research program, we present
preliminary results on the learnability of HWMs defined on the family of
circular strings.

Related work. String recognizable series and weighted automata have their
roots in automata theory [22, 48] and their study can be found in [9, 20,
32, 45, 46]. The extension of rational/recognizable series and weighted au-
tomaton to trees is presented in [8, 20]. A model of recognizable series on

3



2-dimensional words has been introduced in [10]. Computational models
used to parse and generate graphs have been proposed using the formalism
of grammars (see e.g. [44] and references therein). More generally, while
several unweighted automata models for graphs have been proposed (see
e.g. [15, 24, 50]) the quantitative setting has received less attention. The
extension of weighted automata to graphs by mean of weighted logic has
been considered in [19] where the authors propose a quantitative version of
Thomas’ unweighted model of graph acceptors [50] and show that this model
is expressively equivalent to some suited monadic second order logic. The
definability of graph functions in monadic second order logic has also been
investigated in the work of Makovsky et al. (see e.g. [35]). Investigating
the connections between HWMs and the models proposed in [19] and [35]
would be of particular interest and may entail characterizations of HWM-
recognizable series in terms of second-order logic; the simple observation
that HMWs generalize weighted picture automata (see Section 3.3) and that
both a “Nivat theorem” and the equivalence with a weighted MSO logic has
been proved for this computational model [3] constitutes a first step in this
direction. Tensor network diagrams have been introduced in [40], they have
been extensively used in quantum theory (see e.g. [11, 47, 39]), and the in-
terest for tensor networks has recently been growing in other fields (e.g. data
mining and machine learning [13, 49, 38]). Spectral methods for inference of
stochastic languages of strings/trees have been developed upon the notion of
linear representation of a rational series (see [4, 29, 5, 6, 17] for example).

We recall notions on tensors and hypergraphs in Section 2, we introduce
the Hypergraph Weighted Model and present some of its properties in sec-
tion 3, we study some examples in Section 4, we introduce the notion of cov-
erings and we study the recognizability of finite support series in Section 5,
we present a learning scheme for HWMs on circular strings in Section 6, and
we then propose a short conclusion.

2. Preliminaries

2.1. Recognizable Series on Strings and Trees

We refer to [8, 9, 14, 20, 45] for notions about recognizable series on
strings and trees and we briefly recall below some basic definitions.

Let Σ be a finite alphabet, let Σ∗ be the set of strings on Σ, and let ε
denote the empty word. A series on Σ∗ is a mapping r : Σ∗ → K where K
is a semiring. A series r is recognizable if there exists a linear representation
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〈V, ι, {Mx}x∈Σ, τ 〉 where V = Kd for some integer d ≥ 1, ι, τ ∈ V and
Mx ∈ Kd×d for each symbol x ∈ Σ , such that for any u = u1 . . . un ∈ Σ∗,
r(u) = ι>Muτ , where Mu = Mu1 . . .Mun and Mε = Id is the d× d identity
matrix. The integer d is called the dimension of the linear representation.
The rank of a recognizable series is the smallest d such that there exists a
d-dimensional linear representation.

A ranked alphabet F is a tuple (Σ, ]) where Σ is a finite alphabet and
where ] maps each symbol x of Σ to a natural number ]x called its arity ; for
any k ∈ N, let us denote Fk = ]−1({k}). A ranked alphabet is positive if ]
takes its values in N+.

The set of trees over a ranked alphabet F is denoted by T (F). A tree
series on T (F) is a mapping r : T (F)→ K. A tree series r is recognizable if
there exists a tuple 〈V, µ,λ〉, where V = Kd for some integer d ≥ 1, µ maps
each f ∈ Fp to a p-multilinear mapping µ(f) ∈ L(V p;V ) for each p ≥ 0
and λ ∈ V , such that r(t) = λ>µ(t) for all t in T (F), where µ(t) ∈ V is
inductively defined by µ(f(t1, . . . , tp)) = µ(f)(µ(t1), . . . , µ(tp)).

2.2. Tensors

Let d ≥ 1 be an integer, V = Kd where K is either2 R or C, and let
(e1, . . . , ed) be the canonical basis of V . A tensor T ∈⊗k V = V ⊗ · · · ⊗ V
(k times) can uniquely be expressed as a linear combination

T =
∑

i1,...,ik∈[d]

Ti1...ikei1 ⊗ · · · ⊗ eik

(where [d] = {1, · · · , d}) of rank-one tensors ei1⊗· · ·⊗eik which form a basis

of
⊗k V [28]. Hence, the tensor T can be represented as the multi-array

(Ti1...ik). The integer k is the order of the tensor and each axis 1, 2, · · · , k
of a k-th order tensor is called a mode. A tensor is called symmetric if it is
invariant under permutation of its modes, that is Ti1,...,ik = Tσ(i1),...,σ(ik) for
any permutation σ over [k]. Throughout the paper, we will use bold lower
case letters to denote vectors (e.g. v), bold upper case letters for matrices
(e.g. M), and bold calligraphic letters for higher order tensors (e.g. T); the

2It would be interesting to generalize the results presented in this paper to the case
where K is an arbitrary commutative semiring. However, since we are mainly interested
in numerical applications of graph and hypergraph series we focus on the fields of real and
complex numbers.
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d× d identity matrix will be denoted by Id, or simply by I if the dimension
is clear from context.

Definition 2.1. The tensor product of T ∈ ⊗p V and U ∈ ⊗q V is the
tensor T ⊗U ∈⊗p+q V defined by

(T ⊗U)i1···ipj1···jq = Ti1···ipUj1···jq .

Let � : V × V → V be an associative and symmetric bilinear mapping:
∀u, v, w ∈ V, u� v = v � u and u� (v � w) = (u� v)� w. The mapping �
is called a product.

Example 1. Let 1 = (1, . . . , 1)> and let �id be defined by ei �id ej = δijei,
where δ is the Kronecker symbol: �id is called the identity product.

The operation of applying the linear form v 7→ 1>v to the identity prod-
uct a �id b of two vectors is related to the notions of generalized trace and
contraction: if A =

∑
ij∈[d] Aijei⊗ej is a 2-order tensor over Kd (i.e. a square

matrix), v =
∑

ij∈[d] Aijei �id ej is the diagonal vector of A and 1>v is its

trace. Furthermore, if A =
∑

i,j∈[d] Aijei ⊗ ej and B =
∑

i,j∈[d] Bijei ⊗ ej
are 2-order tensors over Kd, then∑

ijkl

AijBklei ⊗ 1>(ej �id ek)⊗ el =
∑
ijl

AijBjlei ⊗ el

is the tensor form of the matrix product A ·B (i.e. the contraction of the
tensor A⊗B along its 2nd and 3rd modes).

2.3. Hypergraphs

Definition 2.2. A hypergraph G = (V,E, `) over a positive ranked alphabet
(Σ, ]) is given by a non empty finite set V , a mapping l : V → Σ and a
partition Eof PG = {(v, j) : v ∈ V, 1 ≤ j ≤ ]v} where ]v = ]`(v).

V is the set of vertices, PG is the set of ports, and E is the set of hyperedges
of G. The arity of a symbol x is equal to the number of ports of any vertex
labeled by x. We will sometimes use the notation v(i) for the port (v, i) ∈
PG. A hypergraph G can be represented as a bipartite graph where vertices
from one partite set represent the vertices of G and vertices from the other
represent its hyperedges (see Figure 1). A hypergraph is connected if for any

partition V = V1 ∪V2, there exists a hyperedge h ∈ E and ports v
(i)
1 , v

(j)
2 ∈ h

s.t. v1 ∈ V1 and v2 ∈ V2. A hypergraph is a graph if |h| ≤ 2 for all h ∈ E
and a hypergraph is closed if |h| ≥ 2 for all h ∈ E.
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Figure 1: The hypergraph G from Example 2.

0: ι
1 h0 1:u1

1 2 h1 2:u2
1 2 · · · n :un

1 2 hn
n+1:

τ
1

Figure 2: Graph associated with a string u = u1 · · ·un (where the notation i : x means
that `(i) = x)

Example 2. Over the ranked alphabet {(a, 3), (b, 2)}, let V = {v1, v2, v3},
`(v1) = `(v3) = a, `(v2) = b, E = {h1, h2, h3, h4} where h1 = {v(1)

1 , v
(3)
3 },

h2 = {v(2)
1 , v

(1)
2 , v

(2)
3 }, h3 = {v(3)

1 , v
(2)
2 }, and h4 = {v(1)

3 } (see Figure 1).

Example 3. A string u = u1 . . . un over an alphabet Σ can be seen as a
(hyper)graph over the ranked alphabet (Σ ∪ {ι, τ}, ]) where ι and τ are new
symbols, ]x = 2 for any x ∈ Σ and ]ι = ]τ = 1. Let V = {0, · · · , n + 1},
`(0) = ι, `(n+ 1) = τ , and `(i) = ui for 1 ≤ i ≤ n. Let E = {h0, h1, . . . , hn}
where h0 = {(0, 1), (1, 1)} and hi = {(i, 2), (i + 1, 1)} for 1 ≤ i ≤ n (see
Figure 2). The set of strings Σ∗ gives rise to a family of graphs.

Example 4. Similarly, we can associate any tree t over a ranked alphabet
(Σ, ]) with a graphGt on the ranked alphabet (Σ∪{λ}, ]′) where ]′(f) = ]f+1
for any f ∈ Σ and where the new symbol λ of arity 1 is connected to the free
port of the vertex corresponding to the root of t.

Formally, let F = (Σ, ]) be a ranked alphabet. A tree t over F can be
defined as a mapping from a finite non-empty prefix-closed set Pos(t) ⊆ N∗
to F , satisfying the following condition: ∀p ∈ Pos(t), if t(p) ∈ Fn then
{j : p · j ∈ Pos(t)} = {1, ..., n} (using the convention {1, · · · , 0} = ∅).

A tree t over F can be seen as a hypergraph over the ranked alphabet
(Σ ∪ {λ}, ]′) where ]′(λ) = 1 and ]′(f) = ]f + 1 for any f ∈ Σ. Let V =
Pos(t) ∪ {0}, `(0) = λ, and `(p) = t(p) for any p ∈ Pos(t). Let E =
{{(0, 1), (ε, 1)}} ∪ ⋃p.j∈Pos(t) {{(p, j + 1), (p.j, 1)}}. The set of trees T (F)
gives rise to a family of hypergraphs. The graph associated with the tree

7



0:λ

1

ε :f

1

2 3

1:a

1

2:f
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2.1:a

1

2.2:a

1

a
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b

1
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a
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2

1

Figure 3: (left) Hypergraph Gt associated with the tree t = f(a, f(a, a)). (right) Example
of circular string on the alphabet {a, b}

t = f(a, f(a, a)) is shown as an example in Figure 3.

Definition 2.3. Given a finite alphabet Σ, let F = (Σ, ]) be the ranked
alphabet where ]x = 2 for each x ∈ Σ. We say that a hypergraph G =
(V,E) on F is a circular string (over Σ) if and only if G is connected and
every hyperedge h ∈ E is of the form h = {(v, 2), (w, 1)} for v, w ∈ V (see
Figure 3).

Example 5. Another interesting extension of strings (naturally modeled by
graphs) is the set of 2D-words (or pictures) w ∈ ΣM×N on a finite alphabet
Σ, see Section 3.3 and 4.2 for details.

3. Hypergraph Weighted Models

3.1. Definition

In this section, we give the formal definition of a Hypergraph Weighted
Model. We then explain how to compute its value for a given hypergraph.

