

Overview

- Weighted Finite Automata (WFA) can model functions on sequences. ► We propose a spectral multitask learning algorithm for WFAs:
- extends the spectral learning algorithm for WFAs [1]
- relies on the novel model of vector-valued WFA.

Multitask Learning

- ▶ Common task in machine learning: estimate a function $f : \mathcal{X} \to \mathcal{Y}$ from a $\{(x_i, y_i)\}_{i=1}^N$ where each $y_i \simeq f(x_i)$.
- \blacktriangleright In multitask learning, the learner is given several learning tasks f_1, \dots, f_n
- ▶ Jointly learning related tasks f_1, \dots, f_m can lead to better performances.
- \blacktriangleright This work: multitask learning when \mathcal{X} consists of sequence data.

Weighted Finite Automata

► A weighted finite automaton (WFA) is a tuple $A = (\alpha, \{A^{\sigma}\}_{\sigma \in \Sigma}, \omega)$ and co function $f_A : \Sigma^* \to \mathbb{R}$ defined for each word $x = x_1 x_2 \cdots x_k \in \Sigma^*$ by

 $f_{\mathcal{A}}(x_1x_2\cdots x_k) = lpha^{ op} \mathbf{A}^{x_1} \mathbf{A}^{x_2}\cdots \mathbf{A}^{x_k} \boldsymbol{\omega} = lpha^{ op} \mathbf{A}^{x} \boldsymbol{\omega}.$

 \blacktriangleright The number of states of A is the size n of the matrices \mathbf{A}^{σ} and A is mini such that $f_A = f_B$ has at least *n* states, in which case *n* is the rank of the

Spectral Learning of WFAs

► Hankel matrix $\mathbf{H}_f \in \mathbb{R}^{\Sigma^* \times \Sigma^*}$ associated with a function $f : \Sigma^* \to \mathbb{R}$

$$\mathbf{H}_f)_{u,v} = f(uv)$$
 for all $u, v \in \Sigma^*$.

Theorem [3, 4] *For any function* $f : \Sigma^* \to \mathbb{R}$, rank $(f) = \operatorname{rank}(\mathbf{H}_f)$.

Spectral learning of WFAs (in a nutshell) [1, Lemma 4.1].

- 1. Let $\mathbf{H}_f = \mathbf{PS}$ with $\mathbf{P}, \mathbf{S}^{\top} \in \mathbb{R}^{\Sigma^* \times n}$ where $n = \operatorname{rank}(f)$
- 2. For each $\sigma \in \Sigma$, let $\mathbf{H}_{f}^{\sigma} \in \mathbb{R}^{\Sigma^{*} \times \Sigma^{*}}$ be defined by $(\mathbf{H}_{f}^{\sigma})_{u,v} = f(u\sigma v)$ for all
- 3. WFA $(\alpha, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \omega)$ with $\alpha^{\top} = \mathbf{P}_{\lambda,:}, \omega = \mathbf{S}_{:,\lambda}$, and $\mathbf{A}^{\sigma} = \mathbf{P}^{\dagger}\mathbf{H}^{\sigma}\mathbf{S}^{\dagger}$ is a m

WFAs as Linear Models in a Feature Space

• Computation of a WFA A on $x \in \Sigma^*$:

- 1. map x to feature vector $\phi(x) = \alpha^{\top} \mathbf{A}^{x}$ through a compositional feature
- 2. compute final value $f_A(x) = \langle \phi(x), \omega \rangle$

▶ ϕ is compositional: $\phi(\mathbf{x}\sigma)^{\top} = \phi(\mathbf{x})^{\top} \mathbf{A}^{\sigma}$. ► ϕ is minimal if $V = \operatorname{span}(\{\phi(x)\}_{x \in \Sigma^*}) \subset \mathbb{R}^n$ is of dimension n. $\Rightarrow \phi : \mathbf{X} \mapsto \boldsymbol{\alpha}^{\top} \mathbf{A}^{\mathbf{X}}$ is minimal if and only if $(\boldsymbol{\alpha}, \{\mathbf{A}^{\sigma}\}_{\sigma \in \Sigma}, \boldsymbol{\omega})$ is minimal.

