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Résumé

La communauté de l’apprentissage automatique a récemment porté un intérêt gran-
dissant aux tenseurs. Les tenseurs généralisent les vecteurs et les matrices aux ordres
supérieurs : un tenseur d’ordre 3 peut être vu comme un tableau tridimensionnel de
scalaires. D’un point de vue algébrique, à l’instar des matrices qui représentent des
applications linéaires, les tenseurs représentent des applications multilinéaires.

La connexion la plus évidente entre les tenseurs et l’apprentissage automatique ap-
paraît lorsque les données ont une structure tensorielle : une image couleur peut être
représentée par un tenseur d’ordre 3 (de dimensions largeur, hauteur et nombre de
canaux), tout comme des données d’électroencéphalographie ou encore des séries tem-
porelles multivariées. Plus fondamentalement, les tenseurs peuvent intervenir en tant
que paramètres de modèles utilisés en apprentissage automatique, comme c’est le cas
pour les séries reconnaissables d’arbres, ou encore comme outils algébriques servant à
élaborer des algorithmes d’apprentissage.

Ce manuscrit regroupe différents travaux explorant ces interactions entre les tenseurs
et l’apprentissage automatique. Le premier chapitre est consacré à l’extension des mod-
èles de séries reconnaissables de chaînes et d’arbres aux graphes. Nous y montrons que
les modèles d’automates pondérés de chaînes et d’arbres peuvent être interprétés d’une
manière simple et unifiée à l’aide de réseaux de tenseurs, et que cette interprétation
s’étend naturellement aux graphes ; nous étudions ensuite certaines propriétés fonda-
mentales de ce modèle et présentons des résultats préliminaires sur leur apprentissage.
Le second chapitre porte sur la minimisation approximée d’automates pondérés d’arbres
et propose une approche théoriquement fondée à la problématique suivante : étant
donné un automate pondéré d’arbres à n états, comment trouver un automate à m < n
états calculant une fonction proche de l’originale. Ces travaux généralisent des résultats
récents sur la minimisation approximée d’automates pondérés de chaînes. Le troisième
chapitre traite de la régression de faible rang pour sorties à structure tensorielle. Nous
y proposons un algorithme d’apprentissage rapide et efficace pour traiter un problème
de régression dans lequel les entrées sont des vecteurs et les sorties des tenseurs. Nous
montrons que l’algorithme proposé est un algorithme d’approximation pour ce prob-
lème NP-difficile et nous donnons une analyse théorique des propriétés statistiques et
de généralisation de cet algorithme. Enfin, le quatrième chapitre introduit le modèle de
mélanges algébriques de distributions. Ce modèle considère des combinaisons affines de
distributions (où les coefficients somment à un mais ne sont pas nécessairement positifs).
Ces mélanges apparaissent naturellement dans le contexte des séries reconnaissables de
chaînes et permettent de modéliser des phénomènes de bruitage d’observation (e.g. bi-
ais d’échantillonnage). Nous proposons une approche pour l’apprentissage de mélanges
algébriques qui étend la méthode tensorielle des moments introduite récemment. Cette
approche nous permet en particulier d’obtenir un algorithme d’apprentissage pour les
mélanges algébriques de Gaussiennes sphériques.
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Abstract

Recently, there has been an increasing interest from the machine learning community
towards tensors. Tensors are a generalization of vectors and matrices to higher orders:
a 3rd order tensor can be seen as a 3-dimensional array of scalars. From an algebraic
perspective, matrices represent linear maps while tensors represent multilinear maps.

The more obvious connection between machine learning and tensors arises when the
data is naturally structured as a tensor: color images can for example be seen as 3rd
order tensors (of dimensions width, height and number of channels), which is also the
case for multivariate time series (e.g. electroencephalogram signals). Tensors can also
appear in a more fundamental way as parameters of machine learning models, which
is the case for weighted tree automata, or as efficient tools used to design learning
schemes.

This thesis tackles several problems exploring these connections between tensors and
machine learning. In the first chapter, we propose an extension of the classical notion
of recognizable function on strings and trees to graphs. We first show that the compu-
tations of weighted automata on strings and trees can be interpreted in a natural and
unifying way using tensor networks, which naturally leads us to define a computational
model on graphs: graph weighted models; we then study fundamental properties of this
model and we present preliminary results on learning graph weighted models on the
simple family of circular strings. The second chapter tackles a model reduction problem
for weighted tree automata. We extend recent results on approximate minimization of
weighted string automata and we propose a principled approach to the following prob-
lem: given a weighted tree automaton with n states, how can we find an automaton with
m < n states that is a good approximation of the original automaton? The motivation
behind this problem is to reduce the complexity of algorithms working with weighted
tree automata at the price of incurring a controlled amount of error in the output of
such algorithms. In the third chapter, we consider a problem of low rank regression
for tensor structured outputs. We design a fast and efficient algorithm to address a re-
gression task where the inputs are vectors and the outputs are tensors. We show that
this algorithm generalizes the reduced rank regression method and that it offers good
approximation, statistical and generalization guarantees. Lastly in the fourth chapter,
we introduce the algebraic mixture model. This model considers affine combinations
of probability distributions (where the weights sum to one but may be negative). We
show that algebraic mixtures naturally appear in a fundamental relation between prob-
abilistic and weighted automata, and that they could prove useful to model missing data
scenario such as selection bias. We extend the recently proposed tensor method of mo-
ments to algebraic mixtures, which allows us in particular to design a learning algorithm
for algebraic mixtures of spherical Gaussian distributions.
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Introduction

Over the past decades machine learning has become a prominent subfield of computer
sciences that is developing at an impressive rate. Quoting Arthur Samuela, machine
learning is a “field of study that gives computers the ability to learn without being ex-
plicitly programmed”. As an illustration, suppose that we want to write an algorithm
able to distinguish images of the digit 8 from images of the digit 9. One way to proceed
would be to first use image processing tools to count the number of loops in the image,
and then classify the image as a 9 if there is only one loop and as an 8 if there are
two. This approach directly encodes prior knowledge into the classification algorithm.
Machine learning takes a different road and aims at designing algorithms capable of in-
ferring discriminant features from a set of labeled examples: given a set of images of 8’s
and 9’s the learner (i.e. the learning algorithm) will try to find rules to distinguish images
from the two classes and will then be able to use these rules to classify unseen images
of digits as representing an 8 or a 9. Machine learning is now a very rich and diverse
discipline that is rapidly taking a considerable importance in our everyday life, from au-
tomatically detecting spam messages in our mail in-boxes to cars driving by themselves,
from targeting advertisements according to user’s profiles to predicting heart failures,
and from suggesting which movie we should watch this evening to helping reduce wait
times in emergency rooms.

Roughly speaking, machine learning tasks can be divided into two main categories:
supervised and unsupervised learning tasks. In a supervised learning setting the learner
is given a set of input/output pairs {(x1, y1), (x2, y2), · · · , (xN , yN )} ⊂ X × Y (where
X and Y are the input and output spaces respectively) from which it tries to infer a
function f : X → Y mapping inputs to outputs. One example of such a task is the
classification example described above where X is the set of images of the digits 8 and
9 and Y = {−1,+1} with f(x) = −1 if x is an image of the digit 8 and f(x) = +1
otherwise. In an unsupervised setting the learner is given a sample of unlabeled points
{x1, · · · , xN} ⊂ X from which it tries to reveal some hidden structure. One example of
an unsupervised task is clustering where the learner has to identify groups of points that
are similar to each other. Going back to the digits examples, even if the learner does not
know which images represent an 8 and which images represent a 9, it could still be able
to determine that there are two main groups in the training sample (e.g. images with
one loop and the ones with two loops).

The input examples of a machine learning algorithm are often given as a set of points
in a vector space {x1, · · · ,xN} ⊂ Rd. Consequently, a wide range of machine learning
algorithms deeply relies on linear algebra tools. Linear algebra is the branch of math-

aArthur Samuel (December 5, 1901 – July 29, 1990) was an American pioneer in artificial intelligence
and machine learning. Its checkers playing program (Samuel, 1959) appears to be the first self-
learning program.
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ematics that studies vector spaces and linear mappings between these spaces (Lang,
1987). For example, in the digit classification example the images can be represented as
points in a d-dimensional vector space. The learner can then try to find a vector w ∈ Rd
such that the inner product 〈w,xn〉 is negative if xn is an image of an 8 and positive
otherwise. A related task is the one of regression, where the outputs of the function to
be learned are real values instead of classes (i.e. the output space Y is continuous in-
stead of discrete). One example of such a task would be to predict the selling price of a
house given its characteristics (e.g. number of rooms, surface, neighborhood, etc.). For
a regression task, where the learner has to infer a real-valued function f : Rd → R from
a training sample {(x1, y1), · · · , (xN , yN )} ⊂ Rd × R, one strategy consists in finding a
regression vector w ∈ Rd such that 〈w,xn〉 is close to yn for all n. If by close we mean
that (〈w,xn〉−yn)2 is as small as possible throughout the whole training sample, finding
the vector w boils down to solving a linear system of equations which can be done using
simple linear algebra operations such as matrix products and inversions. More elabo-
rate tools from linear algebra are also commonly used in machine learning. There is for
example a great variety of machine learning methods gathered under the term spectral
methods. These methods have in common the fact that they leverage spectral proper-
ties of some matrices (i.e. properties of eigenvectors and eigenvalues of the matrix).
Principal Component Analysis (PCA) is a famous example where one wants to project a
set of points onto a low-dimensional subspace (see e.g. Jolliffe, 2002). PCA consists in
projecting the set of points onto the axes of largest possible variance and boils down to
a singular value decomposition of the covariance matrix.

In the recent years, the machine learning community has shown an increasing inter-
est towards tensors and multilinear algebra. Tensors are a generalization of vectors and
matrices to higher orders: while a vector can be seen as a 1-dimensional array and a
matrix as a 2-dimensional array, higher order tensors can be seen as multi-dimensional
arrays. A vector is a tensor of order 1, a matrix is a tensor of order 2, and a 3rd or-
der tensor can simply be seen as a 3-dimensional array of numbers. While linear alge-
bra focuses on the study of linear maps — mappings between vectors spaces satisfying
f(αx+βx′) = αf(x)+βf(x′) for any scalar α, β and vectors x,x′ — multilinear algebra
studies multilinear maps, i.e. mappings going from a cartesian product of vector spaces
V1×V2×· · ·×Vp to an output vector space W that are linear separately in each variable:

f(x1, · · · ,xi−1, αxi + βx′i,xi+1, · · · ,xp) = αf(x1, · · · ,xp) + βf(x1, · · · ,x′i, · · · ,xp)

for any scalars α, β, vectors x1 ∈ V1, · · · ,xp ∈ Vp,x′i ∈ Vi and any 1 ≤ i ≤ p. A
fundamental result in linear algebra states that any linear map f between two real vector
spaces of dimensions d and p respectively is uniquely determined by a matrix M ∈ Rd×p
once bases have been chosen for the input and output spaces. Similarly, a multilinear
map f : V1 × · · · × Vp → W is uniquely determined by a tensor T of order p + 1 once
bases have been chosen for the vector spaces V1, · · · , Vp and W .

Tensors and multilinear algebra are powerful tools that have been successfully used
in machine learning in the last decade. The works presented in this thesis are part
of this emerging effort to bring the power of multilinear algebra and tensors to
machine learning. The relevance of tensors to machine learning can be seen from
different perspectives.
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(1) Tensor structured data. First, the underlying object on which machine learning
reasons is data and it may happen that the data has a natural tensor structure. For
example a color image encoded with three color channels can naturally be inter-
preted as a 3rd order tensor of size width × height × 3, similarly a video can be
seen as a 4th order tensor where the 4th mode corresponds to the time dimension.
Another example of data having a natural tensor structure arises in the task of
spatio-temporal forecasting where a set of variables are observed in different loca-
tions across several time steps: the learning data could consist in meteorological
variables (such as rain level, temperatures and rate of sunshine) that are observed
in several cities across a country and for which we have access to monthly mea-
surements. This data can naturally be organized as a 3rd order tensor where the
different modes correspond to variables, cities and timestamps respectively (see
Chapter 4).

(2) Tensors as parameters of a model. Second, tensors may arise as parameters or
components of machine learning models. For example the factorization machines
introduced in (Rendle, 2010) consider a non-linear model to learn a function
f : Rd → R that takes into account polynomial features of the input x ∈ Rd, e.g.
f(x) =

∑
i αixi +

∑
i,j βi,jxixj +

∑
i,j,k γi,j,kxixjxk. The parameters of the model

(the coefficients αi, βi,j , γi,j,k in the previous example) can be seen as components
of a tensor, and tensor factorization techniques are used to reduce the number of
parameters of the model and to introduce some regularization. The same idea
was successfully applied in the context of multi-view learning where the learner
has access to several representations of the input examples. If the inputs are im-
ages the views could consist in different descriptors such as SIFT, histograms, etc.
In (Cao et al., 2016) the authors propose to take into account multiplicative inter-
actions between the different views using a model closely related to factorization
machines.

Another example of models parameterized by tensors are weighted tree automata.
Classical automata on words and trees are finite state machines that run on some
input (a word or a tree) in discrete time steps and can either accept or reject the
input. Rather than simply accept or reject an input, a weighted automaton will
take as input a string or a tree and will output a value in some semi-ring, e.g. a
real number. Thus weighted automata are computational devices that modelize
functions whose domain is a set of structured objects (e.g. strings or trees). In
particular, weighted automata can compute probability distributions on strings or
trees and therefore are relevant to machine learning. Weighted tree automata
are traditionally defined by means of multilinear maps (Berstel and Reutenauer,
1982), henceforth the parameters of a weighted tree automaton can be thought of
as tensors (see Chapters 2 and 3).

(3) Tensors as tools. Third, tensors may simply arise as efficient tools to design learn-
ing schemes. This is the case for the tensor method of moments proposed in (Anand-
kumar et al., 2014). This method is a special case of the general method of mo-
ments used to infer the parameters of a parametric distribution from a sample of
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training data drawn from this distribution. The connection with tensors comes
from the fact that the pth order moment of a vector random variable is a pth order
tensor. The tensor method of moments relies on deriving polynomial equations
relating the higher-order moments of a random variable with the parameters of
the distribution, and solving the resulting system of equations using tensor decom-
position techniques (see Chapter 5). Reducing a learning problem to finding a
decomposition of an observable tensor has also been investigated for blind source
decomposition and independent component analysis in the signal processing com-
munity (see e.g. Cardoso, 1990; Cichocki et al., 2009b; Cichocki et al., 2015).
Tensor decomposition techniques are also recently getting attention from the neu-
ral network community where it has been shown that several tensor decomposition
techniques can be used to compress the weight matrices of hidden layers, and lead
to a considerable speedup of computations at inference time (see e.g. Novikov et
al., 2015; Lebedev et al., 2014). Similarly, using tensor decomposition techniques
to speedup parsing with a probabilistic context-free grammar has been explored
in (Cohen et al., 2013; Collins and Cohen, 2012).

In this thesis we will tackle several problems illustrating these connections between
machine learning and tensors. The first two are related to weighted automata and in-
volve models that are parameterized by a set of tensors: we will propose an extension
of the classical notion of recognizable string and tree series to graphs, and a principled
approach for approximate minimization of weighted tree automata. The third problem
concerns a regression task where the output data has a natural tensor structure and will
be addressed using tensor decomposition techniques. Lastly, we will study the problem
of learning algebraic mixtures (i.e. affine combinations of probability distributions) and
derive an extension of the tensor method of moments to this setting.

Outline of the thesis.

• Chapter 1 is devoted to the introduction of the fundamental objects that are at
the core of this thesis: tensors. We will introduce our notations, common notions
and operations on tensors, and tensor decomposition techniques. We will also
introduce tensor network diagrams that allow one to represent computation on
tensors in a graphical and intuitive way: a tensor network is a graph where the
nodes are tensors and where edges represent contractions between the tensors in
the graph.

• In Chapter 2, we first show how computations of a weighted automaton on strings
or trees can be interpreted as a simple mapping between the input (a string or a
tree) and a tensor network reflecting its structure. This interpretation suggests a
natural extension of weighted automata to labeled graphs and leads us to define
the novel notion of Graph Weighted Models (GWM). A major part of this chapter is
dedicated to the study of theoretical properties of GWMs. More precisely, we study
on which conditions properties that are desirable for a model extending weighted
automata on strings and trees are satisfied: is the set of functions that can be
computed by a GWM closed under sum, Hadamard (pointwise) product and scalar
multiplication? Is a GWM able to compute any finite support functions (i.e. a
function taking non-zero values only on a finite set of graphs)?

4



This work is motivated by our aspiration to extend existing spectral learning meth-
ods for weighted automata on strings and trees to functions defined over graphs.
The last part of this chapter presents preliminary results in this direction by con-
sidering a learning problem for GWMs defined over a very simple family of graphs:
circular strings. Roughly speaking, circular strings are strings that are closed onto
themselves and they are in some sense the simplest family of graphs with loops. Af-
ter showing that a function computed by a GWM on circular strings can be learned
using learning algorithms for traditional weighted automata on strings, we pro-
pose an alternative approach that relies on tensor decomposition techniques and
seems more promising to be extended to the problem of learning GWMs defined
over larger families of graphs.

• Chapter 3 tackles a model reduction problem for weighted tree automata (WTA)
and it extends the results presented in (Balle, Panangaden, and Precup, 2015) for
weighted automata on strings to the tree case. Without diving into the details, a
WTA can be parameterized by a set of tensors whose common dimension is called
the number of states. For example a WTA with n states computing a function
on (unlabeled) binary trees consists of two vectors α,ω ∈ Rn and a 3rd order
tensor T ∈ Rn×n×n. The problem we consider is the following: given a WTA with
n states and a target number of states n̂ < n, how can we find a WTA with n̂ states
that is a good approximation of the original automaton? The motivation behind
this problem is to reduce the complexity of algorithms working with WTA at the
price of incurring a small, controlled amount of error in the output of such algo-
rithms. We first introduce a canonical form for weighted tree automata where each
state of the automaton corresponds to a singular value of the infinite Hankel ma-
trix associated with the WTA. Once a WTA has been transformed into this canonical
form, the states associated with the smallest singular values are removed to obtain
the minimized model. The transformation of a WTA into this canonical form relies
on finding the singular value decomposition of the infinite Hankel matrix. Our
main result is an efficient algorithm for computing this singular value decomposi-
tion by operating directly on the WTA representation of the Hankel matrix; that is,
without the need to explicitly represent this infinite matrix at any point. The idea
of speeding up parsing with probabilistic context free grammar by approximating
the original model with a smaller one was recently studied in (Collins and Cohen,
2012; Cohen, Satta, and Collins, 2013), where a tensor decomposition technique
was used in order to obtain the minimized model. We compare that approach to
ours on experiments where both techniques are used to compute approximations
to a grammar learned from a corpus of real linguistic data.

• In Chapter 4 we consider a regression problem where the outputs are tensors. One
example of such a problem is the spatio-temporal forecasting task described above
where the outputs of the function f we want to learn are the values of different
meteorological variables in different cities (f would be a matrix-valued function
in this case). The method we propose is a generalization of the reduced rank re-
gression method where a linear function f : Rd0 → Rd1 is learned from a training
sample of input/output pairs by minimizing a least-square criterion subject to a
low-rank constraint; that is f : x 7→ W>x where W ∈ Rd0×d1 is of low rank.
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In the case where the outputs are higher order tensors we propose to replace the
rank constraint on the regression matrix W by a multilinear rank constraint on
a regression tensor W . The resulting optimization problem is NP-hard but we
manage to design an efficient approximation algorithm (HOLRR) for this problem.
After showing that HOLRR can easily be extended to the non-linear setting using
the so called kernel trick, we provide a theoretical analysis of HOLRR: we show
that HOLRR is computationally efficient and has good approximation guarantees,
we show that it generalizes reduced rank regression and that it is consistent, and
we provide a generalization bound for the class of tensor-valued regression func-
tions with low multilinear rank. Experiments on both synthetic and real world
data show that HOLRR outperforms multivariate and multilinear regression meth-
ods and can be considerably faster than existing tensor methods.

• Finally, Chapter 5 proposes an extension of the tensor method of moments pro-
posed in (Anandkumar et al., 2014) to algebraic mixture models. Traditional mix-
ture models are probability distributions that can be expressed as a mixture of
distributions: the probability density function of a mixture is given by f = w1f1 +
w2f2 + · · · + wkfk where each fi is a probability density function and the weights
wi satisfy 0 ≤ wi ≤ 1 and w1 + w2 + · · · + wk = 1. It may happen that the func-
tion f remains positive even if some of the weights wi are negative, in which case
f still defines a probability density function. We call such distributions algebraic
mixtures. In this chapter, we show how algebraic mixtures naturally appear in a
fundamental relation between weighted and probabilistic automata. We also pro-
vide some intuition on algebraic mixtures by showing that generating an example
from such a distribution can be interpreted as sampling an example from the pos-
itive components of the mixture and accepting or rejecting it with a probability
that depends on the negative components of the mixture. Thus a sample drawn
from an algebraic mixture can be seen as a sample drawn from the positive compo-
nents of the mixture where some of the data is missing. Using algebraic mixtures
of Gaussian distributions as an illustration, we propose an extension of the tensor
method of moments to this setting that we evaluate in a simulation study.
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Notations

[p] set of integers from 1 to p
|S|, |α| cardinal of the set S, absolute value/modulus of the scalar α
δij Kronecker symbol: equals 1 if i = j and 0 otherwise

α,v,M,T scalar, vector, matrix, tensor

In n× n identity matrix
M+ Moore-Penrose pseudoinverse of the matrix M

det(M) determinant of the matrix M
Tr(M) trace of the matrix M
〈X ,Y〉 inner product between vectors, matrices or tensors
‖ · ‖F Frobenius norm

span({v1, · · · ,vk}) linear span of a set of vectors (i.e. {
∑k
i=1 αivi})

V ⊗k kth order tensor product of the vector space V

vec(M), vec(T ) vectorization of a matrix/tensor
Mi,:, M:,j , T k,:,: ith row of M, jth column of M, kth mode-1 slice of T

T(k) mode-k matricization of the tensor T

x ◦ y outer product between vectors, matrices or tensors
x◦k kth tensor power x◦k = x ◦ x ◦ · · · ◦ x (k times)

x⊗ y Kronecker product (for vectors, matrices and higher-order tensors)
x⊗k kth Kronecker power x⊗k = x⊗ x⊗ · · · ⊗ x (k times)
X ⊕Y direct sum of two vectors/matrices/tensors
T ×k M mode-k matrix product
T •k v mode-k vector product

T (X1, · · · ,Xp) tensor as a multilinear map (equals T ×1 X>1 ×2 · · · ×p X>p )
〈〈T 〉〉(i,j) contraction of the ith and jth mode of the tensor T

P[ · ] probability of an event
E[ · ] expectation of a random variable
N (µ,Σ) pdf of a multivariate normal with mean µ and covariance Σ

Σ,Σ∗, Σ+ finite alphabet/set of strings on Σ/set of non-empty strings on Σ
F = (Σ, ]) ranked alphabet (with arity function ])
TF ,CF set of trees/contexts on the ranked alphabet F
GF , Gk

F set of closed graphs/graphs with k free ports on F
G1 ∪G2 disjoint union of two graphs
〈〈G〉〉(p,p′) graph obtained by connecting the free ports p and p′ in the graph G
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In this chapter, we introduce the objects that are at the core of this thesis: tensors.

1.1 Notations
We first introduce some notations that we will use throughout the thesis. For conve-
nience, a table summarizing the notations that we frequently use is available on page 8
and an index is given on page 160.

For any set S we denote by |S| its cardinality. For any integer n, the set of integer from
1 to n is denoted by [n] = {1, 2, · · · , n}. We use lower case bold letters (or symbols) for
vectors (e.g. v ∈ Rd1), upper case bold letters for matrices (e.g. M ∈ Rd1×d2) and
bold calligraphic letters for higher order tensors (e.g. T ∈ Rd1×d2×d3). The transpose
of a matrix M is denoted by M>. Given i1 ∈ [d1], i2 ∈ [d2], i3 ∈ [d3] we use vi1 , Mi1,i2

and T i1,i2,i3 to denote the corresponding entries (we will sometimes use the notation
M(i1, i2) = Mi1,i2 for convenience). The ith row (resp. column) of a matrix M will
be denoted by Mi,: (resp. M:,i) and this notation will be extended to tensors in the
straightforward way. The n × n identity matrix will be written In (or simply I if the
dimension is clear from context). Given a matrix M ∈ Rd1×d2 we use vec(M) ∈ Rd1d2 to
denote the column vector obtained by concatenating the columns of M.

The trace of a square matrix M ∈ Rd×d is the sum of its diagonal elements: Tr(M) =∑d
i=1 Mi,i. The inner product between two vectors u,v ∈ Rd is defined by 〈u,v〉 =∑d
i=1 uivi. Similarly the inner product between two matrices A,B ∈ Rd1×d2 is defined

by 〈A,B〉 = Tr(A>B) =
∑d1
i=1

∑d2
j=1 Ai,jBi,j . The Frobenius norm of a vector (resp.

of a matrix) is denoted by ‖v‖F =
√
〈v,v〉 (resp. ‖A‖F =

√
〈A,A〉). The rank of

a matrix M will be denoted by rank(M), its inverse by M−1, and its Moore-Penrose
pseudo-inverse by M+.
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1.2 Tensors, Tensor Algebra and Tensor Networks
We now introduce basic notions on tensors and multilinear algebra. After formally defin-
ing what is a tensor, we introduce the notion of tensor networks that will help us visu-
alize the various tensor operations and decompositions presented in this section. Most
of the notations we use have been introduced in (Kolda and Bader, 2009) where more
details can be found. We also refer the reader to the surveys (Grasedyck, Kressner, and
Tobler, 2013) and (Sidiropoulos et al., 2016) and to the monograph (Hackbusch, 2012).

1.2.1 Tensors

Let F be a field, in this thesis we only consider the case where F is the field of real
numbers R or the field of complex numbers C. For any integers p, d1, · · · , dp, a pth order
tensor T ∈ Fd1×···×dp is a p-dimensional array of scalars

(T i1,··· ,ip ∈ F : in ∈ [dn], n ∈ [p]).

A fundamental operation used to construct tensors is the outer product (or tensor prod-
uct) between vectors v1 ∈ Fd1 , · · · ,vp ∈ Fdp . The outer product v1 ◦ v2 ◦ · · · ◦ vp ∈
Fd1×d2×···×dp is the pth order tensor defined by

(v1 ◦ v2 ◦ · · · ◦ vp)i1,i2,··· ,ip = (v1)i1(v2)i2 · · · (vp)ip

for all indices i1 ∈ [d1], i2 ∈ [d2], · · · , ip ∈ [dp]. In particular when p = 2, we have
x ◦ y = xy> for any vectors x and y. A tensor can be defined in a more abstract way as
an element of the tensor product space Fd1 ⊗ Fd2 ⊗ · · · ⊗ Fdp , which is the vector space
consisting of all linear combinations

∑
i αi(vi1◦vi2◦· · ·◦vip) where vin ∈ Fdn for all n ∈ [p].

However it will be sufficient in this thesis to simply consider tensors as multidimensional
arrays.

We say that a tensor T is (hyper)cubic if all its dimensions d1, d2, · · · , dp are equal, in
which case we will write T ∈ (Fd)⊗p where d = d1 = · · · = dp. A cubic tensor is sym-
metric if it is invariant under permutation of its indices, that is T i1,··· ,ip = T iσ(1),··· ,iσ(p)
for any permutation σ : [p]→ [p] and all indices i1, · · · , ip ∈ [d].

The different axes (i.e. indices or dimensions) of a tensor will be referred to as modes.
The mode-n fibers of a tensor T are the vectors obtained by fixing all indices except for
the nth one. For example T :,i2,··· ,ip is a vector of dimension d1, and for a 2nd order
tensor M (i.e. a matrix) the mode-1 fibers correspond to columns and the mode-2 fibers
to rows. The nth mode matricization of T is the matrix having the mode-n fibers of
T for columns and is denoted by T(n) ∈ Rdn×d1···dn−1dn+1···dp . Observe that we use the
same letter to denote that T(n) is the matricization of the tensor T ; we will sometimes
also write (T )(n). In a matricization the mode-n fibers are organized using the inverse
lexicographical order: for example if X ∈ F2×2×2 we have

X(2) =
[
X 1,:,1 X 2,:,1 X 1,:,2 X 2,:,2

]
.

Once the mode of the matricization is chosen, there is a one-to-one correspondence
between tensors and their matricizations: for example a matrix M ∈ Fd1×d2d3 uniquely
determines a tensor T ∈ Fd1×d2×d3 with the relation M = T(1).
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Figure 1.1: Tensor network representation of a vector v ∈ Rd1 , a matrix M ∈ Rd1×d2

and a 3rd-order tensor T ∈ Rd1×d2×d3 .

The vectorization of a tensor is defined by vec(T ) = vec(T(1)). The inner product
between two tensors S and T (of the same size) is defined by 〈S,T 〉 = 〈vec(S), vec(T )〉
and the Frobenius norm is defined by ‖T ‖2F = 〈T ,T 〉. Observe that it follows from this
last definition that the Frobenius norm of a tensor is equal the one of its vectorization
and to the one of any of its matricizations.

1.2.2 Tensor Networks

Tensor network diagrams, which have been introduced in (Penrose, 1971), are a very use-
ful tool to visualize tensor decompositions and multilinear operations of tensor contrac-
tions (see e.g. Kressner and Tobler (2012), Huckle, Waldherr, and Schulte-Herbrüggen
(2013), and Holtz, Rohwedder, and Schneider (2012b) for more details). They have
been traditionally used in the quantum physic community to capture the relevant en-
tanglement properties of a system. Tensor networks are also closely related to tensor
decompositions as they allow one to express a tensor as a set of smaller tensors of lower
order connected to each other, and thus to reduce the number of parameters needed to
represent the original tensor. In doing so, they make it possible to manipulate extremely
large tensors by simply operating on the parameterization induced by their tensor net-
work representation, which is currently leading to an increasing interest from the ma-
chine learning and data mining communities (see e.g. Stoudenmire and Schwab (2016),
Cichocki (2014), Novikov et al. (2015), and Zhao et al. (2016))

In a tensor network, tensors are represented as nodes in a graph and each outgoing
edge from a node represents a mode of the tensor. In contrast with classical graphs,
an edge in a tensor network does not need to connect two nodes but can remain open.
Such open (or free) edges (or legs) correspond to modes of the tensor represented by
the tensor network. For example a vector will be represented by a graph with only one
node with one free leg, and a matrix by a node with two free legs (see Figure 1.1).

An edge connecting two nodes in a tensor network represents a contraction between
the two corresponding modes, that is a summation over the corresponding indices of
the tensors. For example, the summation in the classical matrix product (AB)i,j =∑
k Ai,kBk,j is a contraction between the second mode of A and the first mode of B.

Examples of common matrix and vector operations represented as tensor networks are
shown in Figure 1.2. Observe in this figure that the number of free legs corresponds to
the order of the tensor: the two tensor networks on the left represent scalars, the one in
the top-right corner a vector and the one in the bottom-right a matrix.
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Figure 1.2: Tensor networks for common operations on vectors and matrices. From top-
left to bottom-right: the scalar product between two vectors in Rd, the prod-
uct Cx of an m×n matrix with an n-dimensional vector, the trace of a d×d
square matrix, and the matrix product between two matrices of size m × n
and n× p.

1.2.3 Basic Operations on Tensors

We now define several operations on tensors that we will use throughout this thesis.

Outer product. We first straightforwardly extend the definition of outer product given
above for vectors to tensors. Given two tensors A ∈ Fm1×···×mp and B ∈ Fn1×···×nq of
order p and q respectively, their outer productA ◦B ∈ Fm1×···×mp×n1×···×nq is the tensor
of order p+ q defined by

(A ◦B)i1,··· ,ip,j1,··· ,jq = Ai1,··· ,ipBj1,··· ,jq

for all indices i1 ∈ [m1], · · · , ip ∈ [mp], j1 ∈ [n1], · · · , jq ∈ [nq]. It is easy to check that the
outer product is associative. In a tensor network the outer product of two tensors simply
consists in juxtaposing the tensor networks representing each tensor without adding any
edge.

Kronecker product. The Kronecker product is an operation closely related to the
outer product that is usually defined for matrices. Given a matrix A ∈ Fm×n with entries
(ai,j)1≤i≤m,1≤j≤n and a matrix B ∈ Fp×q, their Kronecker product A ⊗ B ∈ Fmp×nq is
the block matrix defined by

A⊗B =

a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB

 .
Observe that the matrix A ⊗ B ∈ Fmp×nq can be obtained by rearranging the entries
of the 4th order tensor A ◦ B ∈ Fm×n×p×q. In particular, if n = 1 and q = 1 then
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the matrices A and B can be seen as vectors which we denote by a and b, and we
have the relation a ⊗ b = vec(a ◦ b) = vec(ab>). More generally we have the relation
vec(u1 ◦ u2 ◦ · · · ◦ up) = u1 ⊗ u2 ⊗ · · · ⊗ up. Useful properties of the Kronecker product
that we will use in this thesis are (Laub, 2004, Theorem 13.3, 13.4 and 13.6)

(A⊗B)> = A> ⊗B>

(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)(C⊗D) = AC⊗BD.

We will refer to the last equality as the mixed-product property of the Kronecker product.
We extend the Kronecker product to tensors in the following way. Given two tensors
A ∈ Fm1×···×mp and B ∈ Fn1×···×np of the same order p, their Kronecker product is the
pth order tensor A⊗B ∈ Fm1n1×···×mpnp defined by the relation

(A⊗B)(1) = A(1) ⊗B(1)

where (A ⊗ B)(1) is the mode-1 matricization of A ⊗ B. It is easy to check that this
definition implies that (A ⊗ B)(i) = A(i) ⊗ B(i) for any i ∈ [p] and that the Kronecker
product is associative.

mode-n product. We now introduce a fundamental product operation between ten-
sors and matrices. The mode-n matrix product of a pth order tensor T ∈ Fd1×···×dp (with
1 ≤ n ≤ p) with a matrix A ∈ Fm×dn is the pth order tensor T ×n A of size d1 × · · · ×
dn−1 ×m× dn+1 × · · · × dp obtained by contracting the nth mode of T with the second
mode of A. Formally,

(T ×n A)i1,··· ,ip =
dn∑
j=1
T i1,··· ,in−1,j,in+1,··· ,ipAin,j

for all indices i1 ∈ [d1], · · · , in−1 ∈ [dn−1], in ∈ [m], in+1 ∈ [dn+1], · · · , ip ∈ [dp]. Given
matrices Bi ∈ Rdi×mi for i ∈ [p] we will sometimes use the notation

T (B1,B2, · · · ,Bp) = T ×1 B>1 ×2 · · · ×p B>p ∈ Rm1×···×mp

which has been used in several papers (see e.g. Anandkumar et al., 2014). It is easy to
check that the n-mode product satisfies the following identities:

(T ×n A)(n) = AT(n)

(T ×n A)×n B = T ×n BA
〈T ×n A,S〉 = 〈T ,S ×n A>〉

where we assume compatible dimensions of the tensors S and T and the matrices A
and B. Moreover, if m,n ∈ [p] with m 6= n, the n-mode and m-mode products commute:

T ×m A×n B = T ×n B×m A.

Similarly, the mode-n vector product of the tensor T with a vector v ∈ Fdn is the
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Figure 1.3: Tensor networks of the mode-n matrix and vector products with a tensor T
of size d1 × d2 × d3: (left) T ×1 A×2 B is a tensor of size n1 × n2 × d3 and
(right) T •2 u •3 v is a d1-dimensional vector.

(p− 1)th order tensor T •n v ∈ Rd1×···×dn−1×dn+1×···×dp obtained by contracting the nth
mode of T with the unique mode of v. Formally,

(T •1 v)i1,··· ,in−1,in+1,··· ,ip =
dn∑
in=1
T i1,··· ,ipvin

for all indices i1 ∈ [d1], · · · , in−1 ∈ [dn−1], in+1 ∈ [dn+1], · · · , ip ∈ [dp].
Examples of mode-n matrix and vector products represented as tensor networks are

shown in Figure 1.3.

Direct sum of tensors. For any pth order tensorsA ∈ Fm1×···×mp and B ∈ Fn1×···×np ,
we define their direct sum A⊕B ∈ F(m1+n1)×···×(mp+np) by

(A⊕B)i1,··· ,ip =


Ai1,··· ,ip if 1 ≤ ik ≤ mk for all k ∈ [p]
Bi1−m1,··· ,ip−mp if mk < ik ≤ mk + nk for all k ∈ [p]
0 otherwise.

This definition generalizes the direct sum of two vectors or two matrices. Indeed, recall
that if a and b are vectors we have a⊕b = (a> b>)>. Similarly, if A and B are matrices,
their direct sum is the block diagonal matrix

A⊕B =
[
A 0
0 B

]
.

Tensor contraction. Lastly, we define a general contraction operator that acts on cubic
tensors by contracting two modes. In terms of tensor networks, applying the contraction
operator corresponds to connecting two free legs in a tensor network. Consequently,
applying the contraction operator to a pth order tensor will result in a tensor of order
p− 2.

Formally, for any 1 ≤ m < n ≤ p, we define the contraction operator (or generalized
trace operator)

〈〈 · 〉〉(m,n) : (Fd)⊗p → (Fd)⊗(p−2)
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that contracts the mth and nth mode of a pth order tensor T ∈ (Fd)⊗p by

(
〈〈T 〉〉(m,n)

)
i1,··· ,im−1,im+1,··· ,in−1,in+1,··· ,ip

=
d∑

k=1
T i1,··· ,im−1,k,im+1,··· ,in−1,k,in+1,··· ,ip

for all indices i1, · · · , im−1, im+1, · · · , in−1, in+1, · · · , ip ∈ [d]. We will extend this nota-
tion to the composition of multiple contractions in the straightforward way. For example,
if T is a 5th order tensor we have

(〈〈T 〉〉(1,5),(2,3))i =
∑
jk

T j,k,k,i,j .

As an illustration, we can express the trace, the matrix product, the n-mode product
and the inner product using the outer product and the contraction operator:

Tr(A) = 〈〈A〉〉(1,2),

AB = 〈〈A ◦B〉〉(2,3),

T ×n A = 〈〈A ◦ T 〉〉(2,n+2), and

〈A,B〉 = 〈〈A ◦B〉〉(1,p+1),(2,p+2),··· ,(p,2p).

1.2.4 Tensor Decompositions and Rank of a Tensor

We now describe several tensor decomposition models. One of the motivations behind the
development of tensor decomposition techniques is that it is often not possible to store
all the entries of a high order tensor explicitly. Tensor decompositions can be seen as
compression schemes that help reduce storage requirements.

We will mainly focus on the CP (CANDECOMP/PARAFAC) and Tucker decompositions.
Each of these decompositions gives rise to a different notion of rank of a tensor: the CP-
rank and the multilinear rank. In the case of tensors of order 2, these two notions of
rank coincide but correspond to two different interpretations of the rank of a matrix:

(1) The rank of a matrix M is the minimum integer R such that M can be written as
a sum of R rank one matrices.

(2) The rank of a matrix is the dimension of the vector space spanned by its columns
(or equivalently by its rows).

As we will see below, the first interpretation corresponds to the CP-rank of a tensor while
the second one corresponds to the multilinear rank.

CP decomposition and CP-rank. A rank one tensor U ∈ Fd1×···×dp is a tensor that
can be written as an outer product of p vectors:

U = u1 ◦ u2 ◦ · · · ◦ up
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Figure 1.4: CP decomposition of a 3rd-order tensor T = JV1,V2,V3K of rank R as a
tensor network.

where u1 ∈ Fd1 , · · · ,up ∈ Fdp . A CP decomposition of a tensor T ∈ Fd1×···×dp consists in
expressing T as a sum of rank one tensors:

T =
R∑
r=1

vr1 ◦ · · · ◦ vrp (1.1)

where vri ∈ Rdi for all i ∈ [p] and all r ∈ [R]. Stacking the vectors v1
i , · · · ,vRi in a matrix

Vi ∈ Fdi×R for each i ∈ [p], the notation T = JV1,V2, · · · ,VpK is sometimes used to
denote Equation (1.1). The CP decomposition requires the storage of R(d1+d2+· · ·+dp)
entries (instead of d1d2 · · · dp for the original tensor) which makes it attractive for small
values ofR. A tensor network representation of a CP decomposition is given in Figure 1.4
where an hyperedge is used to represent the common contraction corresponding to the
summation over r in Eq. (1.1).

The tensor rank or CP rank of T is the smallest integer R for which T admits a CP
decomposition with R terms, which will be denoted by rankCP (T ) = R. Unlike for
matrices, the set of tensors with tensor rank at most R is not closed in general, which
makes the problem of finding a best low rank approximation of a tensor ill-posed (De
Silva and Lim, 2008). There exist several algorithms to find a CP decomposition of
a tensor. The simplest one relies on the Alternating Least Squares (ALS) method and
consists in minimizing the objective ‖T − JV1,V2,V3K‖2F with respect to one of the
matrices Vi while keeping the other ones fixed; this process is repeated in turn for
each matrices Vi until convergence. Even though this method is not guaranteed to
converge to a global minimizer, it often performs well in practice. We refer the reader
to (Kolda and Bader, 2009) for properties of the CP rank and details on computing
the CP decomposition; pointers to further developments since 2009 can also be found
in (Grasedyck, Kressner, and Tobler, 2013) and a brief review on bounds for the CP rank
can be found in (Sidiropoulos et al., 2016).

Tucker decomposition and multilinear rank. We now define the Tucker decomposi-
tion and the related notion of multilinear rank. Since these notions are at the core of the
algorithm we propose in Chapter 4 for a problem of regression with tensor structured
outputs, we will give more technical details than we did for the CP-decomposition and
the CP rank.

A Tucker decomposition consists in expressing a tensor T ∈ Fd1×···×dp as a core tensor
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Figure 1.5: Tucker decomposition with a core tensor of size R1 ×R2 ×R3 of a 3rd-order
tensor T = G ×1 U1 ×2 U2 ×3 U3 as a tensor network.

G transformed by a column-wise orthogonal matrix along each mode:

T = G ×1 U1 ×2 U2 ×3 · · · ×p Up, (1.2)

where G ∈ RR1×R2×···×Rp , Ui ∈ Rdi×Ri for i ∈ [p] and U>i Ui = I for all i ∈ [p].
Even though the column-wise orthogonality of the matrices Ui is not required, it is
often assumed and does not lead to any loss of generalitya. The Tucker decomposition
requires the storage of R1R2 · · ·Rp+d1R1 +d2R2 + · · ·+dpRp entries. A tensor network
representation of the Tucker decomposition is given in Figure 1.5.

The matricizations and the vectorization of the Tucker decomposition in Eq. (1.2) lead
to the following useful identities:

T(n) = UnG(n)(Up ⊗ · · · ⊗Un+1 ⊗Un−1 ⊗ · · · ⊗U1)> (1.3)
vec(T ) = (Up ⊗Up−1 ⊗ · · · ⊗U1)vec(G). (1.4)

Equation (1.3) implies that for any n ∈ [p] the rank of the matricization T(n) is bounded
by Rn. This naturally leads to the notion of multilinear rank of a tensor which is denoted
by rankml(T ) and defined by

rankml(T ) = (R1, · · · , Rp) where Rn = rank(T(n)) for each n ∈ [p].

Observe that each Rn corresponds to the dimension of the vector space spanned by the
mode-n fibers of T , which is similar to the interpretation of the matrix rank as the
dimension of the space spanned by its columns. We will write rankml(T ) ≤ (S1, · · · , Sp)
whenever S1 ≤ R1, S2 ≤ R2, · · · , and Sp ≤ Rp. Contrary to the CP rank, the set of
tensors with multilinear rank at most (R1, · · · , Rp) is closed.

It is easy to check that the multilinear rank of a tensor T exactly coincides with the
smallest tuple (R1, · · · , Rp) such that T admits a Tucker decomposition with a core ten-
sor of size R1 × · · · × Rp. Indeed, as we mentioned earlier if T admits a Tucker decom-
position with a core of size R1× · · · ×Rp then rankml(T ) ≤ (R1, · · · , Rp). Conversely, if
rankml(T ) = (R1, · · · , Rp) we can obtain a Tucker decomposition in the following way:
for each n ∈ [p] let Un ∈ Rdn×Rn be the matrix having for columns the Rn left singular

aIndeed, if the matrices Ui are not column-wise orthogonal it suffices to perform QR decompositions
Ui = QiRi where Qi ∈ Fdi×Ri is column-wise orthogonal and Ri ∈ FRi×Ri to obtain the decompo-
sition (G ×1 R1 ×2 · · · ×p Rp)×1 Q1 ×2 · · · ×p Qp.
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vectors of T(n) and let G = T ×1 U>1 ×2 · · · ×p U>p ∈ FR1×···×Rp . We then have

G ×1 U1 ×2 · · · ×p Up = T ×1 U1U>1 ×2 · · · ×p UpU>p = T

where we used the simple fact that UnU>n is the matrix of the orthogonal projection
onto the left singular vectors of T(n) which implies T ×n UnU>n = T for any n ∈ [p].

Higher-order SVD. Even though finding the best low multilinear rank approxima-
tion of a tensor T is an NP-hard problem (Hillar and Lim, 2013), the higher-order
SVD (HOSVD) introduced in (De Lathauwer, De Moor, and Vandewalle, 2000; De Lath-
auwer, 1997) for approximating a tensor with a Tucker decomposition of lower multilin-
ear rank offers good approximation guarantees. In HOSVD, each factor matrices Un is
obtained by taking the top Rn left singular vectors of T(n) and the core tensor is given
by G = T ×1 U>1 ×2 · · · ×p U>p ∈ FR1×···×Rp . If T ∗ denotes the best approximation
of T with multilinear rank (R1, · · · , Rp), that is T ∗ is a minimizer of the optimization
problem

min
X∈Rd1×···×dp

‖T −X‖2F subject to rankml(X ) ≤ (R1, · · · , Rp), (1.5)

then the low multilinear rank tensor T̂ returned by HOSVD satisfies

‖T − T̂ ‖2F ≤ p‖T − T ∗‖2F ,

i.e. HOSVD is a p-approximation algorithm for the minimization problem (1.5). For
sake of completeness we give here the short and elegant proof of this result provided
in (Grasedyck, 2010). The proof relies on the following lemma.

Lemma 1. Let T ∈ Fd1×···×dp be a pth order tensor, let m,n ∈ [p], and let P ∈ Fdm×dm
and Q ∈ Fdn×dn be two orthogonal projection matrices. Then

‖T − T ×m P×n Q‖2F ≤ ‖T − T ×m P‖2F + ‖T − T ×n Q‖2F .

Proof. First observe that for any orthogonal projection matrix Π and any tensors A,B
we have

‖A×nΠ‖2F ≤ ‖A‖2F and ‖A×n (I−Π) +B×nΠ‖2F = ‖A×n (I−Π)‖2F +‖B×nΠ‖2F .

Both equations follow from the fact that the Frobenius norm of a tensor is equal to the
one of any of its matricization. Thus

‖A×n Π‖2F = ‖ΠA(n)‖2F ≤ ‖A(n)‖2F = ‖A‖2F

since Π is a projection. The second equality is proved similarly using the orthogonality
of Π and I−Π.
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Then, under the hypothesis of the lemma, we have

‖T − T ×m P×n Q‖2F = ‖T ×m (I−P) + (T − T ×n Q)×m P‖2F
= ‖T ×m (I−P)‖2F + ‖(T − T ×n Q)×m P‖2F
≤ ‖T − T ×m P‖2F + ‖T − T ×n Q‖2F .

Proving the approximation guarantees of HOSVD stated above is then easy: the low
multilinear rank tensor computed by HOSVD is defined by

T̂ = T ×1 U1U>1 ×2 · · · ×p UpU>p

where UiU>i is the matrix of the orthogonal projection onto the space spanned by the
top Ri left singular vectors of T(i) for each i ∈ [p]. Thus UiU>i T(i) is the best rank Ri
approximation of T(i) which implies ‖T − T ×i UiU>i ‖2F ≤ ‖T − T ∗‖2F for all i ∈ [p],
where T ∗ is a minimizer of problem (1.5). Using successive applications of the previous
lemma it follows that

‖T − T̂ ‖2F = ‖T − T ×1 U1U>1 ×2 · · · ×p UpUp‖2F

≤
p∑
i=1
‖T − T ×i UiU>i ‖2F ≤ p‖T − T ∗‖2F .

