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Abstract

Various forms of regularization in learning tasks strive for different notions of simplicity.
This paper presents a spectral regularization technique, which attaches a unique induc-
tive bias to sequence modeling based on an intuitive concept of simplicity defined in the
Chomsky hierarchy. From fundamental connections between Hankel matrices and regular
grammars, we propose to use the trace norm of the Hankel matrix, the tightest convex
relaxation of its rank, as the spectral regularizer. To cope with the fact that the Han-
kel matrix is bi-infinite, we propose an unbiased stochastic estimator for its trace norm.
Ultimately, we demonstrate experimental results on Tomita grammars, which exhibit the
potential benefits of spectral regularization and validate the proposed stochastic estimator.
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1. Introduction

The fundamental principle of regularization is at the heart of many machine learning al-
gorithms and models. Informally speaking, regularization refers to the idea of adding a
penalty term to the loss function optimized by a learning model in order to encourage learn-
ing simple functions. In particular, in regularized empirical risk minimization, the objective
is to find the hypothesis h minimizing L£(h, D)+ AQ(h) where L(h, D) denotes the empirical
risk on a dataset D, 2(h) is a penalty term that penalizes complex functions and \ is an
hyper-parameter controlling the tradeoff between fitting the data and h being a “simple”
hypothesis. Examples of regularization functions {2 include the /5 or £1 norm of the weight
vector of a linear model, the degree of a polynomial model, the rank or the trace norm of
the user-item matrix in a collaborative filtering task, etc.

In this work, we propose a novel regularization technique for sequential models. While
there are many natural notions of simplicity for functions defined over vector spaces (e.g.,
sparsity, smoothness, etc.), defining a notion of simplicity suited for functions defined over
sequences can be more tedious due to the discrete and sequential nature of the data arising
in tasks such as language modelling. One such notion of simplicity naturally arises from
the so-called Chomsky hierarchy, which categorizes functions over sequences into four dif-
ferent levels of complexity, the simplest of which is regular grammars (Chomsky, 1956). To
encourage a sequential model such as an RNN (Recurrent Neural Network) to learn simple
functions, i.e., functions that appear lower in Chomsky hierarchy, we introduce a novel
inductive bias through spectral regularization.
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In order to encourage learning such simple functions, we leverage a fundamental result
relating the rank of the Hankel matrix of a function f to the minimal number of states
of a weighted finite automaton computing f (Fliess, 1974; Carlyle and Paz, 1971). Func-
tions computed by weighted finite automata corresponds to regular weighted languages, i.e.,
functions that are low in the Chomsky hierarchy. The idea behind spectral regularization
is to encourage learning models whose Hankel matrix are approximately low rank. To do
so, the spectral regularization is defined as the trace norm of the Hankel matrix. Using the
trace norm instead of the rank of the Hankel matrix offers two advantages: (i) the trace
norm is the tightest convex relaxation of the rank and is differentiable, allowing one to
use automatic differentiation techniques to use the spectral regularization when training
black box neural network sequence models, and (ii) the trace norm can be seen as a "soft”
version of the rank, allowing learned models to only be approximately low rank, whereas
a hard rank constraint would be too strong and forces the learned functions to be regular.
The spectral regularization can thus incorporate a natural inductive bias towards regular
functions in the training of any black box differentiable model.

A key technical challenge in implementing the proposed spectral regularization resides
in the fact the Hankel matrix is a bi-infinite matrix whose trace norm cannot be explicitly
computed. To address this issue we propose a Russian Roulette estimator to design a
stochastic unbiased estimator of the Hankel matrix, whose trace norm is lower bounded (in
expectation) by the trace norm of the Hankel matrix itself. We thus plug in the realizations
of the Russian Roulette estimator in the minimization objective at each mini-batch in place
of the actual trace norm of the Hankel matrix.

We provide a simple experimental study on Tomita grammars (Tomita, 1982) to illus-
trate the potential benefits of the spectral regularization.

2. Preliminaries

Let ¥ be a finite nonempty set, also known as an alphabet. We denote by ¥* the free
monoid over ¥, where string concatenation is the binary operation and the empty string in
the singleton set XV := {¢} serves as the unique unit element. Intuitively, ¥* refers to the
set of all finite sequences (or words) generated by X:

For two sequences u,v € ¥*, we use uv to denote the concatenation of u and v. The length
of a sequence w € ¥.* is denoted as |w|. Finally, a grammar, or language, over ¥ is a subset
of 3*.

