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Learning with Structured Data
Supervised Learning:

Learn f : X → Y from a sample {(x1, y1), · · · , (xN , yN)} ⊂ X × Y.

We often assume X = Rd and Y = Rp.
How to handle input/output structured data?

I Tensor structured data: Images, videos, spatio-temporal data, ...
I Discrete structured data: strings, trees, graphs, ...

In both cases, one can leverage linear and tensor algebra to design
learning algorithms.
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Outline

1 An Introduction to Tensors and Tensor Networks

2 Adaptive Learning of Tensor Decomposition Models
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Tensors

M ∈ Rd1×d2

Mij ∈ R for i ∈ [d1], j ∈ [d2]
T ∈ Rd1×d2×d3

(T ijk) ∈ R for i ∈ [d1], j ∈ [d2], k ∈ [d3]
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Tensors and Machine Learning
(i) Data has a tensor structure: color image, video, multivariate time

series...

(ii) Tensors as parameters of a model: polynomial regression, higher-order
RNNs, weighted automata on trees and graphs...
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(iii) Tensors as tools: tensor method of moments [Anandkumar et al.,
2014], layer compression in neural networks [Novikov et al., 2015],
deep learning theoretical analysis [Cohen et al., 2015]...
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Tensors are not easy...

MOST TENSOR PROBLEMS ARE NP HARD

CHRISTOPHER J. HILLAR AND LEK-HENG LIM

Abstract. The idea that one might extend numerical linear algebra, the collection of matrix com-
putational methods that form the workhorse of scientific and engineering computing, to numeri-
cal multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears
very promising and has attracted a lot of attention recently. We examine here the computational
tractability of some core problems in numerical multilinear algebra. We show that tensor analogues
of several standard problems that are readily computable in the matrix (i.e. 2-tensor) case are NP
hard. Our list here includes: determining the feasibility of a system of bilinear equations, determin-
ing an eigenvalue, a singular value, or the spectral norm of a 3-tensor, determining a best rank-1
approximation to a 3-tensor, determining the rank of a 3-tensor over R or C. Hence making tensor
computations feasible is likely to be a challenge.

[Hillar and Lim, Most tensor problems are NP-hard, Journal of the ACM, 2013.]

... but training a neural network with 3 nodes is also NP hard [Blum and
Rivest, NIPS ’89]
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Forget rows and columns... Now we have fibers!

Matrices have rows and columns, tensors have fibers1:

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

1fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].
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Tensors: Multiplication with Matrices

AMB> ∈ Rm1×m2 T ×1 A×2 B×3 C ∈ Rm1×m2×m3

ex: If T ∈ Rd1×d2×d3 and A ∈ Rm1×d1 , B ∈ Rm2×d2 , C ∈ Rm3×d3 , then
T ×1 A×2 B×3 C ∈ Rm1×m2×m3 is defined by

(T ×1 A×2 B×3 C)i1,i2,i3 =
n1∑

k1=1

n2∑
k2=1

n3∑
k3=1

T k1k2k3Ai1k1Bi2k2Ci3k3

for all i1 ∈ [d1], i2 ∈ [m2], i3 ∈ [d3].
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Matrix product:

A Bm n p (AB)i1,i2 =
∑n

k=1 Ai1kBki2
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Tensor Networks
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v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Inner product:

u vn u>v =
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k=1 ukvk
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Inner product between tensors:

S T
d1
d2

d3

〈S, V〉 =
∑d1

i1=1
∑d2

i2=1
∑d3

i3=1 S i1i2i3T i1i2i3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Frobenius norm of a tensor:

S S
d1
d2

d3

‖S‖2
F =

∑d1
i1=1

∑d2
i2=1

∑d3
i3=1(S i1i2i3)2
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Trace of an n × n matrix:

M1 2

n

Tr(M) =
∑n

i=1 Mii
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Tensor times matrices:

TA

B

C

m1

m2

m3

n1

n2

n3
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Tensor Networks
Degree of a node ≡ order of tensor

v
d

Mm n Td1

d2
d3

v ∈ Rd M ∈ Rm×n T ∈ Rd1×d2×d3

Edge ≡ contraction

Hyperedge ≡ contraction between more than 2 indices:

u v

w

d d

d ∑n
i=1 uiviwi
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Multilinear Maps

Liner map f : Rd → Rp maps x to Wx = W×2 x for some
W ∈ Rp×d :

x 7−→ x Wd
d

p

Multilinear map g : Rd1 × Rd2 → Rp maps (u, v) to W ×2 u×3 v for
some W ∈ Rp×d1×d2 :

u v 7−→ W

u

v

d1

d2

d1 d2
p
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Tensor Decomposition Techniques

Tensors can get huge quickly:
I 3rd order tensor of shape d × d × d : d3 parameters
I 4th order tensor of shape d × d × d × d : d4 parameters
I 10th order tensor of shape d × d × · · · × d : d10 parameters
I ...
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Tensor Decomposition Techniques

Simple idea: decompose a tensor into product of small factors.