Even though HOSVD does not return an optimal solution, the approximation guaran-
tees it provides are often sufficient in practice. Various alternatives have been proposed
to improve the HOSVD approximate solution, again we refer the reader to (Kolda and
Bader, 2009) and (Grasedyck, Kressner, and Tobler, 2013) for more details.

Other tensor decomposition models. We presented two tensor decomposition mod-
els. On the one hand a CP decomposition of a pth order tensor with R terms requires to
store R(d1 + d2 + · · ·+ dp) entries which makes it very attractive, but the set of tensors
with CP rank at mostR is not closed and algorithms for computing a low CP rank approx-
imation of a tensor lack strong theoretical guarantees. On the other hand the closedness
of the set of tensors with low multilinear rank and the existence of quasi-optimal SVD-
based compression algorithms (such as HOSVD) make the Tucker decomposition very
appealing. However a Tucker decomposition requires the storage of the core tensor G of
size R1 × · · · × Rp which may become very large as p increases. This has motivated the
search for other decomposition models that avoid this exponential growth of the size of
the model while preserving the main advantages of the Tucker decomposition: closed-
ness and quasi-optimal compression algorithms. To conclude this chapter, we mention
some of these other decomposition models.

In the tensor train (TT) format a tensor T ∈ Rd1×···×dp is factorized into p core tensors
G1 ∈ Rd1×R1 ,G2 ∈ RR1×d2×R2 , · · · ,Gp−1 ∈ RRp−2×dp−1×Rp−1 ,Gp ∈ RRp−1×dp as

T i1,··· ,ip =
R1∑
r1=1
· · ·

Rp−1∑
rp−1=1

(G1)i1,r1(G2)r1,i2,r2(G3)r2,i3,r3 · · · (Gp−1)rp−2,ip−1,rp−1(Gp)rp−1,ip

for all indices i1 ∈ [d1], · · · , ip ∈ [dp]. The smallest tuple (R1, · · · , Rp−1) for which such
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Figure 1.6: Tensor train decomposition of a 4th order tensor.
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Figure 1.7: Tensor ring decomposition of a 4th order tensor.

a decomposition exists is called the TT rank of the tensor T . Using the contraction
operator introduced previously we can rewrite the previous equation as

T = 〈〈G1 ◦ G2 ◦ · · · ◦ Gp〉〉(2,3),(5,6),(8,9),··· ,(3p−4,3p−3).

An example of such a decomposition is shown in Figure 1.6 (where we see that the core
tensors are somehow arranged as a train hence the name of the decomposition). The
tensor train decomposition has been introduced in (Oseledets, 2011) in the context of
numerical analysis, but it had been considered earlier in the density renormalization
group method for simulating quantum systems (White, 1992). In this area the term
matrix product state representation is used for this decomposition. Observe that a tensor
in the TT format requires the storage of d1R1 +R1d2R2 + · · ·+Rp−2dp−1Rp−1 +Rp−1dp
entries which does not exhibit the dependency on the product of the ranks appearing in
the Tucker decomposition. Moreover, a quasi-optimal SVD based compression algorithm
has been proposed in (Oseledets, 2011) and the set of tensors of fixed TT rank is closed
and forms a smooth manifold (Holtz, Rohwedder, and Schneider, 2012a).

Other decomposition models having these desirable properties have been proposed.
For example, the hierarchical Tucker (HT) decomposition, which consists in factorizing
a tensor into a binary tree tensor network, has been proposed in (Grasedyck, 2010)
and (Hackbusch and Kühn, 2009). Lastly we would like to mention the tensor ring de-
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composition model that has been very recently proposed in (Zhao et al., 2016). This
model is very close to the TT format as it consists in decomposing a tensor into a ring
of p low-dimensional 3rd order core tensors (instead of the string of core tensors from
the TT format), see Figure 1.7. The authors show that tensor ring decompositions are
equivalent to linear combinations of TT decompositions, and are invariant under cyclic
permutation of the rank. It turns out that the TT format is closely related to the com-
putations of a weighted automaton on strings, and that the tensor ring decomposition
model is itself related to the computations of Graph Weighted Models on circular strings
that we will introduce in the next chapter.
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2.1 Introduction
Real-valued functions whose domains are composed of syntactical structures, such as
strings, trees or graphs, are widely used in computer science. One way to handle such
functions is by means of devices computing them. Weighted automata, which are able to
jointly analyze the structure of a syntactical input and to compute an associated output
value, are such a computing device. The first two chapters of this thesis will be related
to weighted automata. Weighted automata are finite state machines that define uniform
computations on a set of structured objects (e.g. strings or trees). For example, a string
weighted automaton (WA) computes a function that takes as input a string on a finite
alphabet, e.g. abba, and outputs a value in a semi-ring, e.g. a real value. Roughly
speaking, a WA is composed of states and weighted transitions between these states.
A string can be parsed by a weighted automaton by following a path of states using
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Figure 2.1: An example of weighted automaton that computes a probability distribution
on the set of strings on the alphabet Σ = {a, b}. There exist two paths
to parse the string bb in this automaton: q3q3q4 and q3q4q2. The value it
computes on the string bb is thus equal to the sum of the weights of these
paths: 0.5 ∗ 0.5 ∗ 0.5 ∗ 0.3 + 0.5 ∗ 0.5 ∗ 0.2 ∗ 0.8 .

weighted transitions labeled by the letters in the string, and a weight can naturally be
associated with each path in the automaton. A WA then computes a value by summing
the weights over all possible parsing paths. In particular, weighted automata can define
probability distributions on the set of strings (or trees), which makes them relevant
to machine learning. An example of a WA, along with an example of computation, is
shown in Figure 2.1. Weighted automata on trees on a ranked alphabet can be defined
in a similar fashion in terms of states and weighted transitions between states.

The notion of weighted automata gives rise to the notion of recognizable series: a series
is a function from a set of structured objects (e.g. strings, trees, graphs) to a semi-ring,
and it is recognizable if it can be computed by a weighted automaton. Weighted au-
tomata have been defined for strings and trees, but their extension to graphs is challeng-
ing. On the other hand, recognizable series defined on strings and trees have equivalent
algebraic characterizations by mean of linear representations. A linear representation
is an algebraic representation of a weighted automaton that associates each symbol in
a (ranked) alphabet to a linear or multilinear map acting on some vector space. The
dimension of this vector space corresponds to the number of states in the weighted au-
tomaton and this vector space is henceforth called the state space. The computation of
the automaton on a string (or a tree) is then achieved by successive compositions of
these maps. In (Bailly, Denis, and Rabusseau, 2015) we showed that this algebraic for-
malism can naturally be extended to hypergraphs recognizable series. For simplicity of
presentation, we will focus on graph recognizable series in this chapter.

In Section 2.1.1, we formally define weighted automata on strings and trees using
this algebraic representation, and we show how computations of a weighted automaton
on strings or trees can be interpreted as a simple mapping between the input (a string
or a tree) and a tensor network reflecting its structure. This interpretation suggests a
natural extension of weighted automata to labeled graphs and leads us to define the
novel notion of Graph Weighted Models (GWM): a computational model that generically
associates a tensor network to a graph and that computes a value by successive tensor
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contractions directed by its edges (Section 2.2). We say that a series f defined on a
family of graphs is GWM-recognizable if there exists a GWM M that computes it: we
then denote f by fM .

In the first part of this chapter we study theoretical properties of this computational
model. We first show that the notion of GWM extends several models defined on partic-
ular families of graphs: this is the case for the classical notion of recognizable series on
strings and trees, and also for the more recent model of recognizable picture series (Sec-
tion 2.3.1). We then investigate to what extent GWMs inherit fundamental properties
that are satisfied by the classical notions of recognizable series on strings and trees. We
will see that some of these properties are satisfied by GWMs in general, while others are
not. When faced which such a property that is not satisfied in general, we will try to
identify smaller families of graphs for which this property holds. For example, we show
that GWMs satisfy two important closure properties: if f1 and f2 are two recognizable
series defined on a family S of connected graphs, then r+s and r · s, respectively defined
for all graphs G ∈ S by (f1 + f2)(G) = f1(G) + f2(G) and (f1 · f2)(G) = f1(G)f2(G)
(the Hadamard product), are GWM-recognizable. However, GWM-recognizable series
defined on general classes of graphs are not closed under scalar multiplication. Nonethe-
less, we show that GWM-recognizable series are closed under scalar multiplication for
any family of rooted graphs (Section 2.3.2). Another fundamental property that we con-
sider is the recognizability of finite support series. Finite support series are series that
takes a non zero value on only a finite number of graphs. Finite support series on strings
and trees are recognizable but this is not always the case for recognizable series defined
on more general families of graphs. For example, we show that finite support series are
not recognizable on the family of circular strings. The main reason is that if a recogniz-
able series is not null on some graph G, it must also be different from zero on coverings
of G, i.e. connected graphs made of copies of G. We show that if a graph family is
covering-free, then finite support series are recognizable (Section 2.4). Strings and trees,
as any family of rooted graphs, are tiling-free. We also show that the fact that GWM can
deal with complex syntactical structures may entail compressed representations of com-
putational models: a GWM with n states can compute a function on strings that cannot
be computed by a string weighted automaton with less than n2 states (Section 2.3.3).

The second part of this chapter is devoted to give some insight on the issues that
have motivated the present study and to describe some of our perspectives. In machine
learning, a classical problem consists in inferring an unknown recognizable series f from
examples (x, f(x)) of this function. The systematical use of algebraic representations for
recognizable series on strings and trees has entailed the development of several success-
ful methods, such as the so-called spectral methods, which try first to estimate several
algebraic characteristics (spectrum, eigenspaces, singular vectors, etc) of the underlying
operators from learning data, from which the target can be reconstructed. We expect
that similar learning schemes for GWM-recognizable graph series can be developed. As
an illustration of this general research program, we present a learning algorithm for
GWMs defined on the family of circular strings that relies on tensor decomposition tech-
niques (Section 2.5).

Related work. String recognizable series and weighted automata have their roots in
automata theory (Eilenberg and Tilson, 1976; Schützenberger, 1961) and their study
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can be found in (Berstel and Reutenauer, 1988; Droste, Kuich, and Vogler, 2009; Kuich
and Salomaa, 2012; Sakarovitch, 2009; Salomaa and Soittola, 2012). The extension of
rational/recognizable series and weighted automaton to trees is presented in (Berstel
and Reutenauer, 1982; Droste, Kuich, and Vogler, 2009). A model of recognizable series
on 2-dimensional words has been introduced in (Bozapalidis and Grammatikopoulou,
2005). Computational models used to parse and generate graphs have been proposed
using the formalism of grammars (see e.g. Rozenberg, 1997). The extension of weighted
automata to graphs by mean of weighted logic has been considered in (Droste and Dück,
2015) where the authors propose a quantitative version of Thomas’ unweighted model of
graph acceptors (Thomas, 1991), and show that this model is expressively equivalent to
some suited monadic second order logic. The definability of graph functions in monadic
second order logic has also been investigated in the work of Johann A. Makovsky (see
e.g. Makowsky and Kotek, 2014). Spectral methods for inference of stochastic languages
of strings/trees have been developed upon the notion of linear representation of a ratio-
nal series (see Bailly, Denis, and Ralaivola (2009), Hsu, Kakade, and T. Zhang (2008),
Bailly, Habrard, and Denis (2010), and Balle et al. (2014) for example).

Summary of the contributions. We show how the computations of weighted au-
tomata on strings and trees can be interpreted in terms of tensor networks, which nat-
urally leads us to define a novel computational model that naturally extends the notion
of recognizable series to labeled graphs: Graph Weighted Models. We provide a theoretical
study of several properties of this model such as closure properties and the question of the
recognizability of finite support series. While some of these properties are not satisfied
by GWMs defined on arbitrary families of graphs, we identify smaller families of graphs
on which these properties hold. Finally, we study the problem of learning GWMs defined
on the family of circular strings for which we propose an algorithm relying on tensor
decomposition techniques.

The works presented in this chapter have been realized in collaboration with Raphaël
Bailly (Maître de Conférences at Paris 1 University). The general model of recogniz-
able series on hypergraphs has been presented in the Journées Montoises d’Informatique
Théorique in September 2014 (25mn talk) and in the international conference LATA (Bailly,
Denis, and Rabusseau, 2015) in March 2016 (25mn talk). A journal version is currently
under review for a special issue of the Journal of Computer and System Sciences.

2.1.1 Recognizable Series over Strings and Trees

In this chapter, unless explicitly stated otherwise, F is either the field of real numbers R
or the field of complex numbers C.

We first recall the standard notions of recognizable series on strings and trees. Recog-
nizable series are often described in terms of weighted automata but we will use their
alternative definition in terms of linear representations. Linear representations allow
one to study weighted automata from the perspective of linear and multilinear algebra.
In particular, spectral learning methods for weighted automata on strings or trees heav-
ily rely on the algebraic structure of weighted automata. In the following, we formally
introduce recognizable series on strings and trees and we present a simple and unifying
view of weighted automata by interpreting their computations in terms of tensor net-
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αfA(w1w2 · · ·wk) = Aw1 Aw2 · · · Awk ω1 1 2 1 2 1 2 1 2 1

Figure 2.2: Computation of a weighted automaton as a tensor network.

works. While defining automata over graphs is delicate, this analogy between weighted
automata on strings/trees and tensor networks can straightforwardly be extended to
labeled graphs. This will lead us to define graph weighted models in the next section,
a computational model that directly generalizes the notion of linear representation to
graphs.

Recognizable series on strings. We denote by Σ∗ the set of all strings on a finite
alphabet Σ and by Σ+ the set of all non-empty strings on Σ. The empty word is denoted
by ε and we write |x| to denote the length of a string x ∈ Σ?.

A weighted (string) automaton (WA) is a tuple A = (Fn,α, {Aσ}σ∈Σ,ω) where n is the
number of states (or dimension) of the automata, α,ω ∈ Fn are the initial and terminal
weight vectors, and Aσ is an n × n transition matrix for each σ ∈ Σ. A weighted
automaton computes a function fA : Σ∗ → F defined by

fA(w) = α>Aw1Aw2 · · ·Awkω

for any word w = w1w2 · · ·wk ∈ Σ∗. The rank of a function f : Σ∗ → F is the minimal
number of states of a WA computing it, if f is not recognizable (i.e. it cannot be com-
puted by a WA) we set rank(f) =∞. An automaton is minimal if its number of states is
equal to the rank of the function its compute. We refer the reader to the books of Berstel
and Reutenauer (1988), Sakarovitch (2009) and Droste, Kuich, and Vogler (2009) for
more details.

The tensor network shown in Figure 2.2 represents the computation of a WA and
shows how the linear structure of a string is naturally translated in the WA computation.

Hidden Markov Models (HMM) are widely used statistical tools to modelize discrete
time series (Baum and Eagon, 1967; Rabiner, 1989) and it is worth mentioning that
weighted automata on strings encompass HMMs: any probability distribution on Σ∗
defined by an HMM can be computed by a weighted automaton.

Recognizable series on trees. We first define (ranked) trees on a ranked alphabet.
A ranked alphabet is a tuple F = (Σ, ]) where Σ is a finite alphabet and ] : Σ → N is
an arity function. We denote by Fp = {g ∈ Σ : ]g = p} the set of symbols with arity
p. Similarly, we will denote by F≤p (resp. F≥p) the set of symbols with arity at most p
(resp. at least p). We will sometimes use parenthesis and commas for a short declaration
of symbols with arity, e.g. g( · , · ) is a symbol of arity 2.

The set of trees TF on a ranked alphabet F is the smallest set such that

• σ ∈ TF for any σ ∈ F0,

• g(t1, · · · , tk) ∈ TF for any k ≥ 1, g ∈ Fk and t1, · · · , tk ∈ TF .
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Figure 2.3: Computation of a weighted tree automaton on the tree g(a, h(a, a, a)) as a
tensor network.

Here g(t1, · · · , tk) denotes the tree with root labeled by the symbol g and having k sons
t1, · · · , tk. We will call symbols in F0 leaf symbols and symbols in F≥1 internal symbols.

A weighted tree automaton (WTA) is a tuple T = (Fn,α, {T g}g∈F≥1 , {ωσ}σ∈F0) where
n is the number of states (or dimension), α ∈ Fn is the initial weight vector, ωσ ∈ Fn
is the final weight vector associated with the leaf symbol σ for each σ ∈ F0, and for
any symbol g of arity k ≥ 1, T g ∈ (Fn)⊗k+1 is the transition tensor associated with the
internal symbol g.

A WTA computes a function fT : TF → F defined by fT (t) = α>ωT (t) where the
mapping ωT : TF → Fn is inductively defined by

• ωT (σ) = ωσ for any σ ∈ F0,

• ωT (g(t1, · · · , tk)) = T g •2ωT (t1)•3 · · · •p+1ωT (tp) for any p ≥ 1, g ∈ Fp, and trees
t1, · · · , tp ∈ TF .

In many cases we will just write ω(t) when the automaton T is clear from context.
Similarly to the string case, the rank of a function f : TF → F is the minimal number
of states of a WTA computing it and we let rank(f) = ∞ if f is not recognizable, and a
WTA is minimal if its number of states is equal to the rank of the function its compute.
We refer the reader to the books (Comon et al., 2007) and (Droste, Kuich, and Vogler,
2009) for more details on (weighted) tree automata.

The tensor network shown in Figure 2.3 represents the computation of a WTA on a tree
on the ranked alphabet F = {a, g( · , · ), h( · , · , · )}. It illustrates how the computation
of a WTA on a given tree naturally reflects the tree’s structure.

Recognizable series and tensor networks. Figures 2.2 and 2.3 show how the com-
putation of a weighted automaton on a string or a tree can naturally be interpreted as
a tensor network (this interpretation directly comes from the algebraic nature of linear
representations of weighted automata). A weighted automaton can thus simply be seen
as a mapping that associates each symbol in a (ranked) alphabet to a tensor, and its
computation can be summarized as follows: given a syntactical structure (e.g. a string
or a tree), construct the tensor product of all the tensors associated with the atoms of
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the structure (letters for strings or symbols for trees), and apply successive contractions
corresponding to links between the atoms (successive letters in a string or father and
child nodes in a tree). Of course once this has been done, one is left with a matrix in the
case of strings or a vector in the case of trees; the final step in the computation consists
in plugging vectors in the remaining open edges of the tensor network using α and ω for
strings or solely α for trees.

It should now be clear that this unifying view of weighted automata computations on
strings and trees in terms of tensor networks can directly be extended to labeled graphs.
This chapter is devoted to the introduction and the study of this computational model
on graphs, which we call Graph Weighted Models.

As a side note, we mentioned in Chapter 1 that the computation of a weighted au-
tomaton on strings is closely related to the tensor train (TT) decomposition; we can
now briefly explicit this relation. Let A = (Fn,α, {Aσ}σ∈Σ,ω) be a weighted automaton
on strings. For any integer k, let us define the kth order tensorH ∈ (FΣ)⊗k by

Hσ1,σ2,··· ,σk = fA(σ1σ2 · · ·σk) for all σ1, σ2, · · · , σk ∈ Σ.

The components of this tensor are all the values computed by A on strings of length k.
By letting G ∈ Fn×Σ×n be the 3rd order tensor defined by G:,σ,: = Aσ for any σ ∈ Σ, one
can check that the tensor H can be decomposed in the following form which is similar
to a TT decomposition:

Hσ1,σ2,··· ,σk =
∑

i0,i1,··· ,ik
αi0Gi0,σ1,i1Gi1,σ2,i2 · · ·Gik−1,σk,ikωik .

This relationship has been previously noticed in (Critch and Morton, 2014; Critch,
2013) where the authors show that hidden Markov models bear a close relationship to
Matrix Product States (MPS) with open boundary conditions (which are similar to de-
compositions in the TT format). Similarly, GWMs defined over the family of circular
strings are related to MPS with periodic boundary conditions (which are similar to ten-
sor ring decompositions), while GWMs defined over the family of 2-dimensional words
are related to another tensor network model used in quantum physics known as Pro-
jected Entangled Pair States (which are, roughly speaking, tensor networks having a
2-dimensional grid structure).

2.2 A Model of Recognizable Series over Graphs

2.2.1 Graphs

We start by introducing a definition of graphs on a ranked alphabet. This definition is
very closely related to the notion of tensor networks that we introduced in Section 1.2.2.
In particular, we introduce the notion of ports of a vertex that allows us to distinguish
the different outgoing edges from a node in a graph. Moreover, each vertex of a graph is
labeled by a symbol of the ranked alphabet, and its degree (i.e. the number of outgoing
edges from the vertex) must coincide with the arity of the symbol it is labeled with. We
also allow open edges which are outgoing edges from some vertex that are not connected
to any other vertex in the graph. We will show in Section 2.2.2 how classical objects
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such as strings and trees can be defined using this formalism.

Definition 1. A graph G over a ranked alphabet F = (Σ, ]) is a tuple (V,E, `) where

• V is a non empty set of vertices,

• ` : V → Σ is a labeling of the vertices,

• E is a partition composed of sets of cardinality 1 or 2 of the set of ports

P (G) = {(v, j) : v ∈ V, j ∈ []v]}

of G (where ]v = ]`(v)).

The partition E of the ports of a graph G is the set of edges of the graph. The elements
of E with cardinality 2 correspond to the classical notion of edges of a graph (i.e. a con-
nection between two ports of the graph), while elements with cardinality 1 correspond
to free ports (or open edges) of the graph (i.e. ports that are not connected to any other
port in the graph). Observe that the fact that the degree of each vertex must coincide
with the arity of its label is a direct consequence of Definition 1 (since E is a partition of
P (G)). Two examples of graphs are shown in Figure 2.4.

We will denote by GF the set of graphs on the ranked alphabet F . For any integer k we
denote by Gk

F the set of graphs with k free ports:

Gk
F = {G = (V,E, `) ∈ GF : |{e ∈ E : |e| = 1}| = k}.

We will say that two graphs G = (V,E, `) and G′ = (V ′, E′, `′) on the same ranked
alphabet F (i.e. G,G′ ∈ GF) are isomorphic if there exists a bijection ψ : V → V ′ such
that

• `(v) = `′(ψ(v)) for all v ∈ V and

• for all {(u, i), (v, j)} ∈ E we have {(ψ(u), i), (ψ(v), j)} ∈ E′.

Note that we did not assume that u 6= v and i 6= j in the second condition, thus this
condition must also be satisfied by open edges of the graphs. Loosely speaking, two
graphs are isomorphic if one can be obtained from the other by simply renaming its
vertices. In this chapter, we will mostly consider that two isomorphic graphs are the same
object. If for example we say that a property holds for all graph except for some graph
G, we mean that the property is true for any graph that is not isomorphic to G.

We will say that a graph G is connected if there exists a path between any two vertices
of G, i.e. for all u, v ∈ V there exists a sequence of edges e1, · · · , em ∈ E such that
(u, i) ∈ e1, (v, j) ∈ em for some i ∈ []u], j ∈ []v] and ek ∩ ek+1 6= ∅ for all k ∈ [m− 1].

We will call a graph with no free port G ∈ G0
F a closed graph. For any symbol x ∈ Σ

of arity k, we denote by Gx ∈ Gk
F the singleton graph with one vertex labeled by x and k

free ports: Gx = ({v}, {{(v, i)} : i ∈ [k]}, `) with `(v) = x. We will call (v, i) the ith free
port of Gx.

Example 1. Let F = ({h, g, a}, ]) be a ranked alphabet with ]h = 2, ]g = 3 and ]a = 1.
An example of a graph G = (V,E, `) ∈ G0

F is shown in Figure 2.4 (left) where
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Figure 2.4: The graphs G ∈ G0
F and G′ ∈ G1

F from Example 1.

• V = {v1, v2, v3, v4},

• `(v1) = `(v2) = h, `(v3) = g, `(v4) = a, and

• E = {{(v1, 1), (v3, 2)}, {(v1, 2), (v2, 1)}, {(v2, 2), (v3, 1)}, {(v3, 3), (v4, 1)}}.

The graph with one free port G′ = (V \{v4}, (E∪{{(v3, 3)}})\{{(v3, 3), (v4, 1)}}, `) ∈ G1
F

obtained by removing the vertex v4 from G is shown in Figure 2.4 (right).

Let F = (Σ, ]) be a ranked alphabet. The set of graphs GF can also be defined
inductively using the following two simple operations on graphs:

• Let G1 = (V1, E1, `1) ∈ Gk1
F and G2 = (V2, E2, `2) ∈ Gk2

F . We assume that G1 and
G2 have distinct sets of vertices (V1 ∩ V2 = ∅), if this is not the case it suffices to
rename the elements of V1. We denote by G1 ∪G2 = (V,E, `) ∈ Gk1+k2

F the union
of G1 and G2, where V = V1 ∪ V2, E = E1 ∪ E2 and `(v) = `1(v) if v ∈ V1 and
`2(v) otherwise.

• Let G = (V,E, `) ∈ Gk
F for some k ≥ 2 and let p, p′ ∈ P (G) be two distinct free

ports of G (that is p 6= p′ and {p}, {p′} ∈ E). We denote by 〈〈G〉〉(p,p′) ∈ Gk−2
F the

graph obtained by connecting p and p′ in G. Formally,

〈〈G〉〉(p,p′) = (V, (E ∪ {{p, p′}}) \ {{p}, {p′}}, `).

It is then easy to check that GF is the smallest set such that

• For all x ∈ Σ, the singleton graph Gx is in GF .

• G1 ∪G2 ∈ GF for any G1, G2 ∈ GF .

• 〈〈G〉〉(p,p′) ∈ GF for any G ∈ GF such that p, p′ ∈ P (G), p 6= p′ and {p}, {p′} ∈ E.

2.2.2 Some Families of Graphs

We now define several families of graphs. We first show how strings and trees can be
naturally mapped to closed graphs (see Figure 2.5).

Strings. Let Σ be a finite alphabet and let w = σ1σ2 · · ·σk ∈ Σ∗. We define the
ranked alphabet F = (Σ ∪ {α, ω}, ]) where α and ω are two new symbols of arity 1
and ]σ = 2 for all σ ∈ Σ. The graph graph(w) is obtained by mapping each letter in
w to a vertex whose first (resp. second) port is connected to the previous (resp. next)
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Figure 2.5: (left) Graph graph(w) associated with the string w = abba. (right) Graph
graph(t) associated with the tree t = f(a, f(a, a)).

vertex and the special symbols α and ω are used to mark the start and end of the string.
Formally, graph(w) = (V,E, `) where V = {v0, v1, · · · , vk+1}, `(v0) = α, `(vk+1) = ω
and `(vi) = σi for i ∈ [k], and E = {{(vi, 2), (vi+1, 1)} : i ∈ [k]} ∪ {{(v0, 1), (v1, 1)}}.

Trees. We consider trees on a ranked alphabet F = (Σ, ]). Let F ′ = (Σ∪{α}, ]′) where
α is a new symbol of arity 1 and ]′g = ]g + 1 for all g ∈ Σ. We first map any tree t ∈ TF
to a graph G̃t ∈ G1

F ′ where the free port in G̃t marks the root of the tree. This mapping
is defined inductively:

• for any leaf symbol σ ∈ F0 we let G̃σ be the singleton graph Gσ

• for any tree t = g(t1, · · · , tk) in TF where g ∈ Fk and t1, · · · , tk ∈ TF we let

G̃t = 〈〈Gg ∪ G̃t1 ∪ · · · ∪ G̃tk〉〉(q2,p1),(q3,p2),··· ,(qk+1,pk)

where qi is the ith free port of Gg and pj is the (only) free port of G̃tj .

The graph graph(t) is then obtained by connecting a root vertex to G̃t: graph(t) =
〈〈Gα ∪ G̃t〉〉(p,p′) where p (resp. p′) is the free port of Gα (resp. G̃t).

The set of graphs on a ranked alphabet is a very rich and complex family of structured
objects. Consequently, we will see in the next sections that some fundamental properties
of recognizable series over strings and trees are not verified by recognizable series over
graphs. One objective of this chapter will be to identify families of graphs on which
graph recognizable series satisfy these fundamental properties. Such a family of graph
should be smaller than the whole set of graphs GF while still being more general than
the families of strings and trees. One way to proceed is by enforcing some structural
constraint on the graphs belonging to such a family. We will consider two such structural
constraints (that are satisfied by graphs obtained from strings and trees): graphs with a
root, and graphs for which ports can be partitioned into input and output ports.

Rooted graphs. Let F = (Σ ∪ {α0}, ]) be a ranked alphabet. We will say that a set of
graphs S ⊂ G0

F is a family of rooted graphs if the special root symbol α0 appears exactly
once in each graph of S:

∀G = (V,E, `) ∈ S, |{v ∈ V : `(v) = α0}| = 1.
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Note that the families of graphs obtained from strings and trees are families of rooted
graphs.

In-out graphs. Let F = (Σ, ]) be a ranked alphabet. The notion of in-out graphs is
related to the classical notion of directed graphs. Loosely speaking, we will say that a set
of graphs S ⊂ G0

F is a family of in-out graphs if for each symbol in Σ of arity k, the set
[k] can be partitioned in in-ports and out-ports such that any graph in S does not contain
any edge with two in-ports or two out-ports. Formally, S is a family of in-out graphs if
and only if there exist a mapping ζ : {(x, i) : x ∈ Σ, i ∈ []x]} → {in, out} such that

∀G = (V,E, `) ∈ S : {(u, i), (v, j)} ∈ E and (u, i) 6= (v, j)⇒ ζ(`(u), i) 6= ζ(`(v), j).

Again, the family of graphs obtained from strings and trees are families of in-out graphs,
and so are the families of circular strings and 2d-words defined below.

Finally, we present two families of graphs that extend the traditional notion of string
over a finite alphabet. Circular strings are strings that are closed onto themselves, and
two-dimensional words naturally extend (one-dimensional) strings to arrays of symbols
(see Figure 2.6).

Circular strings. Let Σ be an alphabet and let ] be the arity function defined by ]σ = 2
for all σ ∈ Σ.

Let w = w1w2 · · ·wk ∈ Σ+ be a word of length k. The circular string circ(w) is the
graph G = (V,E, `) ∈ G(Σ,]) defined by:

• V = {v1, · · · , vk},

• `(vi) = wi for i ∈ [k] and

• E = {{(v1, 2), (v2, 1)}, {(v2, 2), (v3, 1)}, · · · , {(vk−1, 2), (vk, 1)}, {(vk, 2), (v1, 1)}}.

We denote by Gcirc
Σ the set of all circular strings over Σ. The family of circular strings

will be of particular interest in this chapter since it is in some sense the smallest family
of graphs with loops.

Two-dimensional words. A 2d-word (or picture) p ∈ Σ++ over a finite alphabet Σ is
defined as a non-empty rectangular array of elements of Σ, formally Σ++ = ∪m,n≥1Σm×n.
We write pi,j for the component of p at position (i, j). With each 2d-word p ∈ Σ++ of
size m × n we associate a closed graph graph(p) = (V,E, `) on the ranked alphabet
F = (Σ ∪ {w, n, e, s}, ]) where ]σ = 4 for all σ ∈ Σ and ]w = ]e = ]n = ]s = 1. The
graph graph(p) is constructed in a straightforward way by translating p into a graph and
adding nodes to the border of the picture: nodes on the west border will be labeled by
the symbol w, on the east border by e, etc. Formally, we have

• V = {vi,j , w̄i, ēi, n̄j , s̄j : i ∈ [m], j ∈ [n]}

• `(vi,j) = pi,j , `(w̄i) = w, `(ēi) = e, `(n̄i) = n, `(s̄i) = s for i ∈ [m], j ∈ [n]

• E contains the following edges:
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Figure 2.6: (left) The circular string circ(abaabb). (right) Graph graph(p) associated
with the picture aca

dbb .

– {(vi,j , 3), (vi,j+1, 1)} for i ∈ [m], 1 ≤ j < n,

– {(vi,j , 4), (vi+1,j , 2)} for 1 ≤ i < m, j ∈ [n],
– {(vi,1, 1), (w̄i, 1)} and {(vi,n, 3), (ēi, 1)} for i ∈ [m],
– {(v1,j , 2), (n̄j , 1)} and {(vm,j , 4), (s̄j , 1)} for j ∈ [n].

2.2.3 Graph Weighted Models

We now formally introduce graph weighted models. A graph weighted model is a com-
putational model that assigns a value to any closed graph on a given ranked alpha-
bet. It is defined by a set of tensors, one for each symbol in the alphabet, and it natu-
rally associates a graph with a tensor network computing the corresponding value. The
simple idea behind this model comes from the analogy between recognizable series on
strings/trees and tensor networks that has been presented in Section 2.1.1.

Definition 2. Let F be either R or C. A graph weighted model (GWM) with coefficients
in F on a ranked alphabet F = (Σ, ]) is a tuple (Fn, {Mx}x∈Σ) where

• n is the dimension (or number of states) and

• for each x ∈ Σ,Mx ∈ (Fn)⊗]x is a tensor of order the arity of x.

Given a GWM M = (Fn, {Mx}x∈Σ) and a graph G = (V,E, `), we denote by
Γid(M,G) the set of mappings from P (G) to [n] defined by

Γid(M,G) = {γ : P (G)→ [n] | {p, p′} ∈ E ⇒ γ(p) = γ(p′)}.

Observe that any mapping γ : P (G)→ [n] assigns a state to each port in the graph and
that Γid(M,G) is the set of all assignments that are compatible with the graph structure.
The GWM M computes a function fM : G0

F → F mapping closed graphs to scalars
defined by

fM (G) =
∑

γ∈Γid(M,G)

∏
v∈V
M`(v)

γ(v,1),··· ,γ(v,]v) for all G ∈ G0
F .
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We will say that a function f : G0
F → F is GWM-recognizable if there exists a GWM

M that computes it (i.e. f(G) = fM (G) for any graph G).

Using the notations from the previous definition, let V = (v1, · · · , vk). The tensor

M◦ =M`(v1) ◦M`(v2) ◦ · · · ◦M`(vk)

is of order |P (G)| and any γ ∈ Γid(M,G) is an element of [n]P (G). Thus, γ can be seen as
a multi-index and

∏
v∈VM

`(v)
γ(v,1),··· ,γ(v,]v) is the (γ(v1, 1), · · · , γ(v1, ]v1), · · · , γ(vk, 1), · · · ,

γ(vk, ]vk))-component of the tensorM◦. Furthermore, since Γid(G,M) is isomorphic to
[n]E , the computation of M on a graph G = (V,E, `) can be interpreted in the following
way:

• Each component Mx
i1,··· ,i]x of a tensor Mx represents the weight of a vertex la-

beled by x when its first port is in state i1, its second port in state i2, etc.

• Each configuration in [n]E (i.e. a labeling of the edges of G with states in [n])
assigns a state to each port of the graph, thus a configuration assigns a weight to
each vertex of G (using the tensorsMx). The product of these weights represents
the weight of the configuration.

• The value computed by M is the sum of the weights of all possible configurations
in [n]E .

The fact that γ ∈ Γid(G,M) implies that if two ports p and p′ are connected in G,
then the corresponding indices of the tensor M◦ will be contracted during the GWM
computation. In fact, as shown in Example 2 below, the GWM computation boils down
to the tensor network naturally constructed from the graphG and the tensors {Mx}x∈Σ.

Following this analogy between tensor networks and GWMs, any graph G ∈ Gk
F with

k free ports can be associated with a kth order tensor in (Fn)⊗k. Formally, given a
GWM M = (Fn, {Mx}x∈Σ) we define the mapping µM : Gk

F → (Fn)⊗k for any k ≥ 0
inductively by

• µM (Gx) =Mx for any singleton graph Gx and x ∈ Σ,

• µM (G1 ∪G2) = µM (G1) ◦ µM (G2) for any G1, G2 ∈ GF ,

• µM (〈〈G〉〉(p,p′)) = 〈〈µM (G)〉〉(i,i′) for any graph G ∈ GF with two distinct free ports
p and p′, where i (resp. i′) is the mode of the tensor µM (G) corresponding to the
port p (resp. p′).

Note that identifying (Fn)⊗0 with F we have fM (G) = µM (G) for any G ∈ G0
F . In the

following example we detail the computations of a GWM on the graphs from Example 1
and we show how these computations can naturally be expressed with tensor networks.

Example 2. Let M = (Fn, {Mx}x∈Σ) be a GWM. The value computed by M on the
graph G ∈ G0

F from Example 1 (page 29) is given by

fM (G) =
∑

i1,i2,i3,i4∈[n]
Mh

i1,i2M
h
i2,i3M

g
i3,i1,i4

Ma
i4 .
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The summation over i1 corresponds to the edge between v1 and v3, the summation over
i2 to the edge between v1 and v2, etc. Using the contraction operator we can write

fM (G) = 〈〈Mh ◦Mh ◦Mg ◦Ma〉〉(1,6),(2,3),(4,5),(7,8).

The mapping µM maps the graph G′ ∈ G1
F from Example 1 to the vector v ∈ Fn

defined by
vj =

∑
i1,i2,i3∈[n]

Mh
i1,i2M

h
i2,i3M

g
i3,i1,j

for all j ∈ [n]. Using the contraction operator we have

µM (G′) = 〈〈Mh ◦Mh ◦Mg〉〉(1,6),(2,3),(4,5).

These computations of the GWM M naturally correspond to the following tensor net-
works:

Mh

fM (G) =
Mh

Mg Ma

2
1

1 2

2
1

3 1 Mh

µM (G′) =
Mh

Mg

2
1

1 2

2
1

3

The following example shows that the computation of a GWM on a circular string can
be simply expressed in terms of the trace of the product of the matrices associated with
the symbols in the string.

Example 3. Let M = (Fn, {Mσ}σ∈Σ) be a GWM defined on the family of circular
strings on a finite alphabet Σ. It can easily be checked that M computes the function

circ(w) 7→ Tr(Mw1Mw2 · · ·Mwk)

for any string w = w1w2 · · ·wk ∈ Σ+.
Observe that the invariance of the trace of a product of matrices under cyclic permu-

tations nicely translates the fact that two circular strings obtained by cyclic permuta-
tion (e.g. circ(w1w2 · · ·wk) and circ(wkw1 · · ·wk−1)) are the same object (strictly speak-
ing they are isomorphic graphs).

We now define a slightly richer model than GWMs: �-GWMs. We introduce this model
for two main reasons. First, it will help us simplify the proof of Theorem 2 which is one
of the main results of this chapter. Second, this model is closer to the computational
model on hypergraphs that we originally considered in our paper (Bailly, Denis, and
Rabusseau, 2015).

Definition 3. A �-GWM on a ranked alphabet (Σ, ]) is a tuple (Fn, {Mx}x∈Σ, �) where

• n is the dimension (or number of states),

• for each x ∈ Σ,Mx ∈ (Fn)⊗]x is a tensor of order the arity of x and

• � : Fn × Fn → F is a symmetric bilinear form.
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Let (e1, · · · , en) be the canonical basis of Fn. A GWM M = (Fn, {Mx}x∈Σ, �) com-
putes a function fM : G0

(Σ,]) → F defined by

fM (G) =
∑

γ∈[n]P (G)

Mγ

∏
{p,p′}∈E

(eγ(p) � eγ(p′)) for all G ∈ G0
(Σ,]),

whereMγ =
∏
v∈VM

`(v)
γ(v,1),··· ,γ(v,]v).

It is easy to check that any GWM-recognizable series can be computed by a �-GWM:
it suffices to define the bilinear form � by ei � ej = 1 if i = j and 0 otherwise. However,
we will see below that while the converse is true for GWMs with complex coefficients, it
is not the case anymore for GWMs with coefficients in R. We first show in the following
proposition that any �-GWM can be transformed into an equivalent GWM by applying
a (complex) linear transformation along each mode of the tensors of the �-GWM.

Proposition 1. Any graph series recognizable by a �-GWM is recognizable by a GWM
with coefficients in C.
More precisely, given a �-GWM A = (Fn, {Ax}x∈Σ, �) where F is either R or C, there

exists a matrix Q ∈ Cn×n such that the GWM B = (Cn, {Ax ×1 Q ×2 · · · ×]x Q}x∈Σ)
computes the same function as A.

Proof. Let F be either R or C and let A = (Fn, {Ax}x∈Σ, �) be a �-GWM. Let M ∈ Fn×n
be the matrix defined by Mi,j = ei�ej . Since � is symmetric, the matrix M is symmetric
and there exists a matrix Q ∈ Cn×n such that M = QQ>. Let B = (Cn, {Bx}x∈Σ) be
the GWM defined by Bx = Ax ×1 Q> ×2 · · · ×]x Q> for all x ∈ Σ. We claim that B
computes the same function as A. Indeed, let G = (V,E, `) be a closed graph. Using
the notation Aγ =

∏
v∈V A

`(v)
γ(v,1),··· ,γ(v,]v) we have

fA(G) =
∑

γ∈[n]P (G)

Aγ
∏

{p,p′}∈E
(eγ(p) � eγ(p′))

=
∑

γ∈[n]P (G)

Aγ
∏

{p,p′}∈E

n∑
i=1

Qγ(p),iQγ(p′),i

=
∑

γ∈[n]P (G)

Aγ
∑

γ̃∈Γid(G,B)

∏
p∈P (G)

Qγ(p),γ̃(p)

=
∑

γ∈[n]P (G)

∑
γ̃∈Γid(G,B)

∏
v∈V
A`(v)
γ(v,1),··· ,γ(v,]v)Qγ(v,1),γ̃(v,1) · · ·Qγ(v,]v),γ̃(v,]v)

=
∑

γ̃∈Γid(G,B)

∏
v∈V

(
A`(v) ×1 Q> ×2 · · · ×]v Q>

)
γ̃(v,1),··· ,γ̃(v,]v)

=
∑

γ̃∈Γid(G,B)

∏
v∈V
B`(v)
γ̃(v,1),··· ,γ̃(v,]v) = fB(G).

It is important to note that while �-GWMs and GWMs with coefficients in C are strictly
equivalent, it is not the case when the coefficients are in R. This is explained by the fact
that there exist functions on graphs that can only be computed by GWMs with complex
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coefficients: consider the graph G = a− a connecting two vertices labeled by the arity-
one symbol a; for any GWM M we have fM (G) =

∑
i(Ma

i )2, which can only be negative
if M has its coefficients in C. However, it is easy to construct a �-GWM with coefficients
in R computing a function such that fM (G) < 0, but the corresponding GWM will have
its coefficients in C.

A first fundamental difference between GWMs and recognizable series on strings fol-
lows from the previous discussion: it is known that any recognizable string series taking
its values in R can be computed by a weighted automaton with real weights (Berstel
and Reutenauer, 1988, Theorem 2.1); this is not the case for GWM-recognizable series.
However, we conjecture that it is true for GWMs defined on families of in-out graphs.
We will go back to this question in Section 2.4 where we will show that under some
assumptions on a family of in-out graphs S, any real-valued function f : S → R with
finite support can be computed by a GWM with real weights. This is one of the results
that led us to state the previous conjecture.

2.3 Properties of Graph Weighted Models
In the previous section, we introduced the novel computational model on graphs of
GWMs. The definition of this model was inspired by our interpretation of the computa-
tions of classical weighted automata on strings and trees in terms of tensor networks. In
this section, we will start by formally showing that GWMs generalize the classical mod-
els of weighted automata on strings and trees and the more recent model of weighted
automata on pictures: we will show that any function computed by a weighted automa-
ton on strings/trees/pictures can be computed by a GWM (on the associated graphs
described in the previous section). This is in some sense a first step towards showing
that GWMs define a legitimate computational model on graphs.

In order to go further in this direction, we will then study closure properties of
GWM-recognizable functions. It is well known that the set of recognizable functions
on string (or trees) is closed under sum, (Hadamard) product and scalar multiplication.
Such properties are desirable for a model extending the notion of recognizable series
to graphs. We will show that GWM-recognizable functions defined over families of con-
nected graphs are closed under sum and Hadamard product. However, we will see that
the set of GWM-recognizable functions is not closed under scalar multiplication. This
is one of the fundamental properties that is not satisfied by GWMs defined over the
whole set of graphs GF in general. Nonetheless, we will show that this property holds
if we consider GWMs defined over any family of rooted graphs. The recognizability of
finite support series (i.e. functions that are different from zero only on a finite number
of graphs) is also a fundamental property that is satisfied by recognizable functions on
strings and trees but not by GWMs in general. The study of this property is deferred to
the next section.

Finally, we will conclude this section by showing that GWMs can induce compressed
representations of functions computed by weighted automata. Indeed, we will show that
there exist functions that can be computed by a GWM with n states on (rooted) circular
strings but that cannot be computed by a weighted automaton on strings with less than
n2 states.
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2.3.1 GWMs and Weighted Automata of Strings, Trees and Pictures

Strings and trees. The following propositions show that GWMs encompass the clas-
sical notions of recognizable series on strings and trees.

Proposition 2. Let A = (Fn,α, {Aσ}σ∈Σ,ω) be a weighted string automaton over Σ∗.
For any word w ∈ Σ∗, let graph(w) be the associated graph on the ranked alphabet
(Σ ∪ {α, ω}, ]), whose construction is described in Section 2.2.2. Consider the GWM
M = (Fn, {Mx}x∈Σ∪{α,ω}) whereMα = α,Mω = ω andMσ = Aσ for all σ ∈ Σ.
Then, fA(w) = fM (graph(w)) for all strings w ∈ Σ∗.

Proof. Let w = σ1 · · ·σk. We have

fA(w) = α>Aσ1 · · ·Aσkω =
n∑

i0,...,ik=1
αi0Aσ1

i0,i1
· · ·Aσk

ik−1,ik
ωik

=
n∑

i0,...,ik=1
Mα

i0M
σ1
i0,i1
· · ·Mσk

ik−1,ik
Mω

ik
= fM (graph(w)).

Proposition 3. Let T = (Fn,α, {T g}g∈F≥1 , {ωσ}σ∈F0) be a weighted tree automaton
over trees on the ranked alphabet F = (Σ, ]). For any tree t ∈ TF , let graph(t) =
(Vt, Et, `t) be the associated graph on the ranked alphabet (Σ∪{α}, ]′), whose construction
is described in Section 2.2.2. Consider the GWM M : 〈Fn, {Mx}x∈Σ∪{α}〉 whereMα =
α,Mf = T f for all f ∈ F≥1 andMσ = ωσ for all σ ∈ F0.
Then, fT (t) = fM (graph(t)) for all t ∈ TF .

Proof. For any tree t let G̃t be the graph with one free port obtained by removing the
root vertex in graph(t) (see Section 2.2.2, page 31). We first show by induction on the
height of t that µ(G̃t) = ω(t) for all tree t where µ is the graph-tensor mapping induced
by the GWMM . If t = σ for some σ ∈ F0 we have µ(G̃t) =Mσ = ωσ = ω(σ). Suppose
the result true for trees of height up to k− 1 and let t = g(t1, · · · , tp) be a tree of height
k. We have

µ(G̃t) = 〈〈Mg ◦ µ(G̃t1) ◦ µ(G̃t2) ◦ · · · ◦ µ(G̃tp)〉〉(2,p+2),(3,p+3),··· ,(p+1,2p+1)

=Mg •2 µ(G̃t1) •3 · · · •p+1 µ(G̃tp)
= T g •2 ω(t1) •3 · · · •p+1 ω(tp) = ω(t).

It then follows that fM (graph(t)) = 〈〈Mα ◦ µ(G̃t)〉〉(1,2) = α>ω(t) = fT (t).

Two-dimensional words. Motivated by problems arising in image processing and pat-
ter recognition, various computational models on two-dimensional arrays of symbols
have been proposed. We will now present such a model that extends string weighted
automata to two-dimensional words and we will show that functions computed by this
model can be computed by GWMs.

A 2d-word language (or picture language) is a set of 2d-words and a 2d-word series
(or picture series) is a function from Σ++ to a commutative semi-ring. Regular 2d-

38



word languages can equivalently be described in terms of automata, set of tiles, ra-
tional operations or monadic second order logic (Giammarresi and Restivo, 1996; Gi-
ammarresi et al., 1996; Inoue and Nakamura, 1977; Latteux and Simplot, 1997). The
extension of regular 2d-word languages to the quantitative setting led to the defini-
tion of recognizable 2d-word series whose theoretical study has been of recent interest
(Bozapalidis and Grammatikopoulou, 2005; Mäurer, 2005; Mäurer, 2006; Babari and
Droste, 2015). Recognizable 2d-word series have been first introduced in (Bozapalidis
and Grammatikopoulou, 2005) by means of weighted picture automaton.

