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Abstract

This paper proposes an efficient algorithm (HOLRR) to handle regression
tasks where the outputs have a tensor structure. We formulate the regression
problem as the minimization of a least square criterion under a multilinear
rank constraint, a difficult non convex problem. HOLRR computes efficiently
an approximate solution of this problem, with solid theoretical guarantees.
A kernel extension is also presented. Experiments on synthetic and real data
show that HOLRR computes accurate solutions while being computationally
very competitive.

1 Introduction

Recently, there has been an increasing interest in adapting machine learning and statistical
methods to tensors. Data with a natural tensor structure are encountered in many scientific
areas including neuroimaging [30], signal processing [4], spatio-temporal analysis [2] and
computer vision [16]. Extending multivariate regression methods to tensors is one of the
challenging task in this area. Most existing works extend linear models to the multilinear
setting and focus on the tensor structure of the input data (e.g. [24]). Little has been done
however to investigate learning methods for tensor-structured output data.
We consider a multilinear regression task where outputs are tensors; such a setting can occur
in the context of e.g. spatio-temporal forecasting or image reconstruction. In order to leverage
the tensor structure of the output data, we formulate the problem as the minimization of
a least squares criterion subject to a multilinear rank constraint on the regression tensor.
The rank constraint enforces the model to capture low-rank structure in the outputs and to
explain dependencies between inputs and outputs in a low-dimensional multilinear subspace.
Unlike previous work (e.g. [22, 24, 27]) we do not rely on a convex relaxation of this difficult
non-convex optimization problem. Instead we show that it is equivalent to a multilinear sub-
space identification problem for which we design a fast and efficient approximation algorithm
(HOLRR), along with a kernelized version which extends our approach to the nonlinear
setting (Section 3). Our theoretical analysis shows that HOLRR provides good approximation
guarantees. Furthermore, we derive a generalization bound for the class of tensor-valued
regression functions with bounded multilinear rank (Section 3.3). Experiments on synthetic
and real data are presented to validate our theoretical findings and show that HOLRR
computes accurate solutions while being computationally very competitive (Section 4).
Proofs of all results stated in the paper can be found in supplementary material A.

Related work. The problem we consider is a generalization of the reduced-rank regression
problem (Section 2.2) to tensor structured responses. Reduced-rank regression has its roots
in statistics [10] but it has also been investigated by the neural network community [3];
non-parametric extensions of this method have been proposed in [18] and [6]. In the context
of multi-task learning, a linear model using a tensor-rank penalization of a least squares
criterion has been proposed in [22] to take into account the multi-modal interactions between
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tasks. They propose an approach relying on a convex relaxation of the multlinear rank
constraint using the trace norms of the matricizations, and a non-convex approach based
on alternating minimization. Nonparametric low-rank estimation strategies in reproducing
kernel Hilbert spaces (RKHS) based on a multilinear spectral regularization have been
proposed in [23, 24]. Their method is based on estimating the regression function in the
tensor product of RKHSs and is naturally adapted for tensor covariates. A greedy algorithm
to solve a low-rank tensor learning problem has been proposed in [2] in the context of
multivariate spatio-temporal data analysis. The linear model they assume is different from
the one we propose and is specifically designed for spatio-temporal data. A higher-order
extension of partial least squares (HOPLS) has been proposed in [28] along with a kernel
extension in [29]. While HOPLS has the advantage of taking the tensor structure of the
input into account, the questions of approximation and generalization guarantees were not
addressed in [28]. The generalization bound we provide is inspired from works on matrix
and tensor completion [25, 19].

2 Preliminaries

We begin by introducing some notations. For any integer k we use [k] to denote the set of
integers from 1 to k. We use lower case bold letters for vectors (e.g. v ∈ Rd1), upper case bold
letters for matrices (e.g. M ∈ Rd1×d2) and bold calligraphic letters for higher order tensors
(e.g. T ∈ Rd1×d2×d3). The identity matrix will be written as I. The ith row (resp. column)
of a matrix M will be denoted by Mi,: (resp. M:,i). This notation is extended to slices of a
tensor in the straightforward way. If v ∈ Rd1 and v′ ∈ Rd2 , we use v⊗ v′ ∈ Rd1·d2 to denote
the Kronecker product between vectors, and its straightforward extension to matrices and
tensors. Given a matrix M ∈ Rd1×d2 , we use vec(M) ∈ Rd1·d2 to denote the column vector
obtained by concatenating the columns of M.

2.1 Tensors and Tucker Decomposition

We first recall basic definitions of tensor algebra; more details can be found in [13]. A tensor
T ∈ Rd1×···×dp can simply be seen as a multidimensional array (T i1,··· ,ip : in ∈ [dn], n ∈ [p]).
The mode-n fibers of T are the vectors obtained by fixing all indices except the nth one,
e.g. T :,i2,··· ,ip ∈ Rd1 . The nth mode matricization of T is the matrix having the mode-n
fibers of T for columns and is denoted by T(n) ∈ Rdn×d1···dn−1dn+1···dp . The vectorization of
a tensor is defined by vec(T ) = vec(T(1)). The inner product between two tensors S and T
(of the same size) is defined by 〈S,T 〉 = 〈vec(S), vec(T )〉 and the Frobenius norm is defined
by ‖T ‖2

F = 〈T ,T 〉. In the following T always denotes a tensor of size d1 × · · · × dp.

The mode-n matrix product of the tensor T and a matrix X ∈ Rm×dn is a tensor denoted
by T ×n X. It is of size d1 × · · · × dn−1 × m × dn+1 × · · · × dp and is defined by the
relation Y = T ×n X ⇔ Y(n) = XT(n). The mode-n vector product of the tensor T and
a vector v ∈ Rdn is a tensor defined by T •n v = T ×n v> ∈ Rd1×···×dn−1×dn+1×···×dp .
The mode-n rank of T is the dimension of the space spanned by its mode-n fibers, that is
rankn(T ) = rank(T(n)). The multilinear rank of T , denoted by rank(T ), is the tuple of
mode-n ranks of T : rank(T ) = (R1, · · · , Rp) where Rn = rankn(T ) for n ∈ [p]. We will
write rank(T ) ≤ (S1, · · · , Sp) whenever rank1(T ) ≤ S1, rank2(T ) ≤ S2, · · · , rankp(T ) ≤ Sp.
The Tucker decomposition decomposes a tensor T into a core tensor G transformed by
an orthogonal matrix along each mode: (i) T = G ×1 U1 ×2 U2 ×3 · · · ×p Up, where
G ∈ RR1×R2×···×Rp , Ui ∈ Rdi×Ri and U>i Ui = I for all i ∈ [p]. The number of parameters
involved in a Tucker decomposition can be considerably smaller than d1d2 · · · dp. We have
the following identities when matricizing and vectorizing a Tucker decomposition: T(n) =
UnG(n)(Up⊗· · ·⊗Un+1⊗Un−1⊗· · ·⊗U1)> and vec(T ) = (Up⊗Up−1⊗· · ·⊗U1)vec(G).

