Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning Mila Université

Guillaume Rabusseau^{*†§} Tianyu Li^{*‡} Doina Precup^{*‡§}

* Mila [†] Université de Montréal [‡] McGill University [§] Canada CIFAR AI Chair

Introduction

• Sequence data is ubiquitous in computer science and machine learning.

de Montréal

Result 1

WAs are expressively equivalent to second-order linear RNNs for computing functions over *sequences of discrete* symbols.

Weighted Automata

Operator Representation

Example with 2 states and alphabet $\Sigma = \{a, b\}$

Hankel Matrix Recovery from Linear Measurements

Choosing $\mathcal{P} = \mathcal{S} = [d]^L$, we need to estimate the Hankel matrix $\mathbf{H} \in R^{d^L \times d^L}$ defined by

 $\mathbf{H}_{i_1i_2\cdots i_L, j_1j_2\cdots j_L} = f(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_L}, \mathbf{e}_{j_1}, \dots, \mathbf{e}_{j_L})$

 \hookrightarrow How to estimate **H** from input-output examples?

Given an input sequence $(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{2L})$ and its output $y \simeq f(\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_{2L})$ we have

• Weighted Automata (WAs): **tractable** models for sequences of *discrete* data Vs. RNNs: powerful and

- expressive models.
- This work: connecting WAs and RNNs for fun and profit.

Overview of the Results

- We show the exact equivalence of WAs and 2nd order RNNs (2-RNNs) with linear activation functions.
- This leads to a natural extension of WAs for sequences of continuous vectors.
- We extend the spectral learning algorithm for WAs: First provable learning algorithm for linear 2-RNNs.

Recurrent Sequential Models

- A recurrent sequential model maps sequences of inputs to sequences of outputs

 $f(ab) = 0.4 \times 0.3 \times 0.6 + 0.2 \times 0.1 \times 0.6 = 0.084$

 $= \boldsymbol{\alpha}_{0}^{\top} \mathbf{A}_{a} \mathbf{A}_{b} \boldsymbol{\alpha}_{\infty}$

Learning Weighted Automata

The Hankel matrix $\mathbf{H}_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$ associated with a function $f: \Sigma^* \to \mathbb{R}$ is defined by $(\mathbf{H})_{u,v} = f(uv)$ for all $u, v \in \Sigma^*$.

	-	a	b	aa				b	aa	
	a	$\int f(aa)$	f(ab)	• • •	• • •	a	$\int f(a\sigma a)$	$f(a\sigma b)$	• • •]
	b	f(ba)	f(bb)	•••	•••	b	$f(b\sigma a)$	$f(b\sigma b)$	• • •	
$\mathbf{H} =$	aa	f(aaa)	f(aab)	• • •	• • •	$\mathbf{H}^{\sigma}=~aa$	$\int f(aa\sigma a)$	$f(aa\sigma b)$	• • •	•••
	ab	:	:	:	:	ab	:	:	:	:
	:	:	:	:	· · .	:		:	:	· · .

Theorem [Fliess, 1974] For any function $f : \Sigma^* \to \mathbb{R}$, $rank(\mathbf{H}_{f})$ is finite iff f can be computed by a WA.

Spectral learning of WAs (in a nutshell)

$$y \simeq \sum_{i_1, \cdots, i_{2L}} [\mathbf{x}_1]_{i_1} \dots [\mathbf{x}_{2L}]_{i_{2L}} f(\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_{2L}})$$
$$= (\mathbf{x}_1 \otimes \dots \otimes \mathbf{x}_{2L})^\top \operatorname{vec}(\mathbf{H})$$

 \Rightarrow Each input-output example is a linear measurement of **H**.