Definition 3.1. A Hypergraph Weighted Model (HWM) on a ranked alphabet
(Σ, ]) is a tuple M = 〈Kd, {Tx}x∈Σ,�,α〉 where K = R or C, � is a product
on Kd, α ∈ Kd, and {Tx}x∈Σ is a family of tensors where each Tx ∈⊗]xKd.
The integer d is called the dimension of the HWM.
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Let G = (V,E, `) be a hypergraph and let Γ = [d]PG be the set of mappings
from PG to [d]. The series rM computed by the HWM M is defined by

rM(G) =
∑
γ∈Γ

Tγ

∏
h∈E

α>
⊙
i∈γ(h)

ei

where Tγ =
∏

v∈V Tv
γ(v(1))...γ(v(]v)) (using the notation Tv = T`(v)).

Let V = {v1, · · · , vn}. The tensor Tv1⊗Tv2⊗· · ·⊗Tvn is of order |PG| and
any element γ ∈ Γ is a labeling of the ports of G with states in [d] which can

be seen as a multi-index of [d]|PG|. Thus, Tγ is the
(
γ(v

(1)
1 ), · · · , γ(v

(]v1)
1 ), · · · ,

γ(v
(1)
n ), · · · , γ(v

(]vn)
n )

)
-coordinate of the tensor

⊗n
i=1 T

vi , which can be thought

of as a weight for the corresponding labeling of the ports of G.

Example 6. Consider the hypergraph G from Example 2. We have

rM(G) =
∑
i1,··· ,i8

Ta
i1i2i3

Tb
i4i5

Ta
i6i7i8

α>(ei1�ei8)α
>(ei2�ei4�ei7)α

>(ei3�ei5)α
>ei6 .

Example 7. If α = 1 and if � = �id (cf. Example 1), then rM(G) =∑
γ∈ΓId

Tγ where ΓId = {γ ∈ Γ : ∀h ∈ E, p, q ∈ h ⇒ γ(p) = γ(q)}. For the
hypergraph G from Example 2, this would lead to the following contractions
of the tensor Ta ⊗ Tb ⊗ Ta:

rM(G) =
∑

i1,i2,i3,i6

Ta
i1i2i3

Tb
i2i3

Ta
i6i2i1

.

Remark 1. Let Σ be a finite alphabet, let Mσ ∈ Kd×d for σ ∈ Σ, and
let A = 〈Kd, {Mσ}σ∈Σ,�id ,1〉 be a HWM. For any non empty word w =
w1 · · ·wn ∈ Σ∗ and its corresponding circular string Gw, it follows from the
definition of �id (see Example 1) that rA(Gw) = Tr(Mw1 · · ·Mwn) (where
Tr(M) is the trace of the matrix M).

The case where α = 1 and � = �id will play a particular role further
on. We will show that HWMs can compute traditional recognizable series
on strings and trees using this choice of α and � (see Section 3.3). We will
also show that when K = C any HWM-recognizable function defined over a
family of closed graphs can be computed by a HWM for which α = 1 and
� = �id (see Proposition 3.4).
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When α = 1 and � = �id , labeling the ports of G is equivalent to
labeling its edges which can help us gain some intuition on the computations
of a HWM. Consider the HWM M = 〈Kd, {Tx}x∈Σ,�id ,1〉. Since ΓId is
isomorphic to [d]E, the computation of M on a hypergraph G = (V,E, `) can
be interpreted in the following way:

• Each component Tx
i1,··· ,i]x of a tensor Tx represents the weight of a

vertex labeled by x when its first port is in state i1, its second port in
state i2...

• Each configuration in [d]E (i.e. a labeling of the hyperedges of G with
states in [d]) assigns a state to each port of the hypergraph, thus a con-
figuration assigns a weight to each vertex of G (using the tensors Tx).
The product of these weights represents the weight of a configuration.

• The value computed by M is the sum of the weights of all possible
configurations in [d]E.

We conclude this section by two simple remarks and by formally defining
our notion of recognizability for hypergraph series.

Remark 2. Let A = 〈Rd, {Ax}x∈Σ,�,α〉 be a HWM. Each tensor Ax can

be decomposed as a sum of rank one tensors Ax =
∑R

r=1 a
(x,1)
r ⊗ · · · ⊗ a

(x,]x)
r

where R is the maximum rank of the tensors Tx for x ∈ Σ. The com-
putation of the HWM A on G = (V,E, `) can then be written as r(G) =∏

h∈E α
>
[⊙

(v,i)∈h

(∑R
r=1 a

(`(v),i)
r

)]
.

Remark 3. If G is a hypergraph with two connected components G1 and
G2, we have rM(G) = rM(G1) · rM(G2) for any HWM M .

Definition 3.2. Let H be a family of hypergraphs on a ranked alphabet (Σ, ]).
We say that a hypergraph series r : H → K is recognizable if and only if
there exists a HWM M such that rM(G) = r(G) for all G ∈ H.

As in the previous definition, we will often present results or properties
that hold for series defined on a particular family of hypergraphs H. By this
we mean that hypergraphs outside of H are disregarded, i.e. the series may
behave arbitrarily on them.

In the following sections, we first present some simplifications of the model
that can be assumed in particular situations. We then show that HWMs
satisfy some basic properties which are desirable for a model extending the
notion of recognizable series to hypergraphs.
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a
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1
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3 2
1
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η2

η1

a

1

2

3
b

1

2

a

3 2
1

η

α

η η α

η

α

α

Figure 4: Two possible mappings from the hypergraph in Example 2 to a graph. (left)
Each arity-j hyperedge is replaced with a vertex labeled by the new symbol ηj . (right)
Each arity-j hyperedge is replaced by a chain of j − 1 vertices labeled by the arity-3
symbol η connected to one vertex labeled α. Note that any numbering of the ports of the
vertices labeled by the symbol η or ηj can be envisaged (this follows from the symmetry
and associativity of �).

3.2. HWMs over closed graphs

We first show how any HWM-recognizable series on hypergraphs can be
computed by a HWM defined over closed graphs using a specific mapping
from hypergraphs to closed graphs. This mapping consists in replacing each
hyperedge h in the hypergraph by a vertex labeled with a new symbol ηj of
arity j, where j = |h| (see Figure 4, left).

Formally, let G = (V,E, `) be a hypergraph on the ranked alphabet (Σ, ])
and let F ′ = (Σ ∪ {ηj}j≥1, ]

′) where ]′x = ]x for any x ∈ Σ and ]′ηj = j
for any j ≥ 1. Let PG be the set of ports of G and let PE = {(h, k) : h ∈
E, 1 ≤ k ≤ |h|}. Finally, let f : PG → PE be any bijection satisfying
f(p) = (h, k)⇒ p ∈ h.

We define the closed graph graph(G) = (V ′, E ′, `′) on the ranked alphabet
F ′ by3

• V ′ = V ∪ E (thus the set of ports of graph(G) is PG ∪ PE),

• `′(v) = `(v) for any v ∈ V and `′(h) = η|h| for any h ∈ E,

• E ′ =
{
{p, f(p)} : p ∈ PG

}
.

3To avoid cluttering the notations we omit the dependency on the bijection f in the
notation graph(G). This is without consequences since the value computed by any HWM
on graph(G) does not depend on the particular choice of f .
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Proposition 3.3. Let A = 〈Kd, {Tx}x∈Σ,�,α〉 be a HWM on the ranked
alphabet (Σ, ]). The HWM B = 〈Kd, {Tx}x∈Σ ∪ {Tηj}j≥1,�id ,1〉, where Tηj

is defined by

T
ηj
i1,··· ,ij = α>(ei1 � · · · � eij) for all i1, · · · , ij ∈ [d],

satisfies rA(G) = rB(graph(G)) for any hypergraph G.

Proof. Let G = (V,E, `) be a hypergraph and let graph(G) = (V ′, E ′, `′) be
the closed graph defined previously. Let P be the set of ports of G and P ′

be the set of ports of graph(G). Finally let Γ = [d]P and Γ′ = [d]P
′
. The

key ingredient of the proof consists in exhibiting the isomorphism between Γ
and Γ′Id . For any γ ∈ Γ, let γ′ ∈ Γ′ be defined by

γ′(p) = γ′(f(p)) = γ(p) for all p ∈ P .

Since any edge in E ′ is of the form {p, f(p)} we have γ′ ∈ Γ′Id = {γ′ ∈ Γ′ :
∀h ∈ E ′, p, q ∈ h ⇒ γ′(p) = γ′(q)} (by definition of γ′). Furthermore, we
have |Γ| = |Γ′Id | (since Γ′Id is isomorphic to [d]E

′
) and the mapping g : γ 7→ γ′

is injective, thus g is a bijection between Γ and Γ′Id .
It then follows from the definition of �id (cf. Example 7) that

rB(graph(G)) =
∑
γ′∈Γ′Id

∏
v′∈V ′

T
`′(v′)
γ′(v′) =

∑
γ′∈Γ′Id

∏
v∈V

T
`′(v)
γ′(v)

∏
h∈E

T
`′(h)
γ′(h),

where we used the notation T
`′(v′)
γ′(v′) = T

`′(v′)
γ′(v′,1),··· ,γ′(v′,]′v′)). For any h =

{p1, · · · , pn} ∈ E and any γ ∈ Γ, let T
ηn
γ(h) = T

ηn
γ(p1),··· ,γ(pn) (note that the

ordering of the ports in h is not relevant since the tensor Tηn is symmetric).

We then have T
`′(h)
γ′(h) = T

η|h|
γ(h) for any h ∈ E and γ′ ∈ Γ′Id . Finally, using the

isomorphism between Γ and Γ′Id we obtain

rB(graph(G)) =
∑
γ∈Γ

∏
v∈V

T
`(v)
γ(v)

∏
h∈E

T
η|h|
γ(h) =

∑
γ∈Γ

∏
v∈V

T
`(v)
γ(v)

∏
h∈E

α>
⊙
i∈γ(h)

ei = rA(G) .

The main drawback of the mapping from hypergraphs to closed graphs
used in the previous proposition is that it needs to introduce new symbols
with unbounded arity. The next remark shows that it is possible to circum-
vent this issue by exploiting the structure of the tensors Tηj .
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Remark 4. Let η be a new symbol of arity 3 and define its associated tensor
by T

η
i1,i2,i3

= e>i1(ei2 � ei3). Observing that ei2 � ei3 =
∑

i1
T
η
i1,i2,i3

ei1 for any
i2, i3 ∈ [d], one can check that the tensors Tηj from the previous proposition
satisfy the following recurrence relation:

Tη1 = α and T
ηj
i1,··· ,ij =

∑
k

T
η
k,i1,i2

T
ηj−1

k,i3,··· ,ij .

Thus, each vertex labeled by a symbol ηj in graph(G) can be replaced by a
chain of j− 1 vertices labeled by the new symbol η (this chain has j + 1 free
ports) connected to one vertex labeled by the new symbol α (see Figure 4,
right). It is then easy to build a new HWM using the tensors Tη and Tα = α
on the finite alphabet Σ ∪ {η, α} that will compute the same series. Note
that the number of new vertices added to G is unbounded.

The following proposition shows that any recognizable C-valued series on
closed graphs can be computed by a HWM with coefficients in C using the
identity product �id and the vector 1.

Proposition 3.4. Let A = 〈Cd, {Ax}x∈Σ,�A,α〉 be a HWM. There exists
a HWM B = 〈Cd, {Bx}x∈Σ,�id ,1〉 such that rB(G) = rA(G) for any closed
graph G.

Proof. We consider the decomposition Ax =
∑R

r=1 a
(x,1)
r ⊗ · · · ⊗ a

(x,]x)
r for

each x ∈ Σ (see Remark 2). Let M ∈ Rd×d be the matrix defined by Mij =
α>(ei�Aej) and check that u>Mv = α>(u�Av) and 1>(u�id v) = u>v for
any u,v ∈ Rd. Let Q ∈ Cd×d be such that M = Q>Q (such a decomposition

exists since M is symmetric) and let Bx =
∑R

r=1(Qa
(x,1)
r )⊗ · · · ⊗ (Qa

(x,]x)
r ).