It is well known that T admits the Tucker decomposition (i) iff rank(T ) ≤ (R1, · · · , Rp)
(see e.g. [13]). Finding an exact Tucker decomposition can be done using the higher-order
SVD algorithm (HOSVD) introduced by [5]. Although finding the best approximation of
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multilinear rank (R1, · · · , Rp) of a tensor T is a difficult problem, the truncated HOSVD
algorithm provides good approximation guarantees and often performs well in practice.

2.2 Low-Rank Regression

Multivariate regression is the task of recovering a function f : Rd → Rp from a set of input-
output pairs {(x(n),y(n))}Nn=1 sampled from the model with an additive noise y = f(x) + ε,
where ε is the error term. To solve this problem, the ordinary least squares (OLS) approach
assumes a linear dependence between input and output data and boils down to finding
a matrix W ∈ Rd×p that minimizes the squared error ‖XW − Y‖2

F , where X ∈ RN×d
and Y ∈ RN×p denote the input and the output matrices. To prevent overfitting and to
avoid numerical instabilities a ridge regularization term (i.e. γ‖W‖2

F ) is often added to the
objective function, leading to the regularized least squares (RLS) method. It is easy to see
that the OLS/RLS approach in the multivariate setting is equivalent to performing p linear
regressions for each scalar output {yj}pj=1 independently. Thus it performs poorly when the
outputs are correlated and the true dimension of the response is less than p. Low-rank
regression (or reduced-rank regression) addresses this issue by solving the rank penalized
problem minW∈Rd×p ‖XW−Y‖2

F + γ‖W‖2
F s.t. rank(W) ≤ R for a given integer R. The

rank constraint was first proposed in [1], whereas the term reduced-rank regression was
introduced in [10]. Adding a ridge regularization was proposed in [18]. In the rest of the
paper we will refer to this approach as low-rank regression (LRR). For more description
and discussion of reduced-rank regression, we refer the reader to the books [21] and [11].

3 Low-Rank Regression for Tensor-Valued Functions

3.1 Problem Formulation

We consider a multivariate regression task where the input is a vector and the response has
a tensor structure. Let f : Rd0 → Rd1×d2×···×dp be the function we want to learn from a
sample of input-output data {(x(n),Y(n))}Nn=1 drawn from the model Y = f(x)+E , where E
is an error term. We assume that f is linear, that is f(x) = W •1 x for some regression tensor
W ∈ Rd0×d1×···×dp . The vectorization of this relation leads to vec(f(x)) = W>

(1)x showing
that this model is equivalent to the standard multivariate linear model. One way to tackle
this regression task would be to vectorize each output sample and to perform a standard
low-rank regression on the data {(x(n), vec(Y(n)))}Nn=1 ⊂ Rd0 × Rd1···dp . A major drawback
of this approach is that the tensor structure of the output is lost in the vectorization step.
The low-rank model tries to capture linear dependencies between components of the output
but it ignores higher level dependencies that could be present in a tensor-structured output.
For illustration, suppose the output is a matrix encoding the samples of d1 continuous
variables at d2 different time steps, one could expect structural relations between the d1 time
series, e.g. linear dependencies between the rows of the output matrix.

Low-rank regression for tensor responses. To overcome the limitation described above
we propose an extension of the low-rank regression method for tensor-structured responses
by enforcing low multilinear rank of the regression tensor W. Let {(x(n),Y(n))}Nn=1 ⊂
Rd0 × Rd1×d2×···×dp be a training sample of input/output data drawn from the model
f(x) = W •1 x + E where W is assumed of low multilinear rank. Considering the framework
of empirical risk minimization, we want to find a low-rank regression tensor W minimizing
the loss on the training data. To avoid numerical instabilities and to prevent overfitting
we add a ridge regularization to the objective function, leading to the minimization of∑N

n=1 `(W •1 x(n),Y(n)) + γ‖W‖2
F w.r.t. the regression tensor W subject to the constraint

rank(W) ≤ (R0, R1, · · · , Rp) for some given integers R0, R1, · · · , Rp and where ` is a loss
function. In this paper, we consider the squared error loss between tensors defined by
L(T , T̂ ) = ‖T − T̂ ‖2

F . Using this loss we can rewrite the minimization problem as

min
W∈Rd0×d1×···×dp

‖W ×1 X−Y‖2
F + γ‖W‖2

F s.t. rank(W) ≤ (R0, R1, · · · , Rp), (1)
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Figure 1: Image reconstruction from noisy measurements: Y = W •1 x + E where W is a
color image (RGB). Each image is labeled with the algorithm and the rank parameter.

where the input matrix X ∈ RN×d0 and the output tensor Y ∈ RN×d1×···×dp are defined by
Xn,: = (x(n))>, Yn,:,··· ,: = Y(n) for n = 1, · · · , N (Y is the tensor obtained by stacking the
output tensors along the first mode).

Low-rank regression function. Let W∗ be a solution of problem (1), it follows from
the multilinear rank constraint that W∗ = G ×1 U0 ×2 · · · ×p+1 Up for some core tensor
G ∈ RR0×···×Rp and orthogonal matrices Ui ∈ Rdi×Ri for 0 ≤ i ≤ p. The regression function
f∗ : x 7→W∗ •1 x can thus be written as f∗ : x 7→ G ×1 x>U0 ×2 · · · ×p+1 Up.