A Notion of Relatedness between Functions on Sequences

Relatedness between WFAs: to which extent two WFAs can share a joint i ► Let $f_1, f_2 : \Sigma^* \to \mathbb{R}$ of rank n_1 and n_2 , with feature maps $\phi_1 : \Sigma^* \to \mathbb{R}^{n_1}$ and $\blacktriangleright \phi = \phi_1 \oplus \phi_2 : \Sigma^* \to \mathbb{R}^{n_1+n_2}$ is a joint feature map for f_1 and f_2 : $f_1(x) = \langle \phi(x), \omega_1 \oplus \mathbf{0} \rangle$ and $f_2(x) = \langle \phi(x), \mathbf{0} \oplus \omega_2 \rangle$ but it may not be minimal. \rightarrow there may exist another feature map of dimension $n < n_1 + n_2$.

 \blacktriangleright The smaller *n* is, the more related f_1 and f_2 are. Emails: guillaume.rabusseau@mail.mcgill.ca, pigem@amazon.co.uk, jpineau@cs.mcgill.ca

Multitask Spectral Learning of Weighted Finite Automata

Guillaume Rabusseau¹ Borja Balle² Joelle Pineau^{1,3}

Vector-Valued WE

$ \begin{array}{c} \hline \\ \hline $	 A <i>d</i>-dimensional vector-valued weighted finite automaton (vv-tuple A = (α, {A^σ}_{σ∈Σ}, Ω) where α ∈ ℝⁿ is the initial weights vector Ω ∈ ℝ^{n×d} is the matrix of final weights A^σ ∈ ℝ^{n×n} is the transition matrix for each σ ∈ Σ. A vv-WFA computes a function <i>f</i>_A : Σ* → ℝ^d defined for each v
	$\Rightarrow \text{ Rank of } \vec{f} = [f_1, f_2] : \Sigma^* \rightarrow \mathbb{R}^2 \text{ equal dimension of a minimal joir}$ $\Rightarrow \max\{\text{rank}(f_1), \text{rank}(f_2)\} \leq \text{rank}([f_1, f_2]) \leq \text{rank}(f_1) + \text{rank}(f_2).$ Example
a training sample	$\begin{cases} f_1(x) = 0.5 x _a + 0.5 x _b & \operatorname{rank} f_2 = 4 = \operatorname{rank}([f_2, f_3]) \\ f_2(x) = 0.3 x _b - 0.6 x _c & \operatorname{rank}([f_1, f_3]) \\ f_3(x) = x _c & \operatorname{rank}(f_1) = \operatorname{rank}(f_2) < \operatorname{rank}([f_1, f_2]) \end{cases}$
<i>f</i> _m .	Spectral Learning of vv-WFAs
) •	► Hankel tensor $\mathcal{H} \in \mathbb{R}^{\Sigma^* \times d \times \Sigma^*}$ associated with a function $\vec{f} : \Sigma^* - \mathcal{H}_{u,:,v} = \vec{f}(uv)$ for all $u, v \in \Sigma^*$.
computes a	Theorem [Vector-Valued Fliess Theorem] <i>For any</i> $\vec{f} : \Sigma^* \to \mathbb{R}^d$, ra $\mathcal{H}_{(1)} = [\mathcal{H}_{:,1,:} \ \mathcal{H}_{:,2,:} \ \cdots \ \mathcal{H}_{:,d,:}]$ is the flattening of the Hankel tens
imal if any WFA <i>B</i> e function <i>f</i> .	 Spectral learning of vv-WFAs. A vv-WFA computing <i>f</i> can be factorization of <i>H</i>₍₁₎: 1. Let <i>H</i>₍₁₎ = PS₍₁₎ with P ∈ ℝ^{Σ*×n} and S ∈ ℝ^{n×d×Σ*}. 2. For each σ ∈ Σ, let <i>H^σ</i> ∈ ℝ^{Σ*×d×Σ*} be defined by <i>H^σ_{u,:,v}</i> = <i>f</i>(<i>t</i>). 3. The vv-WFA <i>A</i> = (α, {A^σ}_{σ∈Σ}, Ω) where α^T = P_{λ,:}, Ω = S_{:,:,λ} a minimal vv-WFA for <i>f</i>.
	Multitask Learning of WFAs
	 Let f₁,, f_m be related functions defined on Σ*. Learning f = [f₁,, f_m] as a vv-WFA enforces discovering a solution between tasks.
$I \downarrow \downarrow \downarrow \downarrow \in \Sigma^*$	Algorithm 1
e map $\phi : \Sigma^* \to \mathbb{R}^n$	1: Compute the rank <i>R</i> truncated SVD $\hat{\mathcal{H}}_{(1)} \simeq UDV^{\top}$. 2: Let $A = (\alpha, \{A^{\sigma}\}_{\sigma \in \Sigma}, \Omega)$ be the vv-WFA defined by $\alpha^{\top} = U_{\lambda,:}, , \Omega = U^{\top}(\hat{\mathcal{H}}_{:,:,\lambda}) \text{ and } A^{\sigma} = U^{\top}\hat{\mathcal{H}}_{(1)}^{\sigma}(\hat{\mathcal{H}}_{(1)})$ 3: for $i = 1$ to <i>m</i> 4: Compute the rank R_i truncated SVD $\hat{\mathcal{H}}_{:,i,:} \simeq U_i D_i V_i^{\top}$. 5: Let $A_i = (U_i^{\top} U \alpha, \{U_i^{\top} U A^{\sigma} U^{\top} U_i\}_{\sigma \in \Sigma}, U_i^{\top} U \Omega_{:,i})$
τ)	 Additional step to the spectral learning algorithm (lines 3-5): vv-WFA A = (α, {A^σ}_{σ∈Σ}, Ω) is minimal ⇒ WFA A_i = (α, {A^σ Need to project down each A_i to its true dimension.
	Theoretical Insight
	Theorem Let $\mathbf{M} \in \mathbb{R}^{d_1 \times d_2}$ of rank R , $\hat{\mathbf{M}} = \mathbf{M} + \mathbf{E}$, Π_U , $\Pi_{\hat{U}} \in \mathbb{R}^{d_1 \times d_1}$ projections on the top R left sing. vectors of \mathbf{M} and $\hat{\mathbf{M}}$. Then, for $a \ge 1 - \delta$,
feature map ϕ .	$\ \mathbf{\Pi}_U - \mathbf{\Pi}_{\hat{U}}\ _F \leq 4 \left(\sqrt{\frac{(a_1 - R)R + 2\log(1/\delta)}{d_1d_2}} \frac{\ \mathbf{E}\ _F}{\mathfrak{s}_R(\mathbf{M})}\right)$
IU $\phi_2: \Sigma^* \to \mathbb{K}''^2.$	• Consider <i>m</i> tasks f_1, \dots, f_m with empirical Hankel matrices $\hat{\mathbf{H}}_1$ $\hat{\mathcal{H}}_{(1)} = \begin{bmatrix} \hat{\mathbf{H}}_1 & \hat{\mathbf{H}}_2 & \dots & \hat{\mathbf{H}}_m \end{bmatrix} \in \mathbb{R}^{P \times mS}.$

