Tensorized Random Projections

Guillaume Rabusseau Assistant Professor at DIRO, UdeM CIFAR Canada Chair in AI at Mila

May 17, 2021 SIAM Conference on Applied Linear Algebra Mini-symposium *Tensor Methods: Theory and Practice*

Joint work with Beheshteh T. Rakhshan, published at AISTATS 2020.

Motivation

- Random projection (RP) and tensor decomposition : Two tools to deal with high-dimensional data
- But RP cannot scale to very high-dimensional inputs (e.g. high-order tensors)
- We use tensor decomposition to scale Gaussian RP to high-order tensors

Outline

Introduction to Tensor Networks

Tensors

$$\begin{split} \mathbf{M} \in \mathbb{R}^{d_1 \times d_2} & \mathcal{T} \in \mathbb{R}^{d_1 \times d_2 \times d_3} \\ \mathbf{M}_{ij} \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2] & (\mathcal{T}_{ijk}) \in \mathbb{R} \text{ for } i \in [d_1], j \in [d_2], k \in [d_3] \end{split}$$

Matrix product:

$$\underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}}} \underline{\mathbf{A}} \underline{\mathbf{A}}} \underline{\mathbf{A}} \underline{\mathbf{A}}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}}} \underline{\mathbf{A}} \underline{\mathbf{A}}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{A}} \mathbf$$

Inner product:

$$\mathbf{u} \quad \mathbf{v} \quad \mathbf{v} = \sum_{k=1}^{n} \mathbf{u}_{k} \mathbf{v}_{k}$$

$$\mathsf{Edge} \equiv \mathsf{contraction}$$

Inner product between tensors:

$$(\mathcal{S}, \mathcal{V}) = \sum_{i_1=1}^{d_1} \sum_{i_2=1}^{d_2} \sum_{i_3=1}^{d_3} \mathcal{S}_{i_1 i_2 i_3} \mathcal{T}_{i_1 i_2 i_3}$$

$$\mathsf{Edge} \equiv \mathsf{contraction}$$

Frobenius norm of a tensor:

$$S \xrightarrow{d_1}_{d_2} S \|S\|_F^2 = \sum_{i_1=1}^{d_1} \sum_{i_2=1}^{d_2} \sum_{i_3=1}^{d_3} (S_{i_1 i_2 i_3})^2$$

Trace of an $n \times n$ matrix:

 $\operatorname{Tr}(\mathbf{M}) = \sum_{i=1}^{n} \mathbf{M}_{ii}$

Hyperedge \equiv contraction between more than 2 indices:

• Tucker decomposition [Tucker, 1966]:

 \Rightarrow $R_1R_2R_3 + d_1R_1 + d_2R_2 + d_2R_2$ parameters instead of $d_1d_2d_3$.

• Tucker decomposition [Tucker, 1966]:

 \Rightarrow $R_1R_2R_3 + d_1R_1 + d_2R_2 + d_2R_2$ parameters instead of $d_1d_2d_3$.

• CP decomposition [Hitchcock, 1927]¹:

¹fig. from [Kolda and Bader, *Tensor decompositions and applications*, 2009].

B. T. Rakhshan, G. Rabusseau

Tensorized Random Projections

• CP decomposition [Hitchcock, 1927]¹:

 $\Rightarrow R(d_1 + d_2 + d_3)$ parameters instead of $d_1 d_2 d_3$.

¹fig. from [Kolda and Bader, *Tensor decompositions and applications*, 2009]. B. T. Rakhshan, G. Rabusseau Tensorized Random Projections May 17, 2021

9/26

• Tensor Train decomposition [Oseledets, 2011]:

• Tensor Train decomposition [Oseledets, 2011]:

 $\Rightarrow d_1R_1 + R_1d_2R_2 + R_2d_2R_3 + R_3d_4$ parameters instead of $d_1d_2d_3d_4$.

• Tensor Train decomposition [Oseledets, 2011]:

- $\Rightarrow d_1R_1 + R_1d_2R_2 + R_2d_2R_3 + R_3d_4$ parameters instead of $d_1d_2d_3d_4$.
 - If the ranks are all the same (R₁ = R₂ = ··· = R), can represent a vector of size 2ⁿ with O (nR²) parameters!