Definition 4. A weighted (quadropolic) picture automaton (WPA) on a finite alphabet
Σ is a tuple A = 〈Q,R, Fw, Fn, Fe, Fs, δ〉 consisting of a finite set of states Q, a finite set
of rules R ⊆ Σ×Q4, four poles of acceptance Fw, Fn, Fe, Fs ⊆ Q, and a weight function
δ : R→ F.

Given a rule r = (σ, qw, qn, qe, qs) ∈ R we denote by `(r) its label σ, and by west(r) =
qw, north(r) = qn, east(r) = qe and south(r) = qs the states corresponding to its four
poles.

A run c of A on a picture p ∈ Σm×n is an element in Rm×n satisfying the following
compatibility properties:

∀i ≤ m− 1,∀j ≤ n : south(ci,j) = north(ci+1,j)
∀i ≤ m,∀j ≤ n− 1 : east(ci,j) = west(ci,j+1) (2.1)

and `(ci,j) = pi,j for all i ≤ m, j ≤ n. A run is successful if its outer pole-states are in the
respective poles of acceptance, that is

∀i ≤ m,∀j ≤ n : west(ci,1) ∈ Fw, south(cm,j) ∈ Fs, east(ci,n) ∈ Fe, north(c1,j) ∈ Fn.

We denote by R(p) the set of all successful runs on a picture p.
The weight function δ is extended to runs by setting δ(c) =

∏
i,j δ(ci,j). The weight

of a picture p is the sum of the weights of all successful runs on p. It defines a picture
series fA : Σ++ → F with fA(p) =

∑
c∈R(p) δ(c). If there are no successful run on p then

fA(p) = 0.
The following proposition shows that any function that can be computed by a weighted

picture automaton can be computed by a GWM.

Proposition 4. Let A = 〈Q,R, Fw, Fn, Fe, Fs, δ〉 be a WPA with d states (q1, · · · , qd)
on the alphabet Σ over the field F = R or F = C. For any picture p, let graph(p) be
the associated graph on the ranked alphabet F = (Σ ∪ {w,n,e,s}, ]), whose construction
is described in Section 2.2.2. Consider the GWM M : 〈Fd, {Mx}x∈F 〉 where

Mx
i =

{
1 if qi ∈ Fx
0 otherwise

for any x ∈ {w,n,e,s}, and

Mσ
i1i2i3i4 =

{
δ(r) if r = (σ, qi1 , qi2 , qi3 , qi4) ∈ R
0 otherwise

for any σ ∈ Σ.

Then, fM (graph(p)) = fA(p) for all pictures p ∈ Σ++.
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Proof. Without loss of generality, we suppose that Q = [d] and that δ(r) 6= 0 for all
rules r ∈ R. Let p ∈ Σm×n and G = graph(p), we have fM (G) =

∑
γ∈Γid(G,M)Mγ

whereMγ =
∏
v∈VM

`(v)
γ(v,1) · γ(v,]v). We associate each multi-index γ ∈ Γid(G,M) with

a run cγ of A on p by letting cγi,j = (`(vi,j), γ(vi,j , 1), · · · , γ(vi,j , 4)) for all i, j. Note that
it follows from the definition of Γid(G,M) that c is a valid run of A (i.e. it satisfies
Eq. 2.1). However, cγ may not be in Rm×n, in which case we say that cγ is unsuccessful.
We now show that the only non-zero summandsMγ in fM (G) are those for which cγ

is a successful run, which implies that fM (G) =
∑
γ:cγ∈R(p)Mγ . Indeed, a run cγ can

be unsuccessful for two reasons: either one of its components ci,j is not in R, in which
caseMγ(vij) = 0 (whereMγ(v) =M`(v)

γ(v,1),··· ,γ(v,]v)), or one of its outer pole-states, let
say the north pole of c1,j for some j ∈ [n], is not in the corresponding pole of acceptance
Fn, in which caseMγ(n̄j) = 0.

It remains to show thatMγ = δ(cγ) for all cγ ∈ R(p). This follows from the fact
that since cγ is successful,Mγ(v) = 1 for all vertex v such that `(v) ∈ {w, n, e, s}, and
Mγ(vij) = δ(cγij) for all i ∈ [m], j ∈ [n]. Hence fM (G) =

∑
c∈R(p) δ(c) = fA(p).

2.3.2 Closure Properties

The following propositions show that the set of GWM-recognizable series is closed under
sum and Hadamard product. The constructions we use are similar to the classical ones
used to prove the same closure properties for recognizable series over strings and trees
(i.e. we use direct sum for the sum and Kronecker product for the Hadamard product).

Proposition 5. Let A = (Fm, {Ax}x∈Σ) and B = (Fn, {Bx}x∈Σ) be two GWMs on
the same ranked alphabet F = (Σ, ]). The GWM C = (Fm+n, {Cx}x∈Σ) defined by
Cx = Ax ⊕ Bx for all x ∈ Σ is such that fC(G) = fA(G) + fB(G) for any connected
graph G ∈ G0

F .

Proof. Let G = (V,E, `) ∈ G0
F . Let ΓA = {γ ∈ Γid(G,C) : 1 ≤ γ(p) ≤ m for all p ∈

P (G)} and ΓB = {γ ∈ Γid(G,C) : m < γ(p) ≤ m + n for all p ∈ P (G)} and note that
ΓA ∩ ΓB = ∅. We use the notation Cγ =

∏
v∈V C

`(v)
γ(v,1),··· ,γ(v,]v) and similarly for Aγ and

Bγ .
We first show that for any γ ∈ Γid(G,C), if Cγ 6= 0 then γ ∈ ΓA ∪ ΓB. Let γ ∈

Γid(G,C) be such that Cγ 6= 0 and let v ∈ V be any vertex of G. Since Cγ 6= 0 we
have C`(v)

γ(v,1),··· ,γ(v,]v) 6= 0, thus by definition of the tensor C`(v) we must have either
γ(v, 1), · · · , γ(v, ]v) ∈ {1, · · · ,m} or γ(v, 1), · · · , γ(v, ]v) ∈ {m+1, · · · ,m+n}. Suppose
γ(v, i) ∈ {1, · · · ,m} for all i ∈ []v], then for any (v′, i′) ∈ P (G) such that {(v, i), (v′, i′)} ∈
E for some i ∈ []v] we have γ(v, i) = γ(v′, i′) ∈ {1, · · · ,m} (since γ ∈ Γid(G,C)), and
since Cγ 6= 0 we must have C`(v

′)
γ(v′,1),··· ,γ(v′,]v′) 6= 0 from which it follows that γ(v′, i′) ∈

{1, · · · ,m} for all i′ ∈ []v′]. Since G is connected this argument can be extended from
neighbor to neighbor to all vertices of G which implies γ ∈ ΓA. The same reasoning can
be used to show that if γ(v, 1), · · · , γ(v, ]v) ∈ {m + 1, · · · ,m + n} then γ ∈ ΓB. Hence
if Cγ 6= 0 then γ ∈ ΓA ∪ ΓB.
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It then follows that

fC(G) =
∑

γ∈Γid(G,C)
Cγ =

∑
γ∈Γid(G,C):Cγ 6=0

Cγ =
∑
γ∈ΓA

Cγ +
∑
γ∈ΓB

Cγ

=
∑

γ∈Γid(G,A)
Aγ +

∑
γ∈Γid(G,B)

Bγ = fA(G) + fB(G).

Proposition 6. Let A = (Fm, {Ax}x∈Σ) and B = (Fn, {Bx}x∈Σ) be two GWMs on the
same ranked alphabet F(Σ, ]). The GWM C = (Fmn, {Cx}x∈Σ) defined by Cx = Ax⊗Bx
for all x ∈ Σ is such that fC(G) = fA(G)fB(G) for all G ∈ G0

F .

Proof. Let φ1 : [mn] → [m] and φ2 : [mn] → [n] be the mappings defined by (u ⊗
v)i = uφ1(i)vφ2(i) for all u ∈ Fm, v ∈ Fn and i ∈ [mn]. Using the notation Cγ =∏
v∈V C

`(v)
γ(v,1),··· ,γ(v,]v) and similarly for Aγ and Bγ , we have

fC(G) =
∑

γ∈Γid(G,C)
Cγ =

∑
γ∈Γid(G,C)

∏
v∈V

(
A`(v) ⊗B`(v)

)
γ(v,1),··· ,γ(v,]v)

=
∑

γ∈Γid(G,C)

∏
v∈V
A`(v)
φ1(γ(v,1)),··· ,φ1(γ(v,]v))B

`(v)
φ2(γ(v,1)),··· ,φ2(γ(v,]v))

=
∑

γ1∈Γid(G,A)
γ2∈Γid(G,B)

∏
v∈V
A`(v)
γ1(v,1),··· ,γ1(v,]v)B

`(v)
γ2(v,1),··· ,γ2(v,]v)

=
∑

γ1∈Γid(G,A)
Aγ

∑
γ1∈Γid(G,B)

Bγ = fA(G)fB(G).

Interestingly, the set of GWM-recognizable series is not closed under scalar multiplica-
tion in general. To see this, consider the GWM-recognizable series on circular strings on
the one-letter alphabet Σ = {a} defined by f(an) = κn for some κ ∈ R\{0, 1}. Then, for
any real number α 6∈ N the series f ′ : an 7→ αf(an) is not GWM-recognizable. Indeed,
this would imply that there exists some matrix M such that Tr(Mn) = ακn for all n, but
it follows from the following lemma that if Tr((M

κ )n) = α for all n, then α ∈ N.

Lemma 2. Let M ∈ Rn×n. If there exists an integer k such that Tr(Mk) = Tr(Mk+1) =
· · · = Tr(Mk+n), then for all m ∈ N,Tr(Mm) = Tr(M) ∈ N.

Proof. Let λ1, . . . , λp ∈ C be the distinct non zero eigenvalues of M, with multi-
plicities n1, . . . , np respectively. If p = 0, the spectrum of M is reduced to 0 and
∀m ∈ N,Tr(Mm) = Tr(M) = 0.
Suppose that p > 0. Let D = diag(λ1, . . . , λp) and let N ∈ Rp×p be the square ma-

trix defined by Ni,j = λi−1
j . The matrix N is full rank and its determinant is equal

to
∏
i<j(λj − λi). For any k ∈ N, let uk = (λk1n1, . . . , λ

k
pnp)>. We have Nuk =

(Tr(Mk), . . . ,Tr(M)k+p−1). Now, suppose that there exists an integer k such that
Tr(Mk) = · · · = Tr(M)k+p = α. Then, Nuk = Nuk+1 and since N is invertible,
uk = uk+1. Hence, λ1 = · · · = λp = 1 and p = 1. Therefore, ∀m ∈ N,Tr(Mm) =
Tr(M) = n1.
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Nonetheless, there are families of graphs for which GWMs are closed under scalar
multiplication. This is for example the case for strings and trees. More generally, this is
the case for any family of rooted graphs: multiplication by a scalar λ is simply achieved
by multiplying the tensor Mα0 associated with the root symbol α0 by λ. Thus, even
though GWMs are not closed under scalar multiplication in general, we managed to
identify a family of graphs that generalizes strings and trees and for which all the closure
properties we considered in this section hold; this motivates the following theorem.

Theorem 1. Let S be a family of rooted connected graphs. Then the set of functions
f : S → F that can be computed by GWMs is closed under addition, Hadamard product
and scalar multiplication.

2.3.3 Rooted Circular Strings and Compressed Representations

To conclude this section, we show on a simple example how GWMs can induce com-
pressed representations of functions defined over strings. More precisely, we will show
that there exists a function f : Σ∗ → F that can be computed by a GWM with n states
and that cannot be computed by a weighted string automaton with less than n2 states.

We consider the family of rooted circular strings with root symbol λ: for any string
w = w1 · · ·wk ∈ Σ∗, we associate w with the circular string Gw on the ranked alphabet
(Σ′ = Σ ∪ {λ}, ]) where λ is a new symbol, ]σ = 2 for any σ ∈ Σ ∪ {λ}. Gw has vertices
V = {0, · · · , k}, labels l(0) = λ and l(i) = wi for i ∈ [k], and edges {(k, 2), (0, 1)} and
{(i, 2), (i+ 1, 1)} for i ∈ [k − 1]. It is easy to check that a GWM M = (Fn, {Mσ}σ∈Σ∪{λ})
computes the function Gw 7→ Tr(MλMw) where Mw = Mw1Mw2 · · ·Mwk .

Let A = (Fn,α, {Aσ}σ∈Σ,ω) be a string weighted automaton on Σ∗. We define the
GWM M = (Fn, {Mσ}σ∈Σ′) where Mσ = Aσ for all σ ∈ Σ and Mλ = ωα>. For all
w ∈ Σ∗, fM (Gw) = fA(w): indeed, fA(w) = α>Awω = Tr(α>Awω) = Tr(MλMw)
since the trace operator is invariant under cyclic permutations.

Now consider m string recognizable series f1, . . . , fm whose linear representations
(Fn,αi, {Aσ}σ∈Σ,ωi) for i ∈ [m] share the same transition matrices and let f = f1 +
· · · + fm. It can be checked that f(w) = Tr(AλAw), where Aλ =

∑m
i=1ωiα

>
i . Hence,

the n-dimensional GWM M = (Fn, {Mσ}σ∈Σ′), where Mσ = Aσ for all σ ∈ Σ, is such
that fM (Gw) = f(w) for all w ∈ Σ∗.

It can easily be shown, by decomposing Aλ as a sum of at most n rank-one matrices,
that the rank of f is at most n2 (while M has only n states). The following proposition
shows that this upper bound can be achieved (an example of such a WA is shown in
Figure 2.7).

Proposition 7. There exists a recognizable string series of rank n2 that can be computed
by a GWM with n states on rooted circular strings.

Proof. Let (Ei,j)1≤i,j≤n be the canonical basis of Rn×n (i.e. Ei,j = eie>j ). Let Σ = {a, b}
and let Aa,Ab ∈ Rn×n be defined by

Aa = E1,1 and Ab = E2,1 + E3,2 + · · ·+ En,n−1 + E1,n.

For any i ∈ [n], let fi be the function computed by the WA Ai = (Rn, ei, {Aa,Ab}, ei),
and let f = f1 + · · · + fn. We have f(w) = Tr(Aw) for any w ∈ Σ∗, hence f can be

42



q1

q2 q3

q4

q5 q6

q7

q8 q9

a,1

b,1

b,1

b,1

1 1

a,1

b,1

b,1

b,1

1

1

a,1

b,1

b,1

b,1

1

1

Figure 2.7: A minimal weighted automaton with 9 states computing a series that can be
computed by a 3-dimensional GWM on rooted circular strings.

computed by an n-dimensional GWM on rooted circular strings (with Aλ = I). We
claim that the rank of the string series f is n2. Since f is the sum of n recognizable
functions of rank n, it is of rank at most n2 (see Proposition 5). We now show that
rank(f) ≥ n2. Indeed, it can be shown that the matrix algebra generated by Aa and Ab

is equal to Rn×n, thus there exist w1, . . . , wn2 ∈ Σ∗ such that the matrices Aw1 , · · · ,Awn2

are linearly independent. Let H ∈ Rn2×n2 be the so-called Hankel matrix defined by
Hi,j = Tr(Awiwj ). Using the fact that Tr(XY) = vec(X>)>vec(Y) for any matrices X
and Y we have H = PS where P and S are the full rank n2 × n2 matrices defined by

Pi,: = vec((Awi)>)> and S:,j = vec(Awj )

for all i, j ∈ [n2]. It follows from Sylvester’s rank inequality that H has rank n2. From
a fundamental theorem on recognizable string series (Carlyle and Paz, 1971), the rank
of H is a lower bound of the rank of f , which entails the result.

2.4 Recognizability of Finite Support Series
In this section, we study the recognizability of finite support series. Throughout the
section, we only consider connected graphs without always explicitly mentioning it. Let
S ⊆ G0

F be a family of closed graphs. The support of a series f : S → F is the set of
graphs to which f assigns a non-zero value. Thus, a finite support series is a series f
satisfying |{G ∈ S : f(G) 6= 0}| < ∞. Since the set of GWM-recognizable series is
closed under sum, the recognizability of finite support series boils down to the following
problem: for any graph Ĝ ∈ S and any scalar λ ∈ F, does there exist a GWM M such
that fM (Ĝ) = λ and fM (G) = 0 for any G 6= Ĝ (considering that two isomorphic graphs
are equal)?

The question of the recognizability of finite support series over some family of graphs
S is of great interest because it is related to whether the set of (square-summable)
GWM-recognizable series is dense in the set of (square-summable) functions from S to
F. Indeed, suppose that f : S → F is a function such that

∑
G∈S f(G)2 < ∞, then the

fact that finite support series on S are recognizable imply that we can approximate f
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arbitrarily well with a GWM: for any ε > 0 there exists a GWM M such that

‖f − fM‖22 =
∑
G∈S

(f(G)− fM (G))2 < ε.

We first show that finite support series are not recognizable for all families of graphs on
a simple example. Consider the family of circular strings Gcirc

Σ on the one letter alphabet
Σ = {a}. Let M be a GWM such that fM (circ(a)) = Tr(A) = λ 6= 0 where A = Ma

is the only tensor of the GWM M . Suppose now that fM (circ(an)) = Tr(An) = 0 for
any n > 1, by Lemma 2 this would imply that Tr(A) = 0, a contradiction. Hence finite
support series are not recognizable on the family of circular strings.

In the following, we show that the contradiction exhibited by this simple example is
closely related to the graph theoretic notion of covering, and we provide a characteriza-
tion of families of graphs for which finite support series are recognizable.

2.4.1 Graph Coverings

In this section, we define the notion of coverings (or lifts) of a graph which is a fun-
damental notion from graph theory (Reidemeister, 1950; Angluin, 1980). Intuitively, a
covering of a graph Ĝ is a graph G made of copies of Ĝ (see Figure 2.8). More precisely,

Definition 5. Let Ĝ = (V̂ , Ê, ˆ̀) be a graph over a ranked alphabet (Σ, ]). A graph
G = (V,E, `) on the same alphabet (Σ, ]) is a covering of Ĝ if and only if there exists a
mapping ψ : V → V̂ such that

(i) `(v) = ˆ̀(ψ(v)) for any v ∈ V ,

(ii) for any edge {(u, i), (v, j)} ∈ E of G, {(ψ(u), i), (ψ(v), j)} ∈ Ê is an edge of Ĝ.

We will call such a mapping ψ a covering map from G to Ĝ.

Note that it directly follows from the definition of a covering that any graph G is a
covering of itself through the covering map ψ(v) = v for all vertices v ofG. Similarly, any
graph G′ that is isomorphic to G is a covering of G. Actually, the definition of covering of
a graph only differs from the definition of isomorphic graphs in the fact that a covering
map need not to be a bijection between the sets of vertices of the two graphs. Let us
consider a less trivial example on circular strings: let Σ be a finite alphabet, then for
any w = w1 · · ·wk ∈ Σ∗ the circular string circ(ww) = (V,E, `) with V = {v1, · · · , v2k}
is a covering of circ(w) = (V̂ , E, `) with V̂ = {v̂1, · · · , v̂k} through the covering map
ψ(vi) = v̂mod(i,k)+1 (where mod(i, k) is the remainder of the euclidean division of i
by k). Another example of a covering built from 3 copies of the closed graph G from
Example 1 (see page 29) is shown in Figure 2.8.

The following proposition will help us formalize our intuition of coverings as graphs
built from copies of an initial graph.

Proposition 8. Let ψ be a covering map from a graph G = (V,E, `) to a connected
closed graph Ĝ = (V̂ , Ê, ˆ̀). Then for any v̂ ∈ V̂ , the cardinal of ψ−1({v̂}) is a constant.

Proof. Let v̂ ∈ V̂ be a vertex of Ĝ and let m = |ψ−1({v̂})| where ψ−1({v̂}) = {v ∈
V : ψ(v) = v̂}. Let i ∈ []v] and let (û, j) ∈ P (Ĝ) be the unique port of Ĝ satisfying
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Figure 2.8: A covering made of three copies of the closed graph G from Example 1 (see
page 29). The original graph contains 4 vertices, in each copy the edge
between the first two vertices (labeled by f and g) is replaced with an edge
between the corresponding vertices in distinct copies of G.

{(v̂, i), (û, j)} ∈ Ê. Since ψ is a covering map, for all v ∈ ψ−1({v̂}) there exists u ∈
ψ−1({û}) such that {(v, i), (u, j)} ∈ E. Suppose |ψ−1({û})| < m, then by the pigeonhole
principle there exists v1, v2 ∈ ψ−1({v̂}) and u ∈ ψ−1({û}) such that v1 6= v2 and both
{(v1, i), (u, j)} and {(v2, i), (u, j)} are in E, a contradiction with the fact that E is
a partition of P (G). By switching the role of û and v̂ the same contradiction can
be obtained if |ψ−1({û})| > m. Hence |ψ−1({û})| = m. Since Ĝ is connected this
argument can be extended from neighbor to neighbor to all the vertices of the graph,
hence |ψ−1({ŵ})| = m for all ŵ ∈ V̂ .

A direct consequence of the previous proposition is that any covering map is surjective.
This proposition also shows that for a connected graph, the formal definition of covering
is equivalent to the intuition of a graph made of copies of the original one. Indeed, let ψ
be a covering map from G = (V,E, `) to a graph Ĝ = (V̂ , Ê, ˆ̀). Let ∼ be the equivalence
relation defined on V by v ∼ v′ if and only if ψ(v) = ψ(v′). Let Ṽ = V/ ∼ be the
quotient set of V by ∼ and let Ẽ be defined by {([u]∼, i), ([v]∼, j)} ∈ Ẽ if and only if
{(u, i), (v, j)} ∈ E, where [u]∼ denotes the equivalence class of u for the relation ∼. It
can easily be checked that the quotient graph G̃ = (Ṽ , Ẽ, ˆ̀) is well defined (i.e. Ẽ is a
partition of P (G̃)). The surjectivity of ψ clearly entails that G̃ is isomorphic to Ĝ, and
the fact that the sets ψ−1({v}) for each v ∈ V have the same cardinality formalizes our
intuition that G is made of copies of Ĝ.

The example showing that finite support series are not recognizable on the family of
circular strings can be generalized in the following way. Let M be a GWM and let G be a
graph such that fM (G) 6= 0. It is easy to check that the computation of M on the graph
G′ = G∪G (obtained by juxtaposing two copies of G) boils down to fM (G′) = fM (G)2.
Hence there exists a covering of G (the graph G′) satisfying fM (G′) 6= 0. Moreover, it
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Figure 2.9: Each graph Gi is constructed by copying the initial graph (G = G1) i times,
splitting the edge between the two vertices labeled by a in each copy, and
reconnecting the free ports to obtain a circular chain of copies of G.

can be shown that if G contains a cycle, then there exists a connected covering G′ of G
such that f(G′) 6= 0. The construction consists in connecting copies of G by breaking
the same edge in each copy of G and regrouping the freed ports into edges connecting
the different copies (e.g. take two copies of the circular string a, split the edge in both
copies and reconnect the ports to obtain the circular string aa). Since G contains a cycle
this can be done in such a way that G′ is connected (choose the edge to split in a cycle).
If we denote by Gi the graph obtained by this process from i copies of the initial graph
(see Figure 2.9), one can show that there exists a matrix M such that fM (Gi) = Tr(Mi).
The trace argument from Lemma 2 can then be used to exhibit a contradiction, thus
showing that for any graph G containing a cycle and any recognizable series f such that
f(G) 6= 0, there exists a connected graph G′ distinct from G (i.e. not isomorphic to G)
such that f(G′) 6= 0

2.4.2 Finite Support Series and Graph Coverings

We say that a family of graph S is covering-free if for any graph G in S the only coverings
of G in S are graphs that are isomorphic to G, i.e. for all G ∈ S there are no non-trivial
coverings of G in S. We now show that finite support series are recognizable on covering
free families of graphs. Our first result (Corollay 3) shows that it is true for GWMs with
complex coefficients defined over any covering free family of graphs. This result relies on
the following theorem showing that for a given graph Ĝ, one can build a GWM whose
support is exactly the set of coverings of Ĝ.

Theorem 2. Given a closed and connected graph Ĝ = (V̂ , Ê, l̂) over F = (Σ, ]), there
exists a GWM M with |P (Ĝ)| states and with coefficients in C such that for any closed
and connected graph G, fM (G) 6= 0 if and only if G is a covering of Ĝ.

Proof. For any symbol x ∈ Σ, we denote by V̂ (x) the set of vertices in V̂ labeled by
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x. Let n = |P (Ĝ)|. Instead of indexing the canonical basis (e1, · · · , en) of Rn with
integers in [n], we will index it with elements of P (Ĝ). Let M = (Rn, {Mx}x∈Σ, �) be
the �-GWM defined by

Mx =


∑

v̂∈V̂ (x)

e(v̂,1) ◦ e(v̂,2) ◦ · · · ◦ e(v̂,]v̂) if V̂ (x) 6= ∅

0 otherwise,

ep � ep′ =
{

1 if {p, p′} ∈ Ê
0 otherwise.

for all x ∈ Σ, and all p, p′ ∈ P (Ĝ).
Let G = (V,E, `) be a closed graph on F , we have

fM (G) =
∑

γ∈P (Ĝ)P (G)

Mγ

∏
{p,p′}∈E

eγ(p) � eγ(p′) (2.2)

whereMγ =
∏
v∈VM

`(v)
γ(v,1),··· ,γ(v,]v). We claim that fM (G) 6= 0 if and only if G is a

covering of Ĝ, which will imply the result of the theorem by Proposition 1.
Since all the components of the tensors {Mx}x∈Σ are non-negative, we have fM (G) 6=

0 if and only if there exists a γ : P (G) → P (Ĝ) such that (i) Mγ 6= 0 and (ii)∏
{p,p′}∈E eγ(p) �eγ(p′) 6= 0. We show that these two conditions are satisfied if and only if

there exists a covering map from G to Ĝ. Let γ : P (G)→ P (Ĝ) be such that (i) and (ii)
are satisfied. Since γ satisfies (i), it follows from the definition of the tensors {Mx}x∈Σ
that for all v ∈ V , there exists a vertex v̂ ∈ V̂ such that `(v) = ˆ̀(v̂) and γ(v, i) = (v̂, i)
for all i ∈ []v]. Let ψ : v 7→ v̂ be the mapping defined by this relation. It is easy to check
that ψ is a covering map from G to Ĝ. Indeed, let {(v, i), (v′, i′)} ∈ E, then (ii) implies
that eγ(v,i) � eγ(v′,i′) 6= 0, which by definition of � is equivalent to {γ(v, i), γ(v′, i′)} ∈ Ê,
hence {(ψ(v), i), (ψ(v′), i′)} ∈ Ê. Conversely, let ψ be a covering map from G to Ĝ, and
let γ : P (G)→ P (Ĝ) be defined by γ(v, i) = (ψ(v), i) for all v ∈ V , i ∈ []v]. It can easily
be checked that (i) is satisfied since ψ(v) ∈ V̂ (`(v)) for all v ∈ V , and (ii) is satisfied
since {γ(v, i), γ(v′, i′)} = {(ψ(v), i), (ψ(v′), i′)} ∈ Ê for all {(v, i), (v′, i′)} ∈ E.

Corollary 3. Let S be a covering-free family of closed and connected graphs. Then any
finite support series on S is recognizable by a GWM with coefficients in the field C.

Proof. Let Ĝ be a graph and let M be the �-GWM from the proof of Theorem 2. For
any λ ∈ C, there exists a GWM M̃ such that fM̃ (Ĝ) = λ. Indeed, let λ′ = fM (Ĝ).
It is easy to check that the GMW obtained by replacing each tensorMx from M by(
λ
λ′

)1/|V̂ |
Mx for all x ∈ Σ assigns the value λ to Ĝ. The result then directly follows

from Proposition 1 and Proposition 5.

After showing on a simple example that finite support series are not GWM-recognizable
on the whole set of graphs GF in general, we managed to identify a large class of families
of graphs for which finite support series are recognizable: covering free families. The
results presented above state that any finite support function defined on such a family
of graphs is recognizable by a GWM with coefficients in C. In particular, even if a finite
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support function takes its values in R there are cases where any GWM computing it will
necessary have complex coefficients. We go back again to the following simple example:
consider the graph G = a − a where a is a symbol of arity one, it is easy to check that
any GWM with real coefficients will assign a non-negative value to G. Thus there does
not exist any GWM A with real coefficients such that e.g. fA(G) = −1. However, we
would ideally like to have a similar result that holds for real valued graph series using
GWMs with coefficients in R. The second result of this section (Corollary 5) shows that if
we only consider covering-free families of in-out graphs, then real-valued finite support
series are recognizable by GWMs with real coefficients (note that the families of strings,
trees and 2d-words are such families). This result relies on the following theorem.

Theorem 4. Let S be a family of closed and connected in-out graphs over a ranked
alphabet F = (Σ, ]), and let Ĝ = (V̂ , Ê, l̂) be a graph in S. For any G ∈ S, let ΨG be
the set of covering maps from G to Ĝ.
Then, for any set {εv̂ : v̂ ∈ V̂ } ⊂ R \ {0} of non-zero real numbers, there exists a

GWM M with |Ê| states and with coefficients in R such that

fM (G) =
∑
ψ∈ΨG

∏
v∈V

εψ(v) for all graphs G = (V,E, `) ∈ S.

Proof. The complete proof is given in Appendix 2.A. We present here the construction
of the GWM satisfying the result of the theorem along with the main arguments used
in the proof.
For any symbol x ∈ Σ, we denote by V̂ (x) the set of vertices in V̂ labeled by x. Let

n = |Ê|. Instead of indexing the canonical basis of Rn with integers in [n], we will index
it with elements of Ê. Let η : P (Ĝ)→ Ê be the mapping associating each port p ∈ P (Ĝ)
with the edge in Ê it belongs to, that is η(p) is the unique e ∈ Ê such that p ∈ e.

Let M = 〈Rn, {Mx}x∈Σ〉 be the GWM defined by

Mx =
∑

v̂∈V̂ (x)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))

for all x ∈ Σ. For any graph G = (V,E, `), we have fM (G) =
∑
γ∈Γid(G,M)Mγ where

Mγ =
∏
v∈VM

`(v)
γ(v,1),··· ,γ(v,]v).

Let ΓG = {γ ∈ Γid(G,M) : Mγ 6= 0} be the set of γ’s corresponding to non-zero
summands in fM (G). We first show in the appendix that for any γ ∈ ΓG, there exists a
unique v̂ ∈ V̂ such that `(v) = ˆ̀(v̂) and γ(v, i) = η(v̂, i) for all i ∈ []v]. Let ψγ : v 7→ v̂
be the mapping defined by this relation. For any γ ∈ ΓG and any v ∈ V it follows that

M`(v)
γ(v,1),··· ,γ(v,]v) =

 ∑
v̂∈V̂ : `(v̂)=`(v)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))


γ(v,1),··· ,γ(v,]v)

=
∑

v̂∈V̂ : `(v̂)=`(v)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))γ(v,1),··· ,γ(v,]v)

= εψγ(v) .
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Hence,

fM (G) =
∑

γ∈Γid(G,M)
Mγ =

∑
γ∈ΓG

Mγ =
∑
γ∈ΓG

∏
v∈V
M`(v)

γ(v,1),··· ,γ(v,]v) =
∑
γ∈ΓG

∏
v∈V

εψγ(v) .

The proof then relies on showing that ΓG is in one-to-one correspondence with the set
of covering maps ΨG through the mapping γ 7→ ψγ , which entails the result.

Corollary 5. Let S be a covering-free family of in-out closed and connected graphs. Then
any real-valued finite support series on S is recognizable by a GWM with coefficients in
the field R.

Proof. We want to show that for any graph Ĝ = (V̂ , Ê, ˆ̀) ∈ S and any real number
λ, there exists a GWM A with coefficients in R such that fA(Ĝ) = λ and fA(G) = 0
for any G 6= Ĝ. First note that the strategy used in the proof of Corollary 3, that
consists in multiplying each tensor of the GWM M from the previous proof by the
scalar s = (λ/λ′)1/|V̂ | where λ′ = fM (Ĝ), cannot be applied here since s may be a
complex number.
Let v̂0 be any vertex of Ĝ. Let M be the GWM from Theorem 4 with εv̂ = 1

for all v̂ 6= v̂0 and εv̂0 = λ
|ΨĜ|

. We have fM (G) =
∑
ψ∈ΨG

∏
v∈V εψ(v). Since S is a

covering-free family, we have fM (G) 6= 0 if and only if G = Ĝ. Furthermore, we have
fM (Ĝ) =

∑
ψ∈ΨĜ

∏
v̂∈V̂ εψ(v̂). Since any ψ ∈ ΨĜ is a permutation of V̂ , εv̂0 appears only

once in
∏
v̂∈V̂ εψ(v̂), hence fM (Ĝ) =

∑
ψ∈ΨĜ

εv̂0 = λ.
The result then directly follows from Proposition 5.

It is worth mentioning that the only property of in-out graphs we used in the proof
of Theorem 4 is that an in-out graph does not contain any edge {(u, i), (v, i)} such that
`(u) = `(v). Thus Corollary 5 would also hold for any family of graphs satisfying this
property.

Discussion. Before going into the second part of this chapter, we will summarize
the various results that we obtained until now. We introduced GWMs that extend the
notion of recognizable functions on strings, trees and pictures to general graphs on a
ranked alphabet. The definition of this computational model on graphs was quite natural
once we interpreted the computations of classical weighted automata in terms of tensor
networks. Even though it was easy to show that GWMs naturally generalize recognizable
functions on strings, trees and pictures, we showed on simple examples that some of the
fundamental properties of these classical models were not satisfied by GWMs defined
over arbitrary families of graphs. We thus tried to identify smaller families of graphs for
which these properties hold; we summarize our results below.

1. GWM-recognizable functions are closed under sum and Hadamard product for any
family of connected graphs.

2. GWM-recognizable functions defined on rooted families of graphs are closed under
scalar multiplication.
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3. Finite support series defined on covering free families of (connected) graphs are
recognizable by GWMs with complex coefficients.

4. Real-valued finite support series defined on covering free families of in-out (con-
nected) graphs are recognizable by GWMs with real coefficients.

5. Real-valued recognizable functions can not all be computed by a GWM with real
coefficients but we conjectured that this is the case for real-valued recognizable
functions defined over families of in-out graphs.

It is easy to check that rooted families of graphs are covering free. Indeed, non trivial
coverings of a graph are obtained by duplicating this graph, which results in a graph
where the special root symbol appears more than once. It follows that any family of
rooted in-out graphs satisfies all the desirable properties listed above (assuming our
conjecture is true). We thus managed to identify two simple structural constraints on
graphs (which are satisfied by strings, trees and 2d-wordsa) that allow us to define
large families of graphs on which GWMs inherit several fundamental properties from
the classical notion of recognizable functions on strings and trees.

We conclude this section by observing that the 4th result mentioned above is somehow
a first step towards proving the conjecture stated in result 5. Indeed, we think that the
two conditions on the family on graphs in result 4 are related to different aspects: the
covering free assumption allows us to obtain the recognizability of finite support series,
while the in-out graphs assumption allows us to show that real-valued (finite support)
functions can be computed by GWMs with real weights.

2.5 Learning GWMs over Circular Strings.
In this section, we present preliminary results on learning GWMs by studying the prob-
lem of learning GWMs defined on the family of circular strings. While circular strings do
not seem to be of particular practical interest, they can be seen as the simplest family of
graphs with cycles that is not covering free, which makes them an interesting family to
study from a theoretical perspective. Even though this family is very simple (compared
to the whole set of graphs GF) we will see that learning GWMs defined over circular
strings already is a challenging task.

We will consider the learning paradigm of identification in the limit (Gold, 1967). In
this framework, the problem consists in recovering a target function after receiving a
finite number of examples: given a set of input/output examples

{(w1, fA(w1)), · · · , (wN , fA(wN ))} ⊂ Σ+ × R

where fA is the function computed by a GWM A = (Fn, {Mx}x∈Σ), the learner has to
identify a GWM Â = (Rn̂, {M̂σ}σ∈Σ) such that fA = fÂ. A class of functions is said to
identifiable in the limit if there exists an algorithm that identifies any function in the
class after examining a finite set of examples.

aAs we defined it the family of 2d-words is not a rooted family of graphs but one could systematically
replace one of the labels of a border vertex by a special root symbol to make it a rooted family.
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Recall that for any word w = σ1 · · ·σk ∈ Σ+ the circular string circ(w) is the graph
obtained by closing w onto itself, and that a GWM A = (Rn, {Aσ}σ∈Σ) computes the
function circ(w) 7→ Tr(Aw) where Aw = Aσ1 · · ·Aσk . Hence the problem of learning
GWMs defined over circular strings boils down to recovering matrices from a set of trace
observables. We will first show how functions that can be computed by GWMs on cir-
cular strings are related to classical recognizable string series. This will suggest a first
approach to learn GWMs on circular strings by using classical learning algorithms for
string weighted automata (WA). However, this learning approach is improper in the
sense that it does not allow one to recover a GWM computing the target function but
rather a WA that computes it. We will then propose an alternative learning method re-
lying on tensor decomposition techniques that directly tries to learn the target function
as a GWM and seems more promising to be extended to the problem of learning GWMs
over more general families of graphs. In the following, we consider GWMs with real
coefficients but the results we present can easily be extended to the case of GWMs with
complex coefficients.

2.5.1 GWM on Circular Strings and Weighted Automata

The following proposition shows that a function f computed by a GWM on circular
strings can be computed by a string weighted automaton with a quadratic number of
states.

Proposition 9. For any GWM M = (Rn, {Mσ}σ∈Σ) over circular strings on Σ, there
exists a string weighted automaton A = (Rn2

,α, {Aσ}σ∈Σ,ω) such that fM (circ(w)) =
fA(w) for all w ∈ Σ∗.

Proof. For any w = w1 · · ·wk ∈ Σ∗ we have fM (circ(w)) = Tr(Mw) =
∑
i∈[n] Mw

i,i =∑
i∈[n] e>i Mwei where Mw = Mw1 · · ·Mwk and ei is the ith vector of the canonical basis

of Rn. Let α = ω = (e>1 , · · · , e>n )> ∈ Rn2 and let Aσ = In ⊗Mσ ∈ Rn2×n2 be the
block-diagonal matrix with Mσ repeated n times on the diagonal. We have

fA(w) = α>Awω =
[
e>1 e>2 · · · e>n

]

Mw 0 · · · 0
0 Mw · · · 0
...

... . . . ...
0 0 · · · Mw




e1
e2
...

en


=
∑
i∈[n]

e>i Mwei = fM (circ(w)).

It follows from the construction used in the proof of the previous proposition that for
any GWM M = (Rn, {Mσ}σ∈Σ) the weighted automaton (WA)

A = (Rn2
,α = vec(In2), {Aσ = In ⊗Mσ}σ∈Σ,ω = vec(In2))

is such that fM (circ(w)) = fA(w) for all w ∈ Σ+. Here In ⊗M = M ⊕ · · · ⊕M is
the block diagonal matrix with n diagonal blocks all equal to M. Similarly, we have
α = ω = e1 ⊕ · · · ⊕ en where ei is the ith vector of the canonical basis. Thus the
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computation of an n-dimensional GWM is equivalent to the sum of n WAs with n states.
These n WAs are identical except for their initial and final weights: each one has a
unique both initial and final state with weight one. Thus, the value assigned to a string
is the sum of the weights of all its paths in the WA starting and ending in the same state.
It is the internal dynamic of this WA (and not its initial and final weights) that is relevant
to the computation of the GWM on circular strings.

From a learning perspective, Proposition 9 suggests an approach to learn GWM-
recognizable functions over circular strings by using learning algorithms for weighted
automata. It is well known that WAs are identifiable in the limit, thus one could recover
a function computed by a GWM with n states from a finite set of examples in the form
of a weighted automata computing the same function. However, this WA could have up
to n2 states and recovering a GWM with n states computing the same function from this
WA is not a trivial task. Suppose first that we are given the WA A with n2 states and
that we want to construct a GWM on circular strings that computes the same function.
One way to proceed would be to leverage the fact that all the matrices Aσ of this WA
are simultaneously block diagonalizable as

Aσ = P(I⊗ M̂σ)P−1

for some invertible n2 × n2 matrix P and n × n matrices M̂σ that are each similar to
the matrices Mσ from the target GWM (which follows from the proof of Proposition 9
and Theorem 2.4 in Berstel and Reutenauer, 1988). Existing methods for simultaneous
block diagonalization could be used to recover the matrices M̂σ (Maehara and Murota,
2011; Murota et al., 2010; Klerk, Dobre, and Pasechnik, 2011; Ghennioui et al., 2007;
Nion, 2011) from which one could easily construct a GWM computing the same function.
However if the WA A is not minimal, we may only have access to a WA B with k < n2

that computes the same function as A (and thus as the target GWM M). In this case the
matrices Bσ are not simultaneously block diagonalizable anymore (even though there
exists a k × n2 matrix P such that Bσ = P(I ⊗ M̂σ)P+) and the simultaneous block
diagonalization methods mentioned above cannot be straightforwardly applied. This
minimality condition on the WA A is closely related to the notion of full rank GWMs that
we will define in the next section, where we propose an alternative approach relying
on tensor decomposition techniques that has the benefit of not going through the inter-
mediate step of learning a weighted automata with a potentially quadratic number of
states. Before that, we show in the following proposition that GWM-recognizable func-
tions defined over circular strings are invariant under a change a basis of the operators
of a GWM computing it.

Proposition 10. Let A = (Rn, {Aσ}σ∈Σ) and B = (Rn, {Bσ}σ∈Σ) be two GWMs over
circular strings such that Aσ = PBσP−1 for all σ ∈ Σ for some invertible matrix
P ∈ Rn×n. Then fA(circ(w)) = fB(circ(w)) for all w ∈ Σ+.

Proof. This directly follows from the fact that Aw = PBwP−1 for all w ∈ Σ+ and from
the invariance of the trace under similarity transformation.

The previous proposition could easily be extended to any family on in-out graphs:
multiplying each mode of the tensors of a GWM corresponding to an in-port by some
matrix P and each mode corresponding to an out-port by P−1 would result in a GWM
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computing the same function on in-out graphs (since every in-port is connected to an
out-port, P and P−1 would cancel out everywhere in the computations of this new
GWM).

2.5.2 Learning GWMs with Tensor Decomposition

In this section, we propose a learning algorithm for GWMs on circular strings that relies
on decomposing (a sub-block of) the 3rd order Hankel tensor H ∈ RΣ∗×Σ∗×Σ∗ defined
by

Hx,y,z = f(circ(xyz))

for all x, y, z ∈ Σ∗.

Linear presever of traces of triple products. We first prove a general result on lin-
ear preservers of traces of triple products that is key to the learning method we propose.
Linear preserver problems concern the characterization of operators on matrix spaces
that leave certain functions invariant (see e.g. (C.-K. Li and S. Pierce, 2001) for an in-
troduction). For example, Proposition 1.1 in (Chan, C.-K. Li, and Sze, 2007) shows that
for any (not necessarily linear) mapping φ : Rn×n → Rn×n, if Tr(AB) = Tr(φ(A)φ(B))
for all matrices A,B ∈ Rn×n then φ is linear and invertible.

In the following theorem we will extend this result to trace of triple products by show-
ing that if some operator on a matrix space leaves traces of triple products invariant,
then this operator is a simple similarity transformation. The relevance to the problem of
learning GWMs comes from Proposition 10: if we are able to recover matrices M̂σ for
σ ∈ Σ that are similar to the matrices Mσ of the target GWM, then we would obtain a
GWM computing the same function as the target.

Theorem 6. Let S ⊆ Rn×n be a subset of Rn×n such that span(S) = Rn×n and I ∈ S.
If φ : Rn×n → Rn×n is a (not necessarily linear) mapping satisfying

Tr(ABC) = Tr(φ(A)φ(B)φ(C)) (2.3)

for all A,B,C ∈ S, then φ is linear and of the form φ(X) = PXP−1 for some invertible
matrix P ∈ Rn×n.

Proof. We first show that φ is linear and invertible. Let (E1, · · · ,En2) ⊆ S be a basis
of Rn×n. Let M ∈ Rn2×n2 be the matrix with rows vec(Ei)>, and let Mφ ∈ Rn2×n2

be the matrix with rows vec(φ(Ei)φ(I))>. It follows from (2.3) and from the identity
Tr(ABC) = vec(AB)>vec(C>) that

Mvec(X>) = Mφvec(φ(X)>)

for all X ∈ S. Let N ∈ Rn2×n2 be the matrix with columns vec(E>i ) and let Nφ ∈ Rn2×n2

be the matrix with columns vec(φ(Ei)>), we have MN = MφNφ where M and N are
invertible, hence Mφ is invertible. It follows that

vec(φ(X)>) = M−1
φ Mvec(X>)
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for all X ∈ S, thus φ is linear and invertible on span(S) = Rn×n. Since both φ and the
trace operator are linear, Eq. (2.3) extends to all matrices A,B,C ∈ Rn×n.
We now show that φ preserves the matrix product. Let A ∈ Rn×n. For any B ∈ Rn×n

we have

Tr(φ(A)φ(I)φ(B)) = Tr(AIB) = Tr(IAB) = Tr(φ(I)φ(A)φ(B)).

Since the linear span of the φ(B)’s is the whole space Rn×n, we have φ(A)φ(I) =
φ(I)φ(A) for any A ∈ Rn×n, thus φ(I) = λI for some λ ∈ R. Using (2.3) we can deduce
λ3 = 1, hence λ = 1.

It follows that for any A,B,C ∈ Rn×n we have

Tr(φ(A)φ(B)φ(C)) = Tr(ABC) = Tr((AB)CI)
= Tr(φ(AB)φ(C)φ(I)) = Tr(φ(AB)φ(C)),

and since the φ(C)’s span Rn×n we have φ(A)φ(B) = φ(AB) for all A,B ∈ Rn×n.
To conclude, we have that φ is an automorphism of the algebra Rn×n (it is linear,

bijective (since it is invertible), and preserves the matrix product), and it is well known
that every automorphism of the full matrix algebra is innerb, that is φ(X) = PXP−1

for some invertible matrix P ∈ Rn×n.

A tensor decomposition approach. We now show how Theorem 6 allows us to re-
duce the problem of learning GWMs over circular strings to a constrained tensor de-
composition of the 3rd order Hankel tensor H ∈ RΣ∗×Σ∗×Σ∗ . First observe that the
hypothesis span(S) = Rn×n of the previous theorem requires that we have access to the
trace observables of a set of matrices that generate the full matrix algebra, which is not
generally the case for the matrices of a GWM. This leads us to first define the notion of
full rank GWMs.

Given a GWM A = (Rn, {Aσ}σ∈Σ) defined on circular strings, we will say that it is
of full rank if there exists a set of words W ⊂ Σ∗ such that the vector space spanned
by the matrices Aw for w ∈ W has dimension n2 (where Aw = Aw1Aw2 · · ·Aw|w|), i.e.
span({Aw : w ∈ W}) = Rn×n. We will call such a set of words W a basis for the full
rank GWM A. Note that not every GWM defined over circular strings is of full rank. In
particular, it is easy to check that dim(span({Ak | k ≥ 0})) ≤ n for any matrix n × n
matrix A, hence a GWM defined over circular strings on a one-letter alphabet cannot be
of full rank. However, the following proposition shows that generic GWMs (i.e. GWMs
whose parameters {Aσ}σ∈Σ are drawn at random from a continuous distribution over
Rn×n) defined over circular strings on an alphabet of size at least 2 are of full rank.

Proposition 11. The set {Aa,Ab ∈ Rn×n : dim(span({Aw : w ∈ {a, b}∗})) < n2} has
Lebesgue measure 0.