Similar to matrix factorization:
I If M ∈ Rm×n and M = AB with A ∈ Rm×r and B ∈ Rr×n

⇒ r(m + n) parameters instead of mn...
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Tensor Decomposition Techniques
Tucker decomposition [Tucker, 1966]:

⇒ R1R2R3 + d1R1 + d2R2 + d2R2 parameters instead of d1d2d3.
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Tensor Decomposition Techniques
Tucker decomposition [Tucker, 1966]:

Td1

d2
d3 = GU1

U2

U3

d1

d2

d3

R1

R2

R3

⇒ R1R2R3 + d1R1 + d2R2 + d2R2 parameters instead of d1d2d3.
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Tensor Decomposition Techniques

CP decomposition [Hitchcock, 1927]2:

A B

C

R R

R

d1 d2

d3

X =d1 d2

d3

⇒ R(d1 + d2 + d3) parameters instead of d1d2d3.

2fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].
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Tensor Decomposition Techniques
Tensor Train decomposition [Oseledets, 2011]:

G1 G2 G3 G4T
d1 d2 d3 d4

=
d1 d2 d3 d4

R1 R2 R3

⇒ d1R1 + R1d2R2 + R2d2R3 + R3d4 parameters instead of d1d2d3d4.
If the ranks are all the same (R1 = R2 = · · · = R), can represent a
vector of size 2n with O

(
nR2) parameters!

We can also efficiently perform operations on TT tensors:
I Inner product, sum, component-wise product, ... all in time linear in n

for vectors of size dn.
Limitations:

I not all tensors have low TT rank
I not possible to apply component-wise non-linear functions in the TT

format...
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Tensor Decomposition Techniques

Tensor Ring decomposition [Zhao et al., 2016]:

G1

G2

G3

G4

R4

R1

R3

R2

T =d1 d3

d2

d4

d1 d3

d2

d4

⇒ R4d1R1 + R1d2R2 + R2d2R3 + R3d4R4 parameters instead of d1d2d3d4.
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Summary of Common Tensor Decomposition Models

For an Nth order tensor of size d × d × d × · · · × d , instead of dN

parameters we have
I Tucker: O

(
RN + NdR

)
parameters

I CP: O (NdR) parameters
I Tensor train (TT): O

(
NdR2) parameters

I Tensor ring (TR): O
(
NdR2) parameters

where the rank R = maxi Ri .

Finding the exact low rank decomposition of a tensor is NP hard for
CP but can be done in polynomial time for Tucker and TR
Low rank approximation problem is NP hard for all decomposition
models
Efficient approximation algorithm exists for the low rank
approximation problem
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Tensor Networks: Summary

Tensor networks ≡ graphical notation to describe complex operations
on tensors

Tensor decomposition ≡ efficient way to compress high dimensional
objects

↪→ can be used to compress neural networks (e.g., [Novikov et al., 2015])
Tensor network methods ≡ algorithms to efficiently perform
operations on (or optimize) very high dimensional objects

⇒ Lots of interesting open problems and connections with quantum
physics and formal languages.

⇒ Tensors are the new matrices (linear → multilinear) and tensor
networks make it ”easy” to reason about tensors, tensor
decomposition and multi-linear algebra.

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 19 / 41



Tensor Networks: Summary

Tensor networks ≡ graphical notation to describe complex operations
on tensors
Tensor decomposition ≡ efficient way to compress high dimensional
objects

↪→ can be used to compress neural networks (e.g., [Novikov et al., 2015])

Tensor network methods ≡ algorithms to efficiently perform
operations on (or optimize) very high dimensional objects

⇒ Lots of interesting open problems and connections with quantum
physics and formal languages.

⇒ Tensors are the new matrices (linear → multilinear) and tensor
networks make it ”easy” to reason about tensors, tensor
decomposition and multi-linear algebra.

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 19 / 41



Tensor Networks: Summary

Tensor networks ≡ graphical notation to describe complex operations
on tensors
Tensor decomposition ≡ efficient way to compress high dimensional
objects

↪→ can be used to compress neural networks (e.g., [Novikov et al., 2015])
Tensor network methods ≡ algorithms to efficiently perform
operations on (or optimize) very high dimensional objects

⇒ Lots of interesting open problems and connections with quantum
physics and formal languages.

⇒ Tensors are the new matrices (linear → multilinear) and tensor
networks make it ”easy” to reason about tensors, tensor
decomposition and multi-linear algebra.

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 19 / 41



Tensor Networks: Summary

Tensor networks ≡ graphical notation to describe complex operations
on tensors
Tensor decomposition ≡ efficient way to compress high dimensional
objects

↪→ can be used to compress neural networks (e.g., [Novikov et al., 2015])
Tensor network methods ≡ algorithms to efficiently perform
operations on (or optimize) very high dimensional objects

⇒ Lots of interesting open problems and connections with quantum
physics and formal languages.

⇒ Tensors are the new matrices (linear → multilinear) and tensor
networks make it ”easy” to reason about tensors, tensor
decomposition and multi-linear algebra.