This implies several interesting properties. First, for any x ∈ Rd0 we have f∗(x) = T x ×1
U1 ×2 · · · ×p Up with T x = G •1 U>0 x, which implies rank(f∗(x)) ≤ (R1, · · · , Rp), that is
the image of f∗ is a set of tensors with low multilinear rank. Second, the relation between
x and Y = f∗(x) is explained in a low dimensional subspace of size R0 × R1 × · · · × Rp.
Indeed one can decompose the mapping f∗ into the following steps: (i) project x in RR0 as
x̄ = U>0 x, (ii) perform a low-dimensional mapping Ȳ = G •1 x̄, (iii) project back into the
output space to get Y = Ȳ ×1 U1 ×2 · · · ×p Up.
To give an illustrative intuition on the differences between matrix and multilinear rank
regularization we present a simple experiment1 in Figure 1. We generate data from the model
Y = W •1 x + E where the tensor W ∈ R3×m×n is a color image of size m × n encoded
with three color channels RGB. The components of both x and E are drawn from N (0, 1).
This experiment allows us to visualize the tensors returned by RLS, LRR and our method
HOLRR that enforces low multilinear rank of the regression function. First, this shows
that the function learned by vectorizing the outputs and performing LRR does not enforce
any low-rank structure. This is well illustrated in (Figure 1) where the regression tensors
returned by HOLRR-(3,1,1) are clearly of low-rank while the ones returned by LRR-1 are
not. This also shows that taking into account the low-rank structure of the model allows
one to better eliminate the noise when the true regression tensor is of low rank (Figure 1,
left). However if the ground truth model does not have a low-rank structure, enforcing low
mutlilinear rank leads to underfitting for low values of the rank parameter (Figure 1, right).

3.2 Higher-Order Low-Rank Regression and its Kernel Extension

We now propose an efficient algorithm to tackle problem (1). We first show that the ridge
regularization term in (1) can be incorporated in the data fitting term. Let X̃ ∈ R(N+d0)×d0

and Ỹ ∈ R(N+d0)×d1×···×dp be defined by X̃> = (X | γI)> and Ỹ>(1) =
(
Y(1) | 0

)>. It is
easy to check that the objective function in (1) is equal to ‖W ×1 X̃− Ỹ‖2

F . Minimization
problem (1) is then equivalent to

min
G∈RR0×R1×···×Rp ,

Ui∈R
di×Ri for 0≤i≤p

‖W ×1 X̃− Ỹ‖2
F s.t. W = G ×1 U0 · · · ×p+1 Up,U>i Ui = I for all i. (2)

We now show that this minimization problem can be reduced to finding p+ 1 projection
matrices onto subspaces of dimension R0, R1, · · · , Rp. We start by showing that the core
tensor G solution of (2) is determined by the factor matrices U0, · · · ,Up.

1An extended version of this experiment is presented in supplementary material B.
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Theorem 1. For given orthogonal matrices U0, · · · ,Up the tensor G that minimizes (2) is
given by G = Ỹ ×1 (U>0 X̃>X̃U0)−1U>0 X̃> ×2 U>1 ×3 · · · ×p+1 U>p .

It follows from Theorem 1 that problem (1) can be written as

min
Ui∈Rdi×Ri ,0≤i≤p

‖Ỹ ×1 Π0 ×2 · · · ×p+1 Πp − Ỹ‖2
F (3)

subject to U>i Ui = I for all i, Π0 = X̃U0
(
U>0 X̃>X̃U0

)−1 U>0 X̃T , Πi = UiU>i for i ≥ 1.
Note that Π0 is the orthogonal projection onto the space spanned by the columns of X̃U0
and Πi is the orthogonal projection onto the column space of Ui for i ≥ 1. Hence solving
problem (1) is equivalent to finding p+ 1 low-dimensional subspaces U0, · · · , Up such that
projecting Ỹ onto the spaces X̃U0, U1, · · · , Up along the corresponding modes is close to Ỹ .

HOLRR algorithm. Since solving problem (3) for the p+ 1 projections simultaneously is
a difficult non-convex optimization problem we propose to solve it independently for each pro-
jection. This approach has the benefits of both being computationally efficient and providing
good theoretical approximation guarantees (see Theorem 2). The following proposition gives
the analytic solutions of (3) when each projection is considered independently.
Proposition 1. For 0 ≤ i ≤ p, using the definition of Πi in (3), the optimal solution
of minUi∈Rdi×Ri ‖Ỹ ×i+1 Πi − Ỹ‖2

F s.t. U>i Ui = I is given by the top Ri eigenvectors of
(X̃>X̃)−1X̃>Ỹ(1)Ỹ>(1)X̃ if i = 0 and Ỹ(i+1)Ỹ>(i+1) otherwise.

The results from Theorem 1 and Proposition 1 can be rewritten in terms of the original input
matrix X and output tensor Y using the identities X̃>X̃ = X>X +γI, Ỹ×1 X̃> = Y×1 X>
and Ỹ(i)Ỹ>(i) = Y(i)Y>(i) for any i ≥ 1. The overall Higher-Order Low-Rank Regression
procedure (HOLRR) is summarized in Algorithm 1. Note that the Tucker decomposition
of the solution returned by HOLRR could be a good initialization point for an Alternative
Least Square method. However, studying the theoretical and experimental properties of this
approach is beyond the scope of this paper and is left for future work.

HOLRR Kernel Extension We now design a kernelized version of the HOLRR algorithm
by analyzing how it would be instantiated in a feature space. We show that all the steps
involved can be performed using the Gram matrix of the input data without having to
explicitly compute the feature map. Let φ : Rd0 → RL be a feature map and let Φ ∈ RN×L
be the matrix with rows φ(x(n))> for n ∈ [N ]. The higher-order low-rank regression problem
in the feature space boils down to the minimization problem

min
W∈RL×d1×···×dp

‖W ×1 Φ−Y‖2
F + γ‖W‖2

F s.t. rank(W) ≤ (R0, R1, · · · , Rp) . (4)

Following the HOLRR algorithm, one needs to compute the top R0 eigenvectors of the L×L
matrix (Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ. The following proposition shows that this can be done
using the Gram matrix K = ΦΦ> without explicitly knowing the feature map φ.
Proposition 2. If α ∈ RN is an eigenvector with eigenvalue λ of the matrix (K +
γI)−1Y(1)Y>(1)K, then v = Φ>α ∈ RL is an eigenvector with eigenvalue λ of the ma-
trix (Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ.

Let A be the top R0 eigenvectors of the matrix (K + γI)−1Y(1)Y>(1)K. When working with
the feature map φ, it follows from the previous proposition that line 1 in Algorithm 1 is
equivalent to choosing U0 = Φ>A ∈ RL×R0 , while the updates in line 3 stay the same.
The regression tensor W ∈ RL×d1×···×dp returned by this algorithm is then equal to W =
Y×1 P×2 U1U>1 ×2 · · ·×p+1 UpU>p , where P = Φ>A

(
A>Φ(Φ>Φ + γI)Φ>A

)−1
A>ΦΦ>.

It is easy to check that P can be rewritten as P = Φ>A
(
A>K(K + γI)A

)−1 A>K.