For any closed graph G = (V,E, `), it then follows that

rB(G) =
∏
h∈E,

h={(v,i),(w,j)}

1>

[(
R∑
r=1

Qa(`(v),i)
r

)
�id

(
R∑
r=1

Qa(`(w),j)
r

)]

=
∏
h∈E,

h={(v,i),(w,j)}

(
R∑
r=1

a(`(v),i)
r

)>
Q>Q

(
R∑
r=1

a(`(w),j)
r

)

=
∏
h∈E,

h={(v,i),(w,j)}

α>

[(
R∑
r=1

a(`(v),i)
r

)
�A
(

R∑
r=1

a(`(w),j)
r

)]

= rA(G).

13



Remark 5. We exhibit two counter-examples to give an intuition on why
the previous proposition only holds over C and for closed graphs.

• Consider the one-dimensional HWM A = 〈R, {Aa = e1},�,α = e1〉 on
the one-letter alphabet {a(·)} where � is defined by e1�e1 = −e1. We
have rA(a−�−a) = −1 and it is easy to check that any one-dimensional
HWM with real coefficients using the product �id and the vector 1 will
assign a positive value to the graph a−�−a.

• Consider the one-dimensional HWM

B = 〈C, {Ba = e1,B
b = e1 ⊗ e1},�id ,α =

1

2
e1〉

on the ranked alphabet {a(·), b(·, ·)}.
For any HWM B̃ = 〈C, {B̃a

, B̃
b},�id ,1〉 we have B̃

a
= βae1 and

B̃
b

= βbe1 ⊗ e1 for some βa, βb ∈ C. Suppose rB = rB̃, then since
rB(a−�) = 1

2
and rB(�−b−�) = 1

4
we must have βa = 1

2
and βb = 1

4
, but

then rB(a−�−b−�) = 1
4

and rB̃(a−�−b−�) = 1
8
, a contradiction.

The results presented in this section show that when K = C, we can with-
out any loss of generality restrict our attention to HWMs on closed graphs
(instead of hypergraphs) using the product �id and the vector 1. Conse-
quently, we will sometimes omit the product � and the vector α in the
definition of a HWM, implying that � = �id and α = 1. Nonetheless, the
flexibility offered by the choice of � and α will allow us to simplify some of
the proofs and we will always make it clear that the results we present hold
for hypergraphs.

HWMs and tensor networks. When α = 1 and � = �id the computation
of a HWM on a given hypergraph H is equivalent to the contraction of the
tensor network naturally associated with the closed graph graph(H): each
node in the graph represents the tensor associated with its label and the
contraction of this tensor network (along the edges of the graph) results in a
scalar equal to the value computed by the HWM on H. Considering graphs
rather than hypergraphs for sake of simplicity, one can pursue this analogy
between HWMs and tensor networks and define the computations of a HWM
M = 〈Kd, {Tx}x∈Σ,�id ,1〉 in an inductive way by mapping any graph G with
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k free ports to the k-th order tensor TG naturally obtained by interpreting
G as a tensor network:

• the singleton graph containing only one vertex labeled by the symbol
x (which has ]x free ports) is mapped to the tensor Tx;

• the union of two graphs G1 (with k1 free ports) and G2 (with k2 free
ports) obtained by juxtaposing G1 and G2 is mapped to the tensor
product of the tensors TG1 and TG2 (which is of order k1 + k2);

• the graph obtained by connecting two free ports p1 and p2 in a graph G
with k ≥ 2 free ports with a new edge is mapped to the tensor obtained
by contracting the modes corresponding to p1 and p2 in TG (resulting
in a tensor of order k − 2).

The value computed by M is then obtained by summing the components of
TG (which corresponds to plugging the vector α = 1 in the free ports of the
tensor network TG). We refer the reader to [42, Chapter 2] for more details
about the connections between HWMs and tensor networks.

The connection between computations of weighted automata and tensor
networks has been previously noticed in e.g. [16] where the authors show
the close relationship between hidden Markov models (i.e. probabilistic au-
tomata) and matrix product states tensor networks. The extension of strings
and trees weighted automata to hypergraphs we propose here can be seen
as a natural prolongation of this analogy to the more general setting of hy-
pergraphs. We again refer the reader to [42, Chapter 2] for a more detailed
discussion about the connection between classical weighted automata, tensor
networks, and HWMs.

From a practical perspective, it is well known that computational prob-
lems on tensor networks can be hard. For example, deciding if the scalar
computed by a given tensor network is positive is NP-hard [31] and so is the
problem of finding an optimal sequence of contractions [12]. Nonetheless, de-
veloping efficient heuristics to achieve fast computations in tensor networks
has been an active line of research in the physics community (see e.g. [41])
and the methods and results obtained in this community will certainly prove
useful for the practical implementation of HWM computations.

3.3. Strings, Trees, and Pictures

String and Trees. The following propositions show that the proposed model
naturally generalizes the notion of linear representation of recognizable series
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on strings and trees.

Proposition 3.5. Let r = 〈Kd, ι, {Mσ}σ∈Σ, τ 〉 be a recognizable series on
Σ∗. For any word w ∈ Σ∗, let Gw be the associated hypergraph on the ranked
alphabet (Σ ∪ {ι, τ}, ]), whose construction is described in Example 3. Con-
sider the HWM M = 〈Kd, {Tx}x∈Σ∪{ι,τ},�id ,1〉 where Tτ = τ , Tι = ι and
Tσ = Mσ for all σ ∈ Σ.

Then, r(w) = rM(Gw) for all strings w ∈ Σ∗.

Proof. Let w = w1 · · ·wn. We have

r(w) = ι>Mw1 · · ·Mwnτ =
∑
i0,...,in

ιi0M
w1
i0,i1

. . .Mw1
in−1,in

τ in

=
∑
i0,...,in

Tι
i0
Tw1
i0,i1

. . .Twn
in−1,in

Tτ
in = rM(Gw).

In the previous proposition, the vectors ι and τ of a linear representation
were directly encoded in the structure of the graph representation of a string
w on Σ using the new symbols ι and τ . The next proposition shows that it is
possible to encode these linear forms in the vector α of a HWM with complex
coefficients, using a graph representation of strings without new symbols: for
any string w = w1 · · ·wn over Σ, we consider the graph Hw = (V,E, `) on
(Σ, ]) where V = [n], `(i) = wi, and the set of hyperedges is composed of
{(1, 1)}, {(n, 2)}, and {(i, 2), (i + 1, 1)} for i ∈ [n − 1] (note that the graph
representation of a string is different from the graph representation of its
mirror because of the identification of the ports).

Proposition 3.6. Let r = 〈Rd, ι, {Mσ}σ∈Σ, τ 〉 be a real-valued recognizable
string series on Σ∗. There exists a HWM M = 〈Cd, {Tσ}σ∈Σ,α,�〉 such that
rM(Hw) = r(w) for all w ∈ Σ∗.

Proof. We first show that given a recognizable string series r = 〈Rd, ι, {Mσ}σ∈Σ, τ 〉
there exists a recognizable series s = 〈Cd,α, {Nσ}σ∈Σ,α〉, such that s(w) =
r(w) for all w ∈ Σ∗. Indeed, let (e1, · · · , ed) be a basis of Rd such that
e>i τ 6= 0 and e>i ι 6= 0 for all i ∈ [d]. Let D ∈ Cd×d be the diagonal matrix
defined by Dii = (e>i τ )1/2/(e>i ι)

1/2 (where x1/2 = i|x|1/2 if x < 0). We have
Dι = D−1τ and the series s : 〈Cd,Dι,D−1τ , {D−1MσD}σ∈Σ〉 is such that
s(w) = r(w) for all w ∈ Σ∗.
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Then, the HWM M = 〈Cd, {Tx}x∈Σ,α,�〉, where Tσ = Mσ, α = Dι =
D−1τ , and � is defined by ei� ej = δij

1
αi

ei, is such that rM(Hw) = r(w) for
all w ∈ Σ∗.

Proposition 3.7. Let r = 〈V, µ, λ〉 be a recognizable series on trees on the
ranked alphabet F = (Σ, ]). For any tree t over F , let Gt = (Vt, Et) be the
associated hypergraph on the ranked alphabet (Σ∪{λ}, ]′), whose construction
is described in Example 4. Consider the HWM M : 〈V, {Tx}x∈Σ∪{λ},�id ,1〉
where Tλ = λ and Tf is defined by T

f
i0...ik

= e>i0µ(f)(ei1 , . . . , eik) for all k
and f ∈ Fk.

Then, r(t) = rM(Gt) for every tree t over F .

Proof. For any γ ∈ ΓId , let Uγ =
∏

v∈Vt\{0} T
`(v)
γ(v,1)...γ(v,]v). We first prove by

induction on t that µ(t) =
∑

γ∈ΓId
Uγeγ(ε,1).

If t = a, then
∑

γ∈ΓId
Uγeγ(ε,1) =

∑
i∈[d] T

a
i ei = µ(a).

If t = f(t1, . . . , tk), first notice that ΓId = Γ
(0)
Id × Γ

(1)
Id × · · · × Γ

(k)
Id , where

Γ
(0)
Id fixes the values of the port (ε, 1) and where Γ

(j)
Id , for j ∈ [k], fixes the

values of the ports of the subgraph corresponding to the subtree tj.
We then have

µ(f(t1, . . . , tk)) = µ(f)(µ(t1), . . . , µ(tk))

=
∑

i0,i1,...,ik

T
f
i0,i1,...,in

∏
j∈[k]

e>ijµ(tj)ei0

=
∑

i0,i1,...,ik

T
f
i0,i1,...,in

∏
j∈[k]

e>ij

∑
γ∈Γ

(j)
Id

Uγeγ(j,1)

 ei0

=
∑

i0,i1,...,ik

T
f
i0,i1,...,in

∏
j∈[k]

∑
γ∈Γ

(j)
Id ,γ(j,1)=ij

Uγei0

=
∑

i0,γ1∈Γ
(1)
Id ,...,γk∈Γ

(k)
Id

T
f
i0,γ1(1,1),...,γk(k,1)

∏
j∈[k]

Uγjei0 =
∑
γ∈ΓId

Uγeγ(ε,1)

and it is easy to check that

λ(µ(t)) =
∑
i

∑
γ∈ΓId

Tλ
iUγe

T
i eγ(ε,1) =

∑
γ∈ΓId

Tλ
γ(ε,1)Uγ =

∑
γ∈ΓId

Tγ = rM(t).
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Pictures. We now show that HWMs also generalize the more recent model
of recognizable picture series.

A picture p ∈ Σ++ over a finite alphabet Σ is defined as a non-empty
rectangular array of elements of Σ, formally Σ++ = ∪m,n≥1Σm×n. We write
pi,j for the component of p at position (i, j). A picture language is a set
of pictures, while a picture series is a function from Σ++ to a commutative
semiring. Regular picture languages can equivalently be described in terms of
automata, set of tiles, rational operations or monadic second order logic [25,
26, 30, 34]. The extension of regular picture languages to the quantitative
setting led to the definition of recognizable picture series whose theoretical
study has been of recent interest [10, 36, 23, 3]. Recognizable picture series
have been first introduced in [10] by means of weighted picture automata.

Definition 3.8. A weighted (quadropolic) picture automaton (WPA) [10]
on a finite alphabet Σ is a tuple A = 〈Q,R, Fw, Fn, Fe, Fs, δ〉 consisting of
a finite set of states Q, a finite set of rules R ⊆ Σ × Q4, four poles of
acceptance Fw, Fn, Fe, Fs ⊆ Q, and a weight function δ : R→ K, where K is
a commutative semiring.