• Tensor Ring decomposition [Zhao et al., 2016]:

• Tensor Ring decomposition [Zhao et al., 2016]:

$\Rightarrow R_4d_1R_1 + R_1d_2R_2 + R_2d_2R_3 + R_3d_4R_4 \text{ parameters instead of } d_1d_2d_3d_4.$

B. T. Rakhshan, G. Rabusseau

Tensorized Random Projections

Tensorized Random Projections

• Goal: find a low-dimensional projection $f : \mathbb{R}^d \to \mathbb{R}^k$ $(k \ll d)$ that preserves distances (with high proba.).

- Goal: find a low-dimensional projection $f : \mathbb{R}^d \to \mathbb{R}^k$ $(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$f: \mathbf{x} \mapsto rac{1}{\sqrt{k}} \mathbf{M} \mathbf{x}$$
 where $\mathbf{M}_{ij} \sim_{iid} \mathcal{N}(0,1)$ for each i,j

- Goal: find a low-dimensional projection $f : \mathbb{R}^d \to \mathbb{R}^k$ $(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$f: \mathbf{x} \mapsto rac{1}{\sqrt{k}} \mathbf{M} \mathbf{x}$$
 where $\mathbf{M}_{ij} \sim_{iid} \mathcal{N}(0,1)$ for each i, j

Theorem (JL, 1984)

Let $\varepsilon > 0$ and $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^d$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\|f(\mathbf{x}_i)\| = (1 \pm \varepsilon) \|\mathbf{x}_i\|$ for all $i = 1, \dots, m$.

• Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...

- Goal: find a low-dimensional projection $f : \mathbb{R}^d \to \mathbb{R}^k$ $(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x}$$
 where $\mathbf{M}_{ij} \sim_{iid} \mathcal{N}(0, 1)$ for each i, j

Theorem (JL, 1984)

Let $\varepsilon > 0$ and $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^d$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\|f(\mathbf{x}_i)\| = (1 \pm \varepsilon) \|\mathbf{x}_i\|$ for all $i = 1, \dots, m$.

- Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...
- Problem: if $\mathbf{x} \in \mathbb{R}^{d^N}$ is a high-order tensor represented in CP/TT format, the Gaussian RP has $d^N k$ parameters...

Objective

- We want to find a RP map $f : \mathbb{R}^{d^N} \to \mathbb{R}^k$ such that:
 - the number of parameters is linear in N
 - computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
 - *f* preserves distances with high probability.

Objective

- We want to find a RP map $f : \mathbb{R}^{d^N} \to \mathbb{R}^k$ such that:
 - the number of parameters is linear in N
 - computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
 - *f* preserves distances with high probability.
- Two important properties that a RP must satisfy:
 - $\mathbb{E}[\|f(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$ for all \mathbf{x}
 - $\lim_{k\to\infty} \mathbb{V}[\|f(\mathbf{x})\|^2] = 0$

Objective

- We want to find a RP map $f : \mathbb{R}^{d^N} \to \mathbb{R}^k$ such that:
 - the number of parameters is linear in N
 - computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
 - *f* preserves distances with high probability.
- Two important properties that a RP must satisfy:
 - $\mathbb{E}[\|f(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$ for all \mathbf{x}
- \hookrightarrow the rate at which $\mathbb{V}[||f(\mathbf{x})||^2]$ converges to 0 captures the quality of a RP.

Tensor Train RP: First Attempt

• We build a Gaussian RP $f : \mathbf{x} \mapsto \frac{1}{Z}\mathbf{M}\mathbf{x}$ where $\mathbf{M} \in \mathbb{R}^{k \times d^N}$ is represented using the TT format:

Tensor Train RP: First Attempt

• We build a Gaussian RP $f : \mathbf{x} \mapsto \frac{1}{Z} \mathbf{M} \mathbf{x}$ where $\mathbf{M} \in \mathbb{R}^{k \times d^N}$ is represented using the TT format:

- $\bigcirc \mathcal{O}(R^2Nd + R^2k)$ parameters instead of d^Nk .
- \odot Efficient computation of **Mx** when **x** is in the CP/TT format.
- \bigcirc We have $\mathbb{E}[\|f(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$.
- \odot We can show that $\lim_{k\to\infty} \mathbb{V}[\|f(\mathbf{x})\|^2] > 0...$

Tensor Train Random Projection (TT-RP)

Tensor Train Random Projection (TT-RP)

- $\mathcal{O}(kNdR^2)$ parameters instead of d^Nk .
- Efficient computation of Mx when x is in the CP/TT format.
- We have $\mathbb{E}[\|f_{TT(R)}(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$.
- We have $\lim_{k\to\infty} \hat{\mathbb{V}}[\|f_{TT(R)}(\mathbf{x})\|^2] = 0.$