Suppose now that the feature map φ is induced by a kernel k : Rd0 × Rd0 → R. The
prediction for an input vector x is then given by W •1 x = C •1 kx where the nth component
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Algorithm 1 HOLRR

Input: X ∈ RN×d0 , Y ∈ RN×d1×···×dp ,
rank (R0, R1, · · · , Rp) and regularization
parameter γ.

1: U0 ← top R0 eigenvectors of
(X>X + γI)−1X>Y(1)Y>(1)X

2: for i = 1 to p do
3: Ui ← top Ri eigenvec. of Y(i+1)Y>(i+1)
4: end for
5: M =

(
U>0 (X>X + γI)U0

)−1 U>0 X>
6: G ← Y ×1 M×2 U>1 ×3 · · · ×p+1 U>p
7: return G ×1 U0 ×2 · · · ×p+1 Up

Algorithm 2 Kernelized HOLRR

Input: Gram matrix K ∈ RN×N , Y ∈
RN×d1×···×dp , rank (R0, R1, · · · , Rp)
and regularization parameter γ.

1: A ← top R0 eigenvectors of
(K + γI)−1Y(1)Y>(1)K

2: for i = 1 to p do
3: Ui ← top Ri eigenvec. of Y(i+1)Y>(i+1)
4: end for
5: M←

(
A>K(K + γI)A

)−1 A>K
6: G ← Y ×1 M×2 U>1 ×3 · · · ×p+1 U>p
7: return C = G×1A×2U1×3 · · ·×p+1Up

of kx ∈ RN is 〈φ(x(n)), φ(x)〉 = k(x(n),x) and the tensor C ∈ RN×d1×···×dp is defined by C =
G×1A×2U1×2 · · ·×p+1Up, with G = Y×1

(
A>K(K + γI)A

)−1 A>K×2U>2 ×3 · · ·×p+1Up.
Note that C has multilinear rank (R0, · · · , Rp), hence the low mutlilinear rank constraint on
W in the feature space translates into the low rank structure of the coefficient tensor C.
Let H be the reproducing kernel Hilbert space associated with the kernel k. The overall proce-
dure for kernelized HOLRR is summarized in Algorithm 2. This algorithm returns the tensor
C ∈ RN×d1×···×dp defining the regression function f : x 7→ C •1 kx =

∑N
n=1 k(x,x(n))C(n),

where C(n) = Cn:···: ∈ Rd1×···×dp .

3.3 Theoretical Analysis

Complexity analysis. HOLRR is a polynomial time algorithm, more precisely it has a
time complexity in O((d0)3 +N((d0)2 +d0d1 · · · dp)+maxi≥0 Ri(di)2 +Nd1 · · · dp maxi≥1 di).
In comparison, LRR has a time complexity in O((d0)3 + N((d0)2 + d0d1 · · · dp) + (N +
R)(d1 · · · dp)2). Since the complexity of HOLRR only have a linear dependence on the
product of the output dimensions instead of a quadratic one for LRR, we can conclude
that HOLRR will be more efficient than LRR when the output dimensions d1, · · · , dp are
large. It is worth mentioning that the method proposed in [22] to solve a convex relaxation
of problem 2 is an iterative algorithm that needs to compute SVDs of matrices of size
di×d1 · · · di−1di+1 · · · dp for each 0 ≤ i ≤ p at each iteration, it is thus computationally more
expensive than HOLRR. Moreover, since HOLRR only relies on simple linear algebra tools,
readily available methods could be used to further improve the speed of the algorithm, e.g.
randomized-SVD [8] and random feature approximation of the kernel function [12, 20].

Approximation guarantees. It is easy to check that problem (1) is NP-hard since it
generalizes the problem of fitting a Tucker decomposition [9]. The following theorem shows
that HOLRR is a (p+ 1)-approximation algorithm for this problem. This result generalizes
the approximation guarantees provided by the truncated HOSVD algorithm for the problem
of finding the best low multilinear rank approximation of an arbitrary tensor.
Theorem 2. Let W∗ be a solution of problem (1) and let W be the regression tensor
returned by Algorithm 1. If L : Rd0×···×dp → R denotes the objective function of (1) w.r.t.
W then L(W) ≤ (p+ 1)L(W∗).

Generalization Bound. The following theorem gives an upper bound on the excess-
risk for the function class F = {x 7→W •1 x : rank(W) ≤ (R0, · · · , Rp)} of tensor-valued
regression functions with bounded multilinear rank. Recall that the expected loss of an
hypothesis h ∈ F w.r.t. the target function f∗ is defined by R(h) = Ex[L(h(x), f∗(x))] and
its empirical loss by R̂(h) = 1

N

∑N
n=1 L(h(x(n)), f∗(x(n))).

Theorem 3. Let L : Rd1×···×dp → R be a loss function satisfying L(A,B) =
1

d1···dp

∑
i1,··· ,ip `(Ai1,··· ,ip ,Bi1,··· ,ip) for some loss-function ` : R→ R+ bounded by M . Then

for any δ > 0, with probability at least 1− δ over the choice of a sample of size N , the follow-
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ing inequality holds for all h ∈ F : R(h) ≤ R̂(h) +M

√
2D log

(
4e(p+2)d0d1···dp

maxi≥0 di

)
log(N)/N +

M
√

log
( 1
δ

)
/(2N), where D = R0R1 · · ·Rp +

∑p
i=0 Ridi.

Proof. (Sketch) The complete proof is given in the supplementary material. It re-
lies on bounding the pseudo-dimension of the class of real-valued functions F̃ ={

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : rank(W) = (R0, · · · , Rp)
}
. We show that the pseudo-

dimension of F̃ is upper bounded by (R0R1 · · ·Rp +
∑p
i=0 Ridi) log

(
4e(p+2)d0d1···dp

maxi≥0 di

)
. This

is done by leveraging the following result originally due to [26]: the number of sign patterns
of r polynomials, each of degree at most d, over q variables is at most (4edr/q)q for all
r > q > 2 [25, Theorem 2]. The rest of the proof consists in showing that the risk (resp.
empirical risk) of hypothesis in F and F̃ are closely related and invoking standard error
generalization bounds in terms of the pseudo-dimension [17, Theorem 10.6].

Note that generalization bounds based on the pseudo-dimension for multivariate regression
without low-rank constraint would involve a term in O(

√
d0d1 · · · dp). In contrast, the bound

from the previous theorem only depends on the product of the output dimensions in a term
bounded by O(

√
log(d1 · · · dp)). In some sense, taking into account the low mutlilinear rank

of the hypothesis allows us to significantly reduce the dependence on the output dimensions
from O(

√
d0 · · · dp) to O(

√
(R0 · · ·Rp +

∑
iRidi)(

∑
i log(di))).