Proof. For any couple of matrices (A,B) ∈ Rn×n × Rn×n, let

P (A,B) = {AiBj : 0 ≤ i, j < n} and
S = {(A,B) : P (A,B) is not a basis of Rn×n}.

bThis is a special case of the Skolem-Noether theorem (see (Semrl, 2006), (Alperin, 1993, Ex. 4 p. 12)
or (R. S. Pierce, 1982, Lemma p. 230)).
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We will show that S has Lebesgue measure zero in Rn×n × Rn×n, which will entail the
result. For any couple of matrices (A,B) let M(A,B) ∈ Rn2×n2 be the matrix whose
columns are the vectorizations of AiBj for 0 ≤ i, j < n. Then (A,B) ∈ S if and only if
the determinant det(M(A,B)) = 0. Since det(M(A,B)) is a polynomial in the entries
of A and B, S is an algebraic subvariety of (Rn×n)2. We now show that the polynomial
det(M(A,B)) is not uniformly 0. Let U be the upper n × n shift matrix (i.e. U is
the matrix with ones only on the superdiagonal and zeroes elsewhere). We claim that
det(M(U,U>)) 6= 0, which is equivalent to P (U,U>) being a basis of Rn×n. Indeed,
let (Ei,j)1≤i,j≤n be the canonical basis of Rn×n (i.e. Ei,j = eie>j ), one can check that

Ei,j = Un−i(U>)n−j −Un−i+1(U>)n−j+1

for all 1 ≤ i, j ≤ n (note that Un−i+1(U>)n−j+1 is either in P (U,U>) or equal to 0).
In conclusion, S is a proper algebraic subvariety of (Rn×n)2 and hence has Lebesgue
measure zero (Federer, 2014, Section 2.6.5).

Suppose now that given a basis W for a full rank GWM A = (Rn, {Aσ}σ∈Σ) we can
find matrices Âw for w ∈ W such that Tr(AxAyAz) = Tr(ÂxÂyÂz) for all x, y, z ∈ W .
Using Theorem 6, one can show that all couples of matrices Aw, Âw for w ∈ W are
similar under a same similarity transform. Furthermore, if Σ ⊂W then one can recover
a GWM Â computing the same function as A. We formally prove this result in the
following theorem, where we also show that finding the matrices Âw for w ∈ W boils
down to a constrained decomposition of a sub-block of the 3rd-order Hankel tensorH.

Theorem 7. Let M = (Rn, {Mσ}σ∈Σ) be a full rank GWM over circular strings on
a finite alphabet Σ. Let W ⊂ Σ∗ be a basis for M such that Σ ∪ {ε} ⊂ W (where we
assume Mε = I). Finally, let T ∈ Rn2×n2×n2 be the tensor defined by the relation

T •1 vec(A) •2 vec(B) •3 vec(C) = Tr(ABC)

for any A,B,C ∈ Rn×n, and let HW ∈ RW×W×W be the third order Hankel tensor
defined by

HW
x,y,z = fM (circ(xyz)) = Tr(MxMyMz)

for any x, y, z ∈W .
Then, for any matrix U ∈ RW×n2 satisfying HW = T ×1 U ×2 U ×3 U, the GWM

M̂ = (Rn, {M̂σ}σ∈Σ), where M̂σ is defined by the relation vec(M̂σ)> = Uσ,:, computes
the same function as M .

Proof. This is a direct consequence of Theorem 6. Indeed, H = T ×1 U ×2 U ×3 U
implies Tr(MxMyMz) = Tr(M̂xM̂yM̂z) for all x, y, z ∈ W . Let φ : Rn×n → Rn×n be
a mapping such that φ(Mx) = M̂x for all x ∈ W . Since W is a basis for the full rank
GWMM , the span of the matrices Mw for w ∈W is the whole matrix algebra Rn×n, we
can thus invoke Theorem 6 to show that there exists an invertible matrix P such that
Mσ = P−1M̂σP for all σ ∈ Σ. Hence M̂ = (Rn, {PMσP−1}σ∈Σ) and the result follows
from Proposition 10.

Tucker decomposition with constrained core tensor and equal factors. It follows
from the previous theorem that given a basis W for a full rank GWM and the tensorHW ,
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one can recover a GWM computing the same function by finding a matrix U satisfying
HW = T ×1 U ×2 U ×3 U (where we used the definitions of Theorem 7). We now
propose an alternating minimization algorithm to tackle this problem. Note that this
problem can be seen as finding a Tucker decomposition of the tensor HW where the
core tensor is given and all the factor matrices are equal.

We start by reformulating the problem in a more general setting. Given a tensor
X ∈ (Rm)⊗p and a core tensor G ∈ (Rn)⊗p, we want to find a matrix U ∈ Rm×n such
that

X ' G ×1 U×2 · · · ×p U.

We first formulate the problem as a (non-convex) minimization problem:

min
U∈Rm×n

‖X − G ×1 U×2 · · · ×p U‖2F . (2.4)

This is equivalent to the following constrained minimization problem:

min
U1,··· ,Up∈Rm×n

‖X − G ×1 U1 ×2 · · · ×p Up‖2F such that U1 = U2 = · · · = Up, (2.5)

which can be addressed by minimizing the penalized objective function

L(U1, · · · ,Up) = 1
2‖X − G ×1 U×2 · · · ×p U‖2F + λ

2

( p∑
i=2
‖U1 −Ui‖2F

)
(2.6)

where the equality constraints in (2.5) are enforced by the right hand term for large
enough values of the hyper-parameter λ.

This minimization problem is not jointly convex but it is convex in each variable
U1, · · · ,Up, and can be tackled using the alternating least squares (ALS) method. Recall
that the ALS algorithm consists in solving problem (2.6) for one of the variable Ui while
keeping the other ones fixed, and using the solution as an update for Ui. This process
is repeated in turn for all variables U1, · · · ,Up until convergence. While there are no
guaranty that ALS will converge to a global minimizer, this approach often performs well
in practice.

For any i ∈ [p], let Mi = G(i)(Up ⊗ · · · ⊗Ui+1 ⊗Ui−1 ⊗ · · · ⊗U1)>. Using Eq. (1.3)
we have ‖X − G ×1 U×2 · · · ×p U‖2F = ‖X(i) −UiMi‖2F for any i ∈ [p], from which we
obtain the partial derivatives

∂L
∂U1

= U1(M1M>
1 + λI)−X(1)M>

1 − λ
p∑
i=2

Ui

∂L
∂Uj

= Uj(MjM>
j + λI)−X(j)M>

j − λU1 for j = 2, · · · , p.
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Setting these derivatives to zero leads to the following update rules:

U1 ←
(

X(1)M>
1 + λ

p∑
i=2

Ui

)(
M1M>

1 + λI
)−1

Uj ←
(
X(j)M>

1 + λU1
) (

MjM>
j + λI

)−1
for j = 2, · · · , p.

The overall procedure to find an approximate solution of problem (2.4) is summarized
in Algorithm 1.

Algorithm 1 Constrained Tucker Decomposition

Input: Target tensor X ∈ (Rm)⊗p and core tensor G ∈ (Rn)⊗p.
Output: A matrix U ∈ Rm×n such that X ' G ×1 U×2 · · · ×p U.
1: Randomly initialize U1, · · · ,Up ∈ Rm×n
2: repeat
3: M1 ← G(1)(Up ⊗ · · · ⊗U2)>

4: U1 ←
(
X(1)M>

1 + λ
∑p
i=2 Ui

) (
M1M>

1 + λI
)−1

5: for j = 2 to p do
6: Mj ← G(j)(Up ⊗ · · · ⊗Uj+1 ⊗Uj−1 ⊗ · · · ⊗U1)>

7: Uj ←
(
X(j)M>

1 + λU1
) (

MjM>
j + λI

)−1

8: end for
9: until convergence

10: return U1

Discussion. We reduced the problem of learning full rank GWMs on circular strings
to the problem of finding a constrained Tucker decomposition of a sub-block of the
3rd order Hankel tensor H ∈ RΣ∗×Σ∗×Σ∗ . The learning method we proposed is thus
close to spectral learning methods for weighted automata on strings and trees that rely
on finding a low rank decomposition of a sub-block of the Hankel matrix (which is
defined by Hx,y = f(xy) for any x, y ∈ Σ∗ in the string case). However, we cannot
conclude yet that the set of functions recognizable by full rank GWMs is identifiable in
the limit. This is because the algorithm we proposed to tackle the constrained Tucker
decomposition problem is not guaranteed to return an exact solution. Nonetheless, the
learning approach we propose relies on fundamental algebraic properties of GWMs on
circular strings that are related to the problem of recovering matrices from a set of trace
observables, and constitute a first step towards developing a learning theory for GWMs.
The problem of learning GWMs on circular strings that are not of full rank remains open.

Learning methods for WAs rely on the fundamental notion of minimality. A WA with
n states is minimal if there does not exist any WA with strictly less than n states com-
puting the same function. This notion of minimality is closely related to the equivalence
problem: given two WAs, can we decide if they compute the same function? The intrin-
sic relations between learning, equivalence and minimization have been investigated
in (Maruvsic and Worrell, 2015) for weighted tree automata. A similar notion can be
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defined for GWMs but the theoretical study of minimality and of the equivalence prob-
lem for GWMs remains to be done. We think that such a study may reveal important
properties that could be leveraged to develop learning algorithms for GWMs.

2.6 Conclusion
We proposed a computational model on graphs (GWM) that generalizes the notion of
linear representations of recognizable series on strings and trees. The definition of this
model was motivated by interpreting the computations of weighted automata on strings
and trees in terms of tensor networks. We then studied some fundamental properties
of GWMs: closure properties and recognizability of finite support series. We showed
that some of these properties are not satisfied by GWMs defined over arbitrary families
of graphs but we identified smaller families of graphs (encompassing strings and trees)
on which these properties are satisfied. In particular, we showed that families of rooted
in-out graphs satisfy all the desirable properties that we considered (except for our con-
jecture on the recognizability of real-valued series by GWMs with real coefficients). As
an illustration of our general research program of learning functions defined over fami-
lies of graphs, we proposed a learning algorithm for full rank GWMs on circular strings
by reducing the learning problem to the constrained Tucker decomposition of a third-
order Hankel tensor. The question of learning GWMs on circular strings that are not of
full rank remain open.

There are several lines of work that we would like to investigate in the future. A study
of GWMs from a formal language perspective would be of great interest. This includes
extending the results we presented to the setting where F is an arbitrary commutative
semi-ring, and investigating the connections between GWMs and the models proposed
in (Droste and Dück, 2015) and (Makowsky and Kotek, 2014) (which may entail char-
acterizations of GWM-recognizable series in terms of second-order logic). A thorough
study of the notion of minimality for GWMs remains to be done, and could shed an inter-
esting light on the problem of learning GWMs. From a machine learning perspective, we
are currently investigating the question of learning GWM-recognizable functions defined
over 2-dimensional words with potential applications in image processing tasks. We also
plan to tackle algorithmic issues and to study how techniques and methods developed
in the field of graphical models (such as message passing, variational methods, etc.)
and quantum physics (e.g. density matrix renormalization group algorithms), could be
adapted to the setting of GWMs.
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Appendix

2.A Proof of Theorem 4
Theorem. Let S be a family of closed in-out graphs over a ranked alphabet F = (Σ, ]),
and let Ĝ = (V̂ , Ê, l̂) be a graph in S. For any G ∈ S, let ΨG be the set of covering
maps from G to Ĝ.
Then, for any set {εv̂ : v̂ ∈ V̂ } ⊂ R \ {0} of non-zero real numbers, there exists a

GWM M with |Ê| states and with coefficients in R such that

fM (G) =
∑
ψ∈ΨG

∏
v∈V

εψ(v) for all graphs G = (V,E, `) ∈ S.

Proof. For any symbol x ∈ Σ, we denote by V̂ (x) the set of vertices in V̂ labeled by x.
Let n = |Ê|. Instead of indexing the canonical basis of Rn with integers in [n], we will
index it with elements of Ê. Let η : P (Ĝ) → Ê be the mapping associating each port
p ∈ P (Ĝ) with the edge in Ê it belongs to, that is η(p) is the unique e ∈ Ê such that
p ∈ e.
Let M = 〈Rn, {Mx}x∈Σ〉 be the GWM defined by

Mx =
∑

v̂∈V̂ (x)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))

for all x ∈ Σ. For any graph G = (V,E, `), we have fM (G) =
∑
γ∈Γid(G,M)Mγ where

Mγ =
∏
v∈VM

`(v)
γ(v,1),··· ,γ(v,]v).

Let ΓG = {γ : Γid(G,M) | Mγ 6= 0} be the set of γ’s corresponding to non-zero
summands in fM (G). We first show that for any γ ∈ ΓG, there exists a unique v̂ ∈ V̂
such that `(v) = ˆ̀(v̂) and γ(v, i) = η(v̂, i) for all i ∈ []v]. The existence of v̂ is a direct
consequence of the definition of the tensors {Mx}x∈Σ: Mγ 6= 0 implies that for all
v ∈ V at least one of the summands in∑

v̂∈V̂ (`(v))

εv̂ ·
(
eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂)

)
γ(v,1),··· ,γ(v,]v)

is non-zero, thus there must exists some v̂ ∈ V̂ (`(v)) such that γ(v, i) = η(v̂, i) for
all i ∈ []v]. Furthermore, v̂ is unique because Ĝ is an in-out graph. Indeed, suppose
that there exist two distinct vertices v̂1, v̂2 ∈ V̂ such that `(v) = `(v̂1) = `(v̂2) and
γ(v, i) = η(v̂1, i) = η(v̂2, i) for all i ∈ []v], by defintition of η this would imply that
{(v̂1, i), (v̂2, i)} ∈ Ê, a contradiction with the fact that Ĝ is an in-out graph.

Now for any γ ∈ ΓG let ψγ : v 7→ v̂ be the mapping defined by this relation, i.e. ψγ(v)
is the unique v̂ ∈ V̂ such that `(v) = ˆ̀(v̂) and γ(v, i) = η(v̂, i) for all i ∈ []v]. For any
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γ ∈ ΓG and any v ∈ V we have

M`(v)
γ(v,1),··· ,γ(v,]v) =

 ∑
v̂∈V̂ : `(v̂)=`(v)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))


γ(v,1),··· ,γ(v,]v)

=
∑

v̂∈V̂ : `(v̂)=`(v)

εv̂ · (eη(v̂,1) ◦ · · · ◦ eη(v̂,]v̂))γ(v,1),··· ,γ(v,]v)

= εψγ(v) .

Hence,

fM (G) =
∑

γ∈Γid(G,M)
Mγ =

∑
γ∈ΓG

Mγ =
∑
γ∈ΓG

∏
v∈V
M`(v)

γ(v,1),··· ,γ(v,]v) =
∑
γ∈ΓG

∏
v∈V

εψγ(v) .

We now show that ΓG and ΨG are in one-to-one correspondence through the mapping
φ : γ 7→ ψγ , which will entail the result of the theorem. We start by showing that
ψγ ∈ ΨG for all γ ∈ ΓG. Let γ ∈ ΓG, we need to show that (i) `(v) = `(ψγ(v)) for all
v ∈ V and (ii) {(ψγ(v), i), (ψγ(v′), i′)} ∈ Ê for all {(v, i), (v′, i′)} ∈ E. Condition (i) is
directly satisfied by definition of ψγ . For condition (ii), let {(v, i), (v′, i′)} ∈ E. On the
one hand we have γ(v, i) = γ(v′, i′) (because γ ∈ Γid(G,M) and {(v, i), (v′, i′)} ∈ E)
and on the other hand we have γ(v, i) = η(ψγ(v), i) and γ(v′, i′) = η(ψγ(v′), i′) by
definition of ψγ . It follows that η(ψγ(v), i) = η(ψγ(v′), i), which will imply (by definition
of η) that {(ψγ(v), i), (ψγ(v′), i′)} ∈ Ê if (ψγ(v), i) 6= (ψγ(v′), i′). Indeed, suppose that
ψγ(v) = ψγ(v′) and i = i′, then `(v) = `(v′) and since {(v, i), (v′, i)} ∈ E we obtain a
contradiction with the fact that G is an in-out graph.

To conclude, we need to show that φ : γ 7→ ψγ is bijective. Let γ, γ′ ∈ ΓG be
such that γ 6= γ′, then there exists a port (v, i) ∈ P (G) such that γ(v, i) 6= γ′(v, i),
hence η(ψγ(v), i) 6= η(ψγ′(v), i) which implies ψγ(v) 6= ψγ′(v), thus showing that φ is
injective. Now let ψ ∈ ΨG and let γ : P (G) → P (Ĝ) be defined by γ(v, i) = η(ψ(v, i))
for all (v, i) ∈ P (G). It is easy to check that γ ∈ ΓG and ψ = ψγ , showing that φ is
surjective.
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3.1 Introduction
In this chapter, we will stay in the world of weighted automata: we will focus on one
of the classical models that graph weighted models (introduced in the previous chapter)
generalize and consider a problem of model reduction for weighted tree automata. Model
reduction is a common problem in machine learning, where one wants to reduce the
size of some model in order to reduce the computational cost of learning or making
new predictions, or simply to reduce the memory required to store the model. Such an
example of model reduction for neural networks was mentioned in the introduction: in
e.g. (Novikov et al., 2015) the authors use tensor decomposition techniques to compress
and speedup the computations of a neural network.

The class of weighted tree automata encompasses probabilistic/weighted context free
grammars and is thus relevant to the field of natural language processing. Probabilis-
tic context-free grammars (PCFG) provide a powerful statistical formalism for modeling
important phenomena occurring in natural language. In fact, learning and parsing algo-
rithms for PCFG are now standard tools in natural language processing pipelines. Most
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of these algorithms can be naturally extended to the superclass of weighted context-free
grammars (WCFG), and closely related models like weighted tree automata (WTA) and
latent probabilistic context-free grammars (LPCFG). The complexity of these algorithms
depends on the size of the grammar/automaton, typically controlled by the number of
rules/states. Being able to control this complexity is essential in operations like parsing,
which is typically executed every time the model is used to make a prediction.

In this chapter we present an algorithm that given a WTA with n states and a target
number of states n̂ < n, returns a WTA with n̂ states that is a good approximation of
the original automaton. This can be interpreted as a low-rank approximation method
for WTA through the direct connection between number of states of a WTA and the
rank of its associated Hankel matrix. This opens the door to reducing the complexity
of algorithms working with WTA at the price of incurring a small, controlled amount of
error in the output of such algorithms. For example, the complexity for parsing a tree t
using a WTA is cubic in the number of states (Maletti and Satta, 2009), thus reducing the
number of states can lead to a significant speed-up for inference time with a minimized
model.

Our techniques are inspired by recent developments in spectral learning algorithms
for different classes of models on sequences (Hsu, Kakade, and T. Zhang, 2008; Bailly,
Denis, and Ralaivola, 2009; Boots, Siddiqi, and Gordon, 2011; Balle et al., 2014) and
trees (Bailly, Habrard, and Denis, 2010; Cohen et al., 2014), and subsequent investiga-
tions into low-rank spectral learning for predictive state representations (Kulesza, Rao,
and Singh, 2014; Kulesza, N. Jiang, and Singh, 2015) and approximate minimization
of weighted automata (Balle, Panangaden, and Precup, 2015). In spectral learning al-
gorithms, data is used to reconstruct a finite block of a Hankel matrix and an SVD of
such a matrix then reveals a low-dimensional space where a linear regression recovers
the parameters of the model. In contrast, our approach computes the SVD of the infinite
Hankel matrix associated with a WTA, and then uses it to obtain a low-rank approxi-
mation of the initial WTA. Our main result is an efficient algorithm for computing this
singular value decomposition by operating directly on the WTA representation of the
Hankel matrix; that is, without the need to explicitly represent this infinite matrix at
any point. Section 3.2 presents the main ideas underlying our approach, an efficient
algorithmic implementation of these ideas is discussed in Section 3.3, and theoretical
approximation guarantees are given in Section 3.4.

The connection between tensors and the problem we consider here comes from the
fact that the parameters of a WTA are tensors. The approach we propose extends the
one given in (Balle, Panangaden, and Precup, 2015) for weighted string automata to
the tree case. In this paper, the authors introduce a canonical form for weighted string
automata from which approximate minimization can be done in a principled way. They
also propose an efficient algorithm to compute this canonical form that relies on the
computations of some Gram matrices associated with the automaton. We introduce a
similar canonical form for weighted tree automata, but whereas computing the Gram
matrices mentioned above could be done by solving a linear system of equations in the
string case, in the tree case these Gram matrices are defined by a polynomial system
of equations which does not have an analytic solution in general. This comes from the
facts that weighted string automata are parameterized by matrices while higher order
tensors appear in WTAs; this shows (once again) that problems can become significantly
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more difficult when going from matrices to higher order tensors. Nonetheless, using
results from fixed-point theory, we are able to provide an efficient algorithm that can
approximate these Gram matrices to an arbitrary precision.

The idea of speeding up parsing with (L)PCFG by approximating the original model
with a smaller one was recently studied in (Collins and Cohen, 2012; Cohen, Satta, and
Collins, 2013), where a tensor decomposition technique was used in order to obtain the
minimized model. We compare that approach to ours in the experiments presented in
Section 3.5, where both techniques are used to compute approximations to a grammar
learned from a corpus of real linguistic data. It was observed in (Collins and Cohen,
2012; Cohen, Satta, and Collins, 2013) that a side-effect of reducing the size of a gram-
mar learned from data was a slight improvement in parsing performance. The number of
parameters in the approximate models is smaller, and as such, generalization improves.
We show in our experimental section that our minimization algorithms have the same
effect in certain parsing scenarios. In addition, our approach yields models which give
lower perplexity on an unseen set of sentences, and provides a better approximation to
the original model in terms of `2 distance. It is important to remark that in contrast
with the tensor decompositions in (Collins and Cohen, 2012; Cohen, Satta, and Collins,
2013) which are susceptible to local optima problems, our approach resembles a power-
method approach to SVD, which yields efficient globally convergent algorithms. Overall,
we observe in our experiments that this renders a more stable minimization method than
the one using tensor decompositions.

Summary of the contributions. We propose a principled method for reducing the
number of states of a WTA to approximate a recognizable tree function by a model with a
smaller size. Our method extends the one presented in (Balle, Panangaden, and Precup,
2015) for string automata to the tree case, and relies on an algorithm that computes the
SVD of the infinite Hankel matrix associated with a WTA. We compare our approach to the
one proposed in (Collins and Cohen, 2012; Cohen, Satta, and Collins, 2013) to speed up
parsing with PCFGs on a grammar learned on a real world corpus with three different
evaluation metrics: perplexity, `2 distance and parsing.

The works presented in this chapter have been realized in collaboration with Borja
Balle (Lecturer at Lancaster University) and Shay B. Cohen (Assistant Professor at Ed-
inburgh University), and they have been partially carried out during my visits at McGill
University in December 2014 (where B. Balle was a postdoctoral fellow) and Lancaster
University in May 2016, and during B. Balle’s visit at Aix-Marseille University in Febru-
ary 2015. They were presented in the international conference AISTATS (poster) in
May 2016 and in the french machine learning conference CAp (30mn talk) in July 2016.

3.1.1 Trees and Weighted Tree Automata

We start by recalling the definitions of trees and weighted tree automata and by intro-
ducing our notations.

Trees on a ranked alphabet. We now introduce notations for describing trees gener-
ated by a weighted tree automaton; see Figure 3.1 for some illustrative examples. Recall
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gt =

a b

gc1 =

* d

gc2 =

g
*

d a

gc1[t] =

g d

a b

gc2[c1] =

g g

a b * d

Figure 3.1: Examples of trees (t, c1[t] ∈ TF ) and contexts (c1, c2, c2[c1] ∈ CF ) on the
ranked alphabet F = F0 ∪ F2 where F0 = {a, b, d} and F2 = {g}. With
our notations: c1[t] = g(g(a, b), d), |c1[t]| = 5, depth(c1[t]) = 2, 〈t〉 = ab,
drop(c2[c1]) = 2

that given a ranked alphabet F = (Σ, ]) we denote by Fp = {g ∈ Σ : ]g = p} the set of
symbols of arity p, and that the set of trees TF on F is the smallest set such that

• σ ∈ TF for any σ ∈ F0,

• g(t1, · · · , tp) ∈ TF for any p ≥ 1, g ∈ Fp and t1, · · · , tp ∈ TF .

We will call symbols in F0 leaf symbols and symbols in F≥1 internal symbols. We will
sometimes simply write T instead of TF when the ranked alphabet is clear from context.
The size of a tree t ∈ TF is denoted by |t| and defined recursively by |σ| = 1 for σ ∈ F0,

and |g(t1, · · · , tp)| = 1 + |t1|+ · · ·+ |tp|; that is, the number of nodes in the tree. Given
a symbol g and a tree t we will denote by |t|g the number of nodes in t that are labeled
with g. The depth of a tree t ∈ TF is denoted by depth(t) and defined recursively by
depth(σ) = 0 for σ ∈ F0, and depth(g(t1, · · · , tp)) = 1 + max{depth(t1), · · · ,depth(tp)};
that is, the distance from the root of the tree to the farthest leaf. The yield of a tree t ∈ TF
is a string 〈t〉 ∈ Σ∗ defined as the left-to-right concatenation of the symbols in the leafs
of t, and can be recursively defined by 〈σ〉 = σ, and 〈g(t1, · · · , tp)〉 = 〈t1〉 · · · 〈tp〉.

Let F ′ = (Σ ∪ {∗}, ]′), where ∗ is a symbol of arity 0 not in Σ. The set of context trees
is the set CF = {c ∈ TF ′ : |c|∗ = 1}; that is, a context c ∈ CF is a tree in TF ′ in which
the symbol ∗ occurs exactly in one leaf. Note that given a context c = g(t1, · · · , tp) ∈ CF
with g ∈ Fp, t1, · · · tp ∈ TF ′ the symbol ∗ can only appear in one of the ti’s. The drop of
a context c ∈ CF is the distance between the root and the leaf labeled with ∗ in c, which
can be defined recursively as drop(∗) = 0, drop(g(t1, · · · , ti, c, ti+1, · · · , tp)) = drop(c)+1
for any g ∈ Fp+1, t1, · · · , tp ∈ TF .

We usually think of the leaf with the symbol ∗ in a context as a placeholder where the
root of another tree or another context can be inserted. Accordingly, given t ∈ TF and
c ∈ CF , we define c[t] ∈ TF as the tree obtained by replacing the occurrence of ∗ in c
with t. Similarly, given c, c′ ∈ CF we can obtain a new context tree c[c′] by replacing the
occurrence of ∗ in c with c′ (see Figure 3.1).

Weighted tree automaton. Recall that a weighted tree automaton (WTA) A is a tuple
(Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) where α ∈ Rn is the initial weight vector, ωσ ∈ Rn is
the final weight vector associated with the leaf symbol σ for each σ ∈ F0, and for any
symbol g of arity p ≥ 1, Ag ∈ (Rn)⊗p+1 is the transition tensor of order p+ 1 associated
with the internal symbol g. A WTA A computes a function fA : TF → R assigning to each
tree t ∈ TF the number computed as fA(t) = α>ωA(t), where ωA(t) ∈ Rn is obtained
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recursively as ωA(σ) = ωσ, and

ωA(g(t1, · · · , tp)) = Ag(I,ωA(t1), · · · ,ωA(tp)).

Note that in this chapter we will always use the notation Ag(I,ωA(t1), · · · ,ωA(tp)) =
Ag•2ωA(t1)•3 · · ·•p+1ωA(tp). In many cases we will just write ω(t) when the automaton
A is clear from the context.

An arbitrary function f : TF → R is called recognizable (or rational) if there exists a
WTA A such that f = fA. The number of states of the smallest such WTA is the rank of
f — we shall set rank(f) =∞ if f is not recognizable. A WTA A with n states such that
fA = f and n = rank(f) is called minimal.

Relatedmodels. Although WTA are traditionally studied as recognizers for (weighted)
regular tree languages, the computation performed by a WTA is closely related to several
models typically used in machine learning, including PCFG/WCFGs and recursive tensor
neural networks.

The connection with recursive tensor neural networks (RTNN) introduced in (Socher
et al., 2013) follows from observing that the computation of a WTA has the same bottom-
up computational structure as a RTNN without the non-linearities. The values of the n
components of a leaf vector ωσ correspond to the values of n features representing the
symbol σ ∈ Σ. The computation performed by a WTA processes a tree from the bottom
up: whenever a tree of the form t = g(t1, · · · , tp) is encountered, it first processes the
subtrees t1, · · · , tp to obtain the feature vectors ωA(t1), · · · ,ωA(tp), and then computes
a new feature vector for t as ωA(t) = Ag(I,ωA(t1), · · · ,ωA(tp)). At the top level the
computation ends by producing the scalar fA(t) = α>AωA(t) corresponding to the inner
product of the feature representation of t with the vector αA.

It is well known that the set of derivation trees of a context-free grammar forms a
regular tree language, that is a language that can be recognized by a (unweighted)
tree automaton. The connection between weighted/probabilistic context free gram-
mars (WCFG/PCFG) and WTAs is of a similar nature. In Section 3.5, we will evaluate
our approximate minimization method by reducing the size of a WTA obtained from a
PCFG learned on a real world corpus. We conclude this introduction by showing how
such a conversion between the two models can be done.

A weighted context-free grammar (WCFG) in Chomsky normal form is a tuple G =
(N ,Σ,R,weight) where

• N is the finite set of nonterminal symbols,

• Σ is the finite set of terminal symbols (or letters), with Σ ∩N = ∅,

• R is a set of rules having the following forms: initial rules (→ a), internal rules
(a→ bc) and final rules (a→ x) for a, b, c ∈ N , x ∈ Σ,

• weight : R → R is the weight function which is extended to the set of all possible
rules by letting weight(δ) = 0 for all rules δ 6∈ R.

A derivation tree τ of the grammar is a binary tree with internal nodes labeled by
nonterminal symbols and leafs labeled by terminal symbols. We say that a rule (→ a)
appears in τ if the root of τ is labeled by a, that (a → bc) appears in τ if there is an
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internal node labeled by a whose left and right sons are labeled by b and c respectively,
and that (a→ x) appears in τ if there is a leaf labeled by x whose father is labeled by a.

A WCFG G assigns a weight to each derivation tree τ of the grammar given by

weight(τ) =
∏
δ∈R

(weight(δ))]δ(τ)

where ]δ(τ) is the number of times the rule δ appears in τ , and it computes a function
fG : Σ+ → R defined by

fG(w) =
∑

τ∈T (w)
weight(τ)

for any w ∈ Σ+, where T (w) is the set of trees deriving the word w (i.e. 〈τ〉 = w for any
τ ∈ T (w)).

Given a WCFG G, we consider the set of binary trees on the ranked alphabet F =
(Σ ∪ {�}, ]) where each symbol σ ∈ Σ is of arity 0 and � is a new symbol of arity 2. We
can then build a WTA that assigns to each binary tree t ∈ TF the sum of the weights of
all derivation trees of G having the same topology as t. Let G = (N ,Σ,R,weight) be a
WCFG in normal form with N = [n]. Let A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) be the WTA
with n states defined by

• αi = weight(→ i) for all i ∈ [n],

• A�i,j,k = weight(i→ jk) for all i, j, k ∈ [n],

• ωσi = weight(i→ σ) for all i ∈ [n], σ ∈ Σ.

Then for all w ∈ Σ+ we have fG(w) =
∑
t∈TF :〈t〉=w fA(t). It is important to note that in

this conversion the number of states in A corresponds to the number of non-terminals in
G. A similar construction can be used to convert any WTA to a WCFG where each state
in the WTA is mapped to a non-terminal in the WCFG.

3.2 Approximate Minimization of Weighted Tree Automata
In this section, we present our method to reduce the size of a WTA. We will first show
that the set of WTAs computing a function f is in one-to-one correspondence with the
set of rank factorizations of the so-called Hankel matrix associated with f . This result
will allow us to define a canonical form for WTAs where the states of the automaton are
associated with the singular values of the Hankel matrix, which suggests a principled
way for approximate minimization by removing the states associated with the smaller
singular values.

3.2.1 Rank Factorizations of Hankel Matrices

We start by a crucial observation about WTAs: there exist more than one WTA computing
the same function — in fact, there exist infinitely many. An important construction along
these lines is the conjugate of a WTA A with n states by an invertible matrix Q ∈ Rn×n.
If A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0), its conjugate by Q is

AQ = (Rn,Q>α, {Ag(Q−>,Q, · · · ,Q)}g∈F≥1 , {Q
−1ωσ}σ∈F0) (3.1)
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where Q−> = (Q>)−1 denotes the inverse of the transpose. To show that fA = fAQ one
applies an induction argument on depth(t) to show that ωAQ(t) = Q−1ωA(t) for every
t ∈ TF . The claim is obvious for trees of zero depth σ ∈ Σ, and for t = g(t1, · · · , tp) we
have

ωAQ(g(t1, · · · , tk)) = (Ag(Q−>,Q, · · · ,Q))(I,ωAQ(t1), · · · ,ωAQ(tp))
= (Ag(Q−>,Q, · · · ,Q))(I,Q−1ωA(t1), · · · ,Q−1ωA(tp))
= Ag(Q−>,ωA(t1), · · · ,ωA(tp))
= Q−1A(I,ωA(t1), · · · ,ωA(tp)) = Q−1ωA(t),

where we just used some simple rules of tensor algebra.
Given any f : T→ R we define its Hankel matrix as the bi-infinite matrix Hf ∈ RC×T

with rows indexed by contexts, columns indexed by trees, and whose entries are given
by Hf (c, t) = f(c[t]). Note that given a tree t′ ∈ T there are exactly |t′| different ways
of splitting t′ = c[t] with c ∈ C and t ∈ T. This implies that Hf is a highly redundant
representation for f , and it turns out that this redundancy is the key to proving the
following fundamental result about recognizable tree functions.

Theorem 8 (Bozapalidis and Louscou-Bozapalidou, 1983). For any f : TF → R we
have rank(f) = rank(Hf ).

The theorem above can be rephrased as saying that the rank of Hf is finite if and only
if f is recognizable. When the rank of Hf is indeed finite — say rank(Hf ) = n — one
can find two rank n matrices P ∈ RC×n, S ∈ Rn×T such that Hf = PS. In this case
we say that P and S give a rank factorization of Hf . We shall now refine Theorem 8 by
showing that when f is recognizable, the set of all possible rank factorizations of Hf is
in direct correspondence with the set of minimal WTA computing f .

The first step is to show that any minimal WTA A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0)
computing f induces a rank factorization Hf = PASA. We build SA ∈ Rn×T by setting
the column corresponding to a tree t to SA(:, t) = ωA(t). In order to define PA we need
to introduce a new mapping ΞA : C → Rn×n assigning a matrix to every context as
follows: ΞA(∗) = I and for any context c = g(t1, · · · , ti−1, c

′, ti+1, · · · , tp) where p ≥ 1,
g ∈ Fp, tj ∈ T for j 6= i and c′ ∈ C

ΞA(c) = Ag(I,ωA(t1), · · · ,ωA(ti−1),ΞA(c′),ωA(ti+1), · · · ,ωA(tp)). (3.2)

If we now define αA : C → Rn as αA(c)> = α>ΞA(c), we can set the row of PA

corresponding to c to be PA(c, :) = αA(c)>. With these definitions one can easily show
by induction on drop(c) that ΞA(c)ωA(t) = ωA(c[t]) for any c ∈ C and t ∈ T. Then it is
immediate to check that Hf = PASA:

n∑
i=1

PA(c, i)SA(i, t) = αA(c)>ωA(t) = α>ΞA(c)ωA(t)

= α>ωA(c[t]) = fA(c[t]) = Hf (c, t). (3.3)

As before, we will sometimes just write Ξ(c) and α(c) when A is clear from the context.
We can now state the main result of this section, which generalizes similar results in
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(Balle et al., 2014; Balle, Panangaden, and Precup, 2015) for weighted automata on
strings.

Theorem 9. Let f : T → R be recognizable. If Hf = PS is a rank factorization, then
there exists a minimal WTA A computing f such that PA = P and SA = S.

Proof. Let n = rank(f). Let B = (Rn,α, {Bg}g∈F≥1 , {ωσ}σ∈F0) be an arbitrary minimal
WTA computing f . Suppose B induces the rank factorization Hf = P′S′. Since the
columns of both P and P′ are basis for the column-span of Hf , there must exists a
change of basis Q ∈ Rn×n between P and P′. That is, Q is an invertible matrix such
that P′Q = P. Furthermore, since P′S′ = Hf = PS = P′QS and P′ has full column
rank, we must have S′ = QS, or equivalently, Q−1S′ = S. Thus, we let A = BQ,
which immediately verifies fA = fB = f . It remains to show that A induces the rank
factorization Hf = PS. Note that when proving the equivalence fA = fB we already
showed ωA(t) = Q−1ωB(t), thus SA = Q−1S′ = S. To show PA = P′Q we need to
show that for any c ∈ C we have αA(c)> = αB(c)>Q. This will immediately follow if
we show that ΞA(c) = Q−1ΞB(c)Q. If we proceed by induction on drop(c), we see that
the case c = ∗ is immediate. For c = g(c′, t1, · · · , tp) where c′ ∈ C, p ≥ 0, g ∈ Fp+1 and
t1, · · · , tp ∈ T, we get

ΞA(g(c′, t1, · · · , tp)) = Ag(I,ΞA(c′),ωA(t1), · · · ,ωA(tp))
= (Bg(Q−>,Q, · · · ,Q))(I,Q−1ΞB(c′)Q,Q−1ωB(t1), · · · ,Q−1ωB(tp))
= Bg(Q−>,ΞB(c′)Q,ωB(t1), · · · ,ωB(tp))
= Q−1Bg(I,ΞB(c′),ωB(t1), · · · ,ωB(tp))Q = Q−1ΞB(c)Q.

Applying the same argument mutatis mutandis for contexts of the form c = g(t1, · · · , tl−1,
c′, tl, · · · , tp) completes the proof.

3.2.2 Approximate Minimization with the Singular Value Tree Automaton

Equation (3.3) can be interpreted as saying that given a fixed factorization Hf = PASA,
the value fA(c[t]) is given by the inner product 〈αA(c),ωA(t)〉 =

∑
i(αA(c))i(ωA(t))i.

Thus, (αA(c))i and (ωA(t))i quantify the influence of state i in the computation of
fA(c[t]), and by extension one can use ‖PA(:, i)‖ and ‖SA(i, :)‖ to measure the over-
all influence of state i in fA. Since our goal is to approximate a given WTA by a smaller
WTA obtained by removing some states in the original one, we shall proceed by remov-
ing those states with overall less influence on the computation of f . But because there
are infinitely many WTAs computing f , we need to first fix a particular representation for
f before we can remove the less influential states. In particular, we seek a representa-
tion where each state is decoupled as much as possible from each other state, and where
there is a clear ranking of states in terms of overall influence. It turns out that this can
all be achieved by a canonical form for WTA we call the singular value tree automaton,
which provides an implicit representation for the SVD of Hf . We now show conditions
for the existence of such a canonical form, and we develop an algorithm to compute it
efficiently in the next section.

Suppose f : T → R is a rank n recognizable function such that its Hankel matrix
admits a reduced singular value decomposition Hf = UDV>. Then we have that P =
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UD1/2 and S = D1/2V> is a rank decomposition for Hf , and by Theorem 9 there exists
some minimal WTA A with fA = f , PA = UD1/2 and SA = D1/2V>. We call such an A
a singular value tree automaton (SVTA) for f . However, these are not defined for every
recognizable function f , because the fact that the columns of U and V must be unitary
vectors (i.e. U>U = V>V = I) imposes some restrictions on which infinite Hankel
matrices Hf admit an SVD — this phenomenon is related to the distinction between
compact and non-compact operators in functional analysis. Our next theorem gives a
sufficient condition for the existence of an SVD of Hf .

We say that a function f : TF → R is strongly convergent if the series
∑
t∈TF |t||f(t)|

converges. To see the intuitive meaning of this condition, assume that f is a probability
distribution over trees in T. In this case, strong convergence is equivalent to saying that
the expected size of trees generated from the distribution f is finite. It turns out that
strong convergence of f is a sufficient condition to guarantee the existence of an SVD
for Hf .

Theorem 10. If f : TΣ → R is recognizable and strongly convergent, then Hf admits a
singular value decomposition.

Proof. The result will follow if we show that Hf is the matrix of a compact operator
between Hilbert spaces (Hsing and Eubank, 2015, Theorem 4.3.5). We start by defining
the Hilbert spaces of square-summable series indexed by trees and contexts. Given two
functions g, g′ : TΣ → R we define their inner product to be 〈g, g′〉T =

∑
t∈TΣ

g(t)g′(t)
(whenever the sum converges). Let ‖g‖T =

√
〈g, g〉T be the induced norm. We denote

by `2T be the real vector space of functions {g : T→ R | ‖g‖T <∞}, which is a separable
Hilbert space because the set T is countable. Similarly, given functions g, g′ : CΣ → R
we define an inner product 〈g, g′〉C =

∑
c∈CΣ

g(t)g′(t), a norm ‖g‖C =
√
〈g, g〉C, and a

separable Hilbert space `2C = {g : C → R|‖g‖C < ∞}. With this notation it is possible
to see that Hf is the matrix under the standard basis on `2T and `2C of the operator
Hf : `2T → `2C given by (Hfg)(c) =

∑
t∈TΣ

f(c[t])g(t). Since f is recognizable, Hf

is a finite-rank matrix and therefore Hf is a finite-rank operator. Thus, to show the
compactness of Hf it only remains to show that Hf is bounded.
Given f ∈ `2T and c ∈ CΣ we define a new function fc ∈ `2T given by fc(t) = f(c[t]) for

t ∈ TΣ. Now let g ∈ `2T with ‖g‖T = 1 and recall that Hf is bounded if ‖Hfg‖C <∞ for
every g ∈ `2T with ‖g‖T = 1. To show that Hf is bounded observe that

‖Hfg‖2C =
∑
c∈CΣ

(Hfg)(c)2 =
∑
c∈CΣ

∑
t∈TΣ

f(c[t])g(t)

2

=
∑
c∈CΣ

〈fc, g〉2T ≤ ‖g‖
2
T

∑
c∈CΣ

‖fc‖2T

=
∑
c∈CΣ

∑
t∈TΣ

fc(t)2 =
∑
c∈CΣ

∑
t∈TΣ

f(c[t])2

=
∑
t∈TΣ

|t|f(t)2 ≤ sup
t∈TΣ

|f(t)| ·
∑
t∈TΣ

|t||f(t)|

<∞,

where we used the Cauchy–Schwarz inequality, and the fact that supt∈TΣ |f(t)| is bounded
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when f is strongly convergent.

Together, Theorems 9 and 10 imply that every recognizable strongly convergent f :
T → R can be represented by an SVTA A. If rank(f) = n, then A has n states and for
every i ∈ [n] the ith state contributes to Hf by generating the ith left and right singular
vectors weighted by

√
si, where si = Di,i is the ith singular value. Thus, if we want

to obtain a good approximation f̂ to f with n̂ states, we can take the WTA Â obtained
by removing the last n − n̂ states from A, which corresponds to removing from f the
contribution of the smallest singular values of Hf . We call such Â an SVTA truncation.
Given an SVTA A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) and Π =

[
In̂ 0

]
∈ Rn̂×n, the SVTA

truncation to n̂ states can be written as

Â = (Rn̂,Πα, {Ag(Π>, · · · ,Π>)}g∈F≥1 , {Πω
σ}σ∈F0).

Theoretical guarantees on the error induced by the SVTA truncation method are pre-
sented in Section 3.4.

3.3 Computing the Singular Value WTA
The previous section shows that in order to compute an approximation of a strongly
convergent recognizable function f : T → R one can proceed by truncating its SVTA.
However, the only obvious way to obtain such an SVTA is by computing the SVD of the
infinite matrix Hf . In this section, we show that if we are given an arbitrary minimal
WTA A for f , then we can transform A into the corresponding SVTA efficientlya. In other
words, given a representation of Hf as a WTA, we can compute its SVD without the
need to operate on infinite matrices. The key observation is to reduce the computation
of the SVD of Hf to the computation of spectral properties of the Gram matrices GC =
P>P and GT = SS> associated with the rank factorization Hf = PS induced by some
minimal WTA computing f . Observe that the Gram matrices associated with the rank
factorization Hf = PASA induced by a WTA A satisfy

GC = P>APA =
∑
c∈C
αA(c)αA(c)> and GT = SAS>A =

∑
t∈T
ωA(t)ωA(t)>.

In the case of weighted automata on strings, (Balle, Panangaden, and Precup, 2015)
recently showed a polynomial time algorithm for computing the Gram matrices of a
string Hankel matrix by solving a system of linear equations. Unfortunately, extending
their approach to the tree case requires obtaining a closed-form solution to a system of
polynomial equations, which in general does not exist. Thus, we resort to a different
algorithmic technique and show that GC and GT can be obtained as fixed points of a
certain non-linear operator. This yields the iterative algorithm presented in Algorithm 3
which converges exponentially fast as shown in Theorem 13. The overall procedure to
transform a WTA into the corresponding SVTA is presented in Algorithm 2.

aIf the WTA given to the algorithm is not minimal, a pre-processing step can be used to minimize the
input using the algorithm from e.g. Kiefer, Marusic, and Worrell (2015).
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In the following proposition, we show how one can construct an SVTA computing a
function f (for which Hf admits an SVD) using the Gram matrices associated with the
rank factorization Hf = PS induced by any minimal WTA computing f .

Proposition 12. Let f : T→ R be a recognizable function such that its Hankel matrix
Hf admits an SVD. Let A be a minimal WTA with n states computing f and inducing
the rank factorization Hf = PS, and let GC = P>P ∈ Rn×n and GT = SS> ∈ Rn×n be
the corresponding Gram matrices.
Let LC,LT ∈ Rn×n be such that GC = L>C LC and GT = L>TLT and let LCL>T = UDV>

be a singular value decomposition.
Then, the conjugate WTA AQ where Q = L−1

C UD1/2 is an SVTA computing f .

Proof. First observe that since the Gram matrices are symmetric positive semi-definite
there exist matrices LC,LT ∈ Rn×n such that GC = L>C LC and GT = L>TLT (one can use
Cholesy factorization or eigendecomposition to obtain such matrices). Moreover, since
A is a minimal WTA the Gram matrices are of full rank and LC and LT are non-singular.
The conjugate WTA AQ induces the factorization Hf = P′S′ with P′ = PQ and

S′ = Q−1S. It is easy to check that Q−1 = D1/2V>L−>T , thus P′ = ŨD1/2 and
S′ = D1/2Ṽ> with Ũ = PL−1

C U and Ṽ> = V>L−>T S. Hence, to show that AQ is an
SVTA it suffices to show that Hf = P′S′ = ŨDṼ> is an SVD which boils down to
checking that Ũ and Ṽ are column-wise orthogonal matrices. Indeed, we have

Ũ>Ũ = U>L−>C P>PL−1
C U = U>L−>C GCL−1

C U = U>U = I

and
Ṽ>Ṽ = V>L−>T SS>L−1

T V = V>L−>T GTL−1
T V = V>V = I

where we used the fact that the matrices U and V are orthogonal.

Algorithm 2 summarizes the overall procedure to construct the SVTA corresponding
to a minimal WTA computing a strongly convergent function. Note that the algorithm
depends on a procedure for computing the Gram matrices GT and GC. In the remain-
ing of this section we present one of our main results: a linearly convergent iterative
algorithm for computing these matrices.

Algorithm 2 ComputeSVTA

Input: A strongly convergent minimal WTA A
Output: The corresponding SVTA
1: GC,GT ← GramMatrices(A)
2: Compute LC,LT ∈ Rn×n such that GC = L>C LC and GT = L>TLT (using e.g.

Cholesky factorizations or eigendecompositions)
3: Let LCL>T = UDV> be an SVD
4: return AQ where Q = L−1

C UD1/2

Let A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) be a strongly convergent WTA of dimension
n computing a function f . The following theorem gives two fundamental fixed point
equations that are satisfied by the Gram matrices GT and GC.
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Theorem 11. The Gram matrices GT =
∑
t∈Tω(t)ω(t)> and GC =

∑
c∈Cα(c)α(c)>

satisfy the following fixed point equations:

GT =
∑
σ∈F0

ωσωσ> +
∑
p≥1

∑
g∈Fp

Ag
(1)(GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p times

)Ag
(1)
>
, (3.4)

GC = αα> +
∑
p≥1

∑
g∈Fp

p∑
i=1

Ag
(i+1)(GC ⊗GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p−1 times

)Ag
(i+1)

>
. (3.5)

Proof. The complete proof is given in Appendix 3.A. Both fixed point equations are
obtained by splitting the sum over all trees/contexts between the ones of depth/drop 1
and the ones of depth/drop greater than 1. For trees, the result follows from observing
that any tree t of depth greater than 1 can be written as t = g(t1, · · · , tp) for some
p ≥ 1, g ∈ Fp and t1, · · · , tp ∈ T; similarly, any context c of drop greater than 1 can
be written as c = c′[g(t1, · · · , ti−1, ∗, ti, · · · , tp−1)] for some c′ ∈ C, p ≥ 1, g ∈ Fp and
t1, · · · , tp−1 ∈ T.

