Tensorized Random Projections

Guillaume Rabusseau
Assistant Professor at DIRO, UdeM
CIFAR Canada Chair in Al at Mila

May 17, 2021
SIAM Conference on Applied Linear Algebra
Mini-symposium Tensor Methods: Theory and Practice

Joint work with Beheshteh T. Rakhshan, published at AISTATS 2020.

Motivation

- Random projection (RP) and tensor decomposition: Two tools to deal with high-dimensional data
- But RP cannot scale to very high-dimensional inputs (e.g. high-order tensors)
- We use tensor decomposition to scale Gaussian RP to high-order tensors

Outline

(1) Introduction to Tensor Networks
(2) Tensorized Random Projections
(3) Experiments

4 Conclusion

Introduction to Tensor Networks

Tensors

$\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}$

$$
\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

$\mathbf{M}_{i j} \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right]$

Tensor Networks

Degree of a node \equiv order of tensor

$\mathbf{v} \in \mathbb{R}^{d}$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Tensor Networks

Edge \equiv contraction

Matrix product:

$(\mathbf{A B})_{i_{1}, i_{2}}=\sum_{k=1}^{n} \mathbf{A}_{i_{1} k} \mathbf{B}_{k i_{2}}$

Tensor Networks

Degree of a node \equiv order of tensor

Edge \equiv contraction

Inner product:

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$
d

Degree of a node \equiv order of tensor

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Inner product between tensors:

$\langle\mathcal{S}, \boldsymbol{V}\rangle=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \sum_{i_{3}=1}^{d_{3}} \mathcal{S}_{i_{1} i_{2} i_{3}} \boldsymbol{T}_{i_{1} i_{2} i_{3}}$

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$

$$
\text { Degree of a node } \equiv \text { order of tensor }
$$

$\mathbf{M} \in \mathbb{R}^{m \times n}$
$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Frobenius norm of a tensor:

$$
\|\mathcal{S}\|_{F}^{2}=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \sum_{i_{3}=1}^{d_{3}}\left(\mathcal{S}_{i_{1} i_{2} i_{3}}\right)^{2}
$$

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$
d

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Trace of an $n \times n$ matrix:

$$
\operatorname{Tr}(\mathbf{M})=\sum_{i=1}^{n} \mathbf{M}_{i i}
$$

Tensor Networks

Degree of a node \equiv order of tensor

Edge \equiv contraction

Tensor times matrices:

$$
\left(\mathcal{T} \times{ }_{1} \mathbf{A} \times \times_{2} \mathbf{B} \times{ }_{3} \mathbf{C}\right)_{i_{1}, i_{2}, i_{3}}=\sum_{k_{1}=1}^{n_{1}} \sum_{k_{2}=1}^{n_{2}} \sum_{k_{3}=1}^{n_{3}} \mathcal{T}_{k_{1} k_{2} k_{3}} \mathbf{A}_{i_{1} k_{1}} \mathbf{B}_{i_{2} k_{2}} \mathbf{C}_{i_{3} k_{3}}
$$

Tensor Networks

Degree of a node \equiv order of tensor

$\mathbf{v} \in \mathbb{R}^{d}$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Hyperedge \equiv contraction between more than 2 indices:

$$
\sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{v}_{i} \mathbf{w}_{i}
$$

Tensor Decomposition Techniques

- Tucker decomposition [Tucker, 1966]:

$\Rightarrow R_{1} R_{2} R_{3}+d_{1} R_{1}+d_{2} R_{2}+d_{2} R_{2}$ parameters instead of $d_{1} d_{2} d_{3}$.

Tensor Decomposition Techniques

- Tucker decomposition [Tucker, 1966]:

$\Rightarrow R_{1} R_{2} R_{3}+d_{1} R_{1}+d_{2} R_{2}+d_{2} R_{2}$ parameters instead of $d_{1} d_{2} d_{3}$.

Tensor Decomposition Techniques

- CP decomposition [Hitchcock, 1927] ${ }^{1}$:

${ }^{1}$ fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].