4 Experiments

In this section, we evaluate HOLRR on both synthetic and real-world datasets. Our
experimental results are for tensor-structured output regression problems on which we report
root mean-squared errors (RMSE) averaged across all the outputs. We compare HOLLR
with the following methods: regularized least squares RLS, low-rank regression LRR
described in Section 2.2, a multilinear approach based on tensor trace norm regularization
ADMM [7, 22], a nonconvex multilinear multitask learning approach MLMT-NC [22], an
higher order extension of partial least squares HOPLS [28] and the greedy tensor approach
for multivariate spatio-temporal analysis Greedy [2].
For experiments with kernel algorithms we use the readily available kernelized RLS and the
LRR kernel extension proposed in [18]. Note that ADMM, MLMT-NC and Greedy only
consider a linear dependency between inputs and outputs. The greedy tensor algorithm
proposed in [2] is developed specially for spatio-temporal data and the implementation
provided by the authors is restricted to third-order tensors. Although MLMLT-NC is
perhaps the closest algorithm to ours, we applied it only to simulated data. This is because
MLMLT-NC is computationally very expensive and becomes intractable for large data sets.
Average running times are reported in supplementary material B.

4.1 Synthetic Data

We generate both linear and nonlinear data. Linear data is drawn from the model Y =
W •1 x + E where W ∈ R10×10×10×10 is a tensor of multilinear rank (6, 4, 4, 8) drawn at
random, x ∈ R10 is drawn from N (0, I), and each component of the error tensor E is drawn
from N (0, 0.1). Nonlinear data is drawn from Y = W•1(x⊗x)+E where W ∈ R25×10×10×10

is of rank (5, 6, 4, 2) and x ∈ R5 and E are generated as above. Hyper-parameters for all
algorithms are selected using 3-fold cross-validation on the training data.
These experiments have been carried out for different sizes of the training data set, 20 trials
have been executed for each size. The average RMSEs on a test set of size 100 for the 20
trials are reported in Figure 2. We see that HOLRR algorithm clearly outperforms the other
methods on the linear data. MLMT-NC method achieved the second best performance, it is
however much more computationally expensive (see Table 1 in supplementary material B).
On the nonlinear data LRR achieves good performances but HOLRR is still significantly
more accurate, especially with small training datasets.
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Figure 2: Average RMSE as a function of the training set size: (left) linear data, (middle)
nonlinear data, (right) for different values of the rank parameter.

Table 1: RMSE on forecasting task.

Data set ADMM Greedy HOPLS HOLRR K-HOLRR
(poly)

K-HOLRR
(rbf)

CCDS 0.8448 0.8325 0.8147 0.8096 0.8275 0.7913
Foursquare 0.1407 0.1223 0.1224 0.1227 0.1223 0.1226
Meteo-UK 0.6140 − 0.625 0.5971 0.6107 0.5886

To see how sensitive HOLLR is w.r.t. the choice of the multilinear rank, we carried out a
similar experiment comparing HOLLR performances for different values of the rank parameter,
see Fig. 2 (right). In this experiment, the rank of the tensor W used to generate the data is
(2, 2, 2, 2) while the input and output dimensions and the noise level are the same as above.

4.2 Real Data

We evaluate our algorithm on a forecasting task on the following real-world data sets:
CCDS: the comprehensive climate data set is a collection of climate records of North America
from [15]. The data set contains monthly observations of 17 variables such as Carbon dioxide
and temperature spanning from 1990 to 2001 across 125 observation locations.
Foursquare: the Foursquare data set [14] contains users’ check-in records in Pittsburgh
area categorized by different venue types such as Art & University. It records the number of
check-ins by 121 users in each of the 15 category of venues over 1200 time intervals.
Meteo-UK: The data set is collected from the meteorological office of the UK2. It contains
monthly measurements of 5 variables in 16 stations across the UK from 1960 to 2000.
The forecasting task consists in predicting all variables at times t+ 1,. . . , t+ k from their
values at times t− 2, t− 1 and t. The first two real data sets were used in [2] with k = 1 (i.e.
outputs are matrices). We consider here the same setting for these two data sets. For the
third dataset we consider higher-order output tensors by setting k = 5. The output tensors
are thus of size respectively 17× 125, 15× 121 and 16× 5× 5 for the three datasets.
For all the experiments, we use 90% of the available data for training and 10% for testing.
All hyper-parameters are chosen by cross-validation. The average test RMSE over 10 runs
are reported in Table 1 (running times are reported in Table 1 in supplementary material B).
We see that HOLRR and K-HOLRR outperforms the other methods on the CCDS dataset
while being orders of magnitude faster for the kernelized version (0.61s vs. 75.47s for Greedy
and 235.73s for ADMM in average). On the Foursquare dataset HOLRR performs as well as
Greedy and on the Meteo-UK dataset K-HOLRR gets the best results with the RBF kernel
while being much faster than ADMM (1.66s vs. 40.23s in average).

5 Conclusion

We proposed a low-rank multilinear regression model for tensor-structured output data. We
developed a fast and efficient algorithm to tackle the multilinear rank penalized minimization
problem and provided theoretical guarantees. Experimental results showed that capturing
low-rank structure in the output data can help to improve tensor regression performance.

2
http://www.metoffice.gov.uk/public/weather/climate-historic/

8

http://www.metoffice.gov.uk/public/weather/climate-historic/


Acknowledgments
We thank François Denis and the reviewers for their helpful comments and suggestions. This
work was partially supported by ANR JCJC program MAD (ANR- 14-CE27-0002).

References
[1] T. W. Anderson. Estimating linear restrictions on regression coefficients for multivariate normal

distributions. Annals of Mathematical Statistics, 22:327–351, 1951.
[2] M. T. Bahadori, Q. R. Yu, and Y. Liu. Fast multivariate spatio-temporal analysis via low rank

tensor learning. In NIPS. 2014.
[3] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from

examples without local minima. Neural networks, 2(1):53–58, 1989.
[4] A. Cichocki, R. Zdunek, A.H. Phan, and S.I. Amari. Nonnegative Matrix and Tensor Factor-

izations. Wiley, 2009.
[5] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition.

SIAM journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.
[6] R. Foygel, M. Horrell, M. Drton, and J. D. Lafferty. Nonparametric reduced rank regression.

In NIPS, 2012.
[7] S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via

convex optimization. Inverse Problems, 27(2):025010, 2011.
[8] N. Halko, P. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic

algorithms for constructing approximate matrix decompositions. SIAM, 53(2):217–288, 2011.
[9] C. J. Hillar and L. Lim. Most tensor problems are np-hard. JACM, 60(6):45, 2013.