Learning Algorithm

- **Input:** Three training datasets D_L , D_{2L} , D_{2L+1} with input sequences of length L, 2L and 2L+1 respectively. Number of states n.
- 1: for $l \in \{L, 2L, 2L+1\}$ do
- 2: From $D_l = \{((\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, \cdots, \mathbf{x}_l^{(i)}), y^{(i)})\}_{i=1}^{N_l} \subset$ $(\mathbb{R}^d)^l \times \mathbb{R}$ build

$$\mathbf{X} = \begin{bmatrix} (\mathbf{x}_1^{(1)} \otimes \mathbf{x}_2^{(1)} \otimes \cdots \otimes \mathbf{x}_l^{(1)})^\top \\ \vdots \\ (\mathbf{x}_1^{(N)} \otimes \mathbf{x}_2^{(N)} \otimes \cdots \otimes \mathbf{x}_l^{(N)})^\top \end{bmatrix} \quad \mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(N)} \end{bmatrix}$$
$$\mathbf{H}^{(l)} = \arg\min_{\mathbf{H}} \|\mathbf{X} \operatorname{vec}(\mathbf{H}) - \mathbf{y}\|_F^2$$

4: end for

5: Rank n factorization and parameter estimation:

 $x_1, x_2, \dots, x_k \in \mathcal{X} \quad \stackrel{f}{\longmapsto} \quad y_1, y_2, \dots, y_k \in \mathcal{Y}$ by computing a sequence of hidden/latent vectors

 $\mathbf{h}_1, \mathbf{h}_2, \cdots, \mathbf{h}_k \in \mathbb{R}^n, \qquad \mathbf{h}_t = \phi(\mathbf{h}_{t-1}, x_t)$ for some recurrent map $\phi : \mathbb{R}^n \times \mathcal{X} \to \mathbb{R}^n$ and initial state \mathbf{h}_0 . The sequence of outputs is computed with

 $y_t = \psi(\mathbf{h}_t)$

for some output map $\psi : \mathbb{R}^n \to \mathcal{Y}$.

Weighted Automata \equiv linear 2-RNNs

• Vanilla RNN: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \mathbb{R}$

 $\phi(\mathbf{h}_{t-1}, \mathbf{x}_t) = g(\mathbf{U}\mathbf{h}_{t-1} + \mathbf{V}\mathbf{x}_t) \qquad \psi(\mathbf{h}_t) = h(\mathbf{w}^\top \mathbf{x}_t)$ where $\mathbf{U} \in \mathbb{R}^{n \times d}$, $\mathbf{V} \in \mathbb{R}^{n \times d}$, $\mathbf{W} \in \mathbb{R}^n$ • Second-order^a RNN (2-RNN): $\mathcal{X} = \mathbb{R}^d, \mathcal{Y} = \mathbb{R}$

 $\phi(\mathbf{h}_{t-1}, \mathbf{x}_t) = g(\mathbf{A} \times_1 \mathbf{h}_{t-1} \times_2 \mathbf{x}_t) \qquad \psi(\mathbf{h}_t) = h(\mathbf{w}^{\top} \mathbf{x}_t)$ where $\boldsymbol{\mathcal{A}} \in \mathbb{R}^{n \times d \times n}$.

• Weighted Automaton (WA): $\mathcal{X} = \Sigma, \mathcal{Y} = \mathbb{R}$

• Choose a set of prefixes and suffixes, $\mathcal{P}, \mathcal{S} \subset \Sigma^*$. **2** Estimate the Hankel sub-blocks **H** and $\mathbf{H}^{\sigma} \in \mathbb{R}^{\mathcal{P} \times \mathcal{S}}$ for each $\sigma \in \Sigma$, where $(\mathbf{H}^{\sigma})_{u,v} = f(u\sigma v)$ for all u, v. **3** Perform rank n decomposition $\mathbf{H} = \mathbf{PS}$ • WA with initial/final weights $\mathbf{h}_0 = \mathbf{P}_{\lambda,:}, \mathbf{w} = \mathbf{S}_{:,\lambda}$ and transition matrices $\mathbf{A}^{\sigma} = \mathbf{P}^{+}\mathbf{H}^{\sigma}\mathbf{S}^{+}$ is a minimal WFA for f.