One of the simplest class of languages is the set of regular languages, which are lan-
guages that can be computed by deterministic finite automata. Regular languages forms
the simplest class of languages in the so-called Chomsky hierarchy . In this work, we are
interested in real-valued functions over ¥*, sometimes called weighted languages. Such
functions are of crucial interest for machine learning applications on sequence data such
as language modeling. The Chomsky hierarchy easily extends to weighted languages using
the weighted counterparts of the finite state machines used in the classical hierarchy. In
particular, the simplest class of such functions is the set of regular functions (sometimes
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called rational, or recognizable), which are functions that can be computed by weighted
automata.

Definition 1 (Weighted Finite Automaton) A weighted finite automaton (WFA) with
n states is a tuple A = (o, {A }yex,w), where a € R™ is the initial weight vector, w € R™
the final weight vector, and A° € R™" is the transition matriz for each symbol o € X.

A WFA computes a function fuq : X° - R that maps any Sequence u = ujug---ug € 3* to
fa(u) = aT A%, where A" := A" AY2... A%,

It is worth briefly mentioning that any regular language is the support of a rational
function (however, surprisingly, the converse is not true, see, e.g., Chapter 4, Section 6
in Droste et al. (2009)).

In this work, we will design a regularization scheme for sequential models that will favour
functions that are close to the class of rational functions (i.e., low on Chomsky’s hierarchy).
In order to do so, we need a quantitative measure of the ”rationality” of a function. We will
see that the spectrum of the so-called Hankel matrix is a good candidate for this purpose.

Definition 2 (Hankel Matrix) For a given function f:¥* — R, its Hankel matriz Hy €
RZ*XE*

is the infinite matriz with entries (Hy)uy = f(uv) for u,veX”.

The following classical theorem shows the fundamental (striking) relation between the
Hankel matrix of a function and its ”rationality”.

Theorem 3 (Fliess (1974); Carlyle and Paz (1971)) For any function f : ¥* > R,
rank(Hy) is equal to the minimal number of states of a WFA computing f. In particular,
a function f is regular if and only if its Hankel matriz has finite rank.

We will see in the next section how this result can be leveraged to design a regularization
technique to favour simpler model during learning.

3. Spectral Regularization

In this section we propose the trace norm of the Hankel matrix as a natural spectral regu-
larization for black box sequential models and show how to efficiently compute stochastic
approximation of this regularization term for training through back-propagation.

3.1. Motivation and Definition

A naive idea to leverage Theorem 3 for regularization would be to enforce the Hankel matrix
of the learned model to be low rank. However, this approach has two drawbacks. First,
optimization under low rank constraints is known to be computationally hard. Second, such
a constraint would be too strong: we want to incorporate an inductive bias towards simple
functions in the learning process, but we do not want to actually enforce the learned function
to be regular. In some sense, we want a softer version of the rank of the Hankel matrix
which would also consider functions that can be well approximated by regular functions (i.e.,
functions whose Hankel matrix is approximately low rank) as simple.
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Enforcing the trace norm (or nuclear norm) of the Hankel matrix to be small, instead
of directly enforcing the rank to be small, will solve (to some extent) both of these issues.
Indeed, the trace norm (which is the sum of the singular values) is the tightest convex
relaxation of the matrix rank (Fazel et al., 2001) which naturally represents a soft version
of the notion of rank. The trace norm of the Hankel matrix has actually been previously
leveraged for this purpose in the context of learning (Balle et al., 2012). Using the trace
norm of the Hankel matrix as a way to regularize models for sequence tagging was also
previously explored in (Quattoni et al., 2014).

We formally introduce this regularization technique in the following definition.

Definition 4 (Spectral Regularization) Let fy: ¥* - R be the function computed by
a model with parameters 6 and let L£(0) be the loss function associated with this model.
Spectral reqularization corresponds to the following minimization problem:

meinﬁ(9) + A H, [ (1)

where X is the reqularization coefficient, and the trace norm ||Hy,||. is the spectral reqularizer
(or spectral loss).