Given a rule (σ, qw, qn, qe, qs) ∈ R we denote by `(r) its label σ and by
w(r) = qw, n(r) = qn, e(r) = qe, and s(r) = qs the states corresponding to its
four poles.

A run c of A on a picture p ∈ Σm×n is an element in Rm×n satisfying the
following compatibility properties:

∀i ≤ m− 1, j ≤ n : s(ci,j) = n(ci+1,j)

∀i ≤ m, j ≤ n− 1 : e(ci,j) = w(ci,j+1)
(1)

and `(ci,j) = pi,j for all i ≤ m, j ≤ n. A run is successful if its outer pole-
states are in the respective poles of acceptance, that is

∀i ≤ m, j ≤ n : w(ci,1) ∈ Fw, n(cm,j) ∈ Fn, e(ci,n) ∈ Fe, s(c1,j) ∈ Fs.

We denote by R(p) the set of all successful runs on a picture p.
We extend the weight function δ to runs by setting δ(c) =

∏
i,j δ(ci,j).

The weight of a picture p is the sum of the weights of all successful runs on
p. It defines a picture series rA : Σ++ → K with rA(p) =

∑
c∈R(p) δ(c). If

there are no successful run on p then rA(p) = 0.

With each picture p ∈ Σ++ of size m × n we associate a closed graph
Gp = (V,E, `) on the ranked alphabet FΣ = (Σ∪{w, n, e, s}, ]) where ]σ = 4
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Figure 5: Graph Gp associated with a 2× 2 picture p on the alphabet Σ = {a, b, c, d}.

for all σ ∈ Σ and ]w = ]n = ]e = ]s = 1. The graph Gp is constructed in a
straightforward way by translating p into a graph and adding nodes to the
border of the picture (see Figure 5): nodes on the west border will be labeled
by the symbol w, on the east border by e...

Let A = 〈Q,R, Fw, Fn, Fe, Fs, δ〉 be a WPA with d states (q1, · · · , qd) on
the alphabet Σ. A HWM M : 〈Kd, {Tf}f∈F ,�id ,1〉 can be associated with
A by letting

Tx
i =

{
1 if qi ∈ Fx
0 otherwise

and Tσ
i1i2i3i4

=

{
δ(r) if r = (σ, qi1 , qi2 , qi3 , qi4) ∈ R
0 otherwise

for any x ∈ {w, s, e, n} and σ ∈ Σ.
One can show that rM(Gp) = rA(p) for all pictures p ∈ Σ++ (see [42,

Proposition 4] for a detailed proof).

Expressiveness of HWMs. We showed that HWMs are a generalization of
weighted automata over strings, trees, and pictures. The converse question
naturally arises: e.g. restricted to the class of strings, can every HWM be
simulated by a weighted string automaton? The answer is yes for the three
cases (strings, trees and pictures). We show this result for strings in the
following proposition (the case of trees and pictures can be treated similarly).

Proposition 3.9. Any HWM-recognizable series on the family of strings on
a finite alphabet Σ (as defined in Example 3) can be computed by a weighted
string automaton.
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Proof. Let ι and τ be the two new symbols used to denote the beginning
and end of the graph representation of a string (cf. Example 3). Let M =
〈Kd, {Tx}x∈Σ∪{ι,τ},�,α〉 be a HWM and let Aσ = Tσ for all σ ∈ Σ, ι = Tι,
and τ = Tτ . If � = �id and α = 1 then the proof of Proposition 3.5
shows that the WA A = 〈Kd, ι, {Aσ}σ∈Σ, τ 〉 satisfies rA(w) = rM(Gw) for all
w ∈ Σ∗. If this is not the case (i.e. either � 6= �id or α 6= 1), let O ∈ Rd×d be
the matrix defined by Oi,j = α>(ei � ej) for all i, j ∈ [d] where e1, · · · , ed is
the canonical basis of Rd. We claim that the WA Ã = 〈Kd, ι, {OAσ}σ∈Σ,Oτ 〉
satisfies rÃ(w) = rM(Gw) for all w ∈ Σ∗. Indeed, let w ∈ Σ∗ and n = |w|.
We have

rM(Gw) =
∑
γ∈Γ

Tγ

∏
h∈E

α>
⊙
i∈γ(h)

ei

=
∑

i0,··· ,i2n+1

Tι
i0
Tw1
i1,i2
· · ·Twn

i2n−1,i2n
Tτ
i2n+1

α>(ei0 � ei1) · · ·α>(ei2n � ei2n+1)

=
∑

i0,··· ,i2n+1

ιi0A
w1
i1,i2
· · ·Awn

i2n−1,i2n
τ i2n+1Oi0,i1Oi1,i2 · · ·Oi2n,i2n+1

= ιτOAw1OAw2 · · ·OAwnOτ = rÃ(w).

3.4. Closure Properties

The following propositions show that the set of HWMs is closed under ad-
dition for HWMs defined over families of connected hypergraphs and closed
under Hadamard product for HWMs defined over arbitrary families of hy-
pergraphs.

Proposition 3.10. Let A = 〈Km, {Ax}x∈Σ,�A,α〉 and B = 〈Kn, {Bx}x∈Σ,�B,β〉
be two HWMs. Let rA (resp. rB) be the series computed by A (resp. by B).
Define the HWM C = 〈Km+n, {Cx}x∈Σ,�, τ 〉 by

• Cxi1...i]x =


Ax
i1...i]x

if 1 ≤ i1, . . . , i]x ≤ m

Bx
j1...j]x

if m < i1, . . . , i]x ≤ m+ n where jk = ik −m for any k

0 otherwise,

• τ i = αi if 1 ≤ i ≤ m and βi−m otherwise, and 4

4For sake of readability we use the same notation ei to denote the ith vector of the
canonical basis of Km, Kn, Km+n and Kmn in this proposition and the following one; the
actual vector space being referred to will always appear clearly from context.
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• ei � ej =


ei �A ej if 1 ≤ i, j ≤ m

tm(ei−m �B ej−m) if m < i, j ≤ n

0 otherwise

where tm : Kn → Km+n is the linear mapping defined by tm(ek) = ek+m for
any 1 ≤ k ≤ n.

Then the HWM C computes the series rA+B defined by rA+B(G) = rA(G)+
rB(G), for every connected hypergraph G.

Proof. Let G = (V,E, `), let PG be the set of ports of G, let Γ = [m+ n]PG ,
Γ1 = {γ ∈ Γ : γ(PG) ⊆ [m]}, and let Γ2 = {γ ∈ Γ : γ(PG) ⊆ {m+ 1, . . . ,m+
n}}.

If γ 6∈ Γ1∪Γ2, then Cγ
∏

h∈E τ
>⊙

i∈γ(h) ei = 0. Indeed, let V1 = {v ∈ V :

∃v(i) ∈ PG s.t. γ(v(i)) ≤ m} and V2 = {v ∈ V : ∃v(i) ∈ PG s.t. γ(v(i)) > m}.
Note that V1 and V2 are not empty.

• If there exists v ∈ V1 ∩ V2, then Cvγ(v,1)...γ(v,]v) = 0 and therefore Cγ = 0

• If V1 ∩ V2 = ∅, there exists a hyperedge h and ports v
(i)
1 , v

(j)
2 ∈ h such

that v1 ∈ V1 and v2 ∈ V2, since G is connected. Then,
⊙

i∈γ(h) ei = 0.

Now,

rC(G) =
∑
γ∈Γ

Cγ
∏
h∈E

τ>
⊙
i∈γ(h)

ei

=
∑
γ∈Γ1

Cγ
∏
h∈E

τ>
⊙
i∈γ(h)

ei +
∑
γ∈Γ2

Cγ
∏
h∈E

τ>
⊙
i∈γ(h)

ei

=
∑
γ∈ΓA

Aγ

∏
h∈E

α>
⊙
i∈γ(h)

ei +
∑
γ∈ΓB

Bγ

∏
h∈E

β>
⊙
i∈γ(h)

ei

where ΓA = [m]PG and ΓB = [n]PG . Eventually, rC(G) = rA(G) + rB(G).

We will now exhibit a counter-example showing that the previous proposi-
tion only holds for connected hypergraphs. More precisely, we show that there
exist recognizable series on graphs whose sum is not recognizable. We consider
HMWs defined over closed graphs on the one letter alphabet F = ({x}, ])
where ]x = 2. Let G1 be the circular string x (i.e. G1 has one vertex la-
beled by x whose first and second ports are connected) and let G2 be the
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graph with two connected components, each one isomorphic to G1. Consider
the two HWMs A1 = (Cd, {A},�id ,1) and A2 = (Cd, {−A},�id ,1), where
A ∈ Cd×d is such that Tr(A) 6= 0, and let r1 and r2 be the series computed
by A1 and A2 respectively. One can check that

r1(G1) = Tr(A) = −r2(G1) and r1(G2) = Tr(A)2 = r2(G2).

Suppose now that the series r1 +r2 is recognizable. Then, by Proposition 3.4
there would exist a HWM C = (Cn, {C},�id ,1) computing r1 + r2, whence
Tr(C) = rC(G1) = r1(G1) + r2(G1) = 0 and Tr(C)2 = rC(G2) = r1(G2) +
r2(G2) = 2 Tr(A)2 6= 0, a contradiction.

Proposition 3.11. Let A = 〈Km, {Ax}x∈Σ,�A,α〉 and B = 〈Kn, {Bx}x∈Σ,�B,β〉
be two HWMs.

Identifying Km ⊗ Kn with Kmn via the mapping ei ⊗ ej 7→ en(i−1)+j, we
define the HWM D = 〈Km ⊗Kn, {Dx}x∈Σ,�, δ〉 by

• Dx = Ax ⊗Bx for all x ∈ Σ,

• (a1⊗b1)� (a2⊗b2) = (a1�A a2)⊗ (b1�B b2) for all a1, a2 ∈ Km and
b1,b2 ∈ Kn,

• δ = α⊗β (i.e. δ>(a⊗b) = (α>a)(β>b) for any a ∈ Km and b ∈ Km).

Let rA (resp. rB) be the series computed by A (resp. by B). Then the
HWM C computes the series rC given by rC(G) = rA(G)rB(G), for every
hypergraph G.

Proof. Let G = (V,E, `) be a hypergraph and let Γk = [k]PG for any integer
k. We will identify [m]× [n] with [mn] via the mapping (i, j) 7→ n(i− 1) + j
and by extension we identify Γmn with Γm×n = ([m] × [n])PG . For any
γ ∈ Γm×n we will denote by (γ1, γ2) the only element of Γm × Γn satisfying
γ(·) = (γ1(·), γ2(·)).

First note that for any hyperedge h ∈ E and γ ∈ Γm×n, we have

δ>
⊙

(i,j)∈γ(h)

(ei ⊗ ej) = δ>

 A⊙
i∈γ1(h)

ei

⊗
 B⊙
j∈γ2(h)

ej


=

α> A⊙
i∈γ1(h)

ei

β> B⊙
j∈γ2(h)

ej

 .
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Then, note that for any γ ∈ Γm×n, we have

Dγ =
∏
v∈V

D
`(v)
γ(v,1)···γ(v,]v) =

∏
v∈V

A
`(v)
γ1(v,1),··· ,γ1(v,]v)B

`(v)
γ2(v,1),··· ,γ2(v,]v) = Aγ1Bγ2

Finally, we have

rD(G) =
∑
γ∈Γ

Dγ

∏
h∈E

δ>
⊙

(i,j)∈γ(h)

(ei ⊗ ej)

=
∑
γ1∈Γm

∑
γ2∈Γn

Aγ1Bγ2

∏
h∈E

α> A⊙
i∈γ1(h)

ei

β> B⊙
j∈γ2(h)

ej


= rA(G)rB(G).