We now show how the Gram matrix GT can be approximated using a simple iter-
ative scheme relying on the fixed point equation from the previous theorem. Let
A⊗ = (Rn2

, α̃, {Ãg}g∈F≥1 , {ω̃σ}σ∈F0) where α̃ = α ⊗ α, Ãg = Ag ⊗Ag ∈ Rn2×···×n2

for all p ≥ 1, g ∈ Fp and ω̃σ = ωσ ⊗ ωσ for all σ ∈ F0. It is shown inb (Berstel and
Reutenauer, 1982) that A⊗ computes the function fA⊗(t) = f(t)2. Note that GT =
SS> =

∑
t∈T ω(t)ω(t)>, hence s , vec(GT) =

∑
t∈T ω̃(t) since ω̃(t) = vec(ω(t)ω(t)>).

Thus, computing the Gram matrix GT boils down to computing the vector s. The fol-
lowing theorem shows that this can be done by repeated applications of a non-linear
operator until convergence to a fixed point.

Theorem 12. Let F : Rn2 → Rn2 be the mapping defined by

F (v) =
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp
Ãg(I,v, · · · ,v) (3.6)

and let s =
∑
t∈T ω̃(t). Then the following hold:

(i) s is a fixed point of F ; i.e. F (s) = s.

(ii) 0 is in the basin of attraction of s; i.e. limk→∞ F
k(0) = s.

(iii) The iteration defined by s0 = 0 and sk+1 = F (sk) converges linearly to s; i.e. there
exists 0 < ρ < 1 such that ‖sk − s‖2 ≤ O

(
ρk
)
.

Proof. The complete proof is given in Appendix 3.B. First observe that Eq. (3.6) with
v = s can be seen as a vectorization of the fixed point equation for GT given in
Theorem 11; informally this proves (i). For (ii) it suffices to remark that F k(0) =∑
t:depth(t)<k ω̃(t), which can be proved by induction on k. For (iii) we use a classical re-

sult on fixed point theory stating that if the spectral radius of the Jacobian of F around
the fixed point s is less than 1, then (iii) holds. Thus the proof boils down to showing
that this Jacobian (which is actually equal to the matrix E in Eq. (3.7) below) is less
than 1.

bThis also directly follows from Proposition 6 since WTAs are a special case of graph weighted models.

72



Though we could derive a similar iterative algorithm to compute GC, it turns out that
knowledge of s = vec(GT) provides an alternative, more efficient procedure to obtain
GC. As before, we have GC = P>P =

∑
c∈C α(c)α(c)> and α̃ = α(c) ⊗ α(c) for all

c ∈ C, hence q , vec(GC) =
∑
c∈C α̃(c). Defining the matrix

E =
∑
p≥1

∑
g∈Fp

p−1∑
i=0
Ãg(I, s, · · · , s︸ ︷︷ ︸

i times

, I, s, · · · , s︸ ︷︷ ︸
p−1−i times

) (3.7)

which only depends on the tensors {Ag}g∈F≥1 and s, we can use the expression α̃(c) =
ΞA⊗(c)>α̃ to get

q> =
∑
c∈C
α̃>ΞA⊗(c) = α̃>

∑
k≥0

Ek = α̃>(I−E)−1,

where we used the facts that Ek =
∑
c∈C:drop(c)=k ΞA⊗(c) (which can be shown by in-

duction on k) and that the spectral radius of E is strictly less than 1 (shown in the proof
of Theorem 12).

Algorithm 3 summarizes the overall approximation procedure for the Gram matrices,
which can be done to an arbitrary precision. There, reshape( · , n×n) is an operation that
takes an n2-dimensional vector and returns the n×n matrix whose first column contains
the first n entries in the vector and so on. Theoretical guarantees on the convergence
rate of this algorithm are given in the following theorem.

Theorem 13. There exists 0 < ρ < 1 such that after k iterations of line 9 in Algo-
rithm 3, the approximations ĜC and ĜT satisfy ‖GC−ĜC‖F ≤ O(ρk) and ‖GT−ĜT‖F ≤
O(ρk).

Proof. The proof is given in Appendix 3.C.

3.4 Approximation Error of an SVTA Truncation
In this section, we analyze the approximation error induced by the truncation of an
SVTA. We recall that given an SVTA A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0), its truncation to
n̂ states is the automaton

Â = (Rn̂,Πα, {Ag(Π>, · · · ,Π>)}g∈F≥1 , {Πω
σ}σ∈F0)

where Π =
[
In̂ 0

]
∈ Rn̂×n is the projection matrix that removes the states associated

with the n− n̂ smallest singular values of the Hankel matrix.
Intuitively, the states associated with the smaller singular values are the ones with the

less influence on the Hankel matrix, thus they should also be the states having the less
effect on the computation of the SVTA. The following theorem supports this intuition by
showing a fundamental relation between the singular values of the Hankel matrix of a
recognizable function f and the parameters of the SVTA computing it.
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Algorithm 3 GramMatrices

Input: A strongly convergent minimal WTA A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0)
Output: Gram matrices ĜC '

∑
c∈C αA(c)αA(c)> and ĜT '

∑
t∈T ωA(t)ωA(t)>

1: for g ∈ F≥1 do
2: Ãg ← Ag ⊗Ag ∈ (Rn2)⊗(]g+1)

3: end for
4: for σ ∈ F0 do
5: ω̃σ ← ωσ ⊗ ωσ ∈ Rn2

6: end for
7: s← 0 ∈ Rn2

8: repeat
9: s←

∑
σ∈F0 ω̃σ +

∑
p≥1

∑
g∈Fp Ã

g(I, s, · · · , s)
10: until convergence
11: E←

∑
p≥1

∑
g∈Fp

∑p−1
i=0 Ãg(I, s, · · · , s︸ ︷︷ ︸

i times

, I, s, · · · , s︸ ︷︷ ︸
p−1−i times

)

12: q← (α⊗α)> (I−E)−1

13: ĜT ← reshape(s, n× n)
14: ĜC ← reshape(q, n× n)
15: return ĜC, ĜT

Proposition 13. Let A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) be an SVTA with n states
computing a function f and let s1 ≥ s2 ≥ · · · ≥ sn be the singular values of the Hankel
matrix Hf .
Then, for all indices i, i1, · · · , ip+1 ∈ [n], the following hold:

• |ω(t)i| ≤
√
si for any t ∈ T,

• |α(c)i| ≤
√
si for any c ∈ C, and

• |Agi1···ip+1
| ≤ mink∈[p+1]

sik√
si1 · · · sip+1

for any p ≥ 1, g ∈ Fp.

Proof. For the first point, let UDV> be the SVD of Hf . Since A is an SVTA we have

ω(t)2
i = (Pi,t)2 = (D1/2V>)2

i,t = si(Vt,i)2

and since the rows of V are orthonormal we have (Vt,i)2 ≤ 1. The inequality for contexts
is proved similarly by reasoning on the rows of UD1/2.
The third point is a direct consequence of the fixed point equations for GT and GC

given in Theorem 11. Indeed, since A is an SVTA we have (GT)i,i = (GC)i,i = si, it is
then easy to check that the fixed point equations imply

si =
∑
σ∈Σ

(ωσ)2
i +

∑
p≥1

∑
g∈Fp

n∑
j1,··· ,jp=1

(Agi,j1,··· ,jp)
2sj1sj2 · · · sjp
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and

si = α2
i +
∑
p≥1

∑
g∈Fp

n∑
j1,··· ,jp=1

((Agj1,i,j2,··· ,jp)
2+(Agj1,j2,i,j3,··· ,jp)

2+· · ·+(Agj1,··· ,jp,i)
2)sj1 · · · sjp

for all i ∈ [n]. The result follows from observing that all the summands in the two
equations are positive.

Two important properties of SVTAs follow from this proposition. First, the fact that
|ω(t)i| ≤

√
si implies that the weights associated with states corresponding to small

singular values are small. Second, this proposition gives us some intuition on how the
states of an SVTA interact with each other. To see this, let g ∈ F2 be a symbol of
arity 2 and let M = Ag(α, I, I). Then for a tree t = g(t1, t2) ∈ T we have fA(t) =
ω(t1)>Mω(t2). Using the previous proposition one can showc that

|Mij | ≤ n
√

min{si, sj}
max{si, sj}

,

which tells us that two states corresponding to singular values far away from each other
have very little interaction in the computations of the automata.

Proposition 13 is key to proving the following theorem, which is the main result of this
section. It shows how the approximation error induced by the truncation of an SVTA is
impacted by the magnitudes of the singular values associated with the removed states.

Theorem 14. Let P = maxg∈Σ ]g be the maximum arity of symbols in F = (Σ, ]).
Let f : TF → R be a function computed by an SVTA with n states and let f̂ be the
function computed by its truncation to n̂ states. Then, for any tree t ∈ T we have
|f(t)− f̂(t)| ≤ nP |t|sn̂+1.
Consequently, for any ε > 0 and any tree t ∈ T:

if |t| ≤ log ε− log sn̂+1
P logn then |f(t)− f̂(t)| ≤ ε.

Proof. See Appendix 3.D.

Since sn̂+1 > sn̂+2 > · · · > sn, this theorem shows that the smaller the singular values
associated with the removed states are, the better will be the approximation. As a direct
consequence, the error introduced by the truncation grows with the number of states
removed. The dependence on the size of the trees comes from the propagation of the
error during the contractions of the tensor T̂ of the truncated SVTA.

The decay of singular values can be very slow in the worst case, but in practice it is not
unusual to observe an exponential decay on the tail. For example, this is shown to be
the case for the SVTA we compute in Section 3.5. Assuming such an exponential decay
of the form si = Cθi for some 0 < θ < 1, the bound above on the size of the trees for

cIndeed, we have |Mi,j | = | (Ag(α, I, I))i,j | ≤
∑n

k=1 |A
g
k,i,j | |αk|, hence it follows from Proposition 13

that |Mi,j | ≤
∑n

k=1 min{
√

si/(sjsk),
√

sj/(sisk)}√sk = n · min{
√

si/sj ,
√

sj/si}.
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which |f(t)− f̂(t)| < ε specializes to

log(ε) + (n̂+ 1) log(1/θ)− log(C)
P logn .

It is interesting to observe that the dependence of this bound on the number of to-
tal/removed states is O (n̂/ log(n)).

To conclude this section, we mention the bound that was obtained for the string case
in (Balle, Panangaden, and Precup, 2015):

‖f − f̂‖22 =
∑
x∈Σ∗

(f(x)− f̂(x))2 ≤ Cf
√
sn̂+1 + · · ·+ sn

where Cf is a constant that depends only on f . Actually, the tighter bound ‖f − f̂‖22 ≤
s2
n̂+1 + · · ·+ s2

n (that does not depend on any constant) can be obtained. In comparison
to the tree case, these bounds do not exhibit any dependency on the size of the strings.
Simulation studies suggest that the bound ‖f − f̂‖22 ≤ s2

n̂+1 + · · · + s2
n also hold in the

tree case, but despite considerable efforts we did not manage to prove this bound (yet).

3.5 Experiments
In this section, we assess the performance of our method on a model arising from real-
world data, by using a PCFG learned from a text corpus as our initial model.

In our experiments, we used the annotated corpus of German newspaper texts NE-
GRA (Skut et al., 1997). We use a standard setup, in which the first 18,602 sentences
are used as a training set, the next 1,000 sentences as a development set and the last
1,000 sentences as a test set Stest. All trees are binarized as described in (Cohen et al.,
2013). We extract a binary grammar in Chomsky normal form from the data, and then
estimate its probabilities using maximum likelihood. The resulting PCFG has n = 211
nonterminals. We compare our method against the ones described in (Cohen, Satta,
and Collins, 2013), who use tensor decomposition algorithms (Chi and Kolda, 2012) to
decompose the tensors of an underlying PCFGd. Loosely speaking, their method consists
in finding a low CP rank decomposition of a tensor containing the weights of the rules
in the PCFG, and performing the PCFG computations using the resulting compressed
representation of this tensor.

We used three evaluation measures: `2 distance (between the functions of type TF →
R computed by the original WTA and the one computed by its approximation), perplexity
on a test set, and parsing accuracy on a test set (comparing the tree topology of parses
using the bracketing F-measure). Because the number of states on a WTA and the CP-
rank of the tensor decomposition method are not directly comparable, we plot the results
using the number of parameters needed to specify the model on the horizontal axis. This
number is equal to n̂3 for a WTA with n̂ states, and it is equal to 3Rn when the tensor
containing the weights of the rules from the PCFG is approximated with a tensor of CP-
rank R (note that in both cases these are the number of parameters needed to specify

dWe use two tensor decomposition algorithms from the tensor Matlab toolbox: pqnr, which makes use
of projected quasi-Newton and mu, which uses a multiplicative update. See http://www.sandia.gov/
~tgkolda/TensorToolbox/index-2.6.html.
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the tensor occurring in the model).
The `2 distance between the original function f and its minimization f̂ , ‖f − f̂‖22 =∑
t∈T(f(t) − f̂(t))2, can be approximated to an arbitrary precision using the Gram ma-

trices of the corresponding WTA (which follows from observing that (f − f̂)2 is recog-
nizable). The perplexity of f̂ is defined by 2−Htest , where Htest =

∑
t∈Stest f(t) log2 f̂(t)

and both f and f̂ have been normalized to sum to one over the test set. The results are
plotted in Figure 3.2, where an horizontal dotted line represents the performance of the
original model. We see that our method outperforms the tensor decomposition methods
both in terms of `2 distance and perplexity. We also remark that our method obtains
very smooth curves, which comes from the fact that it does not suffer from local optima
problems like the tensor decomposition methods.

For parsing we use minimum Bayes risk decoding, maximizing the sum of the marginals
for the nonterminals in the grammar, essentially choosing the best tree topology given
a string (Goodman, 1996). The results for various length of sentences are shown in
Figure 3.3, where we see that our method does not perform as well as the tensor decom-
position methods in terms of parsing accuracy on long sentences. In this figure, we also
plotted the results for a slight modification of our method (SVTA∗) that is able to achieve
competitive performances. The SVTA∗ method gives more importance to long sentences
in the minimization process. This is done by finding a high constant γ > 1 such that
the function fγ : t 7→ γsize(t)f(t) is still strongly convergent (where size(t) = |t| − |〈t〉|
is the number of internal nodes of t). This function is then approximated by a low-rank
WTA computing f̂γ , and we let f̂ : t 7→ γ−size(t)f̂γ(t) (which is recognizable). In our
experiment, we used γ = 2.4. While the SVTA∗ method improved the parsing accuracy,
it had no significant repercussion on the `2 and perplexity measures. We believe that
the parsing accuracy of our method could be further improved. Seeking techniques that
combines the benefits of SVTA and previous works is a promising direction.

Overall, the results are more promising for language modeling (ie. perplexity) than
parsing. This is in line with a recent discovery on learning PCFGs (Scicluna and De La
Higuera, 2014) showing that it is hard to perform simultaneously well on parsing and
language modeling.

3.6 Conclusion
We described a technique for approximate minimization of WTA, yielding a model smaller
than the original one which retains good approximation properties. We introduced a
canonical form of WTA in which the states of the automaton are associated with singular
values of the corresponding Hankel matrix. This canonical form allowed us to achieve
approximate minimization in a principled way by removing states corresponding to small
singular values of the Hankel matrix. We also provided theoretical approximation guar-
antees for this minimization scheme. Our main algorithm relies on a singular value
decomposition of the infinite Hankel matrix induced by the WTA, and the main techni-
cal difficulty to extend the method proposed in (Balle, Panangaden, and Precup, 2015)
to the tree case resided in the computation of the Gram matrices associated with the
WTA. Even though these Gram matrices do not have a closed form solution in the tree
case, we proposed an efficient algorithm to approximate them to an arbitrary precision.
This work has connections with spectral learning techniques for WTA, and exhibits sim-
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ilar properties as those algorithms; e.g. absence of local optima. Our experiments with
real-world parsing data show that the minimized WTA, depending on the number of
singular values used, approximates well the original WTA on three measures: perplexity,
bracketing accuracy and `2 distance between tree functions.

In future work we plan to investigate the applications of our approach to the design
and analysis of improved spectral learning algorithms for WTA. We will also pursue our
efforts to obtain approximation bounds that does not depend on the size of the trees
and hopefully to obtain a bound on the `2 distance between the functions computed by
an SVTA and its truncation. On the practical side we want to investigate strategies to
sparsify the SVTA obtained after minimization (or to maintain sparsity through the min-
imization process) in order to further improve the time complexity of WTA algorithms.
Finally, we think that investigating the properties of the internal feature representations
used by an SVTA might provide useful joint embeddings for the words, non-terminals,
and productions rules arising from (L)PCFGs.
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Appendix

3.A Proof of Theorem 11
Theorem. The Gram matrices GT and GC satisfy the following fixed point equations:

GT =
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

Ag
(1)(GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p times

)Ag
(1)
>
, (3.8)

GC = αα> +
∑
p≥1

∑
g∈Fp

p∑
i=1

Ag
(i+1)(GC ⊗GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p−1 times

)Ag
(i+1)

>
. (3.9)

Proof. Using the fact that any tree t of depth greater than 1 can be written as g(t1, · · · , tp)
for some p ≥ 1, g ∈ Fp and t1, · · · , tp ∈ T we have

GT =
∑
t∈T
ω(t)ω(t)> =

∑
σ∈F0

ωσω
>
σ +

∑
t∈T : depth(t)≥1

ω(t)ω(t)>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

∑
t1,··· ,tp∈T

ω(g(t1, · · · , tp))ω(g(t1, · · · , tp))>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

∑
t1,··· ,tp∈T

Ag(I,ω(t1), · · · ,ω(tp))Ag(I,ω(t1), · · · ,ω(tp))>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

Ag
(1)

∑
t1,··· ,tp∈T

(ω(t1)⊗ · · · ⊗ ω(tp))(ω(t1)⊗ · · · ⊗ ω(tp))>Ag
(1)
>

=
∑
σ∈F0

ωσω
>
σ +

∑
p≥1

∑
g∈Fp

Ag
(1)(GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p times

)Ag
(1)
>
.

To derive a fixed point equation for the Gram matrices for contexts we use the fact that
any context c ∈ C of drop greater than 1 can be written as c′[g(t1, · · · , ti−1, ∗, ti, · · · , tp−1)]
for some c′ ∈ C, p ≥ 1, g ∈ Fp and t1, · · · , tp−1 ∈ T. Using the notation v◦2 = vv> for
any vector v we have

GC =
∑
c∈C
α(c)α(c)> = α(∗)α(∗)> +

∑
c∈C : drop(c)≥1

α(c)α(c)>

= αα> +
∑

p≥1, g∈Fp, c∈C,
t1,··· ,tp−1∈T

p∑
i=1
α(c[g(t1, · · · , ti−1, ∗, ti, · · · , tp−1)])◦2

= αα> +
∑

p≥1, g∈Fp, c∈C,
t1,··· ,tp−1∈T

p∑
i=1

(
Ag(α(c),ω(t1), · · · ,ω(ti−1), I,ω(ti), · · · ,ω(tp−1))

)◦2

= αα> +
∑

p≥1, g∈Fp

p∑
i=1

∑
c∈C,

t1,··· ,tp−1∈T

(
Ag

(i+1)(α(c)⊗ ω(t1)⊗ · · · ⊗ ω(tp−1))
)◦2

= αα> +
∑
p≥1

∑
g∈Fp

p∑
i=1

Ag
(i+1)(GC ⊗GT ⊗ · · · ⊗GT︸ ︷︷ ︸

p−1 times

)Ag
(i+1)

>
.
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3.B Proof of Theorem 12
Theorem. Let F : Rn2 → Rn2 be the mapping defined by

F (v) =
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp
Ãg(I,v, · · · ,v)

and let s =
∑
t∈T ω̃(t). Then the following hold:

(i) s is a fixed point of F ; i.e. F (s) = s.

(ii) 0 is in the basin of attraction of s; i.e. limk→∞ F
k(0) = s.

(iii) The iteration defined by s0 = 0 and sk+1 = F (sk) converges linearly to s; i.e. there
exists 0 < ρ < 1 such that ‖sk − s‖2 ≤ O

(
ρk
)
.

Proof. (i) For any p ≥ 1 and g ∈ Fp, we have

Ãg(I, s, · · · , s) =
∑

t1,··· ,tp∈T
Ãg(I, ω̃(t1), · · · , ω̃(tp)) =

∑
t1,··· ,tp∈T

ω̃(g(t1, · · · , tp)) =
∑
t∈T≥1

ω̃(t)

where T≥1 is the set of trees of depth at least 1. Hence F (s) =
∑
σ∈Σ ω̃σ+

∑
t∈T≥1 ω̃(t) =

s.
(ii) Let T<k denote the set of all trees with depth at most k. We prove by induc-

tion on k that F k(0) =
∑
t∈T<k ω̃(t), which implies that limk→∞ F

k(0) = s. This is
straightforward for k = 1. Assuming it is true for all naturals up to k − 1, we have

F k(0) =
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp
Ãg(I, F k−1(0), · · · , F k−1(0))

=
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp

∑
t1,··· ,tp∈T<k−1

Ãg(I, ω̃(t1), · · · , ω̃(tp))

=
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp

∑
t1,··· ,tp∈T<k−1

ω̃(g(t1, · · · , tp))

=
∑
t∈T<k

ω̃(t).

(iii) Let E be the Jacobian of F around s, we show that the spectral radius ρ(E) of
E is less than one, which implies the result by Ostrowski’s theorem (see Ortega, 1990,
Theorem 8.1.7).
Since A is minimal, there exist trees t1, · · · , tn ∈ T and contexts c1, · · · , cn ∈ C

such that both {ω(ti)}i∈[n] and {α(ci)}i∈[n] are sets of linear independent vectors in
Rn (Bailly, Habrard, and Denis, 2010). Therefore, the sets {ω(ti) ⊗ ω(tj)}i,j∈[n] and
{α(ci) ⊗ α(cj)}i,j∈[n] are sets of linear independent vectors in Rn2 . Let v ∈ Rn2 be
an eigenvector of E with eigenvalue λ 6= 0, and let v =

∑
i,j∈[n] βi,j(ω(ti) ⊗ ω(tj))

be its expression in terms of the basis given by {ω(ti) ⊗ ω(tj)}i,j . For any vector
u ∈ {α(ci)⊗α(cj)}i,j we have

lim
k→∞

u>Ekv ≤ lim
k→∞

|u>Ekv| ≤
∑
i,j∈[n]

|βi,j | lim
k→∞

|u>Ek(ω(ti)⊗ ω(tj))| = 0,
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where we used Lemma 3 (see below) in the last step. Since this is true for any vector u
in the basis {α(ci) ⊗ α(cj)}, we have limk→∞Ekv = limk→∞ |λ|kv = 0, hence |λ| < 1.
This reasoning holds for any eigenvalue of E, hence ρ(E) < 1.

Lemma 3. Let A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) be a minimal WTA of dimension
n computing the strongly convergent function f , and let E ∈ Rn2×n2 be the Jacobian
around s =

∑
t∈T ω(t)⊗ ω(t) of the mapping

F : v 7→
∑
σ∈Σ

ω̃σ +
∑
p≥1

∑
g∈Fp
Ãg(I,v, · · · ,v).

Then for any c1, c2 ∈ C and any t1, t2 ∈ T we have

lim
k→∞

|(α(c1)⊗α(c2))>Ek(ω(t1)⊗ ω(t2))| = 0.

Proof. Let Ξ̃ : C → Rn2×n2 be the context mapping associated with the WTA A⊗; i.e.
Ξ̃ = ΞA⊗ . We start by proving by induction on drop(c) that Ξ̃(c) = Ξ(c) ⊗ Ξ(c) for
all c ∈ C. Let Cd denote the set of contexts c ∈ C with drop(c) = d. The statement
is trivial for c ∈ C0. Assume the statement is true for all naturals up to d − 1 and let
c = g(c′, t1, · · · , tp) ∈ Cd for some p ≥ 0, g ∈ Fp+1, t1, · · · , tp ∈ T and c′ ∈ Cd−1. Then
using our induction hypothesis and the fact that ω̃(t) = ω(t) ⊗ ω(t) for any tree t, we
have

Ξ̃(c) = Ãg(In2 , Ξ̃(c′), ω̃(t1), · · · , ω̃(tp))
= Ãg(In2 ,Ξ(c′)⊗Ξ(c′),ω(t1)⊗ ω(t1), · · · ,ω(tp)⊗ ω(tp))
= Ag(In,Ξ(c′),ω(t1), · · · ,ω(tp))⊗Ag(In,Ξ(c′),ω(t1), · · · ,ω(tp))
= Ξ(c)⊗Ξ(c).

The case c = g(t1, · · · , ti−1, c
′, ti, · · · , tp) for i > 1 follows from an identical argument.

Next we use the multi-linearity of F to expand F (s+h) for a vector h ∈ Rn2 . Keeping
the terms that are linear in h we obtain

E =
∑
p≥1

∑
g∈Fp

p−1∑
i=0
Ãg(I, s, · · · , s︸ ︷︷ ︸

i times

, I, s, · · · , s︸ ︷︷ ︸
p−1−i times

).

It follows that E =
∑
c∈C1 Ξ̃(c), and it can be shown by induction on k that Ek =∑

c∈Ck Ξ̃(c).
Writing dc = min(drop(c1),drop(c2)) and dt = min(depth(t1),depth(t2)), we can see

82



that

∣∣∣(α(c1)⊗α(c2))>Ek(ω(t1)⊗ ω(t2))
∣∣∣ =

∣∣∣∣∣∣
∑
c∈Ck

(α(c1)⊗α(c2))>Ξ̃(c)(ω(t1)⊗ ω(t2))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
c∈Ck

(α(c1)>Ξ(c)ω(t1)) · (α(c2)>Ξ(c)ω(t2))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
c∈Ck

f(c1[c[t1]])f(c2[c[t2]])

∣∣∣∣∣∣
≤

∑
c∈Ck
|f(c1[c[t1]])|

∑
c∈Ck
|f(c2[c[t2]])|


≤

 ∑
t∈T≥dc+dt+k

|t||f(t)|

2

which tends to 0 with k →∞ since f is strongly convergent.
To prove the last inequality, check that any tree of the form t′ = c[c′[t]] satisfies

depth(t′) ≥ drop(c) + drop(c′) + depth(t), and that for fixed c ∈ C and t, t′ ∈ T we have
|{c′ ∈ C : c[c′[t]] = t′}| ≤ |t′| (indeed, a factorization t′ = c[c′[t]] is fixed once the root of
t is chosen in t′, which can be done in at most |t′| different ways).

3.C Proof of Theorem 13
Theorem. There exists 0 < ρ < 1 such that after k iterations of line 9 in Algorithm 3,
the approximations ĜC and ĜT satisfy ‖GC−ĜC‖F ≤ O(ρk) and ‖GT−ĜT‖F ≤ O(ρk).

Proof. The result for the Gram matrix GT directly follows from Theorem 12. We now
show how the error in the approximation of GT = reshape(s, n× n) affects the approx-
imation of q = (α⊗)>(I − E)−1 = vec(GC). Let ŝ ∈ Rn2 be such that ‖s − ŝ‖ ≤ ε,
let

Ê =
∑
p≥1

∑
g∈Fp

p−1∑
i=0
Ãg(I, ŝ, · · · , ŝ︸ ︷︷ ︸

i times

, I, ŝ, · · · , ŝ︸ ︷︷ ︸
p−1−i times

)

and let q = α̃>(I − Ê)−1. We first bound the distance between E and Ê. For any
vector v we denote by v⊗k = v ⊗ v ⊗ · · · ⊗ v (k times) its kth Kronecker power.
Using the fact that for any symbol g of arity p we have ‖Ãg(I, s, · · · , s, I, s, · · · , s) −
Ãg(I, ŝ, · · · , ŝ, I, ŝ, · · · , ŝ)‖F = ‖A(s⊗p−1− ŝ⊗p−1)‖F where A is the matricization of Ãg
obtained by mapping the two modes multiplied by I to rows and the remaining modes
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to columns, we obtain

‖E− Ê‖F ≤
∑
p≥1

∑
g∈Fp

p‖Ãg‖F ‖s⊗p−1 − ŝ⊗p−1‖

≤

∑
p≥1

∑
g∈Fp

p‖Ãg‖F (‖s‖+ ‖ŝ‖)p−2

 ‖s− ŝ‖

≤

∑
p≥1

∑
g∈Fp

p‖Ãg‖F (2‖s‖+ ε)p−2

 ε
= O (ε)

as ε → 0, where we used the inequality ‖x⊗k − y⊗k‖ ≤ (‖x‖ + ‖y‖)k−1‖x − y‖ for any
k ≥ 1.

Let δ = ‖E− Ê‖ and let s be the smallest nonzero eigenvalue of the matrix I−E. It
follows from (El Ghaoui, 2002, Equation 7.2) that if δ < s then ‖(I−E)−1−(I−Ê)−1‖ ≤
δ/(s(s − δ)). Since δ = O(ε) from our previous bound, the condition δ ≤ s/2 will be
eventually satisfied as ε→ 0, in which case we can conclude that

‖GC − ĜC‖F = ‖q − q̂‖ ≤ ‖(I−E)−1 − (I− Ê)−1‖‖α̃‖ ≤ 2δ
s2 ‖α̃‖ = O(ε).

3.D Proof of Theorem 14
Let A = (Rn,α, {Ag}g∈F≥1 , {ωσ}σ∈F0) be an SVTA with n states computing a function f
and let 1 ≤ n̂ < n. We consider the WTA with n states

Â = (Rn, α̂ = Πα, {Âg = Ag(I,Π, · · · ,Π)}g∈F≥1 , {ω̂
σ = ωσ}σ∈F0)

where Π ∈ Rn×n is the projection matrix defined by Πi,i = 1 if i ≤ n̂ and 0 otherwise. It
is easy to check that the function f̂ computed by the WTA Â is equal to the one computed
by the truncation of the SVTA A to n̂ states. Note that for any tree t we have

|f(t)− f̂(t)| = |α>ω(t)− α̂>ω̂(t)| = |α>(ω(t)−Πω̂(t))|.

We start by bounding the magnitude of the components of the vectors ω̂(t) and (ω(t)−
Πω̂(t)) for any tree t in the following lemmas.

Lemma 4. For any tree t ∈ T and any i ∈ [n] we have |ω̂(t)i| ≤ n|t|−1√si.

Proof. We proceed by induction on the size of t. If t = σ ∈ F0 we have |ω̂(σ)i| =
|ω(σ)i| ≤

√
si by Proposition 13. Suppose the result true for trees of size less than m
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and let t = g(t1, · · · , tp) be a tree of size m+ 1. We have

|ω̂(t)i| = |(Ag(I,Πω̂(t1), · · · ,Πω̂(tp)))i|

=

∣∣∣∣∣∣
n∑

j1,··· ,jp=1
Agi,j1,··· ,jp(Πω̂(t1))j1 · · · (Πω̂(tp))jp

∣∣∣∣∣∣
≤

n∑
j1,··· ,jp=1

∣∣∣Agi,j1,··· ,jp∣∣∣ |ω̂(t1)j1 | · · ·
∣∣ω̂(tp)jp

∣∣
≤

n∑
j1,··· ,jp=1

√
si√

sj1 · · · sjp
n|t1|−1√sj1 · · ·n|tp|−1√sjp

= npn|t1|−1 · · ·n|tp|−1√si = n|t|−1√si

where we used the induction hypothesis and Proposition 13 for the last inequality.

Lemma 5. Let P = maxg∈Σ ]g be the maximum arity of symbols in F = (Σ, ]). Then
for any tree t and any i ∈ [n] we have |ω(t)i − (Πω̂(t))i| ≤ nP (|t|−1) sn̂+1√

si
.

Proof. If i > n̂ then |ω(t)i − (Πω̂(t))i| = |ω(t)i| ≤
√
si ≤ sn̂+1√

si
(where we used Proposi-

tion 13 for the first inequality). For i ≤ n̂ we proceed by induction on the size of t. If
t = σ ∈ F0 we have |ω(t)i − (Πω̂(t))i| = |ω(t)i − ω̂(t)i| = 0 because ω̂σ = ωσ. Suppose
the result true for trees of size less than m and let t = g(t1, · · · , tp) be a tree of size
m+ 1. Since i ≤ n̂ we have ω(t)i − (Πω̂(t))i = (ω(t)− ω̂(t))i. First, we have

ω(t)− ω̂(t) = Ag(I,ω(t1), · · · ,ω(tp))− Âg(I, ω̂(t1), · · · , ω̂(tp))
= Ag(I,ω(t1), · · · ,ω(tp))−Ag(I,Πω̂(t1), · · · ,Πω̂(tp))
= Ag(I,ω(t1)−Πω̂(t1),ω(t2), · · · ,ω(tp))
+Ag(I,Πω̂(t1),ω(t2)−Πω̂(t2),ω(t3), · · · ,ω(tp))
+ · · ·+Ag(I,Πω̂(t1), · · · ,Πω̂(tp−1),ω(tp)−Πω̂(tp)).

Now for any k ∈ [p], using the induction hypothesis and the bounds |ω(t)i| ≤
√
si (from

Proposition 13) and |ω̂(t)i| ≤ n|t|−1√si (from the previous lemma) we get

|Ag(I,Πω̂(t1), · · · ,Πω̂(tk−1),ω(tk)−Πω̂(tk),ω(tk+1), · · · ,ω(tp))i|

≤
n∑

j1,··· ,jp=1

∣∣∣Agi,j1,··· ,jp ∣∣∣
(
k−1∏
r=1
|(Πω̂(tr))jr |

)
|(ω(tk)−Πω̂(tk))jk |

 p∏
r=k+1

|ω(tr)jr |


≤

n∑
j1,··· ,jp=1

√
sjk√

sisj1 · · · sjk−1sjk+1 · · · sjp

(
k−1∏
r=1

n|tr|−1√sjr

)
nP (|tk|−1) sn̂+1√

sjk

 p∏
r=k+1

√
sjr


= sn̂+1√

si
np
(
k−1∏
r=1

n|tr|−1
)
nP (|tk|−1)

≤ sn̂+1√
si
nP |tk|

(
k−1∏
r=1

n|tr|−1
)
.
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It follows that

|(ω(t)−Πω̂(t))i| ≤
sn̂+1√

si

p∑
k=1

nP |tk|
(
k−1∏
r=1

n|tr|−1
)
.

To conclude the proof, let K = arg maxk∈[p] P |tk|+
∑k−1
r=1(|tr| − 1) and observe that

p∑
k=1

nP |tk|
(
k−1∏
r=1

n|tr|−1
)
≤

K∑
j=0

nj = nK+1 − 1
n− 1 ≤ nP (|t1|+···+|tp|) = nP (|t|−1).

We can now use the two lemmas to show Theorem 14.

Theorem. Let P = maxg∈Σ ]g be the maximum arity of symbols in F = (Σ, ]). Let
f : T → R be a function computed by an SVTA with n states and let f̂ be the function
computed by its truncation to n̂ states. Then, for any tree t ∈ T we have |f(t)− f̂(t)| ≤
nP |t|sn̂+1.
Consequently, for any ε > 0 and any tree t ∈ T:

if |t| ≤ log ε− log sn̂+1
P logn then |f(t)− f̂(t)| ≤ ε.

Proof. For any tree t we have

|f(t)− f̂(t)| = |α>(ω(t)−Πω̂(t))|

≤
n∑
i=1
|αi| |ω(t)i − (Πω̂(t))i|

≤
n∑
i=1

√
si n

P (|t|−1) sn̂+1√
si

= nP |t|sn̂+1.

It is then easy to check that if |t| ≤ log ε−log sn̂+1
P logn then nP |t|sn̂+1 ≤ ε.
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4 Low-Rank Regression with Tensor
Structured Outputs
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4.1 Introduction
In this chapter, we leave the world of weighted automata and we consider a supervised
learning task of regression with tensor structured outputs. While in the two previous
chapters tensors arose as parameters of a model (graph weighted models and weighted
tree automata), in this chapter the connection with tensors comes from the structured
nature of the data. Data with a natural tensor structure is encountered in many sci-
entific areas including neuroimaging (Zhou, L. Li, and H. Zhu, 2013), signal process-
ing (Cichocki et al., 2009a), spatio-temporal analysis (Bahadori, Yu, and Liu, 2014)
and computer vision (Lu, Plataniotis, and Venetsanopoulos, 2013). Consequently, there
has recently been an increasing interest in adapting machine learning and statistical
methods to tensors. Extending multivariate regression methods to tensors is one of the
challenging tasks in this area. Most existing works extend linear models to the multi-
linear setting and focus on the tensor structure of the input data (see e.g. Signoretto
et al., 2014; Guhaniyogi, Qamar, and Dunson, 2015; Guo, Kotsia, and Patras, 2012; Hou
and Chaib-draa, 2015; Zhou, L. Li, and H. Zhu, 2013). Little has been done however
to investigate learning methods for tensor-structured output data. We will now recall the
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classical settings of regression and multivariate regression before motivating the prob-
lem of low rank regression for tensor structured outputs.

In a classical regression task, the learner is given a set of N input/output samples
{(x(1), y(1)), · · · , (x(N), y(N))} ⊂ Rd × R from which it tries to infer a real valued func-
tion f : Rd → R. One example of such a task consists in predicting the maximum
temperature y in a city on some day given a feature vector x as input. The input vec-
tor could gather measurements of the proportions of certain gazes in the air, or could
simply be the values of the maximum temperatures in this city in the preceding days.
One way to infer the function f from the training data is to assume a linear dependency
between inputs and outputs — that is f(x) = 〈w,x〉 for some regression vector w —
and to minimize the squared error loss on the training data

∑N
n=1(〈w,x(n)〉 − y(n))2.

In a multivariate regression task, the outputs of the function to be learned are vectors
instead of scalars, i.e. the learner has to infer a vector-valued function f : Rd → Rp
from a training sample {(x(1),y(1)), · · · , (x(N),y(N))} ⊂ Rd × Rp. The components of
the output vector could be for example the maximum temperature, minimum temper-
ature and rain level in a city. In that setting, one could simply infer the vector-valued
function f by independently learning a linear model for each component of the output
vector: learn f1 : Rd → R that predicts the maximum temperature, f2 : Rd → R that
predicts the minimum temperature, etc. However, in a multivariate regression task it is
very likely that the different components of the output are correlated (e.g. the minimum
and maximum temperatures from our previous example are clearly correlated), in which
case independently solving the regression task for each component of the outputs seems
sub-optimal as this approach does not try to take profit of the correlations between the
outputs. Instead, one would want to jointly learn the different scalar-valued functions
associated with the output’s components to try to share as much knowledge as possible
between the different prediction tasks. The reduced rank regression approach that we
present in the next section achieves this goal by enforcing the model to be of low rank.

In this chapter, we consider a regression task where the outputs of the target function
f are higher order tensors. To motivate this problem let us go back to our meteorolog-
ical prediction example and suppose now that we want to predict the three same vari-
ables (min. and max. temperatures and rain level) in three different cities: Marseille,
Paris and Lille. We could simply consider the problem as a multivariate regression task
where the outputs have dimension 9 (3 variables times 3 cities), however it is easy to
see that in doing so we loose some of the structure of the outputs: representing the out-
puts as 3×3 matrices, where the rows correspond to cities and the columns to variables,
seems more representative of the structure of the data than a 9-dimensional vector. Such
a problem setting has been previously considered in e.g. (Romera-Paredes et al., 2013)
under the name multilinear multitask learning and in the context of spatio-temporal
forecasting (Babari and Droste, 2015; Yu, Cheng, and Liu, 2015). Other applications
of regression models for tensor structured outputs could be found in the fields of image
processing (if for example the outputs of the function f are images) or neuro-sciences
where data with a tensor structure is commonly encountered.

In order to leverage the tensor structure of the output data, we formulate the problem
as the minimization of a least squares criterion subject to a multilinear rank constraint
on the regression tensor. The rank constraint enforces the model to capture the low-rank
structure of the outputs and to explain the dependencies between inputs and outputs in
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a low-dimensional multilinear subspace. Unlike previous work (e.g. Romera-Paredes
et al., 2013; Signoretto et al., 2014; Wimalawarne, Sugiyama, and Tomioka, 2014) we
do not rely on a convex relaxation of this difficult non-convex optimization problem.
Instead we show that it is equivalent to a multilinear subspace identification problem
for which we design a fast and efficient approximation algorithm (HOLRR) along with
a kernelized version which extends our approach to the nonlinear setting (Section 4.2).
The techniques we use to design HOLRR are inspired from the HOSVD algorithm (De
Lathauwer, 1997; De Lathauwer, De Moor, and Vandewalle, 2000) that we presented
in Chapter 1 (page 18). Our theoretical analysis shows that HOLRR is a quasi-optimal
algorithm, that it directly generalizes the reduced rank regression method and that it
is statistically consistent. Moreover, we provide a generalization bound for the class of
tensor-valued regression functions with bounded multilinear rank that motivates the use
of multilinear rank regularization (Section 4.2.3).

Related work. The problem we consider is a generalization of the reduced-rank re-
gression problem (Section 4.1.1) to tensor structured responses. Reduced-rank regres-
sion has its roots in statistics (Izenman, 1975) but it has also been investigated by the
neural network community (Baldi and Hornik, 1989); non-parametric extensions of this
method have been proposed in (Mukherjee and J. Zhu, 2011) and (Foygel et al., 2012).
In the context of multi-task learning, a linear model using a tensor-rank penalization
of a least squares criterion has been proposed in (Romera-Paredes et al., 2013) to take
into account the multi-modal interactions between tasks. Their approach relies on a
convex relaxation of the multilinear rank constraint using the trace norms of the ma-
tricizations. They also propose a non-convex approach but it is computationally very
expensive. An extension of the partial least squares method to the multilinear setting
has been proposed in (Zhao et al., 2013). Nonparametric low-rank estimation strategies
in reproducing kernel Hilbert spaces (RKHS) based on a multilinear spectral regulariza-
tion have been proposed in (Signoretto, De Lathauwer, and Suykens, 2013; Signoretto
et al., 2014). Their method is based on estimating the regression function in the tensor
product of RKHSs and is naturally adapted for tensor covariates. A greedy algorithm to
solve a low-rank tensor learning problem has been proposed in (Bahadori, Yu, and Liu,
2014) in the context of multivariate spatio-temporal data analysis. The linear model
they assume is different from the one we propose and is specifically designed for spatio-
temporal data. The generalization bound we provide is inspired from works on matrix
and tensor completion (Srebro, Alon, and Jaakkola, 2004; Nickel and Tresp, 2013).

Summary of the contributions. We propose an efficient approximation algorithm for
minimizing a least square criterion subject to a low multilinear rank constraint (HOLRR),
along with a kernelized version that extends our approach to the non linear setting. We
show several theoretical properties of HOLRR: it generalizes the reduced rank regression
method, it is statistically consistent, and we derive a generalization bound for the class of
tensor-valued regression functions with bounded multilinear rank. We compare HOLRR
with other multivariate and tensor methods on synthetic and real world data sets where
we show that it obtains better predictive accuracy while being computationally very com-
petitive.

An earlier version of this work where we directly tackled the regression task in the
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non linear setting using operator-valued kernels has been presented in the french signal
processing conference GRETSI in September 2015 (poster) and in a workshop on tensors
and covariance matrix estimation held in Marseille in November 2015 (30mn talk). The
current version of this work has been presented in the french machine learning confer-
ence CAp in July 2016 (15mn talk) and in the Mathematics and Statistics Seminar at
Lancaster University in May 2016 (45mn talk), and will be presented at the interna-
tional conference NIPS 2016 (Rabusseau and Kadri, 2016) (poster). We implemented
the HOLRR algorithm in Python using the scikit-tensor package developed by Maximilian
Nickel (available at https://github.com/mnick/scikit-tensor) and we will release
the code under an open source license in the near future.

4.1.1 Low-Rank Regression

Multivariate regression is the task of recovering a function f : Rd → Rp from a set of
input-output pairs {(x(n),y(n))}Nn=1 sampled from the model with an additive noise y =
f(x)+ε, where ε is the error term. To solve this problem, the ordinary least squares (OLS)
approach assumes a linear dependence between input and output data (i.e. f : x 7→
W>x) and boils down to finding a matrix W ∈ Rd×p that minimizes the squared er-
ror ‖XW − Y‖2F , where X ∈ RN×d and Y ∈ RN×p denote the input and the output
matrices respectively. To prevent overfitting and to avoid numerical instabilities, a ridge
regularization term (i.e. γ‖W‖2F ) is often added to the objective function, leading to the
regularized least squares (RLS) method. It is easy to see that the OLS/RLS approach in
the multivariate setting is equivalent to performing p linear regressions for each scalar
output {yj}pj=1 independently. Thus it performs poorly when the outputs are correlated
and the true dimension of the response is less than p. Low-rank regression (or reduced-
rank regression) addresses this issue by solving the rank penalized problem

min
W∈Rd×p

‖XW−Y‖2F + γ‖W‖2F s.t. rank(W) ≤ R (4.1)

for a given integer R. The rank constraint was first proposed in (Anderson, 1951),
whereas the term reduced-rank regression was introduced in (Izenman, 1975). This con-
straint allows the model to take linear dependencies between the components of the
output into account. Adding a ridge regularization was proposed in (Mukherjee and J.
Zhu, 2011). In the remaining of this chapter, we will refer to this approach as low-rank
regression (LRR).

The constraint rank(W) = R implies linear restrictions on W, i.e. there must exist
k = min(d, p) − R linearly independent vectors v1, · · · ,vk ∈ Rp such that Wvi = 0,
which, in turn, implies that

〈y,vi〉 = 〈f(x) + ε,vi〉 = 〈W>x + ε,vi〉 = 〈ε,vi〉

for each i ∈ [k]. Intuitively, this means that the whole linear subspace generated by the
vi’s only contains noise. Another way to see this is to write W = AB with A ∈ Rd×R
and B ∈ RR×p, which implies that the relation between x and y is explained in an
R-dimensional latent space.

Even though minimization problem (4.1) is non-convex due to the rank constraint, it
admits an analytic solution which is given in the following proposition. This result was
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proved in (Izenman, 1975) for γ = 0 (i.e. without ridge regularization) and in (Mukher-
jee and J. Zhu, 2011) for the general case where γ ≥ 0.

Proposition 14. Let WRLS = (X>X+γI)−1X>Y be the solution of the regularized least
squares, let YRLS = XWRLS and let P be the matrix of the orthogonal projection onto
the space spanned by the top R eigenvectors of the matrix Y>RLSYRLS + γW>

RLSWRLS.
Then, WLRR = WRLSP is a solution of problem (4.1).

Proof. This proof summarizes the one given in (Mukherjee and J. Zhu, 2011). First
check that the objective function in (4.1) is equal to ‖X̃W− Ỹ‖2F where X̃ ∈ R(N+d)×d

and Ỹ ∈ R(N+d)×p are the block matrices defined by

X̃ =
[

X√
γ Id

]
and Ỹ =

[
Y
0

]
.

Let ỸRLS = X̃WRLS . One can show that

‖X̃W− Ỹ‖2 = ‖X̃W− ỸRLS‖2F + ‖ỸRLS − Ỹ‖2F

which follows from the orthogonal projection properties of the least squares solution.
Thus problem (4.1) is equivalent to

min
W:rank(W)≤R

‖X̃W− ỸRLS‖2F .

Let P be the matrix of the orthogonal projection onto the space spanned by the top R
eigenvectors of

Ỹ>RLSỸRLS = Y>RLSYRLS + γW>
RLSWRLS .

It follows from the Eckart-Young theorem that ỸRLSP is the best rank R approximation
of ỸRLS , hence observing that X̃WLRR = X̃WRLSP = ỸRLSP concludes the proof.

For more description and discussion of reduced-rank regression, we refer the reader
to the books of Velu and Reinsel (2013) and Izenman (2008).

4.2 Low-Rank Regression for Tensor-Valued Functions

4.2.1 Problem Formulation

We consider a multivariate regression task where the input is a vector and the response
has a tensor structure. Let f : Rd0 → Rd1×d2×···×dp be the function we want to learn from
a sample of input-output data {(x(n),Y(n))}Nn=1 drawn from the model Y = f(x) + E,
where E is an error term. We assume that the function f is linear, that is f(x) =W •1 x
for some regression tensorW ∈ Rd0×d1×···×dp . The vectorization of this relation leads to
vec(f(x)) = W>

(1)x showing that this model is equivalent to the standard multivariate
linear model.