▶ If the tasks are maximally related (i.e. $R = \operatorname{rank}(\vec{f}) = \operatorname{rank}(f_1) = \cdots = \operatorname{rank}(f_m)$) then as the number of tasks grows, the first term in Eq. (1) tends to 0 and the estimation error of the singular subspace decays quadratically instead of linearly.

¹McGill University ²Amazon Research Cambridge ³CIFAR

naton (vv-WFA) with *n* states is a

- for each word $x = x_1 x_2 \cdots x_k \in \Sigma^*$ by $\mathbf{A}^{X_k}\mathbf{\Omega} = \mathbf{lpha}^{ op}\mathbf{A}^{X}\mathbf{\Omega}_{\cdot}$
- ninimal joint feature map for f_1 and f_2 . $(f_2).$
- $nk([f_2, f_3])$ $ank([f_1, f_3]) = 6 = rank(f_1) + rank(f_3)$ $nk([f_1, f_2]) < rank(f_1) + rank(f_2)$
- tion $\vec{f}: \Sigma^* \to \mathbb{R}^d$ $, v \in \Sigma^*$.
- $f \to \mathbb{R}^d$, rank $(\vec{f}) = \operatorname{rank}(\mathcal{H}_{(1)})$, where ankel tensor.
- \vec{f} can be recovered from any rank n

$$\mathcal{H}^{\sigma}_{u,:,v} = \vec{f}(u\sigma v) \text{ for all } u, v \in \Sigma^*.$$

 $\mathbf{\Omega} = \mathcal{S}_{:,:,\lambda}, \text{ and } \mathbf{A}^{\sigma} = \mathbf{P}^{\dagger} \mathcal{H}^{\sigma}_{(1)}(\mathcal{S}_{(1)})^{\dagger} \text{ is }$

overing a shared feature map

$$\hat{\mathcal{H}}_{(1)}^{\sigma}(\hat{\mathcal{H}}_{(1)})^{\dagger}\mathbf{U}$$
 for each $\sigma \in \Sigma$.

nes 3-5):
$$i_i = (oldsymbol{lpha}, \{oldsymbol{A}^\sigma\}_{\sigma\in\Sigma}, oldsymbol{\Omega}_{:,i})$$
 is minimal.