Interestingly, the set of HWM-recognizable series is not closed under
scalar multiplication in general. To see this, consider the HWM-recognizable
series on circular strings on the alphabet Σ = {a(·, ·)} defined by r(an) = κn

for some κ ∈ R \ {0, 1}. Then, for any real number α 6∈ N the series
r′ : an 7→ αr(an) is not HWM-recognizable. Indeed, this would imply that
there exists some matrix M such that Tr(Mn) = ακn for all n, but it follows
from the following lemma that if Tr((M

κ
)n) = α for all n, then α ∈ N.

Lemma 3.12. Let M ∈ Rn×n. If there exists an integer k such that Tr(Mk) =
· · · = Tr(Mk+n), then ∀m ∈ N,Tr(Mm) = Tr(M) ∈ N.

Proof. Let λ1, . . . , λp ∈ C be the distinct non zero eigenvalues of M, with
multiplicities n1, . . . , np respectively. If p = 0, the spectrum of M is reduced
to 0 and ∀m ∈ N,Tr(Mm) = Tr(M) = 0.

Suppose that p > 0. Let N ∈ Rp×p be the square matrix defined by
N[i, j] = λi−1

j . The matrix N is full rank and its determinant is equal

to
∏

i<j(λj − λi). For any k ∈ N, let uk = (λk1n1, . . . , λ
k
pnp)

>. We have

Nuk = (Tr(Mk), . . . ,Tr(M)k+p−1). Now, suppose that there exists an integer
k such that Tr(Mk) = · · · = Tr(M)k+p = α. Then, Nuk = Nuk+1 and since
N is invertible, uk = uk+1. Hence, λ1 = · · · = λp = 1 and p = 1. Therefore,
∀m ∈ N,Tr(Mm) = Tr(M) = n1.
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Figure 6: A rooted circular string.

Nonetheless, there are several families of hypergraphs on which HWMs
are closed under scalar multiplication. An example of such a family is the
family of rooted hypergraphs (hypergraphs on a ranked alphabet (Σ∪ {λ}, ])
where the special root symbol λ appears exactly once): scalar multiplication
by a real number γ is achieved by multiplying the tensor Tλ of the original
HWM by γ. The same idea applies to any family of hypergraphs with a fixed
number k of edges where scalar multiplication by a real number γ is achieved
by multiplying the vector α of the original HWM by γ1/k.

4. Examples

In this section, we present some examples of recognizable hypergraph
series in order to give some insight on the expressiveness of HWMs and on
how their computation relates to the usual notion of recognizable series on
strings and trees.

4.1. Rooted Circular Strings

Instead of the construction described in Example 3, we can map each
string w on a finite alphabet Σ to a rooted circular string. Let w = w1 · · ·wn ∈
Σ∗, we will consider the circular string Gw on the ranked alphabet (Σ′ =
Σ ∪ {λ}, ]) where λ is a new symbol, ]x = 2 for any x ∈ Σ ∪ {λ}. Gw has
vertices V = {0, · · · , n}, labels `(0) = λ and `(i) = wi for i ∈ [n], and edges
{(n, 2), (0, 1)} and {(i, 2), (i+ 1, 1)} for i ∈ {0, · · · , n− 1} (see Figure 6).

Let r = 〈Kd, ι, {Mσ}σ∈Σ, τ 〉 be a rational series on Σ∗. We define the
HWM A = 〈Kd, {Ax}x∈Σ′ ,�id ,1〉 where Aσ = Mσ for all σ ∈ Σ and Aλ =
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Figure 7: A minimal weighted automaton with 9 states computing a series that can be
computed by a 3-dimensional HWM on rooted circular strings.

τι>. It is easy to check that rA(Gw) = r(w) for every word w ∈ Σ∗. Indeed,
it follows from the fact that the trace operator is invariant under cyclic
permutations that r(w) = ι>Mwτ = Tr(ι>Mwτ ) = Tr(AλMw) = rA(Gw).

Now consider m rational string series r1, . . . , rm whose linear represen-
tations 〈Kd, ιi, {Mσ}σ∈Σ, τ i〉 for i ∈ [m] share the same transition matri-
ces and let r = r1 + · · · + rm. It can easily be checked that r(w) =
Tr(AλMw), where Aλ =

∑m
i=1 τ iι

>
i . Hence, the d-dimensional HWM A =

〈Kd, {Ax}x∈Σ′ ,�id ,1〉, where Aσ = Mσ for all σ ∈ Σ, is such that rA(Gw) =
r(w) for all w ∈ Σ∗.

It can easily be shown, by decomposing Aλ as a sum of at most d rank-
one matrices, that the rank of r is at most d2 (while A is d-dimensional).
The following proposition shows that this upper bound can be achieved (see
also Figure 7).

Proposition 4.1. There exists a recognizable string series of rank d2 that
can be computed by a d-dimensional HWM on rooted circular strings.

Proof. Let (Ei,j)1≤i,j≤n be the canonical basis of Rd×d (i.e. Ei,j = eie
>
j ). Let

Σ = {a, b} and let Ma,Mb ∈ Rd×d be defined by

Ma = E1,1 and Mb = E2,1 + E3,2 + · · ·+ E1,d

where Ei,j ∈ Rd×d satisfies Ei,j[k, l] = δikδjl for every 1 ≤ i, j, k, l ≤ d.
For any i ∈ [d], let ri be the recognizable series with linear representation
〈Rd, ei, {Ma,Mb}, ei〉 and let r = r1 + · · ·+ rd. We have r(w) = Tr(Mw) for
any w ∈ Σ∗, hence r can be computed by a d-dimensional HWM on rooted
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circular strings (with Aλ = I). Moreover, the rank of the string series r is d2.
Indeed, it can be shown that the R-algebra spanned by Ma and Mb is equal
to Rd×d. Let w1, . . . , wd2 ∈ Σ∗ be such that the matrices Mw1 , . . . ,Mwd2

are linearly independent and let H ∈ Rd2×d2 be the so-called Hankel matrix
defined by H[i, j] = Tr(Mwiwj). The rank of H is d2 since

∀j ∈ [d2],
d2∑
i=1

αi Tr(Mwiwj) = 0⇔ ∀k, l ∈ [d],
d2∑
i=1

αi Tr(MwiEk,l) = 0

⇔ ∀k, l ∈ [d],
d2∑
i=1

αiMwi [l, k] = 0⇔
d2∑
i=1

αiMwi = 0

⇔ α1 = · · · = αd2 = 0

where we used the fact that both (Ek,l)k,l and (Mwj)j are basis of Rd×d for
the first equivalence. From a fundamental theorem on recognizable string
series, the rank of H is a lower bound of the rank of r, which entails the
result.

4.2. Crosswords on Pictures

In this section, we show that if r1 and r2 are two recognizable series on
Σ∗, the series on 2D-words computing the product of the values of r1 applied
to each row and r2 applied to each column is HWM-recognizable.

Instead of the construction presented in Section 3.3, we associate here a
picture in Σ++ to a graph where the borders are left with free ports. Formally,
let (Σ, ]) be the ranked alphabet where all symbols in Σ have arity 4. The
graph Gw = (V,E, `) associated to a 2D-word w ∈ ΣM×N is the graph with
vertices V = [M ]× [N ], `(m,n) = wmn, and edges E = EH ∪ EV , where the
ports are labeled by W,E,N, S, in this order, and where

EH =
⋃

m∈[M ],n∈[N−1]

{
{(m,n)E, (m,n+ 1)W}

} ⋃
m∈[M ]

{
{(m, 1)W}, {(m,N)E}

}
and

EV =
⋃

n∈[N ],m∈[M−1]

{
{(m,n)S, (m+ 1, n)N}

} ⋃
n∈[N ]

{
{(1, n)N}, {(M,n)S}

}
.

An example of such a graph is shown in Figure 8. Now, let #1 be a new
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Figure 8: Graph associated to the 2D-word aca
dbb .

arity function, such that all symbols of Σ have arity 2. The graph Gw can be
decomposed in two graphs over (Σ,#1): GH

w = (V,EH , `) where the ports are
labeled W,E in this order and GV

w = (V,EV , `) where the ports are labeled
N,S in this order.

Proposition 4.2. Given A = 〈Kd1 , {Aσ}σ∈Σ,�1,β1〉 and B = 〈Kd2 , {Bσ}σ∈Σ,�2,β2〉,
two HWMs over (Σ,#1), there exists a HWM C = 〈Kd1+d2 , {Cσ}σ∈Σ,�,β〉
over (Σ, ]) such that

rC(Gw) = rA(GH
w )× rB(GV

w)

for any (M,N)-crossword w.

Proof. Let (e1, . . . , ed1 , f1, . . . , fd2) be the canonical basis of Kd1+d2 . The
HWM C is defined by

• Cσ = Aσ⊗Bσ =
(∑

i1,...,i]σ∈[d1] Ai1,...,i]σei1 ⊗ . . . ei]σ
)
⊗
(∑

i1,...,i]σ∈[d2] Bi1,...,i]σfi1 ⊗ . . . fi]σ
)

for any σ ∈ Σ

• ei � ej = ei �1 ej, fi � fj = fi �2 fj, and ei � fj = fj � ei = 0 for any
indices i, j

• β =

(
β1

β2

)
.

By definition, we have

rC(Gw) =
∑
γ∈Γ

Cγ
∏
h∈E

β>
⊙
i∈γ(h)

gi
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where gi = ei if i ∈ [d1] and fi otherwise. Let ΓH = [d1]
P
GHw and ΓV = [d2]

P
GVw .

It is easy to check that any γ ∈ Γ for which Cγ 6= 0 can be associated with
a tuple (γH , γV ) ∈ ΓH × ΓV satisfying Cγ = AγHBγV , we have

rC(Gw) =
∑

γH∈ΓH

∑
γV ∈ΓV

AγHBγV

∏
h∈EH

β>1

(
�1

i∈γH(h)
ei

)
×
∏
h∈EV

β>2

(
�2

i∈γV (h)
fi

)
= rA(GH

w )× rB(GV
w).

Given a (M,N)-crossword w, we denote by wm: the m-th row of w and
by w:n its n-th column.

Corollary 4.3. Let A = 〈Rd1 , {Aσ}σ∈Σ,α0,α∞〉 and B = 〈Rd2 , {Bσ}σ∈Σ,β0,β∞〉
be two rational string series on Σ∗.

There exists a HWM C = 〈Cd1+d2 , {Cσ}σ∈Σ,�,γ〉 such that

rC(Gw) =
∏

m∈[M ]

rA(wm:)
∏
n∈[N ]

rB(w:n)

for any (M,N)-crossword w.

Proof. The result directly follows from Proposition 3.6 and Proposition 4.2
and from remarking that the HWMMH (resp. MV ) that computes rA (resp.
rB) satisfies MH(GH

w ) =
∏

m∈[M ] rA(wm:) (resp. MV (GV
w) =

∏
n∈[N ] rB(w:n))

since the graph GH
w (resp. GV

w) has M (resp. N) connected components.

5. Recognizability of Finite Support Series

In this section, we show that finite support series (or polynomials : series
for which the set of hypergraphs with non-zero value is finite) are not recog-
nizable in general, but we exhibit a wide class of families of hypergraphs for
which they are. In this section, we only consider HWM defined over families
of connected graphs.

First, we show on a simple example why polynomials are not recognizable
for all families of hypergraphs. Consider the family of circular strings over
a one letter alphabet Σ = {a} introduced in Definition 2.3 and Remark 1.
The series r, defined by r(Ga) = 1 and r(Gak) = 0 for all integer k > 1 is
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not recognizable. Indeed, r would be such that r(Gak) = Tr(Mk
a) = 0 for all

k ≥ 2, but it then follows from Lemma 3.12 that r(Ga) = Tr(Ma) = 0.
This example illustrates the fact that the computation of a HWM on a

hypergraph G is done independently on each hyperedge of G. This implies
that if two hypergraphs are not distinguishable by just looking at the ports
involved in their hyperedges, the computations of a HWM on these two hy-
pergraphs are strongly dependent. This is clear if we consider a hypergraph
G′ made of two copies of a hypergraph G (i.e. G′ has two connected compo-
nents G1 and G2, which are both isomorphic to G): we have r(G′) = r(G)2

for any HWM r (see Remark 3).