Tensor Decomposition Techniques

- CP decomposition [Hitchcock, 1927] ${ }^{1}$:

$\Rightarrow R\left(d_{1}+d_{2}+d_{3}\right)$ parameters instead of $d_{1} d_{2} d_{3}$.
${ }^{1}$ fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

$\Rightarrow d_{1} R_{1}+R_{1} d_{2} R_{2}+R_{2} d_{2} R_{3}+R_{3} d_{4}$ parameters instead of $d_{1} d_{2} d_{3} d_{4}$.
- If the ranks are all the same ($R_{1}=R_{2}=\cdots=R$), can represent a vector of size 2^{n} with $\mathcal{O}\left(n R^{2}\right)$ parameters!

Tensor Decomposition Techniques

- Tensor Ring decomposition [Zhao et al., 2016]:

Tensor Decomposition Techniques

- Tensor Ring decomposition [Zhao et al., 2016]:

$\Rightarrow R_{4} d_{1} R_{1}+R_{1} d_{2} R_{2}+R_{2} d_{2} R_{3}+R_{3} d_{4} R_{4}$ parameters instead of $d_{1} d_{2} d_{3} d_{4}$.

Tensorized Random Projections

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Theorem (JL, 1984)

Let $\varepsilon>0$ and $\mathbf{x}_{1}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{d}$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\left\|f\left(\mathbf{x}_{i}\right)\right\|=(1 \pm \varepsilon)\left\|\mathbf{x}_{i}\right\|$ for all $i=1, \cdots, m$.

- Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Theorem (JL, 1984)

Let $\varepsilon>0$ and $\mathbf{x}_{1}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{d}$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\left\|f\left(\mathbf{x}_{i}\right)\right\|=(1 \pm \varepsilon)\left\|\mathbf{x}_{i}\right\|$ for all $i=1, \cdots, m$.

- Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...
- Problem: if $\mathbf{x} \in \mathbb{R}^{d^{N}}$ is a high-order tensor represented in CP/TT format, the Gaussian RP has $d^{N} k$ parameters...

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.
- Two important properties that a RP must satisfy:
- $\mathbb{E}\left[\|f(\mathbf{x})\|^{2}\right]=\|\mathbf{x}\|^{2}$ for all \mathbf{x}
- $\lim _{k \rightarrow \infty} \mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]=0$

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.
- Two important properties that a RP must satisfy:
- $\mathbb{E}\left[\|f(\mathbf{x})\|^{2}\right]=\|\mathbf{x}\|^{2}$ for all \mathbf{x}
- $\lim _{k \rightarrow \infty} \mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]=0$
\hookrightarrow the rate at which $\mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]$ converges to 0 captures the quality of a RP.

Tensor Train RP: First Attempt

- We build a Gaussian RP $f: \mathbf{x} \mapsto \frac{1}{Z} \mathbf{M} \mathbf{x}$ where $\mathbf{M} \in \mathbb{R}^{k \times d^{N}}$ is represented using the TT format:

where the entries of each core tensor \mathcal{G}_{n} are drawn iid from $\mathcal{N}(0,1)$.

Tensor Train RP: First Attempt

- We build a Gaussian RP $f: \mathbf{x} \mapsto \frac{1}{Z} \mathbf{M} \mathbf{x}$ where $\mathbf{M} \in \mathbb{R}^{k \times d^{N}}$ is represented using the TT format:

where the entries of each core tensor \mathcal{G}_{n} are drawn iid from $\mathcal{N}(0,1)$.
(3) $\mathcal{O}\left(R^{2} N d+R^{2} k\right)$ parameters instead of $d^{N} k$.
(-) Efficient computation of $\mathbf{M x}$ when \mathbf{x} is in the CP/TT format.
(3) We have $\mathbb{E}\left[\|f(\mathbf{x})\|^{2}\right]=\|\mathbf{x}\|^{2}$.
(2) We can show that $\lim _{k \rightarrow \infty} \mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]>0 \ldots$

Tensor Train Random Projection (TT-RP)

- Tensor Train RP:

$$
f_{T T(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the TT format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

Tensor Train Random Projection (TT-RP)

- Tensor Train RP:

$$
f_{T T(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the TT format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

- $\mathcal{O}\left(k N d R^{2}\right)$ parameters instead of $d^{N} k$.
- Efficient computation of $\mathbf{M x}$ when \mathbf{x} is in the CP/TT format.
- We have $\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$.
- We have $\lim _{k \rightarrow \infty} \mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=0$.