 $\in \mathbb{R}^{d_1 \times d_1}$ matrices of orthogonal Then, for any $\delta > 0$, with probability

$$\frac{\overline{\delta}}{\mathfrak{s}_{R}(\mathbf{M})} + \frac{\|\mathbf{E}\|_{F}^{2}}{\mathfrak{s}_{R}(\mathbf{M})^{2}} \right) .$$
(1)

atrices $\hat{\mathbf{H}}_1, \cdots, \hat{\mathbf{H}}_m \in \mathbb{R}^{P \times S}$, then

Experiments on Synthetic Data

- f_2, \cdots, f_m .

Experiments on Real Data

- ► Two ways of selecting related tasks:
- 1. use all other languages
- subspaces of the Hankel matrices.

Training size	100	500	1000	5000	all available data		
	Related tasks: all other languages						
Perplexity	7.0744 (±7.76)	3.6666 (±5.22)	3.2879 (±5.17)	3.4187 (±5.57)	3.1574 (±5.48)		
WER	1.4919 (±2.37)	1.3786 (±2.94)	1.2281 (±2.62)	1.4964 (±2.70)	1.4932 (±2.77)		
	Related tasks: 4 closest languages						
Perplexity	6.0069 (±6.76)	4.3670 (±5.83)	4.4049 (±5.50)	2.9689 (±5.87)	2.8229 (±5.90)		
WER	2.0883 (±3.26)	1.5175 (±2.87)	1.2961 (±2.57)	1.3080 (±2.55)	1.2160 (±2.31)		
version relative improvement over all languages (in %) of MT-SL vs. SL on the LINIDER dataset							

Table: Average relative improvement over all languages (in %) of MT-SL vs. SL on the UNIDEP dataset (e.g. for perplexity we report $100 \cdot (p_{SL} - p_{MT-SL})/p_{SL})$.

Target task4 closest tasks w.r.t. subspace distance (closest firs				
Basque	Finnish	Polish	Czech	Indonesian
Croatian	Estonian	Slovenian	Czech	Finnish
French	Italian	Spanish	German	English
Hungarian	Danish	Ancient Greek	German	Portuguese
Gothic	Old Church Slavonic	Latin	Ancient Greek	Finnish
Italian	English	French	Spanish	Dutch
Japanese	Hindi	Persian	Arabic	Tamil
Latin	Old Church Slavonic	Ancient Greek	Gothic	Finnish
Swedish	Danish	Norwegian	Finnish	Estonian

Table: Some related tasks used in the UNIDEP experiment

References

- tomata. Machine learning, 96(1-2):33-63, 2014.
- high-dimensional statistics. arXiv preprint arXiv:1605.00353, 2016.
- *Sciences*, 5(1):26–40, 1971.
- plied Linguistics, Charles University.

Randomly generated stochastic WFAs following the PAutomaC competition process [6]. ▶ Related WFAs: joint feature space of dimension $d_S = 10$ and task specific space of dimension d_T (i.e. rank $(f_i) = d_S + d_T$ and rank $(f) = \operatorname{rank}([f_1, \dots, f_m]) = d_S + md_T)$. \blacktriangleright Training sample drawn from target task f_1 and training samples of size 5,000 for tasks

Universal Dependencies [5]: sentences from 33 languages labeled with 17 PoS tags. \Rightarrow Samples drawn from 33 distributions over strings on an alphabet of size 17. ► For each language, (80%, 10%, 10%)-split between training, validation and test sets.

2. select the 4 closest languages w.r.t. the distance between the (top-50) left singular

Cherry picked example: on the Basque task with a training set of size 500, the WER was reduced from $\sim 76\%$ for SL to $\sim 70\%$ using all other languages as related tasks, and to $\sim 65\%$ using the 4 closest tasks (Finnish, Polish, Czech and Indonesian).

[1] Borja Balle, Xavier Carreras, Franco M Luque, and Ariadna Quattoni. Spectral learning of weighted au-

[2] T Tony Cai and Anru Zhang. Rate-optimal perturbation bounds for singular subspaces with applications to

[3] Jack W. Carlyle and Azaria Paz. Realizations by stochastic finite automata. *Journal of Computer and System*

[4] Michel Fliess. Matrices de hankel. Journal de Mathématiques Pures et Appliquées, 53(9):197-222, 1974. [5] Joakim Nivre, Zeljko Agić, Lars Ahrenberg, et al. Universal dependencies 1.4, 2016. URL http: //hdl.handle.net/11234/1-1827. LINDAT/CLARIN digital library at the Institute of Formal and Ap-