5.1. Hypergraphs Coverings

In this section, we formally introduces the notion of covering of a hy-
pergraph G (which generalizes the notion of graph covering (or lift) to our
definition of hypergraphs [43, 1]) and show how this relation between hyper-
graphs relates to the question of the recognizability of polynomials.

Intuitively, a covering of a hypergraph Ĝ is a hypergraph G built on the
same alphabet which is made of copies of Ĝ (see Figure 9). More precisely,

Definition 5.1. Let Ĝ = (V̂ , Ê, ̂̀) be a hypergraph over a ranked alphabet
(Σ, ]). A hypergraph G = (V,E, `) on the same alphabet (Σ, ]) is a covering

of Ĝ if and only if there exists a mapping f : V → V̂ such that

(i) `(v) = ̂̀(f(v)) for any v ∈ V

(ii) the mapping g : PG → PĜ defined by g(v, i) = (f(v), i) is such that for

all h ∈ E: g(h) ∈ Ê and the restriction g|h of g to h is bijective.

We call such a mapping f a covering map from G to Ĝ.

The following proposition shows that for a connected hypergraph, this
formal definition of covering is equivalent to the intuition of a hypergraph
made of copies of the original one.

Let G = (V,E, `) be a covering of a connected hypergraph Ĝ = (V̂ , Ê, ̂̀),
let ∼f,V be the equivalence relation defined on V by v ∼f,V v′ iff f(v) =
f(v′), and let ∼f,E be the equivalence relation defined on E by h ∼f,E h′

iff g(h) = g(h′) where f and g are the mappings defined above. Clearly,
v ∼f,V v′ entails that `(v) = `(v′) and it can easily be shown that h ∼f,E h′
iff ∃v(i) ∈ h, v′(i) ∈ h′ such that v ∼f,V v′. We can thus define the quotient
hypergraph G = (V/ ∼f,V , E/ ∼f,E, `).
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Figure 9: A covering made of three copies of the hypergraph from Example 2

Proposition 5.2. If G = (V,E, `) is a covering of a connected hypergraph

Ĝ = (V̂ , Ê, ̂̀), then G = (V/ ∼f,V , E/ ∼f,E, `) is isomorphic to Ĝ and

moreover, there exists a constant k such that |f−1({v̂})| = k for any v̂ ∈ V̂ .

Proof. We will prove the last part of the proposition, which entails the surjec-
tivity of f . This will be enough since if f is surjective, then G is isomorphic
to Ĝ.

Let m be the maximal cardinality of the sets f−1({v̂}) and suppose that

they have different cardinalities. Let V1 = {v̂ ∈ V̂ : Card(f−1({v̂})) = m}
and V2 = V̂ \ V1. Since Ĝ is connected, there exists a hyperedge ĥ and

v̂
(i)
1 , v̂

(j)
2 ∈ ĥ such that v̂1 ∈ V1 and v̂2 ∈ V2. Let f−1({v̂1}) = {v1, . . . , vm} and

let h1, . . . , hm ∈ E be the hyperedges containing v
(i)
1 , . . . , v

(i)
m , respectively.

Since each g|hi is injective and since the vertices v1, . . . , vm are distinct, the

hyperedges h1, . . . , hm are also distinct and therefore disjoint. Let w
(j)
1 =

g−1
|h1(v̂

(j)
2 ), . . . , w

(j)
m = g−1

|hm(v̂
(j)
2 ). These ports are distinct and therefore, the

vertices w1, . . . , wm are also distinct. Since, f(w1) = · · · = f(wm) = v̂2, we
obtain a contradiction.
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5.2. Finite Support Series and Coverings

In the following theorem, we show that we can construct a HWM which
assigns a nonzero value to a specific hypergraph over some ranked alphabet
and all of its coverings, and zero to any other hypergraph on the same al-
phabet. This result leads to a sufficient condition on families of hypergraphs
for the recognizability of finite support series.

Theorem 5.3. Given a connected hypergraph Ĝ = (V̂ , Ê, ̂̀) over (Σ, ]),
there exists a recognizable series rĜ such that for all connected hypergraphs

G, rĜ(G) 6= 0 if and only if G is a covering of Ĝ.

Proof. Let PĜ be the set of ports of Ĝ. For any symbol x ∈ Σ, we denote by

V̂ (x) the set of vertices in V̂ labelled by x.
Let S = 2PĜ be the set of subsets of PĜ and let d = |S|. Instead of

indexing the canonical basis of Kd with integers in [d], we will index it with
elements of S. For example, for each port (v̂, i) ∈ PĜ, the singleton {(v̂, i)} is
in S, thus e{(v̂,i)} is a basis vector (which we will note e(v̂,i) for convenience).

Define the HWM M = 〈Kd, {Tx}x∈Σ,�,α〉 by

Tx =

{
e∅
⊗]x if V̂ (x) = ∅∑
v̂∈V̂ (x) e(v̂,1) ⊗ · · · ⊗ e(v̂,]v̂) otherwise

eS � eT =

{
eS∪T if S 6= ∅, T 6= ∅ and S ∩ T = ∅
e∅ otherwise

αS =

{
1 if S ∈ Ê (note that ∅ 6∈ Ê)

0 otherwise

for any x ∈ Σ and S, T ∈ S. Let r be the series computed by M , we claim
that r satisfies the property of the theorem.

For any hypergraph G = (V,E, `) with V = {v1, · · · , vN}, we have

r(G) =
∑
γ∈Γ

Tγ

∏
h∈E

α>
⊙
S∈γ(h)

eS (2)

where Γ = SPG and Tγ =
∏N

i=1 T
vi
γ(vi,1),··· ,γ(vi,]vi)

.
Let γ ∈ Γ. It follows from the definition of the tensors Tx that Tγ is

different from 0 if and only if for all v ∈ V , there exists v̂ ∈ V̂ (`(v)) such
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that γ(v, i) = (v̂, i) for all i ∈ []v]. We can thus rewrite Eq. (2) as

r(G) =
∑

v̂1∈V̂ (`(v1))

· · ·
∑

v̂N∈V̂ (`(vN ))

N∏
i=1

Tvi
(v̂i,1),··· ,(v̂i,]v̂i)

∏
h∈E

α>
⊙

(vj ,ij)∈h

e(v̂j ,ij).

Furthermore, since all the summands in this expression are non-negative,
it follows that r(G) 6= 0 if and only if there exist N vertices v̂i ∈ V̂ (`(vi))
for i ∈ [N ] such that (i) α>

⊙
(vj ,ij)∈h e(v̂j ,ij) 6= 0 for all h ∈ E. We claim

that (i) is true if and only if G is a covering of Ĝ. Indeed, suppose that

(i) holds and let f : V → V̂ and g : PG → PĜ be the mappings defined
by f(vi) = v̂i and g(vi, j) = (v̂i, j) for all i ∈ [N ]. One can check that f

is a covering map from G to Ĝ: it follows from the definitions of α and
� that (i) is true if and only if g(h) ∈ Ê for all h ∈ E, and there are no
distinct (vj, ij), (vk, ik) in a hyperedge h ∈ E such that (v̂j, ij) = (v̂k, ik),
i.e. the restriction g|h is injective for any h ∈ E. Conversely, suppose that

G is a covering of Ĝ, let f : V → V̂ be a covering map from G to Ĝ and
let g : PG → PĜ be the induced mapping defined by g(vi, j) = (f(vi), j) for
all i ∈ [N ], j ∈ []vi]. Let h = {p1, · · · , pk} ∈ E be any hyperedge of G (h
connects the ports p1, · · · , pk ∈ PG of G). Since the restriction g|h is bijective
we have

⊙
j∈[k] eg(pj) = e{g(p1),··· ,g(pk)} = eg(h) by definition of �, and since

g(h) ∈ Ê we have that α>
⊙

(vj ,ij)∈h e(v̂j ,ij) 6= 0 by definition of α.

We call a family H of hypergraphs covering-free if for any G ∈ H there
are no (non-trivial) covering of G in H. For example, the family of rooted
hypergraphs is covering-free but the family of circular strings is not: the
circular string abab is a covering of ab.

Corollary 5.4. For any covering-free family of connected hypergraphs H,
finite support series on H are recognizable.

Proof. Let rĜ be the series from the previous proof and let z = rĜ(Ĝ). For

any scalar y, if we change the definition of α to α(eS) = (y/z)1/|Ê| if S ∈ Ê
and 0 otherwise, we have rĜ(Ĝ) = y. The corollary then directly follows
from the previous theorem and Proposition 3.10.

Remark 6. The existence of a recognizable string series invariant under
cyclic shifts (i.e. r(w1 · · ·wn) = r(wnw1 · · ·wn−1)) does not imply that there
exists a HWM on circular string computing the same series. Indeed, the
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Figure 10: Each graph Gi is constructed by copying the initial graph (G = G1) i times,
splitting the edge between the two vertices labeled by a in each copy, and reconnecting
the free ports to obtain a circular chain of copies of G.

string series r(an) = 1 if n = 1 and 0 otherwise is recognizable and invariant
under cyclic shifts, but it follows from Lemma 3.12 that this series on circular
strings cannot be computed by a HWM.

Remark 7. At the beginning of this section, we used a simple example on
circular strings to show that finite support series are not recognizable in
general. We now show how this simple example can be generalized to more
complex families of hypergraphs. More precisely, we show that for any graph
G containing a cycle and any recognizable series r such that r(G) 6= 0 there
exists a connected hypergraph G′ which is a non-trivial covering of G such
that r(G′) 6= 0.

Let r be a graph series computed by a HWM. Recall that the value
computed by r on a graph G is the product of the values computed by r
on the connected components of G (cf. Remark 3). Hence, if r(G) 6= 0 for
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some graph G there exists a nontrivial covering G′ of G such that r(G′) 6= 0
(consider the graph made of two copies of G). Moreover, if G contains a
cycle, one can build a connected covering G′ of G such that r(G′) 6= 0. The
construction consists in connecting copies of G by breaking the same edge
in each copy of G and regrouping the freed ports into edges connecting the
different copies (e.g. take two copies of the circular string a, split the edge
in both copies, and reconnect the ports to obtain the circular string aa).
Since G contains a cycle this can be done in such a way that G′ is connected
(choose the edge to split in a cycle). If we denote by Gi the graph obtained
by this process from i copies of the initial graph (see Figure 10), one can
show that there exists a matrix M such that r(Gi) = Tr(Mi). The trace
argument from Lemma 3.12 can then be used to show the result.

6. Learning HWMs: a Case Study on Circular Strings

In future works, we plan to study the problem of learning recognizable
series on graphs and hypergraphs. In this section, we will tackle the problem
of learning HWMs defined over the family of circular strings on a finite al-
phabet Σ. Circular strings are of particular interest for the study of HWMs
because they can be seen as the simplest family of graphs with cycles that
is not covering-free. Recall that a HWM M = 〈Rd, {Mσ}σ∈Σ〉 defined on
circular strings computes the function

rM : w 7→ Tr(Mw)

for all w ∈ Σ∗ where Mw = Mσ1Mσ2 · · ·Mσk for any word w = σ1 · · ·σk ∈ Σ∗.
We consider the learning paradigm of identification in the limit [27]. Let

F be a class of functions from Σ∗ to R and let f ∈ F be the function to be
learned. In this paradigm, at each time step t:

1. the learner is given a tuple (xt, f(xt)) ∈ Σ∗×R coming from a stream of
input-output examples (x1, f(x1)), (x2, f(x2)), . . . such that any string
x ∈ Σ∗ occurs at least once in the stream, and

2. the learner makes an hypothesis (or guess) ht ∈ F .