Note that the previous definition does not make any assumptions on the class of models
considered. Onme particular class of interest is the one of functions computed by recurrent
neural networks, for which we would ideally want to, at the same time, benefit from their
remarkable expressiveness while still steering the learning process towards functions that
are, in some sense, low on the Chomsky hierarchy. In particular, when an RNN is used for
sequential probabilistic modeling (i.e. trained to predict the probabilities of next symbol
given a sequence), fy would denote the underlying probability distribution over X%, i.e.,

fo(ugug--ug) = P(ujug---ug) = P(uy)P(ug | uy)--P(ug | uy---ug_q).

3.2. Russian Roulette Estimator

It is clear that the optimization problem in Eq. (1) can not be solved easily. To start with,
the Hankel matrix is infinite! In order to tackle this optimization problem, we will make use
of the so-called Russian Roulette estimator which allows one to stochastically approximate
an infinite series with random realization of partial sums.

Definition 5 (Russian Roulette Estimator; Kahn (1955)) Given a convergent se-

ries S = Y o, a Russian Roulette estimator of S is given by S := ¥ %, where T >0 s
k=0 =0 V7
a random variable with support over all nonnegative integers.

Note that in this definition we do not require ay’s to be scalars. Instead, they could
stand for vectors, matrices, tensors, or some abstract objects with well-defined component-
wise addition.

Theorem 6 (Chen et al. (2019); Lemma 3; Lyne et al. (2015)) IfP(t>n)>0Vn>
0 and the series S is gbsolutely convergent, then S given in Definition 5 is an unbiased
estimator of S, i.e., ES = §.
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Although the Russian Roulette Estimator is unbiased under mild assumptions, its vari-
ance might be large or even unbounded with an ill-chosen random variable 7 (McLeish,
2011; Beatson and Adams, 2019).

3.3. Stochastic Estimator for the Trace Norm of the Hankel Matrix

In order to leverage the Russian Roulette estimator for the trace norm of the Hankel matrix,
we need to express the Hankel matrix as an infinite sum. We propose one way convenient
way to do this in the following theorem.

Theorem 7 Let f:3* - R. For any i€ N, let HY) e R=" be defined by

i f(uv if luv| =1
(H](c ))u,v = ( ) | | .
0 otherwise
for all w,v e S*. Then Hy= ¥ H.
i=0

Although the H](f)’s defined above are infinite matrices, each of them only contains a
finite number of nonzero elements. We can thus construct the Russian Roulette estimator
of Hy as

HT_Z.;)P(rzml) )
where 7 is a random variable taking its values in N such that P(7 >n) > 0 for all n.

As mentioned previously, even though H. still is an infinite matrix, it only has a finite
number on non-zeros entries for any integer 7. Thus, informally, the trace norm of the
infinite matrix H, is equal to the trace norm of its smallest sub-block containing no columns
or rows entirely filled with 0’s, which is a finite sub-block whose trace norm can be computed
in polynomial time. We now formalize this intuition. We start by showing that the Russian
Roulette estimator of the Hankel matrix is unbiased.

Theorem 8 Let f:X* - R. The estimator H; defined in Eq. (2) is an unbiased estimator
of Hy, i.e., E-[H;] = Hy.

PROOF:
For some u, v € ¥* we notice from Eq. (2) that
(H )
(H—,—)uvz P(Tl-i-l) 1f7'2k+1
0 otherwise

for some k € N, since the RHS of Eq. (2) contributes at most one term for an entry in LHS.
Then

(HO),
P(r>i+1)

(Hfi))u,v (,L)
Lrskin] = mP(T 2k+1)=(H; )y

Therefore, each entry of H is unbiased to estimate the corresponding entry in H.

E[(HT)u,V] = E[
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We showed that the infinite Hankel matrix of a function can be expressed as an infinite
sum of matrices with a finite number of non-zero entries, allowing us to construct a Russian
Roulette estimator of the Hankel matrix which can be computed efficiently. But we are
interested in the trace norm of the Hankel matrix in the objective we wish to minimize in
Eq. (1). It remains to show that the trace norm of the Russian Roulette estimator of the
Hankel matrix is a good stochastic estimator of the trace norm of the Hankel matrix itself.

Theorem 9 For any 0, we have that
L(0) + Al g [l < £(0) + XE[||H-][.], (3)
where H is the Russian Roulette estimator defined in Eq. (2).