Two observations to put together:

(i) The spectral learning algorithm is *consistent*. (ii) Linear 2-RNNs over discrete sequences are WAs.

Result 2

The spectral learning algorithm is a consistent learning algorithm for probability distributions over sequences of discrete symbols computed by second-order RNNs with linear activation functions.

Extension to Continuous Sequences

6: return Linear 2-RNN $\langle \mathbf{h}_0, \boldsymbol{\mathcal{A}}, \mathbf{w} \rangle$.

Intuition on why this works

Result 3

Our learning algorithm computes a consistent estimator for linear 2-RNNs:

Theorem

 $\phi(\mathbf{h}_{t-1}, \sigma) = \mathbf{A}^{\sigma} \mathbf{h}_{t-1} \qquad \psi(\mathbf{h}_t) = \mathbf{w}^{\top} \mathbf{x}_t$

where \mathbf{A}^{σ} is the *transition matrix* associated with symbol σ for each $\sigma \in \Sigma$.

We can rewrite this as

where $\mathbf{A} \in \mathbb{R}^{n \times \Sigma \times n}$ is defined by

 $\mathcal{A}_{\sigma} = \mathbf{A}^{\sigma}$ for each $\sigma \in \Sigma$

^aSecond-order refers to the order-2 interactions involved in the computation of the latent state: $\left[\boldsymbol{\mathcal{A}} imes_1 \mathbf{h}_{t-1} imes_2 \mathbf{x}_t
ight]_j = \sum \boldsymbol{\mathcal{A}}_{i_1,i_2,j} [\mathbf{h}_{t-1}]_{i_1} [\mathbf{x}_t]_{i_2}$ see e.g. [Lee, 86], [Giles, 91], [Pollack, 91], ..., [Wu et al., NIPS'16]

Problem: learn a linear 2-RNNs from training data. If inputs are one-hot encodings, we can use the spectral learning algorithm for WAs...

 \hookrightarrow What about sequences of *continuous* vectors?

Observation: Linear 2-RNNs are multilinear. $f(\mathbf{x}_1,\ldots,\sum\alpha_i\mathbf{u}_i,\ldots,\mathbf{x}_k)=\sum\alpha_i f(\mathbf{x}_1,\ldots,\mathbf{u}_i,\ldots,\mathbf{x}_k)$ \Rightarrow learning the restriction of f to basis vectors is enough: $f(\mathbf{a}, \mathbf{b}) = f\left(\sum_{i} \alpha_{i} \mathbf{e}_{i}, \sum_{j} \beta_{j} \mathbf{e}_{j}\right) = \sum_{i, j} \alpha_{i} \beta_{j} f(\mathbf{e}_{i}, \mathbf{e}_{j})$ We only need to learn the function $\tilde{f}: [d]^* \to \mathbb{R}$ $\tilde{f}: i_1 i_2 \cdots i_k \mapsto f(\mathbf{e}_{i_1}, \mathbf{e}_{i_2}, \dots, \mathbf{e}_{i_k})$ **Idea**: Use the spectral learning algorithm to learn f.

• Let $(\mathbf{h}_0, \mathbf{A}, \mathbf{w})$ be a minimal linear 2-RNN with nhidden units computing a function $f: (\mathbb{R}^d)^* \to \mathbb{R}$ • Let L be such that $rank(\mathbf{H}^{(2L)}) = n$ • Suppose the entries of $\mathbf{x}_{i}^{(i)}$ are drawn at random and each $y^{(i)} = f(\mathbf{x}_1^{(i)}, \mathbf{x}_2^{(i)}, \cdots, \mathbf{x}_l^{(i)}).$ If $N_l \geq d^l$ for l = L, 2L, 2L + 1, the 2-RNN returned by our algorithm computes f with probability one.