A class of functions F is said to be identifiable in the limit if there exists an
algorithm that identifies any function f in F after examining a finite number
of input-output examples, i.e. after some finite time, the hypothesis are all
the same and equal to f . It is well known that the class of rational valued
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recognizable functions on strings (i.e. functions that can be computed by
a WA) is identifiable in the limit5 [7]. We will show in this section that
the problem of learning HWMs on circular strings can be reduced (to some
extent) to the problem of learning recognizable functions on strings. We will
then be able to use learnability results on WAs for HWMs on circular strings.
We start by investigating the relationship between HWMs on circular strings
and classical weighted automata.

Equivalence between HWMs on Circular Strings and Weighted Automata.
The following proposition shows that a series r computed by a HWM on
circular strings can be computed by a string weighted automaton with a
quadratic number of states.

Proposition 6.1. Let vec be the vectorization operator that maps any matrix
to the concatenation of its columns, i.e. vec(A) = (a>1 , · · · , a>n )> ∈ Rmn for
any matrix A ∈ Rm×n with columns a1, · · · , an.

For any HWM M = 〈Rd, {Mσ}σ∈Σ〉 on circular strings on Σ, the recog-
nizable string series

A = 〈Rd2 , {Aσ = Id ⊗Mσ}σ∈Σ, ι = vec(Id), τ = vec(Id)〉 (3)

satisfies rM(w) = rA(w) for all w ∈ Σ∗.

Proof. For any w = w1 · · ·wn ∈ Σ∗ we have rM(w) = Tr(Mw) =
∑

i∈[d] M
w
ii =∑

i∈[d] e
>
i Mwei where ei is the i-th vector of the canonical basis of Rd. Since

ι = τ = (e>1 , · · · , e>d )> and Aσ = I⊗Mσ is the block-diagonal matrix with

5In [7], the authors show that the class of recognizable functions is learnable in
Angluin’s exact learning model [2] which implies that this class is identifiable in the
limit. Indeed, their algorithm will correctly identify a recognizable function f from
a finite number of membership queries (x1, f(x1)), ..., (xn, f(xn)) and counter-examples
(z1, f(z1)), ..., (zm, f(zm)) issued after equivalence queries. Since there exists a time T
where these input-output examples will all have been presented to the learner, the WA
returned by their algorithm will compute f and the hypothesis will remain unchanged
after time T .
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Mσ repeated d times on the diagonal, we have

rA(w) = ι>Awτ =
(
e>1 e>2 · · · e>d

)


Mw 0 · · · 0
0 Mw · · · 0
...

...
. . .

...
0 0 · · · Mw




e1

e2
...

ed


=
∑
i∈[d]

e>i Mwei = rM(Gw).

It follows from the previous proposition that the computation of a d-
dimensional HWM is equivalent to the sum of d string weighted automata
(WA) with d states. Similarly to the rooted circular string case, the d WAs
are identical except for their initial and final weights: each one has a unique
initial and final state with weight one. Thus, the value of a string is the sum
of the weights of all its paths in the WA starting and ending in the same
state. It is the internal dynamic of this WA (and not its initial and final
weights) that is relevant to the computation of the HWM on circular strings.

Going back to the learning problem, any HWM-recognizable function on
circular strings can be computed by a WA and WAs are identifiable in the
limit. Thus, for any HWM M on circular strings, there exists an algorithm
that will return a WA Â computing rM after examining a finite number of
input-output examples {(wi, rM(wi))}Ni=1. However, this learning result is
improper in the sense that the algorithm returns a WA computing rM rather
than a HWM. It remains to show that we can construct a HWM B computing
the same function as Â and M ; loosely speaking we need a constructive proof
for the converse of Proposition 6.1. The remainder of this section will mainly
be concerned with this problem which we formalize below.

Problem 6.2. Given a minimal weighted automaton Â = 〈Rn, {Âσ}σ∈Σ, ι̂, τ̂ 〉
computing a series r on Σ∗ that is recognizable by a HWM M = 〈Rd, {Mσ}σ∈Σ〉
on circular strings, can we construct a d-dimensional HWM B = 〈Rd, {Bσ}σ∈Σ〉
such that rB(w) = rÂ(w) for all w ∈ Σ∗?

Before diving into the analysis of this problem we want to stress that,
from a practical point of view, one could be satisfied with simply learn-
ing a HWM-recognizable function using learning algorithms for weighted
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automata. However, we will see that the analysis of Problem 6.2 reveals fun-
damental algebraic properties of HWMs that are particularly relevant to the
present study. Moreover, this analysis will certainly prove useful for deriv-
ing learning algorithms for HWMs over richer families of hypergraphs than
circular strings.

HWMs on circular strings and finite-dimensional algebras. We will show
that Problem 6.2 can be solved when the algebra generated by the matrices
{Mσ}σ∈Σ is simple. We conjecture that it can be solved in the general case
but this is left for future work. Let us first recall some classical definitions
from finite dimensional algebra (see e.g. [33]).

Let M be the algebra generated by the matrices {Mσ}σ∈Σ ⊆ Rd×d, that
is the set of all (finite) linear combinations of matrices in {Mw | w ∈ Σ∗}.
The algebra M is said to be simple if it contains no two-sided ideals other
than 0 and M itself. Similarly, a module M over M is said to be simple if
M 6= 0 and if it does not contain any submodule other than 0 and M itself.
A module M is semi-simple if M is the direct sum of a family of simple
submodules. Similarly,M is semi-simple if it can be written as a direct sum
of simple algebras, i.e.

M =M1 ⊕ · · · ⊕Mk

where each Mi is a simple sub-algebra of M. The M-module Rd can then
be decomposed as Rd = E1 ⊕ · · · ⊕ Ek where each Ei =MiRd.

For example, the algebra M generated by the matrix M =

(
1 1
0 1

)
is

not semi-simple. Indeed, M2 −M =

(
0 1
0 0

)
generates a proper ideal of

M (thus M is not simple) and it can easily be shown that it is the only
proper ideal of M (hence M is not semi-simple). However, it is easy to
check that the one-letter HWM on circular strings generated by M can also

be generated by the matrix

(
1 0
0 1

)
and that the algebra generated by

this matrix is semi-simple (this algebra is actually simple). We show in the
following proposition that every HWM on circular strings can be generated
by a semi-simple algebra of matrices.

Proposition 6.3. Any recognizable series r on circular strings over an al-
phabet Σ can be computed by a HWM N = 〈Rd, {Nσ}σ∈Σ〉 for which the
algebra N generated by the matrices {Nσ}σ∈Σ is semi-simple.
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Proof. Let M = 〈Rd, {Mσ}σ∈Σ〉 be a HWM computing r and let M be the
algebra generated by {Mσ}σ∈Σ. An element M ∈ M is strongly nilpotent if
MX is nilpotent for any X ∈ M (i.e. there exists an integer k such that
(MX)k = 0). The proof relies on the following classical results on finite
dimensional algebras:

1. the set of all strongly nilpotent elements of M is a two-sided ideal of
M [21, Corollary 3.1.10], it is equal to the radical of M which we will
denote by rad(M);

2. M is in the radical ofM if and only if Tr(MX) = 0 for all X inM [18,
§65];

3. the quotient algebra M/rad(M) is semi-simple [21, Theorem 3.1.6];

4. there exists a subalgebra N of M that is isomorphic to M/rad(M)
and such that M = N ⊕ rad(M) (direct sum of vector spaces) [21,
Theorem 6.2.1]; furthermore, the corresponding projection p :M→N
is an homomorphism.

The last result is known as the Wedderburn-Malcev Theorem; this theorem
only holds whenM/rad(M) is separable, which is always the case when the
supporting field of the algebra M is of characteristic 0.

We can now prove the proposition. For each σ ∈ Σ, let Mσ = Nσ + N̄σ

be the decomposition of Mσ according to the direct sum in (4.), that is
Nσ = p(Mσ) belongs to N and N̄σ belongs to the radical. It then follows
from (3.) and (4.) that the algebra N ′ generated by {Nσ}σ∈Σ is semi-simple.
Indeed, since p is an homomorphism, the projections of a set of generator
for M is a set of generator for N , thus N ′ = N which is semi-simple.
Furthermore, using (2.) one can easily show that Tr(Mw) = Tr(Nw) for
all w ∈ Σ∗, hence the HWM N = 〈Rd, {Nσ}σ∈Σ〉 satisfies the claim of the
proposition.

We can thus assume without loss of generality that the algebraM is semi-
simple. We conjecture that Problem 6.2 can be solved if the algebra M is
semi-simple and we show it here under the following additional assumption:

Assumption 6.4. The algebra M generated by the matrices {Mσ}σ∈Σ in
Problem 6.2 is simple.

Observe that the full matrix algebra Rd×d is simple, thus a sufficient
condition for Assumption 6.4 to hold is that the matrices {Mσ}σ∈Σ generate
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the full matrix algebra6. One can show that this is a generic property of
HWMs over circular strings on an alphabet of size at least 2: if the parameters
{Mσ}σ∈Σ of a HWM are drawn at random from a continuous distribution
over Rd×d, then the matrices {Mσ}σ∈Σ generate the full matrix algebra with
probability one [42, Proposition 11].

Decomposition of simple algebras. We will now show how Problem 6.2 can
be reduced to decomposing a simple algebra into irreducible components. A
matrix algebra T ⊆ Rd×d is irreducible if no T -invariant subspace other than
Rd and {0} exists, where a T -invariant subspace is a subspace W ⊆ Rd such
that TW ⊆ W . Consider for example the algebra Mred = {Ik ⊗M : M ∈
Rd̄×d̄} ⊆ Rd̄k×d̄k where Ik is the k×k identity matrix. It is easy to check that
Mred is simple but it is not irreducible: for example Rd̄ ⊕ {0} ⊕ · · · ⊕ {0} ⊆
Rkd̄ is a proper Mred -invariant subspace. It follows from the Wedderburn
classification theorem that any simple algebra is isomorphic to a full matrix
algebra (which is irreducible) [21, Corollary 2.4.6]; this implies that for any
simple matrix algebra A ⊆ Rd×d there exists an invertible matrix S such that

for all A ∈ A, there exists Ā ∈ Rd̄×d̄ : S−1AS = Ik ⊗ Ā

where d = kd̄, furthermore the algebra composed of the matrices Ā is the
full matrix algebra Rd̄×d̄.

Going back to Problem 6.2 under Assumption 6.4, since the algebra M
generated by the matrices {Mσ}σ∈Σ is simple it follows from the previous dis-
cussion that there exists a set of matrices {Nσ}σ∈Σ ⊆ Rd̄×d̄ and an invertible
matrix S ∈ Rd×d such that

S−1MσS = Ik ⊗Nσ (4)

where d = kd̄ and the algebra generated by {Nσ}σ∈Σ is irreducible. This
observation allows us to exhibit a simple minimal weighted automaton com-
puting the function rM .

Proposition 6.5. Using the definition of the matrices {Nσ}σ∈Σ in Eq. (4),
the weighted automaton

A = 〈Rd̄2 , {Aσ = Id̄ ⊗Nσ}σ∈Σ, ι = k vec(Id̄), τ = vec(Id̄)〉

6However this condition is not necessary: consider the case of a simple algebra that is
not irreducible (such as the algebra Mred below).

39



is a minimal weighted automaton computing the same function (on circular
strings) as the HWM M = 〈Rd, {Mσ}σ∈Σ〉 from Problem 6.2.