[10] A. J. Izenman. Reduced-rank regression for the multivariate linear model. Journal of Multivariate
Analysis, 5(2):248–264, 1975.

[11] A. J. Izenman. Modern Multivariate Statistical Techniques: Regression, Classification, and
Manifold Learning. Springer-Verlag, New York, 2008.

[12] P. Kar and H. Karnick. Random feature maps for dot product kernels. In AISTATS, 2012.
[13] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review,

51(3):455–500, 2009.
[14] X. Long, L. Jin, and J. Joshi. Exploring trajectory-driven local geographic topics in foursquare.

In UbiComp, 2012.
[15] A. C. Lozano, H. Li, A. Niculescu-Mizil, Y. Liu, C. Perlich, J. Hosking, and N. Abe. Spatial-

temporal causal modeling for climate change attribution. In KDD, 2009.
[16] H. Lu, K.N. Plataniotis, and A. Venetsanopoulos. Multilinear Subspace Learning: Dimensionality

Reduction of Multidimensional Data. CRC Press, 2013.
[17] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT, 2012.
[18] A. Mukherjee and J. Zhu. Reduced rank ridge regression and its kernel extensions. Statistical

analysis and data mining, 4(6):612–622, 2011.
[19] M. Nickel and V. Tresp. An analysis of tensor models for learning on structured data. In

Machine Learning and Knowledge Discovery in Databases, pages 272–287. Springer, 2013.
[20] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, 2007.
[21] G.C. Reinsel and R.P. Velu. Multivariate reduced-rank regression: theory and applications.

Lecture Notes in Statistics. Springer, 1998.
[22] B. Romera-Paredes, M. H. Aung, N. Bianchi-Berthouze, and M. Pontil. Multilinear multitask

learning. In ICML, 2013.
[23] M. Signoretto, L. De Lathauwer, and J. K. Suykens. Learning tensors in reproducing kernel

hilbert spaces with multilinear spectral penalties. arXiv preprint arXiv:1310.4977, 2013.
[24] M. Signoretto, Q. T. Dinh, L. De Lathauwer, and J. K. Suykens. Learning with tensors: a

framework based on convex optimization and spectral regularization. Mach. Learn., 1–49, 2013.
[25] N. Srebro, N. Alon, and T. S. Jaakkola. Generalization error bounds for collaborative prediction

with low-rank matrices. In NIPS, 2004.
[26] Hugh E Warren. Lower bounds for approximation by nonlinear manifolds. Transactions of the

American Mathematical Society, 133(1):167–178, 1968.
[27] K. Wimalawarne, M. Sugiyama, and R. Tomioka. Multitask learning meets tensor factorization:

task imputation via convex optimization. In NIPS. 2014.
[28] Q. Zhao, C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka, N. Fujii, L. Zhang, and

A. Cichocki. Higher-order partial least squares (hopls). IEEE Trans. on Pattern Analysis and
Machine Intelligence, 35(7):1660–1673, 2012.

[29] Q. Zhao, Guoxu Z., T. Adalı, L. Zhang, and A. Cichocki. Kernel-based tensor partial least
squares for reconstruction of limb movements. In ICASSP, 2013.

[30] H. Zhou, L. Li, and H. Zhu. Tensor regression with applications in neuroimaging data analysis.
Journal of the American Statistical Association, 108(502):540–552, 2013.

9



Low-Rank Regression with Tensor Responses
(Supplementary Material)

Guillaume Rabusseau and Hachem Kadri
Aix Marseille Univ, CNRS, LIF, Marseille, France

{firstname.lastname}@lif.univ-mrs.fr

A Proofs

A.1 Proof of Theorem 1

Theorem. For given orthogonal matrices U0, · · · ,Up the tensor G that minimizes (2) is
given by

G = Ỹ ×1 (U>0 X̃>X̃U0)−1U>0 X̃> ×2 U>1 ×3 · · · ×p+1 U>p .

Proof. Since the Frobenius norm of a tensor is equal to the one of its vectorization the
objective function in (2) can be written as

‖(Up ⊗Up−1 ⊗ · · · ⊗U1 ⊗ X̃U0)vec(G)− vec(Ỹ)‖2
F .

Let M = Up ⊗Up−1 ⊗ · · · ⊗U1 ⊗ X̃U0. The solution w.r.t. vec(G) of this classical linear
least-squares problem is given by (M>M)−1M>. Using the mixed-product and inverse
properties of the Kronecker product and the column-wise orthogonality of U1, · · · ,Up we
obtain vec(G) =

(
Up ⊗ · · · ⊗U1 ⊗ (U>0 X̃>X̃U0)−1U>0 X̃>

)
vec(Ỹ).

A.2 Proof of Proposition 1

Proposition. For 0 ≤ i ≤ p, using the definition of Πi in (3), the optimal solution of

min
Ui∈Rdi×Ri

‖Ỹ ×i+1 Πi − Ỹ‖2
F s.t. U>i Ui = I

is given by the eigenvectors of{
(X̃>X̃)−1X̃>Ỹ(1)Ỹ>(1)X̃ if i = 0
Ỹ(i)Ỹ>(i) otherwise

that corresponds to the Ri largest eigenvalues.

Proof. For any 0 ≤ i ≤ p, since Πi is a projection we have 〈Ỹ ×1 Πi, Ỹ〉 = 〈ΠiỸ(i), Ỹ(i)〉 =
‖ΠiỸ(i)‖2

F , thus minimizing ‖Ỹ ×i Πi − Ỹ‖2
F is equivalent to minimizing ‖ΠiỸ(i)‖2

F −
2〈ΠiỸ(i), Ỹ(i)〉 = −‖ΠiỸ(i)‖2

F . For i ≥ 1, we have ‖ΠiỸ(i)‖2
F = Tr(U>i Ỹ(i)Ỹ>(i)Ui) which

is maximized by letting the columns of Ui be the top Ri eigenvectors of the matrix Ỹ(i)Ỹ>(i).
For i = 0 we have ‖Π0Ỹ(i)‖2

F = Tr(Π0Ỹ(1)Ỹ>(1)Π
>
0 ) = Tr

(
(U>0 AU0)−1U>0 BU0

)
with

A = X̃>X̃ and B = X̃>Ỹ(1)Ỹ>(1)X̃, which is maximized by the top R0 eigenvectors of
A−1B.
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A.3 Proof of Proposition 2

Proposition. If α ∈ RN is an eigenvector with eigenvalue λ of the matrix

(K + γI)−1Y(1)Y>(1)K ,

then v = Φ>α ∈ RL is an eigenvector with eigenvalue λ of the matrix (Φ>Φ +
γI)−1Φ>Y(1)Y>(1)Φ.