Vectorization of the outputs. One way to tackle this linear regression task for tensor
responses would be to vectorize each output sample and to perform a standard mul-
tivariate low-rank regression on the data {(x(n), vec(Y(n)))}Nn=1 ⊂ Rd0 × Rd1···dp . A
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major drawback of this approach is that the tensor structure of the output is lost in the
vectorization step. The low-rank model tries to capture linear dependencies between
components of the output but it ignores higher level dependencies that could be present
in a tensor-structured output. For illustration, suppose the output is a matrix encoding
the samples of d1 continuous variables at d2 different time steps, one could expect struc-
tural relations between the d1 time series, for example linear dependencies between the
rows of the output matrix.

Low-rank regression for tensor responses. To overcome the limitation described
above we propose an extension of the low-rank regression method for tensor-structured
responses by enforcing low multilinear rank of the regression tensor W . Recall that
the multilinear rank of a tensor T ∈ Rm1×···×mk is a tuple (R1, · · · , Rk) where each
Ri is equal to the rank of the matricization T(i). Furthermore, we have rankml(T ) =
(R1, · · · , Rk) if and only if there exist k matrices Ui ∈ Rdi×Ri and a core tensor G ∈
RR1×···Rk such that T = G ×1 U1 ×2 · · · ×k Uk and U>i Ui = I for each i ∈ [k] (see
Section 1.2).

Let {(x(n),Y(n))}Nn=1 ⊂ Rd0 × Rd1×d2×···×dp be a training sample of input/output data
drawn from the model f(x) =W •1 x +E whereW is assumed of low multilinear rank.
Considering the framework of empirical risk minimization, we want to find a regression
tensorW of low multilinear rank that minimizes the loss on the training data. To avoid
numerical instabilities and to prevent overfitting we add a ridge regularization to the
objective function, leading to the following minimization problem

min
W∈Rd0×···×dp

N∑
n=1
L(W •1 x(n),Y(n)) + γ‖W‖2F s.t. rankml(W) ≤ (R0, R1, · · · , Rp),

(4.2)

for some given integers R0, R1, · · · , Rp and where L is a loss function. In this chapter,
we consider the squared error loss between tensors defined by L(T , T̂ ) = ‖T − T̂ ‖2F .
Using this loss we can rewrite problem (4.2) as

min
W∈Rd0×d1×···×dp

‖W ×1 X−Y‖2F + γ‖W‖2F s.t. rankml(W) ≤ (R0, R1, · · · , Rp), (4.3)

where the input matrix X ∈ RN×d0 and the output tensor Y ∈ RN×d1×···×dp are defined
by Xn,: = (x(n))> and Yn,:,··· ,: = Y(n) for n = 1, · · · , N (Y is the tensor obtained by
stacking the output tensors Y(1), · · · ,Y(N) of the training sample along the first mode).

Low-rank regression function. LetW∗ be a solution of problem (4.3), it follows from
the multilinear rank constraint thatW∗ = G ×1 U0 ×2 · · · ×p+1 Up for some core tensor
G ∈ RR0×···×Rp and column-wise orthogonal matrices Ui ∈ Rdi×Ri for 0 ≤ i ≤ p. The
regression function f∗ : x 7→W∗ •1 x can thus be written as

f∗ : x 7→ G ×1 x>U0 ×2 U1 ×3 · · · ×p+1 Up.

This implies several interesting properties. First, for any x ∈ Rd0 we have f∗(x) =
T x×1 U1×2 · · ·×pUp with T x = G •1 U>0 x, which implies rank(f∗(x)) ≤ (R1, · · · , Rp),
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target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

Figure 4.1: Image reconstruction from noisy measurements: Y = W •1 x + E where
W ∈ R3×width×height is a color image (RGB). Since W is an image we can
visualize the estimators returned by the different algorithms. Each image is
labeled with the name of the algorithm followed by the rank parameter used
to estimate the regression tensorW .

that is the image of f∗ is a set of tensors with low multilinear rank. Second, the relation
between x and Y = f∗(x) is explained in a low dimensional subspace of size R0 ×R1 ×
· · ·×Rp. Indeed one can decompose the mapping f∗ into the following steps: (i) project
x in RR0 as x̄ = U>0 x, (ii) perform a low-dimensional mapping Ȳ = G •1 x̄, (iii) project
back into the output space to get Y = Ȳ ×1 U1 ×2 · · · ×p Up.

To give an illustrative intuition on the differences between matrix and multilinear
rank regularization we present a simple experimenta in Figure 4.1. We generate data
from the model Y = W∗ •1 x + E where the tensor W∗ ∈ R3×m×n is a color image
of size m × n encoded with three color channels RGB. The components of both x and
E are independently drawn from N (0, 1). This experiment allows us to visualize the
regression tensorsW returned by RLS, LRR and our method HOLRR that enforces low
multilinear rank of the regression function. First, this shows that vectorizing the outputs
and performing LRR does not enforce any low-rank structure on the output modes of

aAn extended version of this experiment is presented in Section 4.3.2.
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W (indeed, the matrix returned by LRR is of size 3 × mn thus of rank at most 3).
This is well illustrated in (Figure 4.1) where the regression tensors returned by HOLRR-
(3,1,1) are clearly of low rank on the modes corresponding to the width and height of
the image while the ones returned by LRR-1 are not. This is to be expected: the rank
constraint (3, 1, 1) of HOLRR enforces every rows of the three color channel matrices
W1,:,:,W2,:,: andW3,:,: to be colinear (and similarly for the columns), in contrast the
rank one constraint in LRR only enforces the three color channel matrices to be colinear
but no other structure is enforced on each of these matrices. This also shows that taking
into account the low-rank structure of the model allows one to better eliminate the noise
when the true regression tensor is of low rank (Figure 4.1, top). However if the ground
truth model does not have a low-rank structure, enforcing low multilinear rank leads to
underfitting for low values of the rank parameter (Figure 4.1, bottom).

4.2.2 Higher-Order Low-Rank Regression and its Kernel Extension

In this section, we propose an efficient algorithm to tackle problem (4.3). We first show
that the ridge regularization term in (4.3) can be incorporated in the data fitting term.
Let X̃ ∈ R(N+d0)×d0 and Ỹ ∈ R(N+d0)×d1×···×dp be defined by

X̃ =
[

X√
γ I

]
and Ỹ(1) =

[
Y(1)

0

]
.

It is easy to check that the objective function in (4.3) is equal to ‖W ×1 X̃ − Ỹ‖2F .
Expressing the multilinear rank constraint in terms of a Tucker decomposition of the
regression tensorW , minimization problem (4.3) can then be rewritten as

min
G∈RR0×R1×···×Rp,
Ui∈R

di×Ri for 0≤i≤p

‖W ×1 X̃− Ỹ‖2F s.t.W = G ×1 U0 · · · ×p+1 Up,U>i Ui = I for all i.

(4.4)

We now show that this minimization problem can be reduced to finding p+1 projection
matrices onto subspaces of dimension R0, R1, · · · , Rp. We start by showing that the core
tensor G solution of (4.4) is determined by the factor matrices U0, · · · ,Up.

Theorem 15. For given column-wise orthogonal matrices U0, · · · ,Up the tensor G that
minimizes (4.4) is given by

G = Ỹ ×1 (U>0 X̃>X̃U0)−1U>0 X̃> ×2 U>1 ×3 · · · ×p+1 U>p .

Proof. Since the Frobenius norm of a tensor is equal to the one of its vectorization we
can use Eq. (1.4) to write the objective function in (4.4) as

‖(Up ⊗Up−1 ⊗ · · · ⊗U1 ⊗ X̃U0)vec(G)− vec(Ỹ)‖2F .

Let M = Up⊗Up−1⊗· · ·⊗U1⊗ X̃U0. The solution with respect to vec(G) of this clas-
sical linear least squares problem is given by (M>M)−1M>. Using the mixed-product
and inverse properties of the Kronecker product and the column-wise orthogonality of
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U1, · · · ,Up we obtain

vec(G) =
(
Up ⊗ · · · ⊗U1 ⊗ (U>0 X̃>X̃U0)−1U>0 X̃>

)
vec(Ỹ)

which is equivalent to the result of the theorem (using Eq. (1.4) again).

It follows from Theorem 15 that problem (4.3) is equivalent to

min
Ui∈Rdi×Ri ,0≤i≤p

‖Ỹ ×1 Π0 ×2 · · · ×p+1 Πp − Ỹ‖2F (4.5)

subject to U>i Ui = I for all i, Π0 = X̃U0
(
U>0 X̃>X̃U0

)−1
U>0 X̃>, and Πi = UiU>i for

i ≥ 1. Note that Π0 is the orthogonal projection onto the space spanned by the columns
of X̃U0 and Πi is the orthogonal projection onto the column space of Ui for i ≥ 1. Hence
solving problem (4.3) is equivalent to finding p+1 low-dimensional subspaces U0, · · · , Up
such that projecting Ỹ onto the spaces X̃U0, U1, · · · , Up along the corresponding modes
is close to Ỹ .

HOLRRalgorithm. Since solving problem (4.5) for the p+1 projections simultaneously
is a difficult non-convex optimization problem we propose to solve it independently
for each projection. Note that this is not an unusual strategy, this is the one used for
example by the HOSVD algorithm (presented in Chapter 1) to find a low multilinear rank
approximation of a tensor. This approach has the benefits of both being computationally
efficient and providing good theoretical approximation guarantees (see Theorem 17).
The following proposition gives the analytic solutions of (4.5) when each projection is
considered independently.

Proposition 15. For 0 ≤ i ≤ p, using the definition of Πi in problem (4.5), the optimal
solution of

min
Ui∈Rdi×Ri

‖Ỹ ×i+1 Πi − Ỹ‖2F s.t. U>i Ui = I

is given by the eigenvectors of(X̃>X̃)−1X̃>Ỹ(1)Ỹ>(1)X̃ if i = 0
Ỹ(i+1)Ỹ>(i+1) otherwise

that corresponds to the Ri largest eigenvalues.

Proof. For any 0 ≤ i ≤ p, since Πi is a projection we have

〈Ỹ ×i+1 Πi, Ỹ〉 = 〈ΠiỸ(i+1), Ỹ(i+1)〉 = ‖ΠiỸ(i+1)‖2F ,

thus minimizing ‖Ỹ ×i+1 Πi − Ỹ‖2F is equivalent to minimizing

‖ΠiỸ(i+1)‖2F − 2〈ΠiỸ(i+1), Ỹ(i+1)〉 = −‖ΠiỸ(i+1)‖2F .

It turns out that the maximization of ‖ΠiỸ(i+1)‖2F is a simple eigenvalue/eigenvector
problem when i ≥ 1 and a generalized eigenvalue/eigenvector problem when i = 0.
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Indeed, for i ≥ 1 we have ‖ΠiỸ(i+1)‖2F = Tr(U>i Ỹ(i+1)Ỹ>(i+1)Ui) which is maximized
by letting the columns of Ui be the top Ri eigenvectors of the matrix Ỹ(i+1)Ỹ>(i+1). For
i = 0, we have

‖Π0Ỹ(1)‖2F = Tr(Π0Ỹ(1)Ỹ>(1)Π>0 ) = Tr
(
(U>0 AU0)−1U>0 BU0

)
with A = X̃>X̃ and B = X̃>Ỹ(1)Ỹ>(1)X̃, which is maximized by letting the columns of
U0 be the top R0 eigenvectors of A−1B.

The results from Theorem 15 and Proposition 15 can be rewritten using the original
input matrix X ∈ RN×d0 and output tensor Y ∈ RN×d1×···×dp . Since X̃>X̃ = X>X + γI
and Ỹ ×1 X̃> = Y ×1 X>, we can rewrite the solution of Theorem 15 as

G = Y ×1 (U>0 (X>X + γI)U0)−1U>0 X> ×2 U>1 ×3 · · · ×p+1 U>p .

Similarly for Proposition 15 we have

(X̃>X̃)−1X̃>Ỹ(1)Ỹ>(1)X̃ = (X>X + γI)−1X>Y(1)Y>(1)X

and one can check that Ỹ(i)Ỹ>(i) = Y(i)Y>(i) for any i > 1.
The overall Higher-Order Low-Rank Regression procedure (HOLRR) is summarized

in Algorithm 4. Note that similarly to HOSVD, the approximate solution returned by
HOLRR could be used as a good initialization point for an iterative method (e.g. Newton
method on the manifold of tensors with low multilinear rank or simply an alternating
least squares scheme). Studying the theoretical and experimental properties of this
approach is left for future work.

A recurrent question about the HOLRR algorithm concerns the choice of the rank
parameter (R0, · · · , Rp). This parameter can be estimated using cross-validation on the
training set (which can be done in a parallel fashion), which is the method that we
use in the experiment section. We plan to study alternative approaches in the future.
One promising direction would be to design an algorithm able to determine the rank
constraint in a greedy fashion: starting with a rank constraint of (1, · · · , 1), at each step
we choose the mode i for which relaxing the rank constraint fromRi toRi+1 leads to the
greater decrease of the loss function (similarly to the algorithm proposed by Bahadori,
Yu, and Liu, 2014). Another direction would be to derive a statistical estimator for the
multilinear rank (such as the one proposed for the reduced rank regression estimator
in Velu and Reinsel, 2013, Section 2.6).

HOLRR Kernel Extension We now design a kernelized version of the HOLRR algo-
rithm by analyzing how HOLRR would be instantiated in a feature space. We show that
all the steps involved can be performed using the Gram matrix of the input data without
having to explicitly compute the feature map. Let φ : Rd0 → RL be a feature map and
let Φ ∈ RN×L be the matrix with rows φ(x(n))> for n ∈ [N ]. The higher-order low-rank
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Algorithm 4 HOLRR

Input: Input matrix X ∈ RN×d0 , output tensor Y ∈ RN×d1×···×dp , rank parameter
(R0, R1, · · · , Rp) and regularization parameter γ.

Output: Regression tensor W of multilinear rank (R0, · · · , Rp) defining the function
f : x 7→W •1 x.

1: U0 ← top R0 eigenvectors of (X>X + γI)−1X>Y(1)Y>(1)X
2: for i = 1 to p do
3: Ui ← top Ri eigenvectors of Y(i+1)Y>(i+1)
4: end for
5: M =

(
U>0 (X>X + γI)U0

)−1
U>0 X>

6: G ← Y ×1 M×2 U>1 ×3 · · · ×p+1 U>p
7: return G ×1 U0 ×2 · · · ×p+1 Up

regression problem in the feature space boils down to the minimization problem

min
W∈RL×d1×···×dp

‖W ×1 Φ−Y‖2F + γ‖W‖2F s.t. rankml(W) ≤ (R0, R1, · · · , Rp).

(4.6)

Following the HOLRR algorithm, one needs to compute the top R0 eigenvectors of the
L × L matrix (Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ. The following proposition shows that this

can be done using the Gram matrix K = ΦΦ> without explicitly knowing the feature
map φ.

Proposition 16. If α ∈ RN is an eigenvector with eigenvalue λ of the N ×N matrix

(K + γI)−1Y(1)Y>(1)K,

then v = Φ>α ∈ RL is an eigenvector with eigenvalue λ of the L× L matrix

(Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ.

Proof. Let α ∈ RN be an eigenvector of (K + γI)−1Y(1)Y>(1)K with eigenvalue λ. We
have

λv = Φ>(λα) = Φ>
(
(K + γI)−1Y(1)Y>(1)K

)
α

= Φ>(ΦΦ> + γI)−1Y(1)Y>(1)ΦΦ>α

=
(
(Φ>Φ + γI)−1Φ>Y(1)Y>(1)Φ

)
v.

Let A be the top R0 eigenvectors of the matrix (K + γI)−1Y(1)Y>(1)K. When working
with the feature map φ, it follows from the previous proposition that line 1 in Algorithm 4
is equivalent to choosing U0 = Φ>A ∈ RL×R0 , while the updates in line 3 stay the
same. The regression tensorW ∈ RL×d1×···×dp returned by this algorithm is then equal
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toW = Y ×1 P×2 U1U>1 ×2 · · · ×p+1 UpU>p , where

P = Φ>A
(
A>Φ(Φ>Φ + γI)Φ>A

)−1
A>ΦΦ>

= Φ>A
(
A>ΦΦ>(ΦΦ> + γI)A

)−1
A>ΦΦ>

= Φ>A
(
A>K(K + γI)A

)−1
A>K.

Suppose now that the feature map φ is induced by a kernel function k : Rd0×Rd0 → R.
The prediction for an input vector x is then given byW •1 x = C •1 kx where the nth
component of kx ∈ RN is 〈φ(x(n)), φ(x)〉 = k(x(n),x) and the tensor C ∈ RN×d1×···×dp is
defined by

C = G ×1 A×2 U1 ×2 · · · ×p+1 Up

where

G = Y ×1
(
A>K(K + γI)A

)−1
A>K×2 U>2 ×3 · · · ×p+1 U>p ∈ RR0×···×Rp .

Observe that C has multilinear rank at most (R0, · · · , Rp), hence the low multilinear
rank constraint onW in the feature space translates into the low rank structure of the
coefficient tensor C.

LetH be the reproducing kernel Hilbert space associated with the kernel k. The overall
procedure for kernelized HOLRR is summarized in Algorithm 5. This algorithm returns
the tensor C ∈ RN×d1×···×dp defining the regression function

f : x 7→ C •1 kx =
N∑
n=1

k(x,x(n))C(n),

where C(n) = Cn:···: ∈ Rd1×···×dp .

Algorithm 5 Kernelized HOLRR

Input: Gram matrix K ∈ RN×N , output tensor Y ∈ RN×d1×···×dp , rank parameter
(R0, R1, · · · , Rp) and regularization parameter γ.

Output: Coefficient tensor C defining the function x 7→ C •1 kx where kx ∈ RN is
defined by (kx)n = k(x(n),x).

1: A ← top R0 eigenvectors of (K + γI)−1Y(1)Y>(1)K
2: for i = 1 to p do
3: Ui ← top Ri eigenvectors of Y(i+1)Y>(i+1)
4: end for
5: M←

(
A>K(K + γI)A

)−1
A>K

6: G ← Y ×1 M×2 U>1 ×3 · · · ×p+1 U>p
7: return C=G×1 A×2 U1×3 · · ·×p+1 Up

The kernelized version of HOLRR we developed in this section relies on the so-called
kernel trick which consists in expressing all the operations used in an algorithm in terms
of inner product between the input samples 〈x(i),x(j)〉, and replacing this inner product
by the inner product in some feature space where the inputs have been embedded. In
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particular, one can use the inner product in the reproducing kernel Hilbert space (RKHS)
induced by some kernel function. Since we are dealing with tensor-valued functions, an
alternative natural non-linear extension of HOLRR could be designed in the operator-
valued kernels framework. These kernels were first proposed in (Micchelli and Pontil,
2005) to extend the classical learning theory of scalar-valued functions in an RKHS to
vector-valued functions, which led to several interesting applications (see e.g. Alvarez,
Rosasco, and Lawrence, 2012; Kadri et al., 2015). From this perspective, the approach
we proposed only considers the case of scalar-valued kernel functions, and it would be
interesting to consider operator-valued kernels from a multilinear perspective and to ex-
tend K-HOLRR to this framework. The analysis provided in (Signoretto, De Lathauwer,
and Suykens, 2013) could prove useful in this regard. We already started pursuing this
line of research during my PhD (Rabusseau, Kadri, and Denis, 2015) using the notion of
CP rank instead of the multilinear rank, which made it more difficult to obtain approx-
imation guarantees. Another obstacle that we encountered was the computational cost
of using operator-valued kernels when the output dimensions are large. Nonetheless,
we think that this line of research is worth pursuing and we will do so in the future.

4.2.3 Theoretical Analysis

In this section we study theoretical properties of HOLRR. After analyzing its running
time complexity and showing that it generalizes the low rank regression approach, we
show that it is a quasi-optimal algorithm and that it is statistically consistent. We will
conclude this section by giving a generalization bound for the class of tensor-valued
regression functions with low multilinear rank.

Complexity analysis. We first compare the computational complexity of LRR and
HOLRR. The LRR algorithm first needs to compute the regularized least square esti-
mator which can be done in O

(
(d0)3 +N((d0)2 + d0d1 · · · dp)

)
, and then to compute

the top R eigenvectors of a matrix of the same size as Y>(1)Y(1) which can be done in
O
(
(N +R)(d1 · · · dp)2) (including the cost for matrix multiplication), which leads to an

overall complexity of

O
(
(d0)3 +N((d0)2 + d0d1 · · · dp) + (N +R)(d1 · · · dp)2

)
.

The HOLRR algorithm also needs to compute the regularized least square estimator
WRLS and to compute the R0 dominant eigenvectors of the matrix WRLSY>(1)X (line 1)
which can all be done in O

(
(d0)3 + (R0 +N)(d0)2 +Nd0 · · · dp)

)
. Each computation of

the Ri top eigenvectors of Y(i)Y>(i) in line 3 can be done in O
(
Ri(di)2 + diNd1 · · · dp

)
.

Observing that the computations in line 5 are cheaper than the one in line 1 since R0 ≤
d0, we get an overall complexity of

O
(

(d0)3 +N((d0)2 + d0d1 · · · dp) + max
i≥0

Ri(di)2 +Nd1 · · · dp max
i≥1

di

)
.

Since the complexity of HOLRR only have a linear dependence on the product of the
output dimensions instead of a quadratic one for LRR, we can conclude that HOLRR
will be more efficient than LRR when the output dimensions d1, · · · , dp are large. It is
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worth mentioning that the method proposed in (Romera-Paredes et al., 2013) to solve
a convex relaxation of problem 4.4 is an iterative algorithm (relying on the alternat-
ing direction method of multipliers) that needs to compute SVDs of matrices of size
di × d1 · · · di−1di+1 · · · dp for each 0 ≤ i ≤ p at each iteration, it is thus computation-
ally more expensive than HOLRR. Moreover, since HOLRR only relies on simple linear
algebra tools, readily available methods could be used to further improve the speed of
the algorithm, e.g. randomized-SVD (Halko, Martinsson, and Tropp, 2011) and random
feature approximation of the kernel function (Kar and Karnick, 2012; Rahimi and Recht,
2007).

Relation between HOLRR and LRR. The following theorem shows that when the
outputs of the regression task are vectors (i.e. 1st order tensors), HOLRR will return the
same estimator as LRR for appropriate values of the rank constraint.

Theorem 16. Let {x(n),y(n)}Nn=1 ⊂ Rd0 × Rd1 be a training sample of input/output
pairs. Let 1 ≤ R ≤ d0 and let γ ≥ 0.
Then, the estimator WHOLRR ∈ Rd0×d1 returned by the HOLRR algorithm with the

rank constraint set to (R0, R1) = (R, d1) and with ridge regularization parameter γ is
equal to the estimator WLRR returned by the LRR algorithm with a rank constraint set
to R and with the same ridge regularization parameter γ.

Proof. Let X ∈ RN×d0 and Y ∈ RN×d1 denote the input and output matrices respec-
tively. First recall that the estimator returned by LRR is

WLRR = WRLSVV>

where WRLS = (X>X + γI)−1X>Y is the regularized least square estimator and V ∈
Rd1×R is the matrix having for columns the top R eigenvectors of

A , W>
RLS(X>X + γI)WRLS

(see Proposition 14 or Mukherjee and J. Zhu, 2011). Using the notations from Algo-
rithm 4, since R1 = d1 we have U1U>1 = I and it follows that

WHOLRR = U0(U>0 (X>X + γI)U0)−1U>0 X>Y

where U0 ∈ Rd0×R is the matrix having for columns the top R eigenvectors of

B , (X>X + γI)−1X>YY>X.

It is easy to check that A = Y>XWRLS and B = WRLSY>X, which implies from
the definition of eigenvectors that U0 = WRLSV (indeed if Av = λv then λ(WRLSv) =
WRLSAv = B(WRLSv)). We obtain

WHOLRR = WRLSV
(

(WRLSV)>(X>X + γI)WRLSV
)−1

(WRLSV)>X>Y

= WRLSV(V>AV)−1V>A.
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Let A = ṼDṼ> be the eigen-decomposition of the matrix A so that V = ṼP where
P =

[
I 0

]>
∈ Rd0×R. We get

WHOLRR = WRLSṼP(P>Ṽ>ṼDṼ>ṼP)−1P>Ṽ>ṼDṼ>

= WRLSṼPP>D−1PP>DṼ>

= WRLSṼPP>Ṽ>

= WRLSVV> = WLRR.

One can easily check that the LRR estimator is equal to the regularized least square
estimator when the rank constraint is set to either the input or the output dimension of
the regression task. Thus the previous theorem implies that HOLRR also generalizes the
regularized least square method.

Approximation guarantees. It is easy to check that problem (4.3) is NP-hard since it
generalizes the problem of fitting a Tucker decomposition (Hillar and Lim, 2013). The
following theorem shows that HOLRR is a (p+1)-approximation algorithm for this prob-
lem, i.e. HOLRR is a quasi-optimal algorithm. This result generalizes the approximation
guarantees provided by the HOSVD algorithm for the problem of finding the best low
multilinear rank approximation of an arbitrary tensor (see Chapter 1).

Theorem 17. LetW∗ be a solution of problem (4.3) and letW be the regression tensor
returned by Algorithm 4. If L : Rd0×···×dp → R denotes the objective function of (4.3)
with respect to W then

L(W) ≤ (p+ 1)L(W∗).

Proof. The proof follows the one given in Chapter 1 to obtain the approximation guaran-
tees for the HOSVD algorithm. Let U0, · · · ,Up be the matrices defined in Algorithm 4
and let Π0, · · · ,Πp be the orthogonal projection matrices defined in problem (4.5). The
regression tensorW returned by HOLRR satisfies

W ×1 X̃ = Ỹ ×1 Π0 ×2 · · · ×p+1 Πp.

Similarly, it follows from Theorem 15 that a solutionW∗ of problem (4.3) satisfies

W∗ ×1 X̃ = Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p

for some orthogonal projection matrices Π∗i for 0 ≤ i ≤ p.
Using successive applications of Lemma 1 (page 18) we obtain

L(W) = ‖W ×1 X̃− Ỹ‖2F = ‖Ỹ ×1 Π0 ×2 · · · ×p+1 Πp − Ỹ‖2F ≤
p∑
i=0
‖Ỹ ×i+1 Πi − Ỹ‖2F .

By Proposition 15, each summand in this upper bound is minimal with respect to Πi,
hence ‖Ỹ ×i+1 Πi − Ỹ‖2F ≤ ‖Ỹ ×i+1 Π∗i − Ỹ‖2F for any i ∈ [p]. It remains to show that

‖Ỹ ×i+1 Π∗i − Ỹ‖2F ≤ ‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2F = L(W∗)
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for all i ∈ [p]. Indeed, using the fact that the Frobenius norm of a tensor is equal to the
one of its matricization and Eq. (1.3) for the matricization of a Tucker decomposition,
we obtain for the case i = 0

‖Ỹ ×1 Π∗0 ×2 · · · ×p+1 Π∗p − Ỹ‖2 = ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1)> − Ỹ(1)‖2F
= ‖(Π∗0 − Id0)Ỹ(1) + Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp)>‖2F
= ‖(Π∗0 − Id0)Ỹ(1)‖2F + ‖Π∗0Ỹ(1)(Π∗p ⊗ · · · ⊗Π∗1 − Id1d2···dp)>‖2F
≥ ‖(Π∗0 − Id0)Ỹ(1)‖2F
= ‖Ỹ ×1 Π∗0 − Ỹ‖2F

where we used the orthogonality of Π∗0 and Π∗0 − Id0 . The proofs for other values of i
are similar.

Consistency of HOLRR. In the following theorem we show that the estimator re-
turned by HOLRR is statistically consistent. This means that as the size of the training
sample grows to infinity, the estimator returned by HOLRR converges in probability to
the true regression tensorW∗ used to generate the sampling data. Of course this result
relies on assumptions on the distributions used to generate the training sample.

Theorem 18. Let x(1), · · · ,x(N) be independent and identically distributed (i.i.d.) ran-
dom variables taking their values in Rd0 and following a normal distribution N (0, I).
Let ξ(1), · · · , ξ(N) be i.i.d. random variables taking their values in Rd1×···×dp such that
for any n ∈ [N ] each component of ξ(n) follows a normal distribution N (0, σ2). Finally,
letW∗ ∈ Rd0×d1×···×dp be a regression tensor with multilinear rank (R0, R1, · · · , Rp) and
let Y(n) =W∗ •1 x(n) + ξ(n) for all n ∈ [N ].
LetWN be the estimator returned by HOLRR with the training sample {(x(n),Y(n))}Nn=1

as input, with rank parameter (R0, R1, · · · , Rp) and regularization parameter γ = 0.
Then, for any ε > 0 we have

lim
N→∞

P[‖W∗ −WN‖F > ε] = 0.

Proof. The proof is given in Appendix 4.A. The techniques we use are close to the ones
used to show that the ordinary least square estimator is consistent. The key techni-
cal difficulty resides in the fact that the HOLRR estimator depends on computations
of eigenvectors and that the notion of probability in the limit of an eigenvector is te-
dious (think for example of the case where this eigenvector belongs to an eigenspace
of dimension greater than 1). We bypass this difficulty by reasoning on the orthogo-
nal projection matrices onto the space spanned by the eigenvectors rather than on the
eigenvectors directly.

Note that the previous theorem still holds if we use a rank parameter (R̂0, R̂1, · · · , R̂p)
for HOLRR that overestimates the multilinear rank ofW∗ (i.e. R̂i ≥ Ri for all i). This
is somehow intuitive since the ordinary least square estimator, which does not enforce
any rank constraint, is consistent. However, a simple simulation study suggests that
the convergence rate of the HOLRR estimator is slower when the multilinear rank is
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overestimated (see Section 4.3.1). We plan to derive sample complexity bounds that
would theoretically confirm this behavior in the near future.

Generalization Bound. We conclude this section by deriving a generalization bound
for the regression problem with tensor outputs, to the best of our knowledge this is
the first result on generalization ability of low rank tensor regression methods. More
precisely, the following theorem gives an upper bound on the excess-risk for the function
class

F = {x 7→W •1 x : rankml(W) ≤ (R0, · · · , Rp)}

of tensor-valued regression functions with bounded multilinear rank. Recall that the
expected loss of an hypothesis h ∈ F with respect to the target function f∗ is defined by
R(h) = Ex[L(h(x), f∗(x))] and its empirical loss by R̂(h) =

∑N
n=1

1
NL(h(x(n)), f∗(xn)).

Theorem 19. Let L : Rd1×···×dp → R+ be a loss function satisfying

L(A,B) = 1
d1 · · · dp

∑
i1,··· ,ip

`(Ai1,··· ,ip ,Bi1,··· ,ip)

for some loss function ` : R→ R+ bounded by M . Then for any δ > 0, with probability
at least 1− δ over the choice of a sample of size N , the following inequality holds for all
h ∈ F :

R(h) ≤ R̂(h) +M

√√√√2D log
(

4e(p+ 2)d0d1 · · · dp
d0 + d1 + · · ·+ dp

)
logN
N

+M

√
log(1/δ)

2N ,

where D = R0R1 · · ·Rp +
∑p
i=0Ridi.

Proof. (Sketch) The complete proof is given in Appendix 4.B. It relies on bounding the
pseudo-dimension of the class of real-valued functions with domain Rd0× [d1]×· · ·× [dp]

F̃ =
{
(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : rankml(W) = (R0, · · · , Rp)

}
.

We show in the appendix that the pseudo-dimension of F̃ is upper bounded by

(R0R1 · · ·Rp +
p∑
i=0

Ridi) log
(

4e(p+ 2)d0d1 · · · dp
d0 + d1 + · · ·+ dp

)
.

This is done by leveraging the following result originally due to (Warren, 1968): the
number of sign patterns of r polynomials, each of degree at most d, over q variables is
at most (4edr/q)q for all r > q > 2 (Srebro, 2004, Theorem 34, 35). The remaining of
the proof consists in showing that the risk (resp. empirical risk) of hypothesis in F and
F̃ are closely related and invoking standard error generalization bounds in terms of the
pseudo-dimension (Mohri, Rostamizadeh, and Talwalkar, 2012, Theorem 10.6).

A standard generalization bound based on the pseudo-dimension for multivariate
regression without low-rank constraint would involve a term in O

(√
d0d1 · · · dp

)
. In

contrast, the bound from the previous theorem only depends on the product of the
output dimensions in a term bounded by O

(√
log(d1 · · · dp)

)
. In some sense, taking
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Table 4.1: Average running times in seconds for some of the experiments. We did not
run MLMT-NC on the real world data sets because it is computationally very
expensive. The implementation of the Greedy algorithm is limited to 2nd
order output tensors, this is why we did not run it on the synthetic and Meteo
UK data sets. Finally, the synthetic non linear data was generated using a
polynomial relation which is why the RBF kernel was not used on this data
set.

Data set MLMTL-NC ADMM Greedy HOPLS HOLRR K-HOLRR
(poly)

K-HOLRR
(rbf)

Synthetic 945.79 12.92 − 0.12 0.04 0.53 −
CCDS − 235.73 75.47 121.28 100.94 0.46 0.61

Foursquare − 33.83 37.70 22.3 14.41 19.20 19.67
Meteo UK − 40.23 − 2.12 1.67 1.57 1.66

into account the low multilinear rank of the hypothesis allows us to significantly re-
duce the dependence of the bound on the output dimensions from O

(√
d0 · · · dp

)
to

O
(√

(R0 · · ·Rp +
∑
iRidi)(

∑
i log di)

)
.

4.3 Experiments
In this section, we evaluate HOLRR on both synthetic and real-world data sets. Our
experimental results are for tensor-structured output regression problems on which we
report root mean-squared errors (RMSE) averaged across all the outputs. We compare
HOLLR with the following methods: regularized least squares RLS, low-rank regression
LRR described in Section 4.1.1, a multilinear approach based on tensor trace norm reg-
ularization ADMM (Gandy, Recht, and Yamada, 2011; Romera-Paredes et al., 2013), a
nonconvex multilinear multitask learning approach MLMT-NC (Romera-Paredes et al.,
2013), the greedy tensor approach for multivariate spatio-temporal analysis Greedy (Ba-
hadori, Yu, and Liu, 2014), and the partial least squares higher order extension HOPLS
proposed in (Zhao et al., 2013).

For experiments with kernel algorithms we use the readily available kernelized RLS
and the LRR kernel extension proposed in (Mukherjee and J. Zhu, 2011). Note that
ADMM, MLMT-NC and Greedy only consider a linear dependency between inputs and
outputs. The greedy tensor algorithm proposed in (Bahadori, Yu, and Liu, 2014) is
developed specially for spatio-temporal data and the implementation provided by the
authors is restricted to the case where outputs are matrices. Although MLMLT-NC is
perhaps the closest algorithm to ours, we applied it only to simulated data. This is
because MLMLT-NC is computationally very expensive and becomes intractable for large
data sets. Average running times for some of the experiments are reported in Table 4.1.

4.3.1 Synthetic Data

We generate both linear and nonlinear data. Linear data is drawn from the model Y =
W •1 x + E whereW ∈ R10×10×10×10 is a tensor of multilinear rank (6, 4, 4, 8) drawn
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Figure 4.2: Average RMSE as a function of the training set size: (left) linear data, (right)
nonlinear data. The linear data is generated using the relation Y =W •1 x+
E . The non linear data is generated using the relation Y =W •1 (x⊗x)+E .
Since the non linear data is generated from a polynomial model we used an
homogeneous polynomial kernel of degree 2 for all algorithms. In both cases
the variance of the noise is equal to 0.1, thus the RMSE obtained on the test
set by the true regression function is close to 0.1.

at random, x ∈ R10 is drawn from N (0, I), and each component of the error tensor E is
drawn from N (0, 0.1). Nonlinear data is drawn from the model Y =W •1 (x ⊗ x) + E
where W ∈ R25×10×10×10 is of rank (5, 6, 4, 2) and x ∈ R5 and E are generated as
above. Hyper-parameters for all algorithms are selected using 3-fold cross-validation on
the training data.

These experiments have been carried out for different sizes of the training data set,
20 trials have been executed for each size. The average RMSEs on a test set of size
100 for the 20 trials are reported in Figure 4.2. We see that HOLRR algorithm clearly
outperforms the other methods on the linear data. MLMT-NC achieves the second best
performance, it is however much more computationally expensive (see Table 4.1). On
the nonlinear data LRR achieves good performances but HOLRR is still significantly more
accurate, especially with small training data sets.

To see how sensitive HOLLR is with respect to the choice of the multilinear rank,
we have carried out a similar experiment where we compare HOLLR performances for
different values of the rank parameter. In this experiment, the rank of the tensor W
used to generate the data is (2, 2, 2, 2) while the input and output dimensions and the
noise level are the same as above. The results are reported in Figure 4.3 where we see
that overestimating the multilinear rank leads to a slower convergence rate (the results
for cases where the multilinear rank is underestimated are very poor and would not fit
in the figure).
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Figure 4.3: Effect of overestimating rank on synthetic linear data for the HOLRR esti-
mator. Average RMSE as a function of the training set size. The multilinear
rank of the tensor used to generate the data is (2, 2, 2, 2).

4.3.2 Image Reconstruction from Noisy Measurements

To give an illustrative intuition on the differences between matrix and multilinear rank
regularization we generate data from the model Y =W •1 x + E where the tensorW
is a color image of size m× n encoded with three color channels RGB. We consider two
different tasks depending on the input dimension: (i) W ∈ R3×m×n, x ∈ R3 and (ii)
W ∈ Rn×m×3, x ∈ Rn. In both tasks the components of both x and E are drawn from
N (0, 1) and the regression tensorW is learned from a training set of size 200.

This experiment allows us to visualize the tensors returned by the RLS, LRR and
HOLRR algorithms. The results are shown in Figure 4.4 for three images: a green
cross (of size 50× 50), a thumbnail of a Rothko painting (44× 70) and a square made of
triangles (70× 70), note that the first two images have a low rank structure which is not
the case for the third one.

We first see that HOLRR clearly outperforms LRR on the task where the input dimen-
sion is small (task (i)). This is to be expected since the rank of the matrix W(1) is at most
3 and LRR is unable to enforce a low-rank structure on the output modes ofW . When
the rank constraint is set to 1 for LRR and (3, 1, 1) for HOLRR, we clearly see that (unlike
HOLRR) the LRR approach does not enforce any low-rank structure on the regression
tensor along the output modes. On task (ii) the difference is more subtle, but we can
see that setting a rank constraint of 2 for the LRR algorithm prevents the model from
capturing the white border around the green cross and creates the vertical lines artifact
in the Rothko painting. For higher values of the rank the model starts to learn the noise.
The tensor returned by HOLRR with rank (2, 2, 3) for the cross image and (4, 4, 3) for
the Rothko painting do not exhibit these behaviors and give better results on these two
images. On the square image which does not have a low-rank structure both algorithms
exhibit underfitting for low values of the rank parameter. Overall, we see that captur-
ing the multilinear low-rank structure of the output data allows HOLRR to separate the
noise from the true signal better than RLS and LRR.
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target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (3, 1, 1) HOLRR (3, 4, 4) HOLRR (3, 8, 8)HOLRR (3, 16, 16)

RLS LRR 1 LRR 2 LRR 3 LRR 4

target HOLRR (1, 1, 3) HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (8, 8, 3)

RLS LRR 1 LRR 2 LRR 4 LRR 8

target HOLRR (1, 1, 3) HOLRR (2, 2, 3) HOLRR (4, 4, 3) HOLRR (8, 8, 3)
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Figure 4.4: Image reconstruction from noisy measurements: Y =W •1 x+E whereW is
a color image (RGB). The images are the estimators of the regression tensor
W returned by the different algorithms. Each image is labeled with the name
of the algorithm followed by the value used for the rank constraint. Images
on the left correspond to task (i) and on the right to task (ii).

(left): the input dimension is the number of channels: W ∈ R3×width×height

and each input sample x(n) is of dimension 3.

(right): the input dimension is the height of the image: W ∈ Rheight×width×3

and each input sample x(n) is a vector in Rheight.
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Table 4.2: Average RMSE (over 10 runs) of the different algorithms on spatio-temporal
forecasting tasks.

Data set ADMM Greedy HOPLS HOLRR K-HOLRR
(poly)

K-HOLRR
(rbf)

CCDS 0.8448 0.8325 0.8147 0.8096 0.8275 0.7913
Foursquare 0.1407 0.1223 0.1224 0.1227 0.1223 0.1226
Meteo-UK 0.6140 − 0.625 0.5971 0.6107 0.5886

4.3.3 Real Data

We evaluate our algorithm on a forecasting task on the following real-world data sets:

CCDS: the comprehensive climate data set is a collection of climate records of North
America from (Lozano et al., 2009). The data set contains monthly observations of 17
variables such as Carbon dioxide and temperature spanning from 1990 to 2001 across
125 observation locations.

Foursquare: the Foursquare data set (Long, Jin, and Joshi, 2012) contains users’
check-in records in Pittsburgh area categorized by different venue types such as Art &
Entertainment, College & University, and Food. It records the number of check-ins by
121 users in each of the 15 category of venues over 1200 time intervals.

Meteo-UK: The data set is collected from the meteorological office of the UKb. It
contains monthly measurements of 5 variables in 16 stations across the UK from 1960
to 2000.

The forecasting task consists in predicting all variables at times t + 1,. . . , t + k from
their values at times t−2, t−1 and t. The first two real data sets were used in (Bahadori,
Yu, and Liu, 2014) with k = 1 (i.e. outputs are matrices). We consider here the same
setting for these two data sets. For the third data set we consider higher-order output
tensors by setting k = 5. The output tensors are thus of size respectively 17 × 125,
15× 121 and 16× 5× 5 for the three data sets.

For all the experiments, we use 90% of the available data for training and 10% for
testing. All hyper-parameters are chosen by cross-validation. The average test RMSE
over 10 runs are reported in Table 4.2 (running times are reported in Table 4.1). We see
that HOLRR and K-HOLRR outperform the other methods on the CCDS data set while
being orders of magnitude faster for the kernelized version (0.61s vs. 75.47s for Greedy
and 235.73s for ADMM in average). On the Foursquare data set HOLRR performs as
well as Greedy and HOPLS, and on the Meteo-UK data set K-HOLRR gets the best results
with the rbf kernel while being much faster than ADMM (1.66s vs. 40.23s in average).
It is surprising to observe that even though HOLRR does not take the tensor structure
of the input into account, it performs better or as well as Greedy which takes the input
structure into account and is specifically designed for the spatio-temporal forecasting
task.

b
http://www.metoffice.gov.uk/public/weather/climate-historic/
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4.4 Conclusion
In this chapter, we tackled the problem of learning a regression function that maps vec-
tors to tensors from a set of input/output samples. We showed on a simple synthetic
example that enforcing low-rank structure of the regression tensor can improve perfor-
mances when the ground truth model has a low multilinear rank structure. We thus
proposed to tackle the regression task with tensor-structured output data by minimizing
a least squares criterion subject to a multilinear rank constraint. We proposed a fast
and efficient algorithm (HOLRR) to compute an approximate solution of this difficult
non-convex minimization problem. We also proposed a kernelized version of HOLRR
that extends our method to the non-linear setting. We provided a theoretical analysis of
the approximation guarantees and statistical properties of HOLRR and a generalization
bound for the class of regression function with bounded multilinear rank. On both syn-
thetic and real-world data sets, HOLRR performed better or competitively with state of
the art methods, while being computationally very efficient.

In the future, we plan to extend this work to other loss functions and to the set-
ting where both inputs and outputs are tensors. Note that the strategy we used to
derive HOLRR cannot be directly applied to these settings: indeed, HOLRR relies on
the fact that the minimization problem can be reduced to a multilinear subspace iden-
tification problem which is not the case anymore when the inputs are tensors (i.e. the
minimization problem cannot be decomposed into independent subspace identification
problems for the input modes). Using the tools proposed in (Signoretto, De Lathauwer,
and Suykens, 2013) is a promising direction to leverage the tensor structure of the input
data. Considering the operator-valued kernels framework from a multilinear perspective
and trying to derive an alternative non linear extension of HOLRR in this framework is
also an interesting direction. We also plan to investigate how non-linearity could be in-
troduced in low multilinear rank models using the neural networks framework: one can
show that low multilinear rank regression functions such as the ones we considered in
this chapter can be computed by neural networks with two hidden layers (without acti-
vation functions) where some Kronecker structure is enforced on the weight matrices of
the network. Training such a network would be equivalent to tackle problem (4.2) using
stochastic gradient descent, and introducing non-linear activation functions would lead
to an alternative non-linear extension of the low multilinear rank model we considered
in this chapter.
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Appendix

4.A Proof of Theorem 18
Theorem. Let x(1), · · · ,x(N) be independent and identically distributed (i.i.d.) random
variables taking their values in Rd0 and following a normal distribution N (0, I). Let
ξ(1), · · · , ξ(N) be i.i.d. random variables taking their values in Rd1×···×dp such that for
any n ∈ [N ] each component of ξ(n) follows a normal distribution N (0, σ2). Finally, let
W∗ ∈ Rd0×d1×···×dp be a regression tensor with multilinear rank (R0, R1, · · · , Rp) and let
Y(n) =W∗ •1 x(n) + ξ(n) for all n ∈ [N ].
LetWN be the estimator returned by HOLRR with the training sample {(x(n),Y(n))}Nn=1

as input, with rank parameter (R0, R1, · · · , Rp) and regularization parameter γ = 0.
Then, for any ε > 0 we have

lim
N→∞

P[‖W∗ −WN‖F > ε] = 0.

We first define the notion of convergence in probability. We say that a sequence of
tensor-valued random variables T 1,T 2, · · · ,T N converges in probability to a tensor T
if for any ε > 0

lim
N→∞

P[‖T N − T ‖F > ε] = 0

which we will denote by plim(T N ) = T . If (AN ) and (BN ) are two sequences of
matrix valued random variables such that plim(AN ) = A and plim(BN ) = B then
the following properties follow directly from Slutsky’s theorem (see e.g. Theorem 7.19
in DasGupta, 2011)

plim(ANBN ) = AB
plim((AN )−1) = A−1

(assuming that A is invertible).
Using the notations and hypothesis from the theorem, let X ∈ RN×d0 denote the input

matrix, let Y ∈ RN×d1×···×dp denote the output tensor, and let E ∈ RN×d1×···×dp denote
the noise tensor (i.e. the tensor obtained by stacking the tensors ξ(1), · · · , ξ(N) along the
first mode). It is easy to check that Y =W ×1 X + E.

First observe that it follows from the definitions of the random variables x(n) and ξ(n)

and from the law of large numbers that the following hold:

• plim( 1
NX>X) = limN→∞

1
N

∑N
n=1 x(n)x(n)> = E[xx>] = I,

• plim( 1
NX>E(1)) = limN→∞

1
N

∑N
n=1 x(n)ξ(n)> = E[x]E[ξ>] = 0.

The estimator returned by HOLRR with the parameters given in the theorem satisfies

WN = Y ×1 U0(U>0 X>XU0)−1U>0 X> ×2 U1U>1 ×3 · · · ×p+1 UpU>p

where U0 ∈ Rd0×R0 is the matrix having the top R0 eigenvectors of the matrix

M , (X>X)−1X>Y(1)Y>(1)X (4.7)
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for columns, and for any i ≥ 1, Ui ∈ Rdi×Ri is the matrix having the top Ri eigenvectors
of Y(i+1)Y>(i+1) for columns. We will show the following facts:

(i) plim(Y ×1 U0(U>0 X>XU0)−1U>0 X>) =W∗

(ii) plim(W∗ ×i+1 UiU>i ) =W∗ for any i ≥ 1

which will entail the result. Indeed, assuming for sake of simplicity that p = 2 it is easy
to check that

plim(WN ) = plim(Y ×1 U0(U>0 X>XU0)−1U>0 X> ×2 U1U>1 ×3 U2U>2 )

= plim

(
plim

(
plim

(
Y ×1 U0(U>0 X>XU0)−1U>0 X>

)
×2 U1U>1

)
×3 U2U>2

)
.

One of the main technical difficulty in this proof comes from the fact that for any
i ∈ [p] the limit plim(Ui) may not exist. Indeed, Ui is defined as the matrix having
for columns the top Ri eigenvectors of some matrix A, but how can we choose these
eigenvectors in such a way that the matrix Ui converges as N grows to infinity? Think
for example of the case where A has some eigenvalues of multiplicity greater than one.
We will bypass this difficulty by reasoning on the orthogonal projection matrix UiU>i
which is itself unique (once a basis has been chosen).