CP Random projection (CP-RP)

• CP Random Projection:

$$f_{CP(R)} : \mathbf{x} \mapsto \frac{1}{\sqrt{kR^{N}}} \mathbf{M}\mathbf{x}$$

where each row of $\mathbf{M} = \begin{pmatrix} -\mathbf{m}_{1}^{T} - \\ -\mathbf{m}_{2}^{T} - \\ \vdots \\ -\mathbf{m}_{k}^{T} - \end{pmatrix} \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:
$$\underbrace{\mathbf{m}_{i}}_{d \ d \ d} = \underbrace{\mathbf{G}_{1}^{R}}_{d \ d \ d} \underbrace{\mathbf{G}_{2}^{R}}_{d \ d \ d} \underbrace{\mathbf{G}_{3}^{R}}_{d \ d \ d} \underbrace{\mathbf{G}_{4}^{I}}_{d \ d \ d}$$
 for each $i = 1, \cdots, k$

- CP Random projection (CP-RP)
 - CP Random Projection:

$$f_{CP(R)} : \mathbf{x} \mapsto \frac{1}{\sqrt{kR^{N}}} \mathbf{M}\mathbf{x}$$

where each row of $\mathbf{M} = \begin{pmatrix} -\mathbf{m}_{1}^{T} - \\ -\mathbf{m}_{2}^{T} - \\ \vdots \\ -\mathbf{m}_{k}^{T} - \end{pmatrix} \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:
$$\underbrace{\mathbf{m}_{i}}_{d \ d \ d} = \underbrace{\mathbf{G}_{1}^{i}}_{d \ d \ d} \underbrace{\mathbf{G}_{2}^{i}}_{d \ d \ d} \underbrace{\mathbf{G}_{3}^{i}}_{d \ d \ d} \underbrace{\mathbf{G}_{4}^{i}}_{d \ d \ d} \text{ for each } i = 1, \cdots, k$$

- $\mathcal{O}(kNdR)$ parameters instead of d^Nk .
- Efficient computation of Mx when x is in the CP/TT format.
- We have $\mathbb{E}[\|f_{CP(R)}\|^2] = \|\mathbf{x}\|^2$.
- We have $\lim_{k\to\infty} \mathbb{V}[\|f_{CP(R)}(\mathbf{x})\|^2] = 0.$

Main Result

Theorem

Let $\mathbf{x} \in \mathbb{R}^{d^N}$ and $R \in \mathbb{N}$. The RP maps $f_{TT(R)}$ and $f_{CP(R)}$ satisfy the following properties: • $\mathbb{E}[\|f_{CP(R)}(\mathbf{x})\|^2] = \mathbb{E}[\|f_{TT(R)}(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$ • $\mathbb{V}[\|f_{TT(R)}(\mathbf{x})\|^2] \leq \frac{1}{k}(3\left(1+\frac{2}{R}\right)^{N-1}-1)\|\mathbf{x}\|^4$ • $\mathbb{V}[\|f_{CP(R)}(\mathbf{x})\|^2] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^4$

Main Result

Theorem

Let
$$\mathbf{x} \in \mathbb{R}^{d^N}$$
 and $R \in \mathbb{N}$.
The RP maps $f_{TT(R)}$ and $f_{CP(R)}$ satisfy the following properties:
• $\mathbb{E}[\|f_{CP(R)}(\mathbf{x})\|^2] = \mathbb{E}[\|f_{TT(R)}(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$
• $\mathbb{V}[\|f_{TT(R)}(\mathbf{x})^2\|] \leq \frac{1}{k}(3(1+\frac{2}{R})^{N-1}-1)\|\mathbf{x}\|^4$
• $\mathbb{V}[\|f_{CP(R)}(\mathbf{x})^2\|] \leq \frac{1}{k}(3^{N-1}(1+\frac{2}{R})-1)\|\mathbf{x}\|^4$

 $\,\hookrightarrow\,$ The bounds on the variances are substantially different...