PROOF:
It suffices to show that || - ||« is a convex operator, and then the claim follows by Jensen’s
inequality. The convexity of ||-||+ follows naturally from the triangle inequality of the trace
norm |[juH; + (1 — p)Hol|+ < p|[Hi||« + (1 = p)||Hz||« for any p € [0,1]. Combining Jensen’s
inequality with Theorem 8 we have that E[||H||.] > [|[E[H ]|/« = |[H,]|«-

|

The previous theorem shows that we can efficiently compute a stochastic approximation
of the trace norm of the Hankel matrix, through which we can use the back-propagation
algorithm to train any differentiable black-box model. In the next section, we implement
this regularization technique to train RNNs on a synthetic language modeling task.

4. Experiments

We conduct experiments to validate that spectral regularization imposes an inductive bias
for sequence modeling. In particular, we focus on synthetic data generated according to
Tomita grammars #3 to #6 defined in Table 1, which is a benchmark study for grammatical
inference (Tomita, 1982; Bengio and Frasconi, 1994). As shown in the table, all these
grammars are some subsets of ¥.*, where the binary alphabet is ¥ := {0,1}.

’ Tomita Grammars | Definitions ‘

#3 not containing 12"*10?™*! as a substring

#4 not containing 000 as a substring

#5 containing even number of 01’s and 10’s

#6 (number of 0’s — number of 1’s) is a multiple of 3

Table 1: Definitions of Tomita grammars #3 to #6.

The training dataset for each grammar include synthetic sequences up to length 12 in
that grammar. 20% of the training set is split out as the validation set. We also use a test
dataset consisting of sequences of exact length 12 and disjoint with the training dataset.

We consider an RNN with one embedding layer of ||+ 2 neurons (we use two additional
symbols to mark the start and end of sequences) and one hidden layer of 50 neurons, which
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has been just expressive enough for our training data. NLL (Negative Log-Likelihood) loss
is used for both training and reporting performances of grammatical inference on the three
test sets. The loss minimization is based on the Adam optimizer (Diederik et al., 2014) with
an initial learning rate of 0.01 and a batch size of 32. Moreover, early stopping and a simple
scheduler to reduce learning rate on detected plateaus of validation loss are adopted.

In our experiments, we compare the test NLL when training without spectral regulariza-
tion versus that with spectral regularization for different size of training data sampled from
the given training set. The latter chooses the hyperparameter A according to validation NLL.
In each mini-batch, we randomly draw 7 ~ Geometric(0.2) (stopping probability is 0.2) to
construct the Russian Roulette estimator of the Hankel matrix. To check the significance

of the unbiased Russian Roulette estimator in spectral regularization, we also implement a
10

naive biased estimator of the Hankel matrix for comparison defined by H = > H](c ), which
=0
is a fixed-sized subblock of the Hankel matrix.
Tomita # 3 Tomita # 4
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—— Fixed size (biased) -
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Figure 1: Test NLL against different training sizes for training with Russian Roulette esti-
mator, with the fixed-sized (naive biased) estimator, and without spectral regu-
larization on Tomita grammars #3 to #6.

Results on Tomita grammars #3 to #6 are presented in Figure 1, where we see that
spectral regularization marginally improves generalization for Tomita grammars #4, #b5,
and #6 on small training data sizes. Especially on Tomita grammar #b5, the unbiased
Russian Roulette estimator performs modestly better than the naive biased one. However,
there is no clear winner between the two estimators, biased or not, on other Tomita gram-
mars. We hypothesize that this phenomenon might be due to the bias-variance tradeoff, i.e.,
the high variance of the unbiased Russian Roulette estimator makes the loss computation
much coarser (Beatson and Adams, 2019), which will be further investigated in future work.
We also consider whether more convincing results can be obtained on other tasks such as
classification, or on other datasets, to be explored in upcoming studies.
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5. Conclusion

This paper proposes spectral regularization according to an intuitive notion of simplicity
arising from the Chomsky hierarchy, which serves as an extra inductive bias for any sequence
modeling task and is formulated as an additional regularization term to be added to any loss
function. Results on synthetic data of Tomita grammars show that spectral regularization
indeed marginally helps encourage the model to learn approximately low-rank functions.
Forthcoming research will also examine the effect of spectral regularization in other tasks
and other datasets.

To estimate the trace norm of the bi-infinite Hankel matrix in the spectral regularizer, we
construct an unbiased stochastic estimator to relax the loss minimization problem. However,
the unbiased estimator does not exhibit significant advantages compared to a naive biased
one, which will be explored in further research.
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