We start by showing that

plim

(
U0

(
U>0

1
N

X>XU0

)−1
U0

)
= plim(U0U>0 ). (4.8)

Since plim( 1
NX>X) = I, for any ε > 0 and with probability one there exists some d0×d0

matrix ∆ such that
‖∆‖F ≤ ε and

1
N

X>X = I−∆.

Moreover, for any ε′ > 0 we can choose ε in such a way that
∑
k≥1(d0‖∆‖F )k ≤ ε′. We

then have

U0

(
U>0

1
N

X>XU0

)−1
U>0 = U0

(
U>0 (I−∆)U0

)−1
U>0

= U0
(
I−U>0 ∆U0

)−1
U>0

= U0U>0 +
∑
k≥1

(U0U>0 ∆U0U>0 )k

where we used the identity (I−A)−1 =
∑
k≥0 Ak, and it follows that

‖U0

(
U>0

1
N

X>XU0

)−1
U>0 −U0U>0 ‖F = ‖

∑
k≥1

(U0U>0 ∆U0U>0 )k‖F

≤
∑
k≥1
‖(U0U>0 ∆U0U>0 )k‖F ≤

∑
k≥1

(‖U0U>0 ‖2F ‖∆‖F )k =
∑
k≥1

(d0‖∆‖F )k ≤ ε′

where we used the fact that the Frobenius norm is sub-multiplicative. Since this inequal-
ity holds with probability one for any ε′ > 0 this shows that Eq. (4.8) holds.
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We can now show that fact (i) holds. First observe that

plim

( 1
N

Y>(1)X
)

= plim

(
W∗>

(1)
1
N

X>X
)

+ plim

( 1
N

E>(1)X
)

= W∗>
(1).

Now since the ordinary least squares estimator WOLS is consistent and since the matrix
M defined in Eq. (4.7) satisfies M = WOLSY>(1)X we have plim( 1

NM) = W∗
(1)W∗>

(1).
Furthermore, since U0U>0 is the (unique) matrix of the orthogonal projection onto the
space spanned by the top R0 eigenvectors of M (which are equal to the top R0 eigenvec-
tors of 1

NM) it follows that plim(U0U>0 ) is the matrix of the orthogonal projection onto
the space spanned by the R0 left singular vectors of W∗

(1), thus plim(U0U>0 W∗
(1)) =

W∗
(1). To conclude, we obtain the following equation which is equivalent to fact (i)

using matricization:

plim(U0(U>0 X>XU0)−1U>0 X>Y(1)) = plim

(
U0(U>0

1
N

X>XU0)−1U>0
1
N

X>Y(1)

)
= plim(U0U>0 W∗

(1)) = W∗
(1).

We now show fact (ii): plim(W∗ ×i+1 UiU>i ) =W∗ for any 1 ≤ i ≤ p. We will show
this result for i = 1, the proof for other values of i is similar. Recall that U1 is the matrix
having for columns the top R1 eigenvectors of Y(2)Y>(2). Since fact (ii) is equivalent to
plim(U1U>1 W∗

(2)) = W∗
(2) we just need to show that plim(U1U>1 ) is the matrix of the

orthogonal projection onto the space spanned by the R1 left singular vectors of W∗
(2).

First observe that Y(2) = W∗
(2)(X> ⊗ I) + E(2), hence Y(2)Y>(2) is equal to

W∗
(2)
(
(X>X)⊗ I

)
W∗>

(2) + E(2)E>(2) + W∗
(2)(X> ⊗ I)E>(2) + E(2)(X> ⊗ I)W∗>

(2).

Since (X> ⊗ I)E>(2) is obtained by permuting the components of the matrix X>E(1) we
have

plim

( 1
N

W∗
(2)(X> ⊗ I)E>(2)

)
= plim

( 1
N

E(2)(X> ⊗ I)W∗>
(2)

)
= 0.

Furthermore, since

(E(2)E>(2))ij =
N∑
n=1

d2∑
k2=1
· · ·

dp∑
kp=1

ξ
(n)
i,k2,··· ,kpξ

(n)
j,k2,··· ,kp

we have limN→∞
1
N (E(2)E>(2))ij = d2 · · · dp E[ξiξj ] where each ξi ∼ N (0, σ2), and it fol-

lows that
plim

( 1
N

E(2)E>(2)

)
= d2 · · · dpσ2Id1 .

We then have
plim

( 1
N

Y(2)Y>(2)

)
= W∗

(2)W∗>
(2) + d2 · · · dpσ2Id1 .

Observing that the matrix A + αI has the same eigenvectors as A for any matrix A
and scalar α, and since U1U>1 is the matrix of the orthogonal projection onto the space
spanned by the top R1 left singular vectors of Y(2) we can conclude that plim(U1U>1 ) is

112



the matrix of the orthogonal projection onto the space spanned by the R1 left singular
vectors of W∗

(2).

4.B Proof of Theorem 19
We start by bounding the pseudo-dimension of the class of real-valued functions with
domain Rd0 × [d1]× · · · × [dp]

F̃ =
{
(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : rankml(W) = (R0, · · · , Rp)

}
.

We first recall the definition of the pseudo-dimension of a class of real-valued functions.

Definition 6. A class F of real-valued functions pseudo-shatters the points x1, · · · , xm
with thresholds t1, · · · , tm if for every binary labeling of the points (s1, · · · , sm) ∈ {−,+}m
there exists f ∈ F s.t. f(xi) < ti iff si = −. The pseudo-dimension of a class F is the
supremum over m for which there exist m points that are pseudo-shattered by F (with
some thresholds).

We will say that a set of polynomials p1, p2, · · · , pk has at least m sign patterns if there
exist x1, · · · , xm such that such that the sign vectors vi = [sign(p1(xi)), · · · , sign(pk(xi))]>
are pairwise distinct. Following (Warren, 1968), the following theorem bounds the num-
ber of sign patterns for a set of polynomials.

Theorem. (Srebro, 2004, Theorem 34, 35) The number of sign patterns of r polynomi-
als, each of degree at most d, over q variables is at most

(
4edr
q

)q
for all r > q > 2.

The following lemma gives an upper bound on the pseudo-dimension of F̃ using the
previous theorem.

Lemma 6. The pseudo-dimension of the real-valued function class F̃ is upper bounded
by (R0R1 · · ·Rp +

∑p
i=0Ridi) log

(
4e(p+2)d0d1···dp
d0+d1+···+dp

)
.

Proof. It is well known that the pseudo-dimension of a vector space of real-valued
functions is equal to its dimension (Mohri, Rostamizadeh, and Talwalkar, 2012, The-
orem 10.5). Since F̃ is a (non-linear) subspace of the d0d1 · · · dp-dimensional vector
space {

(x, i1, · · · , ip) 7→ (W •1 x)i1,··· ,ip : W ∈ Rd0×···×dp
}

of real-valued functions with domain Rd0 × [d1]× · · · × [dp], the pseudo-dimension of F̃
is bounded by d0d1 · · · dp.
Now, let m ≤ d0 · · · dp and let {(xk, ik1, · · · , ikp)}mk=1 be a set of points that are pseudo-

shattered by F̃ with thresholds t1, · · · , tm ∈ R. Then for each sign pattern (s1, · · · , sm) ∈
{−,+}m, there exists f̃ ∈ F̃ such that sign(f̃(xk, ik1, · · · , ikp) − tk) = sk. Any function
f̃ ∈ F̃ can be written as

(x, j1, · · · , jp) 7→
(
G ×1 x>U0 ×2 U1 · · · ×p+1 Up

)
j1,··· ,jp

for some G ∈ RR0×···×Rp , Ui ∈ Rdi×Ri for 0 ≤ i ≤ p. Thus, considering the entries of
G,U0, · · · ,Up as variables, the set {f̃(xk, ik1, · · · , ikp) − tk}mk=1 can be seen as a set of
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m polynomials of degree at most p+ 2 over these D = R0 · · ·Rp +
∑p
i=0 diRi variables.

It then follows from the previous theorem that 2m ≤
(

4e(p+2)m
D

)D
. The result follows

using m ≤ d0 · · · dp and D ≥
∑p
i=0 di.

Once the pseudo-dimension of the function class F̃ is bounded, one can invoke stan-
dard error generalization bounds in terms of the pseudo-dimension (Mohri, Rostamizadeh,
and Talwalkar, 2012, Theorem 10.6) to obtain the following theorem that gives an upper
bound on the excess risk for the class of function

F = {x 7→W •1 x : rankml(W) = (R0, · · · , Rp)} .

Theorem. Let L : Rd1×···×dp → R be a loss function satisfying

L(A,B) = 1
d1 · · · dp

∑
i1,··· ,ip

`(Ai1,··· ,ip ,Bi1,··· ,ip)

for some loss function ` : R→ R+ bounded by M . Then for any δ > 0, with probability
at least 1− δ over the choice of a sample of size N , the following inequality holds for all
h ∈ F :

R(h) ≤ R̂(h) +M

√√√√2D log
(

4e(p+2)d0d1···dp
d0+d1+···+dp

)
logN

N
+M

√√√√ log
(

1
δ

)
2N

where D = R0R1 · · ·Rp +
∑p
i=0Ridi.

Proof. For any h : Rd0 → Rd1×···×dp we define h̃ : Rd0 × [d1] × · · · × [dp] → R by
h̃(x, i1, · · · , ip) = h(x)i1···ip . Let D denote the distribution of the input data. We have

R(h) = E
x∼D

[L(f(x), h(x))] = 1
d1 · · · dp

∑
i1,··· ,ip

E
x∼D

[`(f(x)i1···ip , h(x)i1···ip)]

= E
x∼D

ik∼U(dk),k∈[p]

[`(f̃(x, i1, · · · , ip), h̃(x, i1, · · · , ip))]

where U(k) denotes the discrete uniform distribution on [k] for any integer k ≥ 1. It
follows that R(h) = R(h̃). Similarly, one can show that R̂(h) = R̂(h̃). The result then
directly follows using Theorem 10.6 in (Mohri, Rostamizadeh, and Talwalkar, 2012) (see
below) to bound R(h̃)− R̂(h̃).

Theorem (Theorem 10.6 in Mohri, Rostamizadeh, and Talwalkar, 2012). Let H be a
family of real-valued functions and let G = {x 7→ L(h(x), f(x)) : h ∈ H} be the family
of loss functions associated to H. Assume that the pseudo-dimension of G is bounded by
d and that the loss function L is bounded by M . Then, for any δ > 0, with probability
at least δ over the choice of a sample of size m, the following inequality holds for all
h ∈ H:

R(h) ≤ R̂(h) +M

√
2d log

(
em
d

)
m

+M

√√√√ log
(

1
δ

)
2m .
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5.1 Introduction
In this last chapter, we stay in the world of machine learning but we leave the supervised
learning setting and consider an unsupervised learning task. In an unsupervised setting,
the learner has to reveal hidden structure in a sample of unlabeled data. One example
of an unsupervised learning task is clustering, where from a sample of N unlabeled
examples the learner has to identify k groups of examples such that examples in a same
group are more similar than examples in different groups. Another example is the density
estimation task, where the learner has to identify the underlying distribution used to
generate the training data. More precisely, the learner is given a sample {x1, · · · ,xN} ⊂
Rd independently and identically drawn from a distribution D, and tries to infer the
distribution D from this data. In this chapter, we consider a density estimation task for
algebraic mixtures, which are a generalization of mixture models.

Mixture models, such as Gaussian mixtures or hidden Markov models (HMM), are
widely used in statistics and machine learning (McLachlan and Peel, 2004). Roughly
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speaking, a mixture model assumes that the distribution of interest D is the mixture
of several other distributions D1, · · · ,Dk, thus one can think of a sample {x1, · · · ,xN}
drawn from D as the reunion of k samples (not necessarily of the same sizes) drawn
from the k distributions of the mixture. Let us illustrate this model with a mixture of
univariate Gaussians. In this model, the probability density function (PDF) of the mixture
is given by f =

∑k
i=1 piN (µi, σ2

i ) where 0 ≤ pi ≤ 1,
∑k
i=1 pi = 1 and N (µi, σ2

i ) denotes
the PDF of a Gaussian distribution with mean µi and variance σ2

i . The coefficients of the
mixture pi are called weights. A real-world example where this model naturally appears
is the distribution of height within a population of men and women: one can assume
that the height of men is distributed from an univariate Gaussian with mean µ1 while
the height of women is distributed from a Gaussian with mean µ2 < µ1. The heights of
the whole population would then be distributed from a mixture of these two univariate
Gaussians, and the weights p1 and p2 of the mixture would be defined by the proportion
of men/women in the population.

Mixture models can be interpreted as latent variable models in the following way:
given a mixture f = p1f1+· · ·+pkfk (where f, f1, · · · , fk are PDFs), sampling an example
from the distribution Df (the probability distribution associated with the PDF f) can be
interpreted as first randomly choosing a component i ∈ [k] according to the probabilities
p1, · · · , pk, and then drawing a sample from the distribution Dfi . We can thus introduce
a discrete latent variable h taking its values in [k] and following the distribution defined
by P[h = i] = pi. Then, the conditional PDF satisfies f(x|h = i) = fi.

Given an affine combination of PDFs f = w1f1 + · · · + wkfk (i.e. the weights wi
sum to one but may be negative), the function f may remain positive even if some of
the weights are negative. In that case, the function f is a valid PDF and thus defines
a probability distribution Df . Such mixtures with negative weights have been studied
in a few specific papers (R. Jiang, Zuo, and H.-X. Li, 1999; B. Zhang and C. Zhang,
2005; Müller et al., 2012). We call such distributions algebraic mixtures and they will
be the subject of this chapter. We will show that algebraic mixtures naturally appear
in a fundamental relation between probabilistic and weighted automata. This uncanny
relation was the starting point of our interest for this unusual model of distribution.

While the components of an algebraic mixture with positive weights can still be inter-
preted as in a classical mixture, the components with negative weights can be thought
of as repulsive components: it will be less likely to observe data in the regions of the
space where the negative components have a high density. We will give more intuition
on this in Section 5.2.2 by introducing the model of distorted distributions and showing
that this model is equivalent to algebraic mixtures. Distorted distributions are distribu-
tions defined by a specific sampling process: a sample is drawn by first drawing a point
x from an underlying true distribution f , and then rejecting this point with probability
φ(x) where φ is the mask component of the distorted distribution.. Thus a sample drawn
from a distorted distribution can be seen as a sample drawn from f where some data is
missing not at random (since the distribution of the missing data is not uniform but de-
pends on the mask component φ). We will see that such distributions could be relevant
to model particular learning settings such as section bias (Heckman, 1977; Berk, 1983)
and inference from presence-only data (Phillips et al., 2009; Pearce and Boyce, 2006;
Keating and Cherry, 2004).

In contrast with classical mixture models, algebraic mixtures cannot be seen as latent
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variable models, which prevents us from applying the Expectation-Maximization algo-
rithm (Bailey and Elkan, 1994) that is commonly used to learn classical mixture models.
However, the tensor method of moments proposed in (Anandkumar et al., 2014) to learn
mixture models does not fundamentally rely on the fact that mixture models are latent
variable models. In this paper, the authors show that the parameters of a number of la-
tent variable models, including spherical Gaussian mixture models and HMMs, can easily
be estimated from tensor decomposition of low-order moments that can be estimated on
the training data. We will show in this chapter that this method can be extended to
algebraic mixtures when the parameters of the distribution can be expressed in terms of
the low order moments, and in particular that algebraic mixtures of spherical Gaussian
distributions can be learned using this extension. The tensor method of moments can
be seen as an algebraic learning method since it boils down to using tensor decompo-
sition techniques to solve a system of polynomial equations that relates the moments
and the parameters of the model. The learnability of distributions whose moments are
polynomials of the parameters has been studied using tools from algebraic geometry
in (Belkin and Sinha, 2010), and the tensor method of moments has been extended to
the non parametric setting for learning multi-view latent variable models using kernel
mean embeddings in (Song et al., 2014).

Summary of the contributions. In this chapter, we consider the problem of estimat-
ing the density function of an algebraic mixture from learning data. We introduce the
notion of algebraic mixture models that generalizes the classical mixture models to the
case where some of the weights are negative (Section 5.2). We show that algebraic mix-
tures can modelize a specific missing data scenario by introducing the notion of distorted
distributions (Section 5.2.2). We also show how algebraic mixtures naturally appear in
a fundamental relation between weighted and probabilistic automata (Section 5.2.3). We
then propose an extension of the tensor method of moments proposed in (Anandkumar
et al., 2014) to algebraic mixtures (Section 5.3). Focussing on Gaussian mixtures, we
show how the low-order moments of an algebraic mixture of spherical Gaussians are
related to the parameters of the mixture (Section 5.3.1) and we propose a learning al-
gorithm for algebraic mixtures of spherical Gaussians. We then assess the performance of
this algorithm in a simulation study (Section 5.4).

The works presented in this chapter have been presented in the french machine learn-
ing conference CAp in July 2014 (45mn talk) where we received the best student pa-
per award, and at the ICML Workshop on Method of Moments and Spectral Learning in
June 2014 (poster).

5.1.1 Method of Moments and Tensor Decomposition

We first recall the classical method of moments used for density estimation of parametric
distributions. We then present a special case of this method proposed in (Anandkumar
et al., 2014) that relies on tensor decomposition techniques.

Method of moments. The method of moments is a general density estimation method
used to fit the parameters of a distribution from sample data. Let {Dθ : θ ∈ Rk} be a
parameterized family of distributions characterized by a set of parameters θ1, θ2, · · · θk
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— think for example of the family of univariate Gaussian distributions that are param-
eterized by their mean µ and their variance σ2. The method of moments consists in
deriving equations that relate the parameters of the distribution to the first k moments:

E
x∼Dθ

[x] = g1(θ1, · · · , θk), E
x∼Dθ

[x2] = g2(θ1, · · · , θk), · · · , E
x∼Dθ

[xk] = gk(θ1, · · · , θk).

For univariate Gaussians we have E[x] = µ and E[x2] = µ2 + σ2. Given a sample
{xn}Nn=1 drawn from the distribution Dθ, the population moments are defined by M̂i =
1
N

∑N
n=1 x

i
n for i ∈ [k], and the method of moments estimators θ̂1, · · · , θ̂k are given by

the solution (if it exists) of the system of equations M̂i = gi(θ̂1, · · · , θ̂k) for i ∈ [k]. It is
easy to check that for univariate Gaussians, the method of moments leads to the same
estimators as the maximum likelihood method.

Method of moments and tensor decomposition. Recall that (Fd)⊗p denotes the p-th
order tensor product of the vector space Fd, and that v◦p = v ◦ · · · ◦ v denotes the pth
tensor power of the vector v ∈ Fd. In particular, v ◦ v can be identified with the matrix
vv>.

For a multivariate random variable x taking its values in Rd, its moment of order i is
defined as the tensor E[x◦i] ∈ (Rd)⊗i. As an illustration, the moments of order 1 and 2 of
a random variable x following the multivariate normal distribution N (µ,Σ) are given
by

E[x] = µ and E[x ◦ x] = E[xx>] = µµ> + Σ

and once again the method of moments leads to the maximum likelihood estimators (note
that this is not true in general).

It has been shown in (Anandkumar et al., 2014) that for a wide class of latent variable
models (including exchangeable single topics models, mixtures of spherical Gaussians
and hidden Markov models), the parameters of the model can be expressed as a func-
tion of low-order (tensor) moments. Let us consider a latent variable model where the
random variable of interest depends on a discrete random variable h taking its values in
[k] in the following way: an observation x in this model is generated by first drawing
a value i ∈ [k] according to the distribution of h and then drawing x from the param-
eterized distribution Dµi . Then, Anandkumar et al. (2014) show that the low-order
moments are related to the tensors

M2 =
k∑
i=1

piµi ◦ µi and M3 =
k∑
i=1

piµi ◦ µi ◦ µi (5.1)

where pi = P[h = i] for i ∈ [k]. The problem of estimating the parameters µi and pi
can thus be reduced to solving this system of polynomial equations, which can be done
using the power tensor method (see below).

In this chapter, we will focus on the spherical Gaussian mixture modela. This model is
specified as follows: let k ≥ 1 be the number of components, and for i ∈ [k], let pi > 0
be the probability of choosing the component N (µi, σ2

i I) where µi ∈ Rd, σ2
i > 0. The

PDF of the random vector x ∈ Rd is given by f =
∑k
i=1 pi N (µi, σ2

i I).
aTo the best of our knowledge, the tensor method of moments can not be applied to mixtures of
Gaussians that are not spherical.
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Assuming that the component mean vectors µi are linearly independent, the following
relation between the low-order moments and the matrix and tensor M2 andM3 defined
in Eq. (5.1) is proved in (Hsu and Kakade, 2013).

Theorem 20. The average variance σ̄2 =
∑k
i=1 piσ

2
i is the smallest eigenvalue of the

covariance matrix E[(x − E[x])(x − E[x])>]. Let v be any unit-norm eigenvector corre-
sponding to σ̄2 and let

m1 = E[x(v>(x− E[x]))2], M2 = E[x ◦ x]− σ̄2I, and

M3 = E[x ◦ x ◦ x]−
d∑
i=1

[m1 ◦ ei ◦ ei + ei ◦m1 ◦ ei + ei ◦ ei ◦m1]

where e1, · · · , ed is the coordinate basis of Rd. Then,

m1 =
k∑
i=1

piσ
2
iµi, M2 =

k∑
i=1

piµi ◦ µi , and M3 =
k∑
i=1

piµi ◦ µi ◦ µi.

Observe that if the weights pi and means µi are known, one can recover the vari-
ance parameters σi from the observable m1 by solving a linear system on the condition
that the means µi are linearly independent (in particular if k > n this linear system is
underdetermined).

Tensor power method. We now present the method proposed in (Anandkumar et al.,
2014) to recover the unknowns pi and µi for i ∈ [k] from the system (5.1). Recall that
the CP rank of a tensor T ∈ (Fd)⊗p is the smallest integer R such that T can be written
as

T =
R∑
i=1

λiv(1)
i ◦ · · · ◦ v(p)

i

with λi ∈ F and unit-norm vectors v(1)
i , · · · ,v(p)

i ∈ Fn. The symmetric rank of a sym-
metric tensor T is the smallest integer R such that T can be written as T =

∑R
i=1 λiv

◦p
i

with λi ∈ F and unit-norm vectors vi ∈ Fd for i ∈ [R]. It is known that computing the
rank of a tensor is NP-hard and it is conjectured that computing the symmetric rank is
also NP-hard (Hillar and Lim, 2013). However, if a real-valued third-order tensor T has
a symmetric orthonormal decomposition, i.e. T =

∑R
i=1 λiv◦3i with λi ∈ R, vi ∈ Rd and

v>i vj = δij for all i, j ∈ [k], it has been shown in (Anandkumar et al., 2014) that this
decomposition can be recovered using a tensor power method (see below). Moreover,
they show that any symmetric independent decomposition

T =
k∑
i=1

λivi ◦ vi ◦ vi

where the vi’s are linearly independent but not necessarily orthonormal, can be recov-
ered if we have access to the second order tensor M =

∑k
i=1 λiviv>i (see Theorem 21

below). Note that the problem of finding a symmetric orthogonal decomposition gener-
alizes the eigendecomposition problem to tensors of higher order: if M =

∑k
i=1 λivi ◦vi
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and the vi’s are orthonormal, then the couples (λi,vi) are eigenvalues/vectors of the
matrix M.

Theorem 21 (Anandkumar et al., 2014). Let v1, . . . ,vk be linearly independent vectors
of Rd, λ1, . . . , λk be positive scalars, and let

M2 =
k∑
i=1

λivi ◦ vi and M3 =
k∑
i=1

λivi ◦ vi ◦ vi.

Finally, let W ∈ Rd×k be a matrix such that W>M2W = Ik, and let νi =
√
λiW>vi

and γi = λ
−1/2
i for i ∈ [k]. Then,

T =M3(W,W,W) =
k∑
i=1

γiνi ◦ νi ◦ νi

is an orthonormal decomposition from which the parameters λi and vi can be recovered.

Observe that the fact that the decomposition of the tensor T given in the previous
theorem is orthonormal follows from the fact that

k∑
i=1
νiν

>
i = W>M2W = Ik.

One method that can be used to recover the parameters of the orthonormal decomposi-
tion T =

∑k
i=1 γiνi ◦ νi ◦ νi is the tensor power method. Similarly to the classical power

method used to recover the dominant eigenvector of a matrix (Mises and Pollaczek-
Geiringer, 1929), the tensor power method relies on iterating the map

θ 7→ T (I,θ,θ)
‖T (I,θ,θ)‖

until convergence to a fixed point. It is shown in (Anandkumar et al., 2014) that the
power method will converge to one of the vectors νi from which the corresponding
weight γi can easily be recovered. Indeed, once νi is known it is easy to check that
T (νi,νi,νi) = γi. The process is repeated using the standard deflation technique: apply
the tensor power method on the residual T ′ = T − γiν◦3i to recover a second couple
(γj ,νj), and so on.

The previous results induce a learning scheme for the spherical Gaussian mixture
model: (i) estimate the tensors m1, M2 andM3 defined in Theorem 20 from the learn-
ing data; (ii) compute an orthonormal decomposition as in Theorem 21; (iii) use the
tensor power method to compute the mean vectors µi and the probabilities pi and (iv)
use m1 to recover the variance parameters σ2

i (by solving a linear system).

5.2 Algebraic Mixtures: Definition and Properties
We now describe the object of interest of this chapter: algebraic mixtures. Given a finite
set of probability density functions (PDF) f1 . . . , fk, it may happen that w1f1 + . . .+wkfk
defines a PDF even if some weights wi are negative. For example, if f and g are two PDFs
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satisfying g ≤ cf for some c > 1, then αf − (α− 1)g is a PDF for any mixture parameter
α satisfying 0 ≤ α−1 ≤ (c−1)−1, which follows from the fact that g/f ≤ c ≤ α/(α−1).
We call algebraic such generalized mixtures.

It can easily be shown, by grouping the positive and negative weights respectively,
that any algebraic mixture can be written as an algebraic mixture of at most two non
negative mixtures, i.e. mixtures with only non negative weights:

k∑
i=1

wifi = wP
∑
i:wi≥0

wi
wP

fi−wN
∑
i:wi<0

−wi
wN

fi where wP =
∑
i:wi≥0

wi and wN = −
∑
i:wi<0

wi.

Thus, from a theoretical perspective, it will often be enough to consider algebraic mix-
tures of the form αf−(α−1)g for some mixing coefficient α > 1. If f, g and α are known,
and if we have access to a random generator for the distribution Df , then Algorithm 6
simulates the distribution Dαf−(α−1)g by rejection sampling.

Algorithm 6 Simulating an algebraic mixture
1: repeat
2: draw x according to Df
3: draw u uniformly in [0, 1]
4: until uαf(x) ≥ (α− 1)g(x)
5: return x

5.2.1 Algebraic Mixtures of Gaussians

We illustrate the algebraic mixture model with a simple example of algebraic mixture
of two Gaussian distributions. An example of such a mixture is shown in Figure 5.1.
Let f and g be the PDFs of the two d-dimensional Gaussian distributions N (µf ,Σf ) and
N (µg,Σg). We show below on what conditions the function αf − (α − 1)g defines a
valid probability density function, i.e. an algebraic mixture of the two distributions Df
and Dg.

For any real number α > 0, we have

αf(x)− (α− 1)g(x) ≥ 0 (5.2)

if and only if

exp
{
−1

2(x− µf )>Σ−1
f (x− µf ) + 1

2(x− µg)>Σ−1
g (x− µg)

}
≥
√
|Σf |
|Σg|

(1− 1/α).

If α ≤ 1 then Eq. (5.2) is simply the PDF of a standard Gaussian mixture. If α > 1
then (5.2) holds for any x ∈ Rd if and only if

− (x− µf )>Σ−1
f (x− µf ) + (x− µg)>Σ−1

g (x− µg) (5.3)

has a finite lower bound, which holds if and only if (Σ−1
g −Σ−1

f ) is positive definite. In
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Figure 5.1: An algebraic mixture of two spherical Gaussians m = 1.5f − 0.5g where
f = N (

[
11.4 −3.4

]>
, 8I) and g = N (

[
11.9 −1.9

]>
, 4I).

that case, the minimum m of (5.3) is attained for

µ0 = Σ0(Σ−1
g µg −Σ−1

f µf )

where Σ0 = (Σ−1
g − Σ−1

f )−1, and there exists a constant λ such that λg/f defines a
Gaussian distribution of parameters µ0 and Σ0. It can be checked that

m = −(µf − µg)>Σ−1
f Σ0Σ−1

g (µf − µg).

Note that if the two distributions are distinct, then
(
|Σg |
|Σf |

)1/2
em/2 − 1 < 0. Otherwise,

any positive α would be suitable and by dividing (5.2) by α, the density of the first
distribution would be everywhere larger than the density of the second, which cannot
happen. Hence every

α ∈

1,
(

1−
√
|Σg|
|Σf |

em/2
)−1

defines a valid algebraic mixture of the two distributions.
For the special case of spherical Gaussians, i.e. Σf = σ2

fI and Σg = σ2
gI, we obtain

the following result.

Proposition 17. Let f = N (µf , σ2
fI) and g = N (µg, σ2

gI) be two spherical Gaussian
distributions. Then αf − (α− 1)g defines an algebraic mixture if and only if

σf > σg and 1 < α ≤
(

1−
σdg
σdf

exp
{
−1

2
||µf − µg||2

σ2
f − σ2

g

})−1

.
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Figure 5.2: A distorted distribution Df,φ where f is the pdf of the univariate Gaussian
N (0, 1) and φ(x) = 0.5 if 0 ≤ x ≤ 1 and 0 otherwise.

5.2.2 Distorted Distributions

We now introduce a missing data model that is closely related to algebraic mixtures.
Here we do not consider a missing data scenario where components of some vector are
missing, but rather a scenario where data is missing from a training sample: let f be
a PDF on X and let φ be a function defined on X and taking its values in [0, 1], so that
φ(x) can be interpreted as a probability for any element x. We consider the following
sampling process: an element x is drawn according to the distribution Df and then, x
is rejected with probability φ(x), or retained with probability 1 − φ(x). We denote by
Df,φ the distribution of the observed data. Any sample x1, . . . , xn independently drawn
according to Df,φ can be seen as a sample of Df where some elements are missing. We
call distorted such distributions and we will refer to the component f as the underlying
true distribution and to φ as the mask component. An example of such a distribution is
shown in Figure 5.2.

It turns out that distorted distributions are strictly equivalent to algebraic mixtures.
Indeed, let β =

∫
X f(x)φ(x)dx be the probability to reject an element of X drawn accord-

ing to Df and let g be the density function defined by g(x) = β−1f(x)φ(x). Observing
that the density function m of Df,φ is proportional to f(x)(1− φ(x)) it follows that

m(x) = f(x)
1− β (1− φ(x)) = 1

1− β (f(x)− βg(x)).

Hence by letting α = 1/(1−β), the distribution Dm is equal to the algebraic mixture αf−
(α−1)g of the distributions Df and Dg. Conversely, any algebraic mixture αf − (α−1)g
with α > 1 is equivalent to the distorted distribution Df,φ where φ : x 7→ α−1

α
g(x)
f(x) .

Indeed, it can easily checked that φ takes its value in [0, 1] (which directly follows from
the fact that αf − (α− 1)g ≥ 0 and α > 1) and that the PDF of the distorted distribution
Df,φ is proportional to f − (α− 1)g/α.

This equivalence between algebraic mixtures and distorted distributions allow us to
gain some intuition on the distributions modeled by algebraic mixtures: the positive
components of the mixture can be interpreted similarly to classical mixture models, but
the negative components of the mixture defines repulsive regions of the space where
it is less likely to observe data. Let us consider a silly example. Going back to the
distribution of heights in a population of men and women, suppose that on the day
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where we measured the height of random people coming out from the train station,
there was some very exclusive congress restricted to people (either men or women) who
were between 1.5 and 1.7 meters tall, and that one half of the people that could go to
this congress chose to do so rather than letting us measure them. The distribution of
the data we gathered this day would be perfectly described by a distorted distribution:
the underlying true distribution f would be the mixture of two Gaussians modeling the
distribution of heights in the population, and the mask component φ would be defined
by φ(x) = 0.5 if 1.5 ≤ x ≤ 1.7 and 0 otherwise. In this example, the mask component
allows us to modelize the fact that it was less likely to observe people between 1.5 and
1.7 meters tall on that day.

Such a scenario where all the individuals are not equally likely to have been selected
is known as the sampling or selection bias problem (Heckman, 1977; Berk, 1983). This
phenomena is commonly encountered in e.g. medical studies: for instance most women
that participate in breast cancer screening are middle-aged and have likely participated
in another screening in the previous years, thus the sample obtained from the screening
is not representative of a general population and will contain very few disease cases.

Another setting where algebraic mixture and distorted distributions could prove use-
ful is the problem of drawing inferences from presence-only data (see e.g Keating and
Cherry, 2004; Pearce and Boyce, 2006; Phillips et al., 2009). For example if we want to
determine which habitat turtles prefer, we will only have access to data on where turtles
were observed, but not on where turtles actually areb. If we did not observe any turtle in
some specific habitat we cannot conclude that turtles do not live in it, maybe there was a
turtle there but we did not see it. Such a setting could be modeled using a distorted dis-
tribution where the mask component would help us express this uncertainty on whether
a turtle was actually there when we did not observe any. For example, areas where it
is more likely to not see a turtle that is there, such as regions with tall sea grass, would
correspond to an higher density of the mask component of the distorted distribution.

Lastly, we mention the notion of contrastive learning for mixture models that was
introduced in (Zou et al., 2013). In constrastive learning, one wants to differentiate
between background and foreground data by learning a latent variable model capturing
relationships that appear in the foreground but not in the background. The method
proposed by the authors is closely related to algebraic mixtures as they want to learn the
difference between two mixture models, the first one modeling the foreground data and
the second one the background datac.

5.2.3 Algebraic Mixtures and Weighted Automata

Before showing how algebraic mixtures can be learned using the tensor method of mo-
ments we present a fundamental relation between probabilistic and weighted automata
where algebraic mixtures naturally appear. A probabilistic automaton (PA) on strings
is a weighted automaton A = (Rn,α, {Aσ}σ∈Σ,ω) whose coefficients (i.e. the compo-
nents of α,ω and Aσ) are all non negative and who satisfies the following syntactical

bThis example is taken from a talk by Ioanna Manolopoulou that was given at the StatLearn workshop
in April 2013.

cThe method they propose is also an extension of the power method of moments and is actually
equivalent to the one we propose (see Section 5.3.3).
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conditions:

α>1 = 1, I−
∑
σ∈Σ

Aσ is invertible, and
∑
σ∈Σ

Aσ1 + ω = 1

where 1 = [1, 1, · · · , 1]>. In a PA, every weight of the automaton can be interpreted
as a probability, and the conditions above imply that the components of the vector α
can be interpreted as probabilities of starting a computation in each state, and that the
components of each Aσ and ω can be interpreted as emission/transition and stopping
probabilities. It is easy to check that these conditions imply that

∑
w∈Σ∗ fA(w) = 1 and

that a PA computes a probability distribution on Σ∗.
It is shown in (Dupont, Denis, and Esposito, 2005) that hidden Markov models (HMM)

and PAs are strictly equivalent (they define the same probability distributions), but there
exist recognizable probability distributions on strings that cannot be computed by a PA
or an HMM (see Appendix 5.A). However, we will now show that any distribution that
can be computed by a PA (or an HMM) can be defined as an algebraic mixture of at most
two distributions that can be computed by PAs. We start by showing that any WA can be
expressed as an algebraic mixtures of two WAs with non negative coefficients.

Lemma 7. Any recognizable function f : Σ∗ → R is the difference of two recognizable
functions with non negative coefficients.

Proof. For any real number a let φ+(a) = max{x, 0} and φ−(a) = max{−x, 0} (thus
a = φ+(a) − φ−(a)). We extend these operators to vectors and matrices by applying
them componentwise (i.e. to all their coefficients).
Let A = (Rn,α, {Aσ}σ∈Σ,ω) be a WA and let A+ = (R2n, α̃+, {Ãσ}σ∈Σ, ω̃) and

A− = (R2n, α̃−, {Ãσ}σ∈Σ, ω̃) be the WAs with non negative coefficients defined by

α̃+ =
[
φ+(α)
φ−(α)

]
, α̃− =

[
φ−(α)
φ+(α)

]
, ω̃ =

[
φ+(ω)
φ−(ω)

]
and Ãσ =

[
φ+(Aσ) φ−(Aσ)
φ−(Aσ) φ+(Aσ)

]

for each σ ∈ Σ. We claim that fA = fA+ − fA− . Indeed, first check by induction on the
length of w that

[
In −In

]
Ãw =

[
Aw −Aw

]
where Aw = Aw1 · · ·Awk for any word

w = w1 · · ·wk ∈ Σ∗ (and similarly for Ãw). Observing that (α̃+−α̃−)> = α>
[
In −In

]
it follows that

fA+(w)− fA−(w) = (α̃+ − α̃−)>Ãwω̃

= α>
[
In −In

]
Ãwω̃

= α>
[
Aw −Aw

] [φ+(ω)
φ−(ω)

]
= α>Aw(φ+(ω)− φ−(ω))
= α>Awω = fA(w).

The next step would consist in normalizing the (non negative) recognizable func-
tions fA+ and fA− obtained from the previous construction to express a recognizable
probability distribution p as a difference of two distributions. However, even if the
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recognizable function p is convergent, the recognizable functions fA+ and fA− can be
divergent (see an example in Appendix 5.A). Nonetheless, it has been shown in (Bailly
and Denis, 2011) that if p is absolutely convergent (which is trivially the case for a
probability distribution), then there always exists a WA (Rn,α, {Aσ}σ∈Σ,ω) comput-
ing p such that the WA (Rn, |α|, {|Aσ|}σ∈Σ, |ω|) defines a positive convergent function
f ′. In that case, both fA+ and fA− are bounded by f ′ and are convergent. Now, let
γ+ =

∑
w∈Σ∗ fA+(w) and γ− =

∑
w∈Σ∗ fA−(w). It is easy to check that γ+−γ− = 1, that

the functions p+ = fA+
γ+ and p− = fA−

γ− are recognizable probability distributions, and
thus that p = γ+p+− (γ+− 1)p− is an algebraic mixture. It just remains to show that p+

and p− can be computed by a probabilistic automaton, which is done in the following
lemma.

Lemma 8. Any probability distribution on Σ∗ that can be computed by a WA with non
negative coefficients can be computed by a PA.

Proof. Let A = (Rn,α, {Aσ}σ∈Σ,ω) be a minimal WA computing a probability dis-
tribution, let v = (I −

∑
σ∈Σ Aσ)−1ω and let D = diag(v) be the diagonal matrix

defined by Dii = vi. Then the conjugate WA AD = (Rn,Dα, {D−1AσD}σ∈Σ,D−1ω)
is a PA that computes fA. Indeed, since A is minimal with non negative coefficients
D is invertible and non negative, and it is easy to check that AD has non negative
coefficients and that fAD = fA. Moreover, since α>v =

∑
w∈Σ∗ fA(w) = 1 we have

(Dα)>1 = α>v = 1, I −
∑
σ∈Σ D−1AσD = D−1(I −

∑
σ∈Σ Aσ)D is invertible and

(I−D−1∑
σ∈Σ AσD)−1(Dω) = D−1v = 1.

Combining the previous lemmas we obtain the following theorem.

Theorem 22. Any probability distribution on strings that can be computed by a weighted
automaton is equal to an algebraic mixture of at most two probabilistic automata.

This theorem shows that while WAs are strictly more expressive than PAs, the set
of probability distributions that can be computed by WAs can be obtained by simply
allowing algebraic mixtures of PAs. For recognizable probability distribution, allowing
negative weights in a weighted automaton is thus somehow equivalent to extending the
set of PAs by closure under algebraic mixtures. This also shows that algebraic mixtures
can be considerably more expressive than traditional mixtures (it is easy to check that a
classical mixture of two PAs can be computed by a PA).

5.3 Learning Algebraic Mixtures with Tensor Decomposition
We now propose an extension of the tensor method of moments described in Section 5.1.1
to algebraic mixtures. Similarly to the tensor method of moments for classical mixture
models, the first step consists in relating the mixing weights and parameters of an alge-
braic mixture to observable low order moments by the system of polynomial equations

M2 =
k∑
i=1

wiµi ◦ µi and M3 =
k∑
i=1

wiµi ◦ µi ◦ µi
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where the µi’s are the parameters of the components of the mixture and the wi’s are
the mixing weights, that may now be negative. Then, we need to solve this system of
equations to recover the parameters of the mixture. The fact that some of the wi’s may
be negative implies that the matrix M2 is not positive semi-definite anymore, which
prevents us from directly applying the power method proposed in (Anandkumar et al.,
2014). We propose an extension of this method to the case where some of the mixing
weights are negative. Our extension needs to use complex square roots of negative
real numbers and to introduce non-hermitian quadratic forms. Considering the model
of algebraic mixture of spherical Gaussians, we start by showing how the low-order
moments of an algebraic mixture exhibit a similar relation with the parameters of the
model to the one presented in (Hsu and Kakade, 2013).

5.3.1 Low-Order Moments of an Algebraic Mixture of Spherical
Gaussians

Let f(x) =
∑k
i=1wiN (x;µi, σ2

i I) be the PDF of the random vector x, where µi ∈ Rn
are the component means, σ2

i the component variances, and wi 6= 0 the coefficients
(
∑k
i=1wi = 1). Assuming that the component means are linearly independent, the

following theorem generalizes the results from Theorem 20 to algebraic mixtures of
spherical Gaussians.

Theorem 23. The average variance σ̄2 =
∑k
i=1wiσ

2
i is an eigenvalue of the covariance

matrix E[(x−E[x])(x−E[x])>]. More precisely, if r is the number of negative eigenvalues
of the matrix

M =
k∑
i=1

wi(µi − E[x]) ◦ (µi − E[x])

then σ̄2 is the (r+ 1)-th smallest eigenvalue of the covariance matrix. Furthermore, if l
is the number of negative coefficients wi, i.e. l = |{wi : i ∈ [k], wi < 0}|, then r is either
equal to l or l + 1.
Let v be any unit-norm eigenvector corresponding to σ̄2 and let

m1 = E[x(v>(x− E[x]))2], M2 = E[x ◦ x]− σ̄2I, and

M3 = E[x ◦ x ◦ x]−
d∑
i=1

[m1 ◦ ei ◦ ei + ei ◦m1 ◦ ei + ei ◦ ei ◦m1]

where e1, · · · , ed is the coordinate basis of Rd. Then,

m1 =
k∑
i=1

wiσ
2
iµi, M2 =

k∑
i=1

wiµi ◦ µi , and M3 =
k∑
i=1

wiµi ◦ µi ◦ µi.

Proof. The proof of this theorem is given in Appendix 5.B.

The arguments used to prove the relations between the low-order moments and the
tensors m1, M2 andM3 in the previous theorem are similar to the ones used in (Hsu
and Kakade, 2013). The main difficulty in extending this result to algebraic mixtures
is the identification of the position of the eigenvalue σ̄2 =

∑
iwiσ

2
i of the covariance
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matrix. Indeed, σ̄2 is still an eigenvalue of the covariance matrix, but it is not the first
one anymore, and the computation of the tensors m1, M2 and M3 depends on the
identification of an eigenvector of the covariance matrix associated with this eigenvalue.

5.3.2 Tensor Power Method for Complex-Valued Tensors

It follows from the previous theorem that, similarly to the classical mixture case, the
estimation of the components of the mixture can be reduced to solving a system of
polynomial equations. We now propose an extension of the tensor power method to
the case where the second order tensor M2 is not necessarily positive semi-definite. We
consider systems of the form

M2 =
k∑
i=1

wiµi ◦ µi and M3 =
k∑
i=1

wiµi ◦ µi ◦ µi (5.4)

where the vectors µ1, · · · ,µk ∈ Rd are linearly independent and w1, · · · , wk ∈ R are non
zero (but may be negative).

We will show how the parameters wi and µi can be recovered from M2 andM3 using
a power method for complex-valued tensors. Recall that the power method, on which the
tensor method of moments proposed in (Anandkumar et al., 2014) relies, first uses the
matrix M2 to obtain a whitening transformation of the tensor T admitting an orthonor-
mal decomposition. When M2 is not positive semi-definite, this whitening process will
result in a complex valued tensor admitting a pseudo-orthonormal decomposition (see
below), hence the need for a power method for complex-valued tensors.

Pseudo-Orthonormalization. We call a set {ν1, . . . ,νk} ⊂ Cd pseudo-orthonormal if
ν>i νj = δij for all i, j ∈ [k]. Note that for any ν = (ν1, . . . , νd) ∈ Cd, ν>ν = ν2

1 +. . .+ν2
d ∈

C and in particular, ν>ν 6= ||ν||22 = |ν1|2 + . . . + |νn|2. It can easily be checked that
a pseudo-orthonormal set is linearly independent. We say that a tensor decomposi-
tion T =

∑k
i=1 ziν

◦p
i of a complex-valued tensor T ∈ (Cd)⊗p is pseudo-orthonormal if

{ν1, . . . ,νk} is a pseudo-orthonormal set.
As in (Anandkumar et al., 2014), we build a whitening matrix W from M2, and we

use W to obtain a transformation of the tensor M3 admitting a pseudo-orthonormal
decomposition.

Identifying M2 with the symmetric rank-k matrix
∑k
i=1wiµiµ

>
i , let UDU> be the

eigendecomposition of M2, where D is the k × k diagonal matrix whose diagonal ele-
ments are composed of the k non-zero eigenvalues of M2 and where U is a d× k matrix
satisfying U>U = Ik and UU>µi = µi for any i ∈ [k]. Let W = UD− 1

2 ∈ Cd×k and

νi = w
1
2
i W>µi ∈ Ck for i ∈ [k] where we consider complex square roots of the negative

components of D and wi: x1/2 = i|x|1/2 and x−1/2 = (x1/2)−1 = −i|x|−1/2 if x < 0. We
have

k∑
i=1
νiν

>
i = W>

(
k∑
i=1

wiµiµ
>
i

)
W = W>M2W = Ik

hence ν>i νj = δij for all i, j ∈ [k]. Now let T =M3(W,W,W). It is easy to check that
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T admits the pseudo-orthonormal decomposition

T =
k∑
i=1

wi(W>µi)◦3 =
k∑
i=1

ziνi ◦ νi ◦ νi

where zi = w
− 1

2
i for all i ∈ [k].

Tensor Power Method. We now present a tensor power method for complex-valued
tensors admitting a pseudo-orthonormal decomposition. Note that the parameters of
such a decomposition are not fully identifiable since zν◦3 = (−z)(−ν)◦3. The following
theorem extends Lemma 5.1 of (Anandkumar et al., 2014). This theorem shows that
a couple (zi,νi) from a pseudo-orthonormal decomposition can be recovered using a
tensor power method for complex-valued tensors (with a quadratic convergence rate).

Theorem 24. Let T ∈ (Cd)⊗3 have a pseudo-orthonormal decomposition

T =
k∑
i=1

ziνi ◦ νi ◦ νi,

and let T be the mapping defined by T (θ) = T (I,θ,θ) for any θ ∈ Cd . Let θ0 ∈ Cd
and assume that |z1.ν

>
1 θ0| > |z2.ν

>
2 θ0| ≥ · · · ≥ |zk.ν>k θ0| > 0. For t = 1, 2, · · · , define

θt = T (θt−1)
[T (θt−1)>T (θt−1)]

1
2

and λt = T (θt,θt,θt) (5.5)

where we assume that θ0 is such that T (θt)>T (θt) 6= 0 for all t. Then, θt → ±ν1 and
λt → ±z1 as t→∞.

More precisely, let M = max
{

1, |z1|
2

|zi|2 , |z1|‖νi‖|zi| : i ∈ [k]
}

and εt = kM

∣∣∣∣∣z2.ν
>
2 θ0

z1.ν>1 θ0

∣∣∣∣∣
2t

.

Then for all t ≥ 2 such that εt < 1
2 , we have

|etftλt − z1| ≤ 7|z1|εt and ‖etftθt − ν1‖ ≤ εt
(
||ν1||+

√
2
)
,

where (et)t and (ft)t are two sequences defined in the proof and taking their values in
{−1, 1}.

Proof. The proof is given in Appendix 5.C.

This theorem directly yields an algorithm to recover the parameters of a pseudo-
orthonormal decomposition of a complex-valued tensor using the standard deflation
technique.