Main Result

Theorem

Let
$$\mathbf{x} \in \mathbb{R}^{d^N}$$
 and $R \in \mathbb{N}$.
The RP maps $f_{TT(R)}$ and $f_{CP(R)}$ satisfy the following properties:
• $\mathbb{E}[\|f_{CP(R)}(\mathbf{x})\|^2] = \mathbb{E}[\|f_{TT(R)}(\mathbf{x})\|^2] = \|\mathbf{x}\|^2$
• $\mathbb{V}[\|f_{TT(R)}(\mathbf{x})^2\|] \leq \frac{1}{k}(3\left(1+\frac{2}{R}\right)^{N-1}-1)\|\mathbf{x}\|^4$
• $\mathbb{V}[\|f_{CP(R)}(\mathbf{x})^2\|] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^4$

- $\,\hookrightarrow\,$ The bounds on the variances are substantially different...
 - More details in arxiv:2003.05101.

Comparison between f_{CP} and f_{TT}

	$f_{CP(R)}: \mathbb{R}^{d^N} \to \mathbb{R}^k$	$f_{TT(R)}: \mathbb{R}^{d^N} \to \mathbb{R}^k$
Number of parameters	$\mathcal{O}(kNdR)$	$\mathcal{O}\left(\textit{kNdR}^2 ight)$
Computing $f(\mathbf{x})$ x in CP with rank $ ilde{R}$	$\mathcal{O}\left(k \textit{Nd} \max(r, ilde{R}^2 ight)$	$\mathcal{O}\left(kNd\max(r, ilde{R}^3 ight)$
Computing $f(\mathbf{x})$ x in TT with rank $ ilde{R}$	$\mathcal{O}\left(\textit{kNd}\max(r, ilde{R}^3 ight)$	$\mathcal{O}\left(kNd\max(r, ilde{R}^3 ight)$
$ \begin{array}{l} \text{With proba} \geq 1 - \delta, \\ \mathbb{P}(\ f(\mathbf{x})\ ^2 = (1 \pm \varepsilon) \ \mathbf{x}\ ^2) \\ \text{ as soon as } k \gtrsim \cdots \end{array} $	$\frac{3^{N-1}(1+2/R)}{\varepsilon^2}\log^{2N}\left(\frac{1}{\delta}\right)$	$\frac{(1+2/R)^{N}}{\varepsilon^{2}}\log^{2N}\left(\frac{1}{\delta}\right)$

Comparison between f_{CP} and f_{TT}

	$f_{CP(R)}: \mathbb{R}^{d^N} \to \mathbb{R}^k$	$f_{TT(R)}: \mathbb{R}^{d^N} \to \mathbb{R}^k$
Number of parameters	$\mathcal{O}(kNdR)$	$\mathcal{O}\left(kNdR^{2} ight)$
Computing $f(\mathbf{x})$ x in CP with rank $ ilde{R}$	$\mathcal{O}\left(kNd\max(r, ilde{R}^2 ight)$	$\mathcal{O}\left(kNd\max(r, ilde{R}^3 ight)$
Computing $f(\mathbf{x})$ x in TT with rank \tilde{R}	$\mathcal{O}\left(k \textit{Nd} \max(r, ilde{R}^3 ight)$	$\mathcal{O}\left(kNd\max(r, ilde{R}^3 ight)$
With proba $\geq 1 - \delta$, $\mathbb{P}(\ f(\mathbf{x})\ ^2 = (1 \pm \varepsilon) \ \mathbf{x}\ ^2)$ as soon as $k \gtrsim \cdots$	$\frac{3^{N-1}(1+2/R)}{\varepsilon^2}\log^{2N}\left(\frac{1}{\delta}\right)$	$\frac{(1+2/R)^{N}}{\varepsilon^{2}}\log^{2N}\left(\frac{1}{\delta}\right)$

- Lower bounds on k suggest that f_{TT} is a better RP than f_{CP} .
- Classical Gaussian RP needs $k \gtrsim \frac{1}{\varepsilon^2} \log \left(\frac{1}{\delta}\right)$.
- Comparisons with other approaches: see arxiv:2003.05101.

Experiments

Experiment Setup

- Compare f_{TT}, f_{CP} and classical Gaussian RP to project d^N dimensional vectors
 - small order: d = 15, N = 3
 - medium order: d = 3, N = 12
 - higher order: d = 3, N = 25
- Input **x** is a random unit-norm TT vector with rank $\tilde{R} = 10$.
- Metric: distortion ratio $\frac{\|f(\mathbf{x})\|^2}{\|\mathbf{x}\|^2} 1$
- Report averages over 100 trials

Experiment Results

Conclusion

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP
- Future work:
 - Leverage results to design efficient linear regression and SVD algorithms
 - Beyond classical tensor decomposition: other TN structures better suited for RP?
 - Study of statistical properties of TT vectors with random Gaussian cores

Thank you! Questions?