Proof. Since every matrix Mσ is similar to Ik ⊗Nσ it is easy to check that
rM(w) = kTr(Nw) for all words w ∈ Σ∗. Using the same argument as the
one used in the proof of Proposition 6.1, it follows that the WA A computes
the function rM . It remains to show that A is minimal. Indeed, it is easy to
check that for all words w,

β(w) := Awτ = (Id̄ ⊗Nw) vec(Id̄) = vec(Nw)

and from a classical result from weighted automata theory the number of
states of any minimal WA computing rA is equal to the dimension of the
linear space spanned by the vectors {β(w)}w∈Σ∗ . Since the algebra N is
irreducible the dimension of the space spanned by the matrices {Nw}w∈Σ∗ is
d̄2 which entails the result.

It follows from the previous proposition that the minimal WA Â from
Problem 6.1 is of dimension n = d̄2. Moreover, Â is similar to the automata
A from the previous proposition. Consequently, there exists an invertible
matrix P such that

P−1ÂσP = Aσ = Id̄ ⊗Nσ for all σ ∈ Σ. (5)

One can check that for any w ∈ Σ∗,

Tr(Âw) = Tr(Aw) = d̄Tr(Nw) =
d̄

k
rM(w).

Observe that if we know the automaton A, we can retrieve the integer k (us-
ing the relation rA(w) = kTr(Aw)) and the matrices Nσ. Moreover the
HWM B = 〈Rd, {Bσ = Ik ⊗ Nσ}σ∈Σ〉 computes the same function as M
and is a solution to Problem 6.2. Thus solving Problem 6.2 boils down to
decomposing the simple7 algebra Â generated by the matrices {Âσ}σ∈Σ into
irreducible components.

7The fact that Â is simple follows directly from the simplicity of M.
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Decomposing Â into irreducible components.. More pragmatically, we wish
to find an invertible matrix P ∈ Rd̄2×d̄2 such that each Â ∈ Â satisfies

P−1ÂP = I⊗N (6)

where I is th d̄× d̄ identity matrix and N ∈ Rd̄×d̄.
We will now show how finding the matrix P can be done by adapting the

method proposed in [37]8. We say that a matrix Â ∈ Â is generic in eigen-
value structure if the matrix N in decomposition (6) has distinct eigenvalues.

Note that such a generic matrix Â will have d̄ distinct eigenvalues each of
multiplicity d̄. Given the WA Â, it is easy to find a generic matrix in Â: first
construct a basis of the linear space spanned by {Âw}w∈Σ∗ (this can be done
in time polynomial in |Σ| and d̄) and then draw a linear combination of the
basis elements at random. This is equivalent to drawing a matrix N ∈ Rd̄×d̄

at random which will have distinct eigenvalues with probability 1.
The following proposition shows that the transformation P can be ob-

tained through local transformations within the eigenspaces corresponding
to distinct eigenvalues of a generic matrix in Â, followed by a global permu-
tation of rows and columns.

Proposition 6.6. (Adapted from [37, Proposition 3.5]) Let Â ∈ Â be generic

in eigenvalue structure and let Q be such that Q−1ÂQ = D ⊗ I where I is
the d̄ × d̄ identity matrix and D is the diagonal matrix with the distinct
eigenvalues λ1, · · · , λd̄ of Â on the diagonal.

Then, the transformation P in (6) can be chosen in the form

P = Qdiag(V1, · · · ,Vd̄)Π

where each Vi ∈ Rd̄×d̄ is invertible and Π is a permutation matrix in Rd̄2×d̄2.

Proof. Since P may be replaced by P(I⊗ S) in (6) for any invertible matrix

S ∈ Rd̄×d̄, it may be assumed that P−1ÂP = I⊗D.
Let Π be the d̄2× d̄2 permutation matrix satisfying Π(I⊗X)Π> = X⊗ I

for all X ∈ Rd̄×d̄. We have ΠP−1ÂPΠ> = D⊗ I = Q−1ÂQ. Since the λj’s
are distinct, it follows that PΠ> = Qdiag(V1, · · · ,Vd̄) for some invertible
matrices V1 · · · ,Vd̄ ∈ Rd̄×d̄ (each Vi acts as a change of basis on the i-th
eigenspace), which concludes the proof.

8In [37] the generators of the algebra Â are assumed to be symmetric matrices.
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Using the notations from the previous proposition, let Â be a generic
matrix in Â and let Q be the matrix diagonalizing Â. To solve Problem 6.2, it
remains to find the invertible matrices V1, · · · ,Vd̄. We decompose Q as Q =
(Q1, · · · ,Qd̄) where each Qi ∈ Rd̄2×d̄ (the columns of each Qi form a basis of

the i-th eigenspace). We similarly decompose Q−1 as Q−1 = (Q̃>1 , · · · , Q̃>d̄ )>

where each Q̃j ∈ Rd̄×d̄2 . The method proposed in [37, Section 4.2] to find the

matrices Vi relies on the observation that for any matrix Â′ ∈ Â we have

V−1
i Q̃iÂ

′QjVj = bi,jI (7)

for some bi,j ∈ R for all i, j ∈ [d̄]. It follows from the previous proposition
that this system of equations in Vi, bij for i, j ∈ [d̄] is solvable. Let N be

the matrix satisfying P−1ÂP = I ⊗ N and let B be the matrix satisfying
P−1Â′P = I ⊗ B. Since P may be replaced by P(I ⊗ S) in Eq. (6) for
any invertible matrix S ∈ Rd̄×d̄, we can choose (without loss of generality)

a basis for which N1,1 = λ1 is the first eigenvalue of Â and Bi,i+1 = 1 for
1 ≤ i < d̄. It can easily be checked that this choice implies V1 = I and
Vi+1 = Q̃i+1Â

′QiVi for 1 ≤ i < d̄. Hence, given a matrix Â′ ∈ Â we can
easily solve Eq. (7) for the matrices Vi. Observe that we need to be careful

with our choice of Â′: if we choose Â′ = Â it is easy to check that we would
obtain Vi = 0 for all i > 1 using the method described above. However,
if Â′ is a generic matrix drawn at random in Â, one can check that each
Q̃iÂ

′Qj is of full rank with probability one, which implies that there exists
a unique solution V1, · · · ,Vd̄ to Eq. (7) under the constraints N1,1 = λ1 and
Bi,i+1 = 1; hence the matrices V1, · · · ,Vd̄ obtained by the method described
above will be such that P = Qdiag(V1, · · · ,Vd̄)Π satisfies Eq. (6).

Learnability result. The overall procedure to solve Problem 6.2 under As-
sumption 6.4 is summarized in Algorithm 1 (whose complexity is polynomial
in the size of the alphabet Σ and the dimension n = d̄2 of the minimal WA
Â). The results presented in this section show that it is possible to elaborate
a learning scheme for HWMs defined on circular strings by using a learning
method for weighted automaton on strings: (i) learn a WA computing the
series on strings and (ii) use Algorithm 1 to recover a HWM computing the
same series on circular strings. This implies that under Assumption 6.4, the
class of (rational-valued) HWM-recognizable functions on circular strings is
identifiable in the limit. We conjecture that this result holds even when As-
sumption 6.4 is not satisfied and we plan to address this question in future
works.
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Algorithm 1 Solving Problem 6.2

Input: A minimal WA Â = 〈Rd̄2×d̄2 , {Âσ}σ∈Σ〉 computing a function that is
recognizable by a d-dimensional HWM on circular strings.

Output: A d-dimensional HWM B such that rÂ(w) = rB(w) for all w ∈ Σ∗.

1: Let Â be a generic matrix drawn at random in the algebra Â.
2: Let Q−1ÂQ = D⊗ Id̄ where D is the diagonal matrix with the distinct

eigenvalues λ1, · · · , λd̄ of Â on the diagonal and Id̄ is the d̄ × d̄ identity
matrix.

3: Decompose Q as Q = (Q1, · · · ,Qd̄) where each Qi ∈ Rd̄2×d̄, and Q−1 as

Q−1 = (Q̃>1 , · · · , Q̃>d̄ )> where each Q̃i ∈ Rd̄×d̄2 .

4: Let Â′ 6= Â be a second generic matrix drawn at random in Â.
5: Let V1 = Id̄.
6: for i = 2 to d̄ do
7: Let Vi = Q̃iÂ

′Qi−1Vi−1

8: end for
9: Let P = Qdiag(V1, · · · ,Vn)Π where Π is the d̄2×d̄2 permutation matrix

satisfying Π(Id̄ ⊗X)Π> = X⊗ Id̄ for all X ∈ Rd̄×d̄.
10: For each σ ∈ Σ let Nσ ∈ Rd̄×d̄ be the matrix satisfying

P−1ÂσP = Id̄ ⊗Nσ.

11: Let k = rÂ(σ)/Tr(Nσ) for an arbitrary σ ∈ Σ s.t. Tr(Nσ) 6= 0.
12: return the HWM B = 〈Rd, {Bσ = Ik ⊗Nσ}σ∈Σ〉 (where d = kd̄).

From a broader perspective, the analysis provided in this section reveals
a fundamental connection between functions computed by HWMs and the
theory of finite dimensional algebras. This is in contrast with the theory
of weighted automata (defined over fields) for which linear algebra tools are
overall sufficient to tackle fundamental problems such as minimization, equiv-
alence, and learning. For example, it is well known that two minimal WAs
computing the same function are related by a simple change of basis, whereas
we showed in this section that this is not the case for HWMs defined over
circular strings: the 2-dimensional HWMs defined over a one letter alpha-
bet with matrices I and I + e1e

>
2 respectively, compute the same function

over circular strings but these matrices are not similar. We showed that the
fundamental algebraic object at play in this simple example is the radical of
an algebra. It is clear that the theoretical problems that we plan to tackle
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for HWMs (e.g. minimality, learning, etc.) will necessitate the use of funda-
mental tools from algebra theory, which is both a challenging and promising
perspective.

7. Conclusion

HWMs constitute a general framework to define computation models on
families of graphs or hypergraphs and encompass rational or recognizable
series on strings and trees. Extending the notion of finite state automata
to complex structures such as graphs and hypergraphs is challenging. The
notion of HWM bypasses this difficulty by focusing on the algebraic char-
acterization of recognizable series where the finiteness is expressed by the
dimension of the underlying vector space. The generative aspect of the com-
putation is lost but the computation is still local and guided by structural
components of the input (edges or hyperedges).

HWMs satisfy various expected properties, such as closure under sum
and Hadamard product. Nevertheless, some others are not satisfied by the
most general families of graphs or hypergraphs — closure under scalar mul-
tiplication, recognizability of finite support series — and it is necessary to
restrict these families to get these properties satisfied. For example, the class
of rooted graphs satisfies all the properties while widely generalizing the class
of strings and trees.

Since a lot of data over a variety of fields naturally gives rise to a graph
structure (images, secondary structure of RNA in bioinformatics, dependency
graphs in NLP, etc.), this computational model offers a broad range of ap-
plications. It is often possible to describe graph structures by means of trees
or strings but having these complex structures directly taken into account
in the model may result in substantial gain, as it is illustrated by simple
examples on circular strings (Proposition 4.1).

The next step will be to study how learning can be achieved within this
framework, i.e. how the tensor components of a model M can be recovered

or estimated from samples of the form (G1, ̂rM(G1)), . . . , (Gn, ̂rM(Gn)). For
example, learnability in Angluin’s exact model will be investigated. Prelim-
inary results on circular strings indicate that this is a promising, while not
trivial, direction. General learning algorithms should rely on tensor decom-
position techniques, which generalize the spectral methods used for learning
rational series on strings and trees. We also plan to tackle algorithmic issues
and to study how techniques and methods developed in the field of graphical
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models, such as message passing, variational methods, etc., could be adapted
to the setting of HWMs.
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