Proof. Let α ∈ RN be the eigenvector from the hypothesis. We have

λv = Φ>(λα) = Φ>
(

(K + γI)−1Y(1)Y>(1)K
)

α

= Φ>(ΦΦ> + γI)−1Y(1)Y>(1)ΦΦ>α

=
(

(Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ
)

v .

A.4 Proof of Theorem 2

Theorem. Let W∗ be a solution of problem (1) and let W be the regression tensor returned
by Algorithm 1. If L : Rd0×···×dp → R denotes the objective function of (1) with respect to
W then

L(W) ≤ (p+ 1)L(W∗).

The proof of this theorem relies on the following lemma which was proved in [1] to obtain a
nice and elegant proof for the approximation guarantees of the HOSVD algorithm for the
problem of low multilinear rank approximation of a given tensor.
Lemma 1. Let T ∈ Rd1×···×dp be a pth order tensor, let m,n ∈ [p], and let P ∈ Rdm×dm

and Q ∈ Rdn×dn be two orthogonal projection matrices. Then

‖T − T ×m P×n Q‖2
F ≤ ‖T − T ×m P‖2

F + ‖T − T ×n Q‖2
F .

Proof. First observe that for any orthogonal projection matrix Π and any tensors A,B we
have

‖A×n Π‖2
F ≤ ‖A‖2

F and ‖A×n (I−Π) + B×n Π‖2
F = ‖A×n (I−Π)‖2

F + ‖B×n Π‖2
F .

Both equations follow from the fact that the Frobenius norm of a tensor is equal to the one
of any of its matricization. Indeed

‖A×n Π‖2
F = ‖ΠA(n)‖2

F ≤ ‖A(n)‖2
F = ‖A‖2

F

since Π is a projection. The second equality is proved similarly using the orthogonality of Π
and I−Π.
Then, under the hypothesis of the lemma, we have

‖T − T ×m P×n Q‖2
F = ‖T ×m (I−P) + (T − T ×n Q)×m P‖2

F

= ‖T ×m (I−P)‖2
F + ‖(T − T ×n Q)×m P‖2

F

≤ ‖T − T ×m P‖2
F + ‖T − T ×n Q‖2

F .

Let U0, · · · ,Up be the matrices defined in Algorithm 1 and let Π0, · · · ,Πp be the orthogonal
projection matrices defined in problem (3). The regression tensor W returned by HOLRR
satisfies

W ×1 X̃ = Ỹ ×1 Π0 ×2 · · · ×p+1 Πp.

Similarly, it follows from Theorem 1 that a solution W∗ of problem (1) satisfies

W∗ ×1 X̃ = Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p

for some orthogonal projection matrices Π∗i for 0 ≤ i ≤ p.
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Using successive applications of the previous Lemma we obtain

L(W) = ‖W ×1 X̃− Ỹ‖2
F = ‖Ỹ ×1 Π0 ×2 · · · ×p+1 Πp − Ỹ‖2

F ≤
p∑
i=0
‖Ỹ ×i+1 Πi − Ỹ‖2

F .

By Proposition 1, each summand in this upper bound is minimal with respect to Πi, hence
‖Ỹ ×i+1 Πi − Ỹ‖2

F ≤ ‖Ỹ ×i+1 Π∗i − Ỹ‖2
F for any i ∈ [p]. It remains to show that

‖Ỹ ×i+1 Π∗i − Ỹ‖2
F ≤ ‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2

F = L(W∗)

for all i ∈ [p]. Indeed, using the fact that the Frobenius norm of a tensor is equal to the one
of its matricization, we obtain for the case i = 0

‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2 = ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1)> − Ỹ(1)‖2
F

= ‖(Π∗0 − Id0)Ỹ(1) + Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp
)>‖2

F

= ‖(Π∗0 − Id0)Ỹ(1)‖2
F + ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp

)>‖2
F

≥ ‖(Π∗0 − Id0)Ỹ(1)‖2
F

= ‖Ỹ ×1 Π∗0 − Ỹ‖2
F

where we used the orthogonality of Π∗0 and Π∗0 − Id0 . The proofs for other values of i are
similar.

A.5 Proof of Theorem 3

We start by bounding the pseudo-dimension of the class of real-valued functions with domain
Rd0 × [d1]× · · · × [dp]

F̃ =
{

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : rank(W) = (R0, · · · , Rp)
}
.

We first recall the definition of the pseudo-dimension of a class of real-valued functions.
Definition 1. A class F of real-valued functions pseudo-shatters the points x1, · · · , xm with
thresholds t1, · · · , tm if for every binary labeling of the points (s1, · · · , sm) ∈ {−,+}m there
exists f ∈ F s.t. f(xi) < ti iff si = −. The pseudo-dimension of a class F is the supremum
over m for which there exist m points that are pseudo-shattered by F (with some thresholds).

We say that a set of polynomials p1, p2, · · · , pk has at least m sign patterns if there exist
x1, · · · , xm such that such that the sign vectors vi = [sign(p1(xi)), · · · , sign(pk(xi))]> are
pairwise distinct. Following [4], the following theorem bounds the number of sign patterns
for a set of polynomials.
Theorem. [3, Theorem 34, 35] The number of sign patterns of r polynomials, each of degree
at most d, over q variables is at most

(
4edr
q

)q
for all r > q > 2.

The following lemma gives an upper bound on the pseudo-dimension of F̃ using the previous
theorem.
Lemma 2. The pseudo-dimension of the real-valued function class F̃ is upper bounded by
(R0R1 · · ·Rp +

∑p
i=0 Ridi) log

(
4e(p+2)d0d1···dp

d0+d1+···+dp

)
.

Proof. It is well known that the pseudo-dimension of a vector space of real-valued functions
is equal to its dimension [2, Theorem 10.5]. Since F̃ is a (non-linear) subspace of the
d0d1 · · · dp-dimensional vector space{

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : W ∈ Rd0×···×dp
}

of real-valued functions with domain Rd0 × [d1]× · · · × [dp], the pseudo-dimension of F̃ is
bounded by d0d1 · · · dp.