CP Random projection (CP-RP)

- CP Random Projection:

$$
f_{C P(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{2}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

CP Random projection (CP-RP)

- CP Random Projection:

$$
f_{C P(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

- $\mathcal{O}(k N d R)$ parameters instead of $d^{N} k$.
- Efficient computation of $\mathbf{M x}$ when \mathbf{x} is in the CP/TT format.
- We have $\mathbb{E}\left[\left\|f_{C P(R)}\right\|^{2}\right]=\|\mathbf{x}\|^{2}$.
- We have $\lim _{k \rightarrow \infty} \mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=0$.

Main Result

Theorem
Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The RP maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^{4}$

Main Result

Theorem

Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The RP maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^{4}$
\hookrightarrow The bounds on the variances are substantially different...

Main Result

Theorem

Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The $R P$ maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^{4}$
\hookrightarrow The bounds on the variances are substantially different...
- More details in arxiv:2003.05101.

Comparison between $f_{C P}$ and $f_{T T}$

$\left.\begin{array}{r|cc} & f_{C P(R)}: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k} & f_{T T(R)}: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k} \\ \hline \text { Number of parameters } & \mathcal{O}(k N d R) & \mathcal{O}\left(k N d R^{2}\right) \\ \hline \begin{array}{r}\text { Computing } f(\mathbf{x}) \\ \mathbf{x} \text { in CP with ran } \tilde{R} \\ \text { Computing } f(\mathbf{x})\end{array} & \mathcal{O}\left(k N d \max \left(r, \tilde{R}^{2}\right)\right. & \mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right)\right. \\ \mathbf{x} \text { in TT with rank } \tilde{R}\end{array}\right) \mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right) \quad \mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right)\right.\right.$.

Comparison between $f_{C P}$ and $f_{T T}$

	$f_{C P(R)}: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$	$f_{T T(R)}: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$				
Number of parameters	$\mathcal{O}(k N d R)$	$\mathcal{O}\left(k N d R^{2}\right)$				
Computing $f(\mathbf{x})$ x in CP with rank \tilde{R}	$\mathcal{O}\left(k N d \max \left(r, \tilde{R}^{2}\right)\right.$	$\mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right)\right.$				
Computing $f(\mathbf{x})$ x in TT with rank \tilde{R}	$\mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right)\right.$	$\mathcal{O}\left(k N d \max \left(r, \tilde{R}^{3}\right)\right.$				
$\begin{gathered} \text { With proba } \geq 1-\delta, \\ \mathbb{P}\left(\\|f(\mathbf{x})\\|^{2}=(1 \pm \varepsilon)\\|\mathbf{x}\\|^{2}\right) \\ \text { as soon as } k \gtrsim \cdots \end{gathered}$	$\frac{3^{N-1}(1+2 / R)}{\varepsilon^{2}} \log ^{2 N}\left(\frac{1}{\delta}\right)$	$\frac{(1+2 / R)^{N}}{\varepsilon^{2}} \log ^{2 N}\left(\frac{1}{\delta}\right)$				

- Lower bounds on k suggest that $f_{T T}$ is a better RP than $f_{C P}$.
- Classical Gaussian RP needs $k \gtrsim \frac{1}{\varepsilon^{2}} \log \left(\frac{1}{\delta}\right)$.
- Comparisons with other approaches: see arxiv:2003.05101.

Experiments

Experiment Setup

- Compare $f_{T T}, f_{C P}$ and classical Gaussian RP to project d^{N} dimensional vectors
- small order: $d=15, N=3$
- medium order: $d=3, N=12$
- higher order: $d=3, N=25$
- Input \mathbf{x} is a random unit-norm TT vector with rank $\tilde{R}=10$.
- Metric: distortion ratio $\frac{\|f(\mathbf{x})\|^{2}}{\|x\|^{2}}-1$
- Report averages over 100 trials

Experiment Results

Conclusion

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP
- Future work:
- Leverage results to design efficient linear regression and SVD algorithms
- Beyond classical tensor decomposition: other TN structures better suited for RP?
- Study of statistical properties of TT vectors with random Gaussian cores

Thank you! Questions?