It can be shown that if θ0 is chosen at random in Cd, the assumptions on θt in the
previous theorem are satisfied with probability one. We give a proof in the following
lemma for the assumption T (θt)>T (θt) 6= 0, similar arguments can be used for the
assumption |z1.ν

>
1 θ0| > |z2.ν

>
2 θ0| ≥ · · · ≥ |zk.ν>k θ0| > 0.

Lemma 9. Using the definitions of Theorem 24, the set S = {θ0 ∈ Cd | ∃t ≥ 0 :
T (θt)>T (θt) = 0} has Lebesgue measure zero in Cd.
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Proof. We first define the sequence (θ̃t)t≥0 by θ̃0 = θ0 and θ̃t = T (θ̃t−1) for any t ≥
1 (i.e. the sequence generated by the power method without pseudo-normalization). We

have T (θt−1)>T (θt−1) =
(
θ̃
>
t−1θ̃t−1

)−2
θ̃
>
t θ̃t and one can check by induction on t ≥ 1

that θ̃t =
∑k
i=1 z

2t−1
i (ν>i θ0)2tνi, hence θ̃

>
t θ̃t =

∑k
i=1(z2t−1

i (ν>i θ0)2t)2 for all t ≥ 1. For
a given integer t, the set

St =
{
θ ∈ Cd : Pt(θ) ,

k∑
i=1

(z2t−1
i (ν>i θ)2t)2 = 0

}

is the set of zeros of a multivariate polynomial. If Pt is non-trivial (i.e. different from
zero), it is a proper algebraic subvariety of Cd of dimension less than n, thus of Lebesgue
measure 0 (Federer, 2014, Section 2.6.5). Since S = ∪∞t=0St, it is sufficient to show that
Pt is non-trivial for any index t.

Without loss of generality, we assume that there exists at least one i ∈ [k] such that
the first component (νi)1 of the vector νi is not null. Suppose that Pt is null, then
all of its monomials are null. In particular, the coefficient associated with θ2t+1−1

1 θj ,
which is proportional to

∑k
i=1 z

2t+1−2
i (νi)2t+1−1

1 (νi)j , is null for all j ∈ [n]. Let αi =
z2t+1−2
i (νi)2t+1−1

1 for i ∈ [k], and note that since zi 6= 0 for all i ∈ [k], we cannot have
all the αi equal to zero. Thus, we have

∑
i αi(νi)j = 0 for all j ∈ [n], i.e.

∑k
i=1 αiνi = 0

which is in contradiction with the linear independence of {νi}ki=1.

We can now state the following theorem, which summarizes the overall procedure to
recover the parameters of a system of the form (5.4) using pseudo-orthonormalization
and the complex tensor power method. Note that this procedure generalizes the one
proposed in (Anandkumar et al., 2014): if all the weights w1, · · · , wk are positive, the
method we propose boils down to theirs.

Theorem 25. Let µ1, · · · ,µk ∈ Rd be linearly independent vectors, let w1, · · · , wk ∈ R
be non-zero weights and let

M2 =
k∑
i=1

wiµi ◦ µi and M3 =
k∑
i=1

wiµi ◦ µi ◦ µi.

Let UDU> be the eigendecomposition of M2, let W = UD− 1
2 ∈ Cd×k and let (W>)+ =

UD 1
2 . Finally, let T = M3(W,W,W) ∈ Ck×k×k and let θ0 be drawn at random in

Ck.
Then, using the definitions of θt and λt in Eq. (5.5), we have

lim
t

1
λ2
t

= wj and lim
t
λt(W>)+θt = µj

with probability one, where j = arg maxi{
∣∣∣µ>i Wθ0

∣∣∣}.
Note that the indeterminacy on the sign of the coefficients in the pseudo-orthonormal

decomposition T =
∑k
i=1w

− 1
2

i

(
w

1
2
i W>µi

)◦3
vanishes when we recover the original pa-
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Algorithm 7 Power Method for Algebraic Mixture Estimation

Input: M̂2 ∈ Rd×d, M̂3 ∈ Rd×d×d and tolerance parameter ε
Output: w1, · · · , wk ∈ R, µ1, · · · ,µk ∈ Rd
1: Compute the eigen decomposition M̂2 = UDU>
2: W← UD− 1

2 ; T ← M̂3(W,W,W); i← 1
3: repeat
4: Draw θ at random in Cd
5: repeat
6: θ ← T (I,θ,θ); θ ← θ

(θ>θ)
1
2

7: until convergence
8: λ← T (θ,θ,θ); T ← T − λ.θ◦3
9: wi ← 1/λ2; µi ← λ(W>)+θ

10: i← i+ 1
11: until ‖T ‖ ≤ ε
12: return (w1,µ1), · · · , (wk,µk)

rameters wi and µi. The overall procedure to recover the parameters of the system (5.4)
from estimations of the tensors M2 andM3 is summarized in Algorithm 7.

The previous theorem, combined with Theorem 23, yields a procedure to estimate
the parameters of an algebraic mixture of spherical Gaussians: (i) compute the sample
covariance matrix S, (ii) for each candidate eigenvalue of S for σ̄2, estimate the tensors
m1, M2 and M3 on the data (see Theorem 23), (iii) compute estimations of the pa-
rameters using Algorithm 7, (iv) choose the model that maximizes the likelihood of the
learning data.

5.3.3 Avoiding Complex-Valued Tensors

We developed the method described in the previous section during the Fall 2013. We
became aware shortly after that an extension of the tensor power method to the case
where the matrix M2 is not positive semi-definite had been independently proposed
in (Zou et al., 2013) in the context of contrastive learning. The method they propose is
equivalent to the one we developed with the benefit of not having to deal with complex
tensors. It relies on iterating the map v 7→ M3(I,M+

2 v,M+
2 v) until convergence to

recover the first couple (wi,µi), and uses deflation to recover the remaining components
of the decomposition. Observe that the pseudo-inverse M+

2 has real coefficients. In
comparison, our method relies on iterating the map v 7→M3(W,Wv,Wv) where W
is the whitening matrix described above. As shown in the following proposition, it turns
out that these two methods are strictly equivalent, which comes from the fact that M+

2 =
WW>.

Proposition 18. Let M2 ∈ Rd×d andM3 ∈ Rd×d×d be the matrix and tensor defined in
Eq. (5.4). Let M2 = UDU> bet the eigendecomposition of M2 and let W = UD−1/2 ∈
Cd×d.
If F : Cd → Cd and G : Rd → Rd are the maps defined by

F : v 7→M3(W,Wv,Wv) and G : v 7→M3(I,M+
2 v,M+

2 v).
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then, F k(W>θ) = W>Gk(θ) for any θ ∈ Rd and any integer k ≥ 0.

Proof. This can be proved easily by induction on k. If k = 0 we have F 0(W>θ) =
W>θ = W>G0(θ). Suppose the result true for integers up to k− 1, then using the fact
that WW> = M+

2 we get

F k(W>θ) =M3(W,WF k−1(W>θ),WF k−1(W>θ))
=M3(W,WW>Gk−1(θ),WW>Gk−1(θ))
= W>M3(I,M+

2 G
k−1(θ),M+

2 G
k−1(θ))

= W>Gk(θ).

We conclude by mentioning alternative approaches to the tensor power method that
rely on simultaneous diagonalization/Schur decomposition methods (Kuleshov, Cha-
ganty, and Liang, 2015; Colombo and Vlassis, 2016). Note that connections between
tensor decomposition and simultaneous diagonalization had already been noticed in
earlier works (see e.g. De Lathauwer, 2006). These methods rely on the simple obser-
vation that for any vector v the projectionM3(v, I, I) =

∑k
i=1〈v,µi〉wiµiµ>i preserves

all the information about the parameters wi and µi. It the µi’s are orthonormal, then
the parameters of the decomposition can simply be recovered by performing an eigen-
decomposition of this matrix (Kolda, 2015). However, this method can be very sensitive
to noise and better robustness can be achieved by using simultaneous diagonalization
of random projections (Kuleshov, Chaganty, and Liang, 2015) or simultaneous Schur
decomposition of deterministic projections (Colombo and Vlassis, 2016). We think that
these methods could be applied to the case where some of the weights in (5.4) are neg-
ative without major modifications.

5.4 Experiments
In order to assess the performance of the tensor power method for algebraic mixtures,
we run experiments on synthetic data generated from the algebraic mixture of spherical
Gaussians presented in Figure 5.1.

First we run Algorithm 7 on the exact tensors M2 =
∑
iwiµiµ

>
i andM3 =

∑
iwiµi ◦

µi ◦ µi with various initializations of the initial vector θ0 to extract the first eigenvec-
tor/eigenvalue pair. The corresponding parameters wi and µi are always exactly recov-
ered in less than 10 iterations (which confirms the quadratic convergence rate of the
power method established in Theorem 24). The average over 500 initializations of the
recovery precision as a function of the number of iterations is plotted in Figure 5.3.
The recovery precision is evaluated by the norm ‖µi − µ̂i‖ and the absolute difference
|wi − ŵi| where µ̂i and ŵi are the estimators returned by Algorithm 7.

Then, we test our algorithm in a learning setting on a density estimation task. For
various sizes (ranging from 500 to 2,000,000), we generate a training data set using
Algorithm 6 and use the method described above to estimate the parameters of the
algebraic mixture of spherical Gaussians. This experiment is repeated 500 times. We
consider two settings for our algorithm (Algmix): in the first one we only estimate the
component means and weights of the mixture and use the true values for σ2

1 and σ2
2,

while in the second we estimate all the parameters of the model. We distinguish these

132



two cases to demonstrate that the estimation of the variance parameters is very sensitive
to noise for small sizes of the training data set.

We compare our method with the maximum likelihood method (ML) and the (stan-
dard) Gaussian mixture model with 2 and 4 components (GMM-2, GMM-4). The average
log-likelihood (over the 500 runs) on a test set of size 2,000 is plotted in Figure 5.4. For
small data sets, it sometimes happens that the tensor power method does not converge,
and that our method returns aberrant models. We used the following scheme to circum-
vent this issue: when the log-likelihood of ML on the training set was higher than the
one our algorithm returns, we used the maximum likelihood estimator instead. Note
that the number of times this workaround has to be used vanishes as the size of the
training data set grows.

We see that our method quickly outperforms the maximum likelihood baseline but that
it needs large sample sizes to outperform more elaborate baselines such as GMM-2 and
GMM-4. We also observe that the estimation of the variance parameters by the tensor
method of moments is very sensitive to noise for small sizes of the data sets. However,
as the sample size grows, using the true variance parameters or their estimation does
not lead to a significant difference.

5.5 Conclusion
In this chapter we introduced the notion of algebraic mixtures and the model of distorted
distribution and we showed that these two models are equivalent. Seeing algebraic
mixtures as distorted distributions allowed us to give some insight on the distributions
defined by algebraic mixtures: negative components of an algebraic mixture define re-
pulsive regions of the space from which samples drawn from the positive components
are more likely to be rejected. We proposed a general learning framework for algebraic
mixtures defined over families of distributions for which low order observable moments
are polynomials of the parameters of the model that can be recovered using tensor de-
composition techniques. We showed that the family of spherical Gaussian distributions
is such a family. The learning method we proposed generalizes the tensor method of
moments proposed in (Anandkumar et al., 2014), which is itself a special case of the
method of moments.

Experiments on synthetic data generated from an algebraic mixture showed that our
method performs well for large sample sizes but is sensitive to noise and thus performs
poorly for small sample sizes. In order to try to explain these results, we first observe an
artifact of the tensor method of moments and in particular of the tensor power method
on which it relies. Given the observable tensors M2 =

∑k
i=1wiµi ◦ µi ∈ Rd×d and

M3 =
∑k
i=1wiµi ◦µi ◦µi ∈ Rd×d×d, the tensor power method requires that the vectors

µi are linearly independent. If we consider a mixture of two Gaussians, this implies
that if the two component means are colinear, the method cannot be applied. How-
ever, we can always translate the data in such a way that the two component means
are orthogonal (assuming the means are not equal). In that case, the method can be
applied (moreover it will not need a whitening step which is particularly sensitive to
noise). Furthermore, the assumption on linear independence suggests that the com-
ponent means should not be too close to each other. While this seems reasonable for
traditional mixtures of Gaussian distributions (intuitively a mixture of two Gaussians
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Figure 5.3: Recovery precision of the first couple (wi,µi) as a function of the number of
iterations using Algorithm 7 on the exact tensors M2 andM3 (see Theo-
rem 25). The y-axis corresponds to |wi − ŵi| for the error between weights
and to ‖µi − µ̂i‖ for the mean error.

Figure 5.4: Log-likelihood of various estimator on a test set as a function of the training
set size. The different estimator are: maximum likelihood (ML), Gaussian
mixture model with 2 and 4 components (GMM-2 and GMM-4), the tensor
method of moments using the true variance parameters and the same method
using estimations of the variance parameters from the vector m1 defined in
Theorem 23.
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will be easier to learn if the component means are far from each other), it is the opposite
for an algebraic mixture of two Gaussians where one of the weights is negative: when
the component means are far away from each other, the variance of the negative com-
ponent must be very large and/or the corresponding negative weight must be close to
0. This makes the algebraic mixture difficult to distinguish from its positive component.
Thus the tensor method of moments may not be the more suitable learning method for
algebraic mixtures.

In the future, we plan to investigate an alternative approach to learn algebraic mix-
tures relying on the notion of distorted distributions. Recall that a distorted distribution
Df,φ is defined by the following sample process: first draw a point x from Df , and then
reject this point with probability φ(x). Let S0 be a sample drawn from Df,φ. It follows
that S0 can be interpreted as a sample drawn from Df from which some data is missing.
Suppose now that we know that Df comes from some class of distributions C (e.g. Df
is a Gaussian distribution) and that we have access to an algorithm A that can learn all
distributions in this class in an optimal way (e.g. the maximum likelihood estimator for
a Gaussian distribution). Applied to S0, the algorithm A outputs a distribution f0 that is
no more optimal. Then, one could use mixture proportion estimation theory (Blanchard,
Lee, and Scott, 2010; Sanderson and Scott, 2014; Scott, 2015) to estimate the propor-
tion of missing data α0. One could then estimate the distribution of the missing data in
a non parametric fashion by looking at the empirical distribution α−1

0 (f0 − (1− α0)m̂0)
where m̂0 is the empirical distribution of S0, and use this estimation to generate a new
sample S1 such that S0 ∪ S1 is closer than S0 to a "representative" sample of a distribu-
tion belonging to the class C. This procedure could then be iterated until some stopping
criterion. We think that this perspective on algebraic mixtures could lead to interest-
ing applications in missing data scenario where the data is missing not at random. One
example of such a scenario is the setting of sample selection bias (see e.g. Huang et al.,
2006) where the sample available for training is not representative of the population of
the test data because of a bias occurring during the sampling process. We think that the
mask component of a distorted distribution could modelize such a bias. Another exam-
ple is the problem of inference from presence-only data which is common in ecology. In
this setting the data available consists only in locations where the species was observed,
but the fact that the species was not observed in a location does not imply that it was not
there. The mask component of a distorted distribution could prove useful to modelize
this uncertainty on the presence of a species in a location where it was not observed.
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Appendix

5.A Recognizable Probability Distributions on Strings
Probabilistic automatas and HMMs define the same family of probability distributions
on strings (Dupont, Denis, and Esposito, 2005). All these distributions are recognizable
but the converse is false (Denis and Esposito, 2008). The simplest counter examples can
be built on a one-letter alphabet and a dimension equal to 3.

Let Σ = {a} be a one-letter alphabet. We define a parametrized family of WAs by

α =

 λ
0√
2λ

 ,A = ρ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,ω =

1
1
1


where λ > 0 and 0 < ρ < 1. Let p be the function computed by A. It can easily be seen
that

p(an) = ρn
√

2λ
(

cos (nθ − π/4) + 1)
)
≥ 0

for all n. We also have

∑
w∈Σ∗

p(w) = λ

(
1−
√

2ρ cos (θ − π/4)
1 + ρ2 − 2ρ cos θ +

√
2

1− ρ

)

and λ can always be chosen such that
∑
w∈Σ∗ p(w) = 1, i.e. such that p is a probability

distribution. It can be checked that the distribution p can be defined by a PA if and only
if the set {cos (nθ − π/4) : n ≥ 0} is finite. It can then easily be seen that p can be
defined by a PA if and only if θ/π ∈ Q. For example, if cos θ = 3/5, sin θ = 4/5, the
corresponding distributions cannot be computed by a PA.

If ρ = 0.5, we have λ = 13
6+26

√
2 and α ' [0.304, 0, 0.430]>. The construction described

in Section 5.2.3 yields the distributions p+ and p− respectively defined by the following
PAs:

α+ =


0.4015

0
0.5985

0
0

 , A+ =


0.300 0 0 0 0.173
0.302 0.3 0 0 0

0 0 0.5 0 0
0 0.7 0 0.3 0
0 0 0 0.7 0.300

 , ω+ =


0.527
0.398
0.5
0
0

 ,

α− =


0
0
1
0

 , A− =


0.300 0 0 0.173
0.302 0.3 0 0

0 0.7 0.3 0
0 0 0.7 0.300

 , ω− =


0.527
0.398

0
0

 ,
and the mixture parameters γ+ = 1.4364 and γ− = 0.4364.

If ρ = 0.75, the series p+ and p− computed by Lemma 7 do not converge. It is neces-
sary to compute a WA (Rn,α′, {A′},ω′) computing p such that the function computed
by the WA (Rn, |α′|, {|A′|}, |ω′|) is convergent. This can be achieved using techniques
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described in (Bailly and Denis, 2011). For example, we obtain the following WA

α′ =


1
0
0
0
0
0

 , A′ =


0 0.5675 0 0 0 0
0 0 0.7125 0 0 0
0 0 0 0.9566 0 0
0 0 0 0 0.9753 0
0 0 0 0 0 0.8334

0.5662 −0.1571 0 0 0 0.2750

 , ω
′ =


0.4325
0.2875
0.0434
0.0247
0.1666
0.3159


to which the construction described in Section 5.2.3 can be applied.

5.B Proof of Theorem 23
We will need the following results. The first one is a corollary of the Sylvester’s Law of
Inertia.

Lemma 10. Let Q ∈ Rn×n be a symmetric real matrix. Suppose that there exists a
non singular matrix P ∈ Rn×n and w1, . . . wn ∈ R such that Q = P>DP where D =
diag(w1, . . . , wn) is the diagonal matrix whose diagonal entries are w1, . . . , wn. Then,
the number of negative eigenvalues of Q is equal to the number of negative coefficients
wi.

Lemma 11. (Weyl’s Inequality) Let A and B be two n × n hermitian matrices. We
have σ1(A) + σi(B) ≤ σi(A + B) ≤ σn(A) + σi(B) for all i ∈ [n], where σi(M) denotes
the ith smallest eigenvalue of M.

We use the previous two lemmas to prove the following one which will be key in
proving Theorem 23.

Lemma 12. Let {vi}ki=1 be a linearly dependent family of vectors of Rn, where n ≥ k,
such that any of its subset of size k − 1 is linearly independent. We consider the rank
k − 1 matrix M =

∑k
i=1wiviv>i where w1, · · · , wk 6= 0. Let l be the number of negative

coefficients wi. Then the first null eigenvalue of M is either the lth or the (l + 1)-th
smallest one.

Proof. If l = 0, then M is positive semi-definite and σ1(M) = 0. If l = k, then M is
negative semi-definite and σk(M) = 0.
We suppose that 1 ≤ l ≤ k − 1. For 1 ≤ j ≤ k, let Mj =

∑
1≤i 6=j≤k wiviv>i and lj be

the number of negative coefficients in {wi}1≤i 6=j≤k. Let Vj be the vector space spanned by
{v1, . . . ,vj , . . . ,vk}, where the notation vj means that vj is omitted, and let V ⊥j be the
orthogonal subspace of Vj . Let νk, · · · ,νn be a linearly independent family of vectors in
V ⊥j and let P be the non singular n×n matrix [v1 · · · ,vj , · · · ,vk,νk, · · · ,νn]>. Clearly,

Mj = P>diag(w1, · · · , wj , · · · , wk, 0, · · · , 0)P

and therefore, from Lemma 10, lj is the number of negative eigenvalues of Mj .
For any j ∈ [k], we consider the decomposition M = wjvjv>j +Mj , sum of two hermi-

tian matrices. The first summand is a rank one matrix whose only non null eigenvalue
has the same sign as wj , and the second has k− 1 non zero eigenvalues, among which lj
are negative.
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Let j be an index such that wj < 0: from Weil’s inequality σi(M) ≤ 0 + σi(Mj) for
any i ∈ [n]. Since Mj has lj = l − 1 negative eigenvalues, M has at least l − 1 negative
eigenvalues.
Let j be such that wj > 0: Weil’s inequality gives σi(M) ≥ 0 +σi(Mj) for any i ∈ [n],

thus M has at least k − l − 1 positive eigenvalues, hence at most l negative ones.
Therefore, the first null eigenvalue of M must be either the lth or the (l+1)-th smallest

one.

Let f(x) =
∑k
i=1wiN (x;µi, σ2

i I) be the PDF of the random vector x, and let l be the
number of negative weights wi. We can now prove Theorem 23.

Theorem. The average variance σ̄2 =
∑k
i=1wiσ

2
i is an eigenvalue of the covariance

matrix E[(x−E[x])(x−E[x])>]. More precisely, if r is the number of negative eigenvalues
of the matrix

M =
k∑
i=1

wi(µi − E[x]) ◦ (µi − E[x])

then σ̄2 is the (r+ 1)-th smallest eigenvalue of the covariance matrix. Furthermore, if l
is the number of negative coefficients wi, i.e. l = |{wi : i ∈ [k], wi < 0}|, then r is either
equal to l or l + 1.
Let v be any unit-norm eigenvector corresponding to σ̄2 and let

m1 = E[x(v>(x− E[x]))2], M2 = E[x ◦ x]− σ̄2I, and

M3 = E[x ◦ x ◦ x]−
d∑
i=1

[m1 ◦ ei ◦ ei + ei ◦m1 ◦ ei + ei ◦ ei ◦m1]

where e1, · · · , ed is the coordinate basis of Rd. Then,

m1 =
k∑
i=1

wiσ
2
iµi, M2 =

k∑
i=1

wiµi ◦ µi , and M3 =
k∑
i=1

wiµi ◦ µi ◦ µi.

Proof. Most of the proof of this theorem for usual Gaussian mixtures in (Hsu and
Kakade, 2013) relies on the introduction of a discrete latent variable h: the sampling pro-
cess is interpreted as first sampling h with P[h = i] = wi, and then sampling x = µh+zh
where zh is a multivariate Gaussian with mean 0 and covariance σ2

hI. Allowing nega-
tive weights in the mixture, we cannot use the same strategy, but it will be sufficient
to observe that E[g(x)] =

∑k
i=1wi E[g(µi + zi)] for any function g, which is a direct

consequence of the linearity of the expectation.
First, we need to identify the position of σ̄2 in the covariance matrix. Let µ̄ = E[x] =∑k
i=1wiµi. The covariance matrix of x is

E[(x− µ̄) ◦ (x− µ̄)] =
k∑
i=1

wi(µi − µ̄) ◦ (µi − µ̄) + σ̄2I.

Since the µi’s are linearly independent, F = {µi−µ̄}ki=1 is a linearly dependent family
of vectors of Rn such that any of its subset of size k−1 is linearly independent. It follows
from Lemma 12 that 0 is either the lth or (l + 1)-th smallest eigenvalue of the matrix
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∑k
i=1wi(µi− µ̄) ◦ (µi− µ̄), which implies that σ̄2 is the corresponding eigenvalue in the

covariance matrix.
Note that the strict separation of σ̄2 from the other eigenvalues in the covariance ma-

trix implies that every eigenvector corresponding to σ̄2 is in the null space of
∑k
i=1wi(µi−

µ̄) ◦ (µi − µ̄), hence v>(µi − µ̄) = 0 for all i ∈ [k].
We now express m1, M2 andM3 in terms of the parameters wi, σ2

i and µi. First,

m1 = E[x(v>(x− E[x]))2]

=
k∑
i=1

wi E[(µi + zi)(v>(µi − µ̄+ zi))2]

=
k∑
i=1

wi E[(µi + zi)(v>zi)2] =
k∑
i=1

wiσ
2
iµi.

Next, since E[zi ◦ zi] = σ2
i I for all i ∈ [k], we have

M2 = E[x ◦ x]− σ̄2I

=
k∑
i=1

wi E[(µi + zi) ◦ (µi + zi)]− σ̄2I

=
k∑
i=1

wi(µi ◦ µi + E[zi ◦ zi])− σ̄2I =
k∑
i=1

wiµi ◦ µi.

Finally, writing zij for the jth component of the vector zi, we have

k∑
i=1

wi E[µi ◦ zi ◦ zi] =
k∑
i=1

wi

n∑
p=1

n∑
q=1

E[zipziq]µi ◦ ep ◦ eq

=
k∑
i=1

wiσ
2
i

n∑
j=1
µi ◦ ej ◦ ej

=
n∑
j=1

m1 ◦ ej ◦ ej ,

where we used the fact that E[zipziq] = δpqσ
2
i for all i ∈ [k], p, q ∈ [n]. Using the same

derivation, we have
∑k
i=1wi E[zi ◦µi ◦zi] =

∑n
j=1 ej ◦m1 ◦ej and

∑k
i=1wi E[zi ◦zi ◦µi] =∑n

j=1 ej ◦ ej ◦m1. Hence,

E[x◦3] =
k∑
i=1

wi
(
µ◦3i + E[µi ◦ zi ◦ zi] + E[zi ◦ µi ◦ zi] + E[zi ◦ zi ◦ µi]

)

=
k∑
i=1

wiµ
◦3
i +

n∑
j=1

(m1 ◦ ej ◦ ej + ej ◦m1 ◦ ej + ej ◦ ej ◦m1)

andM3 =
∑k
i=1wiµi ◦ µi ◦ µi.
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5.C Proof of Theorem 24
Theorem. Let T ∈ (Cd)⊗3 have a pseudo-orthonormal decomposition T =

∑k
i=1 ziν

◦3
i ,

and let T be the mapping defined by T (θ) = T (I,θ,θ) for any θ ∈ Cd . Let θ0 ∈ Cd,
suppose that |z1.ν

>
1 θ0| > |z2.ν

>
2 θ0| ≥ · · · ≥ |zk.ν>k θ0| > 0. For t = 1, 2, · · · , define

θt = T (θt−1)
[T (θt−1)>T (θt−1)]

1
2

and λt = T (θt,θt,θt) (5.6)

where we assume that θ0 is such that T (θt)>T (θt) 6= 0 for all t. Then, θt → ±ν1 and
λt → ±z1 as t→∞.
More precisely, let

M = max
{

1, |z1|2

|zi|2
, |z1|

‖νi‖
|zi|

: i ∈ [k]
}

and εt = kM

∣∣∣∣∣z2.ν
>
2 θ0

z1.ν>1 θ0

∣∣∣∣∣
2t

.

Then for all t ≥ 2 such that εt < 1
2 , we have

|etftλt − z1| ≤ 7|z1|εt and ‖etftθt − ν1‖ ≤ εt
(
||ν1||+

√
2
)
,

where (et)t and (ft)t are two sequences defined in the proof and taking their values in
{−1, 1}.

Proof. Let us first define the square root of a complex number z = reiθ, where −π <

θ ≤ π and r ≥ 0, by z1/2 = r1/2ei
θ
2 , and note that z/(z2)1/2 = z−1(z2)1/2 = 1 if

−π/2 < θ ≤ π/2 and −1 otherwise.
Now, let ci = ν>i θ0 for i ∈ [k], θ̃0 = θ0, θ̃t = T (θ̃t−1), and ρt = (θ̃>t θ̃t)

1
2 for all t ≥ 1.

Check by induction on t that, for all t ≥ 1,

θ̃t =
k∑
i=1

z2t−1
i c2t

i νi. (5.7)

Let et = ρt+1ρ
−2
t /

(
ρ−4
t ρ2

t+1

) 1
2 , note that et = ±1, and check by induction that, for all

t ≥ 2,

θt = et
θ̃t
ρt
. (5.8)

Let αt = ρ−1
t z2t−1

1 c2t
1 . Using Eq. (5.7) and Eq. (5.8), we obtain

etλt = ρ−3
t

k∑
i=1

zi(z2t−1
i c2t

i )3 = α3
t

k∑
i=1

z3
1
z2
i

(
zici
z1c1

)3 · 2t
= α3

t z1

[
1 +

k∑
i=2

z2
1
z2
i

(
zici
z1c1

)3 · 2t]
, and

etθt = ρ−1
t

k∑
i=1

z2t−1
i c2t

i νi = αt

k∑
i=1

z1
zi

(
zici
z1c1

)2t

νi = αt

[
ν1 +

k∑
i=2

z1
zi

(
zici
z1c1

)2t

νi

]
.
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It can easily be checked that∣∣∣∣∣
k∑
i=2

z2
1
z2
i

(
zici
z1c1

)3 · 2t∣∣∣∣∣ ≤ εt and
∥∥∥∥∥
k∑
i=2

z1
zi

(
zici
z1c1

)2t

νi

∥∥∥∥∥ ≤ εt.
Moreover, it can be checked that

α−1
t = (θ̃>t θ̃t)1/2

z2t−1
1 c2t

1
= ft

 θ̃
>
t θ̃t

(z2t−1
1 c2t

1 )2

1/2

= ft

[
1 +

k∑
i=2

z2
1
z2
i

(
zici
z1c1

)2t+1]1/2

where ft = (z2t−1
1 c2t

1 )−1
(
(z2t−1

1 c2t
1 )2

) 1
2 = ±1. Using the hypothesis εt < 1

2 and making
use of Lemma 13 below, it follows that

|αt| ≤
√

2, |ftαt − 1| ≤ εt and |ftα3
t − 1| ≤ 4εt.

Finally, combining these inequalities, we obtain

|etftλt − z1| ≤ 7|z1|εt and ‖etftθt − ν1‖ ≤ εt
(
||ν1||+

√
2
)
.

Lemma 13. Let k > 0 and z ∈ C such that |z| < 1/2. Then,

|(1 + z)−k − 1| ≤ 2|z|(2k − 1).

In particular,
|(1 + z)−1/2 − 1| ≤ |z| and |(1 + z)−3/2 − 1| ≤ 4|z|.

Proof. Let f(z) = (1 + z)−k − 1 with k > 0 and |z| < 1/2. The derivative of f is given
by f ′(z) = −k(1 + z)−(k+1). Let γ : [0, 1] 7→ C be defined by γ(t) = tz. We have

(1 + z)−k − 1 =
∫
γ
f ′(y)dy =

∫ 1

0
f ′(γ(t))γ′(t)dt

= −kz
∫ 1

0
(1 + tz)−(k+1)dt.

Therefore,

|(1 + z)−k − 1| ≤ k|z|
∫ 1

0
(1− t|z|)−(k+1)dt

= [(1− t|z|)−k]10 = (1− |z|)−k − 1
≤ 2|z|(2k − 1).

Indeed, let g(x) = (1− x)−k − 1− 2x(2k − 1). It can be checked that g(0) = g(1/2) = 0
and that g is convex on [0, 1/2].
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Conclusion and Perspectives

In this thesis, we presented our contributions to address four distinct problems related
to different topics including weighted automata theory, model reduction, structured re-
gression and density estimation. Even though these problems are in essence mostly
unrelated, they were all initially motivated from a machine learning perspective with
the idea to leverage tensors and multilinear algebra tools in mind. Before trying to give
a broader perspective on the works gathered in this manuscript, we first summarize our
contributions and present open problems and future lines of research.

Chapter 2. Our initial motivation for this work was to design learning algorithms for
functions defined on graphs. Inspired by the mathematical elegance of the spectral
method to learn weighted automata on strings and trees introduced in (Bailly, Denis, and
Ralaivola, 2009; Balle et al., 2014; Hsu, Kakade, and T. Zhang, 2008; Bailly, Habrard,
and Denis, 2010), our first step was to try to extend the algebraic definition of weighted
automata on which the spectral method relies to graphs. Using tensor networks to give
a straightforward insight on the connection between the computation of a weighted
automaton and the structure of its input, we revealed a natural extension of weighted
automata to labeled graphs: Graphs Weighted Models (GWMs). In order to legitimate
this model as a valid and promising computational model on graphs, we studied on
which conditions it satisfies desirable properties such as closure under basic operations
and recognizability of finite support functions.

In the last section of this chapter, we came back to our original motivation and con-
sidered the problem of learning GWMs defined over the simple family of circular strings.
Even though we showed that it is possible to learn a function computed by a GWM on
circular strings using e.g. the classical spectral method for string weighted automata, re-
covering the parameters of a GWM computing this function is a far less trivial task. We
proposed a learning algorithm relying on tensor decomposition techniques that directly
tries to learn a GWM from a set of labeled examples, but it relies on the assumption
that the GWM used to generate the data is of full rank (i.e. the matrices associated with
each symbol generate the full matrix algebra). The question of whether the method
we propose could be extended to the case where the GWM is not of full rank remains
open. Another open problem is the following: on which conditions a real valued func-
tion computed by a GWM with complex coefficients can be computed by a GWM with
real coefficients? We conjectured in this chapter that a sufficient condition would be to
consider GWMs defined on a family of in-out graphs.

There are several general lines of research that we find both promising and excit-
ing as continuations of this work (of course the ideas listed below are not exhaustive).
First, some real-valued functions defined on graphs that are particularly relevant to
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machine learning are probability distributions. A study of GWMs from this perspec-
tive would be of great interest and could start with some simple problems: how can
we construct GWMs computing probability distributions? For circular strings, choos-
ing all the matrices {Mσ}σ∈Σ of the GWM with non negative coefficients and such that
Tr[(I −

∑
σ Mσ)−1] = 1 would be sufficient, but there certainly exist GWMs computing

probability distributions that do not satisfy these properties. And what about GWMs
defined over other families of graphs? Another interesting question naturally arises:
given a GWM computing a probability distribution how can we draw samples from this
distribution? We plan to investigate these questions in the near future.

A second line of research that we already mentioned in the conclusion of this chapter
is to design learning algorithms for richer families of graphs than the one of circular
strings. We think that since the family of rooted in-out graphs exhibits a lot of good
properties, studying the learnability of GWMs defined over this family is a reasonable
long term objective. A first step that we are currently investigating is to derive a learning
algorithm for picture weighted automata, i.e. GWMs defined on 2d-words. Studying the
notion of minimality and the equivalence problem for GWMs is also a very fundamental
direction that deserves interest and that is certainly connected to the question of learn-
ing GWMs (see Maruvsic and Worrell (2015) for connections between minimization,
equivalence and learning for weighted tree automata).

Lastly, this chapter presented an intrinsic connection between tensor networks and
weighted automata and we strongly believe that tensor networks are a powerful tool
that deserves a great attention from the machine learning community. Besides their abil-
ity to visually depict complex operations on tensors, tensor networks are at the core of
powerful tensor decomposition techniques such as hierarchical Tucker and tensor train
decompositions. Moreover, they have been used by the physics community for some
time now and several optimization algorithms have been developed and are available.
This last line of research is quite general and could be summarized as developing effi-
cient machine learning algorithms relying on the power of tensor networks. The very
recent work presented in (Stoudenmire and Schwab, 2016) is a good illustration of what
kind of ideas we would like to develop in the future: in this paper the authors adapt al-
gorithms for optimizing tensor networks to a supervised learning setting using matrix
product trains (i.e. tensor train format) to parameterize the model.

Chapter 3. In this chapter we tackled a model reduction problem by proposing a prin-
cipled way to reduce the size of a weighted tree automaton. This problem is deeply
connected to the spectral learning method for weighted automata. Indeed, in the case
of a weighted automaton computing a probability distribution, the spectral method con-
sists in first estimating the Hankel matrix from a finite sample drawn from the distri-
bution and then applying basic linear algebra operations on this estimate to compute
a weighted automaton approximating the original function. Given a target number of
states n, the spectral method boils down to finding a low rank approximation of the
estimated Hankel matrix (of rank n) and then performing a linear regression to recover
the parameters of a model whose Hankel matrix is close to the low rank projection of
the estimate. In practice the Hankel matrix will have a finite size, say M ×M , and will
always be of full rank. Roughly speaking, one can think of the empirical distribution
of the observed data as a function computed by an automaton Â with M states and
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learning is achieved by trying to find an automaton with n states computing a function
that is close to the empirical distribution, i.e. a good approximation of the automaton
Â. Thus learning a weighted automaton from training data can be seen as performing
an approximate minimization of this (fictive) empirical automaton Â.

The method we proposed generalizes the method proposed in (Balle, Panangaden,
and Precup, 2015) and the principal difficulty resided in the approximation of the Gram
matrices associated with a rank factorization of the Hankel matrix: while these matrices
were defined by a linear system of equations having an analytic solution in the string
case, they are defined by a system of polynomial equations in the tree case. Using results
from fixed point theory we designed an efficient algorithm to approximate these Gram
matrices in the tree case. This shift from a linear system to a polynomial one comes
from the fact that the computations of a WA boil down to matrix products whereas the
WTA computations relies on higher order tensor contractions. This shows once again
that problems often get considerably more difficult when going from matrices to higher
order tensors.

In our experimental studies we observed that our method obtains very good results
in terms of perplexity and `2 distance but that it does not perform as well on the pars-
ing task. In the future, we would like to better understand this behavior and hopefully
find possible modifications to improve the parsing accuracy. Promising directions in-
clude trying to preserve sparsity throughout the approximate minimization process and
combining our method with existing ones. In (Narayan and Cohen, 2016), the authors
propose to use search algorithms to optimize spectral learning of latent probabilistic
context free grammar for parsing. Even though in their case the optimization concerns
the estimation of the number of latent states, a similar idea of looking for optimizations
specifically designed for the parsing task could be an interesting direction.

From a theoretical point of view, the approximation bound we provided seems quite
loose (especially in comparison with the bound obtained in the string case) and we
will keep on trying to get better theoretical guarantees in the future. Since directly
extending the proof techniques used in (Balle, Panangaden, and Precup, 2015) does not
seem possible, we think that getting a bound on the `2 distance between the original
function and its approximation could shed a new light on the string case (indeed WTAs
are a generalization of string weighted automata and a bound in the tree case would
directly imply one for the string case).

Another line of research we would like to investigate is related to representation learn-
ing. The algebraic representation of a weighted automaton naturally induces an embed-
ding of the inputs (strings or trees) into a finite dimensional vector space. In the case
of trees, WTA induces a joint embedding space for trees and contexts and we think that
this representation space could be useful to tackle machine learning tasks. For example,
would it be possible to learn a binary classifier on the space of trees by first finding an
appropriate WTA, and then learning a linear classifier in the representation space in-
duced by this WTA? Note that we already considered a related problem in a prior workd

(Rabusseau and Denis, 2014) where we showed that this representation space can be
leveraged to find a tree maximizing a given WTA.

dThis work was realized during my Master degree and has not been included in this thesis.
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Chapter 4. In this chapter, we considered a regression task for tensor structured out-
puts. An example of such a task is the spatio-temporal forecasting task where the out-
puts consist in different variables measured in different locations; in this example the
outputs can naturally be structured as 2-dimensional arrays. The algorithm we proposed
to tackle this task (HOLRR) is a generalization of the reduced rank regression method
that learns a linear vector-valued function by minimizing the squared error on the train-
ing data while enforcing a low rank constraint on the regression matrix. The low rank
constraint encourages collaboration between the regression functions associated to the
different components of the vector output. In order to take into account the tensor
structure of the outputs we replaced this matrix rank constraint by a multilinear rank
constraint on the regression tensor. At this point the problem we consider is the min-
imization of a least square criterion under a multilinear rank constraint. This problem
had already been considered in (Romera-Paredes et al., 2013) in the context of multilin-
ear multitask learning where the authors proposed two approaches: the first one relies
on a convex regularization of the problem using the trace norm of the matricizations of
the regression tensor, and the second one directly tackles the non-convex problem using
an alternating gradient descent method. While the second approach led to better predic-
tive performances it is computationally very expensive and is only guaranteed to return
a local minimizer of the objective function (without approximation guarantees). Our
primary objective for this work was to directly tackle the non-convex problem (without
using a convex relaxation) and to provide an efficient algorithm while still being able
to provide theoretical guarantees. We proposed a method that achieves this objective:
HOLRR offers approximation and statistical guarantees and our complexity analysis and
experiments showed that it is an efficient algorithm. We managed to design such an al-
gorithm by reducing the initial problem to a multilinear subspace identification problem
for which we provided a sound approximation strategy. However, these achievements
came with a price: HOLRR is limited to the squared error loss, and in the case where
both inputs and outputs are tensors (such as the spatio-temporal forecasting task) it is
not yet able to leverage the tensor structure of the inputs. Furthermore, the formulation
of the problem we obtain with the squared error loss assume that all the components of
the output tensors are known at training time, which is not the case in the multilinear
multitask setting. In this setting, the inputs are feature vectors (e.g. characteristics of a
restaurant) and the components of the outputs correspond to different tasks that can be
naturally arranged as a tensor (e.g. ratings from three different critics on three different
criteria such as food quality, host and price); for each input in the training data only a
few tasks may been known (e.g. only two critics went to one of the restaurants).

A direct continuation of this work would consist in trying to circumvent these limita-
tions: extend HOLRR to other losses (in particular the weighted square loss which would
allow us to apply HOLRR in the multilinear multitask setting), and extend HOLRR to the
setting where the regression tensor is of low multilinear rank on both the inputs and out-
puts modes. Trying to derive an alternative extension of HOLRR to the non linear setting
by taking a multilinear perspective on the operator-valued kernel framework is also an
interesting direction. Concerning the theoretical analysis of HOLRR, we want to go
further than the consistency result we provided in this chapter by deriving sample com-
plexity bounds, and we would like to show that HOLRR provides better convergence
rates than the regularized least square or the reduced rank estimators when the true
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regression tensor is of low multilinear rank (which is verified by simulations).
A more general line of research we want to pursue is related to the notions of rank

and regularization. We chose to use a multilinear rank constraint in this chapter mainly
because it allowed us to obtain good approximation guarantees inspired from the ones
provided by the HOSVD algorithm. However, other choices would have been possible: a
constraint on the CP-rank, on the rank induced by a tensor train decomposition, or more
generally by enforcing any kind of structural constraints on the regression tensor (e.g.
hierarchical tucker, tensor ring decomposition (Zhao et al., 2016), etc.). We plan to
develop a theoretical study of the regularization power of these different notions of
rank. To begin with, the generalization bound provided in this chapter could easily be
adapted to other notions of ranks using the same techniques based on the notion of
pseudo-dimension. Assuming that we manage to design efficient algorithms to tackle
the problem using other forms of low rank constraints, we would like to perform an
empirical study of these different tensor rank regularizations on real world data sets.
This may confirm our intuition that different kinds of tensor rank regularization could
be more adapted to different data sets.

Chapter 5. In this chapter, we introduced the notion of algebraic mixture models:
probability distributions that can be expressed as a weighted sum of distributions f =
w1f1+· · ·+wkfk where some of the weightswi may be negative. The starting point of this
work was in some sense the fundamental relation between probabilistic automata (PA)
and weighted automata (WA) that we showed in this chapter: any WA can be expressed
as an algebraic mixture of two PAs. It is this uncanny relation that led us to study this
unusual model of distributions. Unlike classical mixture models that have a natural in-
terpretation in terms of latent variable models, algebraic mixtures cannot be interpreted
from this point of view. However, we showed that algebraic mixtures can be seen as dis-
torted distributions where the positive components of the mixture act as an underlying
true distribution, while the negative components act as a mask that will retain samples
drawn from the positive components. In this sense algebraic mixtures could be relevant
to missing data scenarios where the data is missing not at random, such as selection
bias. This is one of the future line of research that we want to develop. In particular
we would like to investigate other learning approaches than the one proposed in this
chapter, which would try to leverage the idea that data is missing from the training set.
One such idea would be to estimate the distribution of this missing data, which should
be possible if we have some prior knowledge on the underlying true distribution.

The fact that algebraic mixtures are not latent variable models prevented us from ap-
plying the Expectation-Maximization algorithm that is commonly used to learn classical
mixture models. However, the tensor method of moments proposed in (Anandkumar
et al., 2014) to learn mixture models did not fundamentally rely on the fact that mixture
models are latent variable models, and thus looked like a pertinent starting point to de-
sign a learning algorithm for algebraic mixtures. We extended their method to the case
of algebraic mixtures and we showed in particular how this approach can be applied to
the problem of learning algebraic mixtures of spherical Gaussians. However, the simula-
tion study we provided in this chapter for the problem of learning an algebraic mixture
of two 2-dimensional spherical Gaussians showed that the tensor method of moments
requires the size of the training sample to be very large to outperform baselines such
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as the classical Gaussian Mixture Model. This is comparable to the spectral learning
method for weighted automata that often struggles to outperform the EM algorithm. In
the future, we would like to try to better understand this behavior in order to improve
the quality of the estimator returned by spectral methods on small training samples. One
reason that may cause this lack of robustness may be that spectral methods rely on the
estimation of eigenvectors that are sometimes associated with very small eigenvalues,
which is known to be sensitive to noise. Exploring techniques relying on simultaneous
diagonalization or triangularization such as the ones proposed in (Kuleshov, Chaganty,
and Liang, 2015) and (Colombo and Vlassis, 2016) could be a promising direction to
try to improve the spectral method for learning weighted automata, which we plan to
pursue.

To conclude, we will now briefly try to give a broader perspective on the works gath-
ered in this manuscript. We started by observing that classical methods and models
in machine learning often rely on linear algebra tools and that extending these meth-
ods/models to the multilinear setting is both a challenging and rewarding task that is
currently actively pursued by the machine learning community. Tensors and multilinear
algebra are indeed powerful tools and independent research on these topics is also very
active in other communities (e.g. physics, biology, neuro-sciences, etc.). Trying to gather
and give a unifying view of the methods developed in these communities and of their
relevance to machine learning is a vast and promising line of research. For example, the
algorithms used in physics to manipulate tensor networks could be of great interest to
the machine learning community. However, we saw that the power of tensors and multi-
linear algebra comes with a price: most problems related to tensors are NP-hard (Hillar
and Lim, 2013), and going from matrices to tensors often implies going from problems
with a closed form solution to intractable ones for which only approximate solutions can
be found. Nonetheless, the recent advances on tensor decomposition techniques and the
availability of more and more computing resources make it nowadays possible to de-
sign efficient algorithms relying on tensors and on fundamental tools from multilinear
algebra.

The works presented in this thesis offered different perspectives on these considera-
tions. We showed in Chapter 2 that tensor networks, which are mainly used in physics
and numerical analysis, can be relevant to formal language theory and machine learn-
ing by proposing a natural computational model on graphs fundamentally relying on the
tensor network formalism. In Chapter 3, we considered a model reduction technique for
weighted tree automata and we showed that even though going from strings to trees (i.e.
from matrices to tensors) implied going from a linear to a polynomial system of equa-
tions, approximation algorithms can be designed to still address the problem in an ef-
ficient way. Similarly in Chapter 4 we obtained an efficient approximation algorithm
for the NP-hard tensor counterpart to the reduced rank regression problem. We also ex-
hibited in this chapter the benefits of using tensor rank regularization instead of matrix
rank regularization when the problem at hand involves tensor structured data. Finally
in Chapter 5, we showed that tensor methods can be used to derive learning schemes for
algebraic models (e.g. mixtures with negative weights) that cannot be naturally handled
with traditional learning algorithms that rely on e.g. positiveness assumptions such as
the Expectation-Maximization algorithm. Overall, we showed that tensors are powerful
tools that can be used to design expressive computational models, that they allow one to
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take into account the underlying structure of data arising in multivariate analysis, and
that their algebraic nature can prove useful to elaborate learning schemes for models
relying on algebraic structures (such as algebraic mixtures or graph weighted models on
circular strings).

More generally, we think that a lot remains to be done in the exploration of the fruitful
relations between tensors and machine learning, and that machine learning will greatly
benefit from using tensors and multilinear algebra in the following years. Understand-
ing the regularization ability of the various notions of tensor ranks, designing efficient
learning algorithms relying on tensor decomposition techniques and tensor networks,
combining the powers of tensors and kernels to bring non linearity in multilinear mod-
els, leveraging tensor methods to derive learning schemes relying on algebraic geometry,
using the quantum physics theoretical tools relying on tensors to develop quantum ma-
chine learning algorithms, etc., these are all exciting directions that may bring further
the power of tensors and multilinear algebra to machine learning. And who knows, the
next revolution in machine learning may come from tensors.
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