Now, let m ≤ d0 · · · dp and let {(xk, ik1 , · · · , ikp)}mk=1 be a set of points that are pseudo-
shattered by F̃ with thresholds t1, · · · , tm ∈ R. Then for each sign pattern (s1, · · · , sm) ∈
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{−,+}m, there exists f̃ ∈ F̃ such that sign(f̃(xk, ik1 , · · · , ikp)− tk) = sk. Any function f̃ ∈ F̃
can be written as

(x, j1, · · · , jp) 7→
(
G ×1 x>U0 ×2 U1 · · · ×p+1 Up

)
j1,··· ,jp

for some G ∈ RR0×···×Rp , Ui ∈ Rdi×Ri for 0 ≤ i ≤ p. Thus, considering the entries of
G,U0, · · · ,Up as variables, the set {f̃(xk, ik1 , · · · , ikp) − tk}mk=1 can be seen as a set of m
polynomials of degree at most p + 2 over these D = R0 · · ·Rp +

∑p
i=0 diRi variables. It

then follows from the previous theorem that 2m ≤
(

4e(p+2)m
D

)D
. The result follows using

m ≤ d0 · · · dp and D ≥
∑p
i=0 di.

Once the pseudo-dimension of the function class F̃ is bounded, one can invoke standard
error generalization bounds in terms of the pseudo-dimension [2, Theorem 10.6] to obtain
the following theorem that gives an upper bound on the excess risk for the class of function

F = {x 7→W •1 x : rank(W) = (R0, · · · , Rp)} .
Theorem. Let L : Rd1×···×dp → R be a loss function satisfying

L(A,B) = 1
d1 · · · dp

∑
i1,··· ,ip

`(Ai1,··· ,ip ,Bi1,··· ,ip)

for some loss function ` : R→ R+ bounded by M . Then for any δ > 0, with probability at
least 1− δ over the choice of a sample of size N , the following inequality holds for all h ∈ F :

R(h) ≤ R̂(h) +M

√√√√2D log
(

4e(p+2)d0d1···dp

d0+d1+···+dp

)
logN

N
+M

√
log
( 1
δ

)
2N

where D = R0R1 · · ·Rp +
∑p
i=0 Ridi.

Proof. For any h : Rd0 → Rd1×···×dp we define h̃ : Rd0 × [d1] × · · · × [dp] → R by
h̃(x, i1, · · · , ip) = h(x)i1···ip . Let D denote the distribution of the input data. We have

R(h) = E
x∼D

[L(f(x), h(x))] = 1
d1 · · · dp

∑
i1,··· ,ip

E
x∼D

[`(f(x)i1···ip , h(x)i1···ip)]

= E
x∼D

ik∼U(dk),k∈[p]

[`(f̃(x, i1, · · · , ip), h̃(x, i1, · · · , ip))]

where U(k) denotes the discrete uniform distribution on [k] for any integer k ≥ 1. It follows
that R(h) = R(h̃). Similarly, one can show that R̂(h) = R̂(h̃). The result then directly
follows using Theorem 10.6 in [2] (see below) to bound R(h̃)− R̂(h̃).

Theorem (Theorem 10.6 in [2]). Let H be a family of real-valued functions and let G =
{x 7→ L(h(x), f(x)) : h ∈ H} be the family of loss functions associated to H. Assume that
the pseudo-dimension of G is bounded by d and that the loss function L is bounded by M .
Then, for any δ > 0, with probability at least δ over the choice of a sample of size m, the
following inequality holds for all h ∈ H:

R(h) ≤ R̂(h) +M

√
2d log

(
em
d

)
m

+M

√
log
( 1
δ

)
2m .

B Experiments

B.1 Running Times

The running times of different tensor response regression algorithms on synthetic and real
data sets are given in Table 1.
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Table 1: Average running times in seconds for some of the experiments. We did not run
MLMT-NC on the real world data sets because it is computationally very expensive. The
implementation of the Greedy algorithm is limited to 2nd order output tensors, this is why
we did not run it on the synthetic and Meteo UK data sets. Finally, the synthetic non linear
data was generated using a polynomial relation which is why the RBF kernel was not used
on this data set.

Data set MLMTL-NC ADMM Greedy HOPLS HOLRR K-HOLRR
(poly)

K-HOLRR
(rbf)

Synthetic 945.79 12.92 − 0.12 0.04 0.53 −
CCDS − 235.73 75.47 121.28 100.94 0.46 0.61

Foursquare − 33.83 37.70 22.3 14.41 19.20 19.67
Meteo UK − 40.23 − 2.12 1.67 1.57 1.66

B.2 Image Reconstruction from Noisy Measurements

To give an illustrative intuition on the differences between matrix and multilinear rank
regularization we generate data from the model Y = W •1 x + E where the tensor W is a
color image of size m× n encoded with three color channels RGB. We consider two different
tasks depending on the input dimension: (i) W ∈ R3×m×n, x ∈ R3 and (ii) W ∈ Rn×m×3,
x ∈ Rn. In both tasks the components of both x and E are drawn from N (0, 1) and the
regression tensor W is learned from a training set of size 200.
This experiment allows us to visualize the tensors returned by the RLS, LRR and HOLRR
algorithms. The results are shown in Figure 1 for three images: a green cross (of size 50×50),
a thumbnail of a Rothko painting (44× 70) and a square made of triangles (70× 70), note
that the first two images have a low rank structure which is not the case for the third one.
We first see that HOLRR clearly outperforms LRR on the task where the input dimension is
small (task (i)). This is to be expected since the rank of the matrix W(1) is at most 3 and
LRR is unable to enforce a low-rank structure on the output modes of W . When the rank
constraint is set to 1 for LRR and (3, 1, 1) for HOLRR, we clearly see that (unlike HOLRR)
the LRR approach does not enforce any low-rank structure on the regression tensor along
the output modes. On task (ii) the difference is more subtle, but we can see that setting a
rank constraint of 2 for the LRR algorithm prevents the model from capturing the white
border around the green cross and creates the vertical lines artifact in the Rothko painting.
For higher values of the rank the model starts to learn the noise. The tensor returned by
HOLRR with rank (2, 2, 3) for the cross image and (4, 4, 3) for the Rothko painting do not
exhibit these behaviors and give better results on these two images. On the square image
which does not have a low-rank structure both algorithms exhibit underfitting for low values
of the rank parameter. Overall, we see that capturing the multilinear low-rank structure of
the output data allows HOLRR to separate the noise from the true signal better than RLS
and LRR.
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target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

target HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (6, 6, 3) HOLRR (8, 8, 3)

RLS LRR 2 LRR 4 LRR 6 LRR 8

Figure 1: Image reconstruction from noisy measurements: Y = W •1 x + E where W is a
color image (RGB). (left) Task (i): input dimension is the number of channels. (right) Task
(ii): input dimension is the height of the image. Each image is labeled with the name of the
algorithm followed by the value used for the rank constraint.
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