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 19 / 41



Tensor Networks: Summary

Tensor networks ≡ graphical notation to describe complex operations
on tensors
Tensor decomposition ≡ efficient way to compress high dimensional
objects

↪→ can be used to compress neural networks (e.g., [Novikov et al., 2015])
Tensor network methods ≡ algorithms to efficiently perform
operations on (or optimize) very high dimensional objects

⇒ Lots of interesting open problems and connections with quantum
physics and formal languages.

⇒ Tensors are the new matrices (linear → multilinear) and tensor
networks make it ”easy” to reason about tensors, tensor
decomposition and multi-linear algebra.

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 19 / 41



Outline

1 An Introduction to Tensors and Tensor Networks

2 Adaptive Learning of Tensor Decomposition Models

Joint work with Meraj Hashemizadeh, Michelle Liu and Jacob Miller
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Tensor Decomposition Techniques
Lots of ways to decompose a tensor:

⇒ How to choose the right decomposition model for a given ML
problem?

⇒ Can we design adaptive algorithms, learning the decomposition
structure from data?

⇒ What are the different implicit bias encoded in each decomposition
model?

⇒ ...
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Tensor based optimization problems
A lot of tensor problems can be formulated as

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

where L is a loss function and rank is some notion of tensor rank (e.g.
TT, TR, CP, ...).
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L(W) = ‖T −W‖2
F
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min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

where L is a loss function and rank is some notion of tensor rank (e.g.
TT, TR, CP, ...).

I Tensor Classification

L(W) =
N∑

i=1
CCE (yi , f (X i )) where f (X i ) = sign(〈W , X i〉)
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Tensor based optimization problems
A lot of tensor problems can be formulated as

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

where L is a loss function and rank is some notion of tensor rank (e.g.
TT, TR, CP, ...).

I Tensor Completion

L(W) =
∑

(i,j,k)∈Ω

(W ijk −X ijk)2

where Ω is the set of observed entries
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A greedy algorithm for adaptive learning of TN structures

min
W∈Rd1×···×dp

L(W) s.t. rank(W) ≤ R

We do not want to assume a fixed decomposition model.
We want an algorithm that can adaptively find the best
decomposition model for the task at hand.

↪→ We optimize the loss both with respect to the TN structure and the
core tensors of the TN:

min
Tensor Network Structure TN

min
G(1),··· ,G(p)

L(TN(G(1), · · · , G(p)))

s.t. size(G(1), · · · , G(p)) ≤ C
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A greedy algorithm for adaptive learning of TN structures

min
Tensor Network Structure TN

min
G(1),··· ,G(p)

L(TN(G(1), · · · , G(p)))

s.t. size(G(1), · · · , G(p)) ≤ C

Pbm: the space of TN structures is exponentially large...
We propose a simple greedy approach:

I Start with a rank one tensor
I Optimize the loss wrt the core tensors.
I Greedily choose an edge to increment in the TN.
I Repeat until the parameters budget is reached.
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Greedy Algorithm Overview

Start with a random rank one tensor.

W =

d

d

d
W
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Greedy Algorithm Overview

Optimize the loss wrt the core tensors.

W =

d

d

d
W

L(W) = 0.9
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Greedy Algorithm Overview

Consider all possible rank one increments on internal edges.
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Greedy Algorithm Overview

Optimize the loss wrt core tensors for each possible increment.
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Greedy Algorithm Overview

Select the most promising rank increment and repeat...
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Implementation Details and Limitations

At each iteration of greedy, we restart the optimization from the
previous solution.
No internal nodes are added to the initial TN structure (cannot
represent Tucker).
No hyperedge (cannot represent CP).
Computationally expensive.
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Experiment: Tensor decomposition

Objective: compress a given tensor (with unknown tensor network
structure) by decomposing it.
Three target tensors of size 7× 7× 7× 7× 7:

Guillaume Rabusseau Adaptive Tensor Learning with Tensor Networks November 20, 2020 33 / 41



Experiment: Tensor decomposition
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Tensor structures recovered by Greedy
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Experiment: Tensor completion

Initial image is reshaped into a 6× 10× 10× 6× 10× 10× 3 tensor
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Experiment: Tensor completion
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Experiment: Tensor completion
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Experiment: Tensor completion
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Conclusion

We propose a general adaptive learning algorithm for tensor problem
First step towards algorithms for general TN rather than specific
tensor decomposition models
Experimental results are very encouraging

Future directions (ongoing):
I Theory: convergence rate analysis
I Add support for internal nodes and hyperedges
I Beyond Greedy:

F develop heuristics for more efficient search
F backtracking (e.g. A∗ algorithm)

I experiments on compressing neural networks
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Conclusion

Forget matrices and linear algebra... Tensors and multilinear algebra!
Tensor networks ≡ unifying language for tensor methods
Lots of interesting open problems
Promising direction: general tensor methods with tensor networks

Other relevant recent work from my group at Mila:
I Tensorized Random Projections with Beheshteh T. Rakhshan
I VC dimension of Tensor Network moodels with Behnoush Khavari
I Connections between tensor networks, RNNs and weighted automata

with Tianyu Li, Maude Lizaire, Simon Verret
I Tensor networks for sequence modeling with Jacob Miller

Thank you! Questions?
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