Tensor Networks for Machine Learning

Guillaume Rabusseau
Assistant Professor at DIRO, UdeM CIFAR Canada Chair in AI at Mila

January 29, 2021
Séminaire Signal et Apprentissage, Groupe ALEA

Learning with Structured Data

Supervised Learning:
Learn $f: \mathcal{X} \rightarrow \mathcal{Y}$ from a sample $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.

Learning with Structured Data

Supervised Learning:
Learn $f: \mathcal{X} \rightarrow \mathcal{Y}$ from a sample $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.

- We often assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}^{p}$.
- How to handle input/output structured data?

Learning with Structured Data

Supervised Learning:
Learn $f: \mathcal{X} \rightarrow \mathcal{Y}$ from a sample $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.

- We often assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}^{p}$.
- How to handle input/output structured data?
- Tensor structured data: Images, videos, spatio-temporal data, ...

$$
\in \mathbb{R}^{32 \times 32 \times 3} \simeq \mathbb{R}^{3072}
$$

Learning with Structured Data

Supervised Learning:
Learn $f: \mathcal{X} \rightarrow \mathcal{Y}$ from a sample $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.

- We often assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}^{p}$.
- How to handle input/output structured data?
- Tensor structured data: Images, videos, spatio-temporal data, ...
- Discrete structured data: strings, trees, graphs, ...

Learning with Structured Data

Supervised Learning:
Learn $f: \mathcal{X} \rightarrow \mathcal{Y}$ from a sample $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\} \subset \mathcal{X} \times \mathcal{Y}$.

- We often assume $\mathcal{X}=\mathbb{R}^{d}$ and $\mathcal{Y}=\mathbb{R}^{p}$.
- How to handle input/output structured data?
- Tensor structured data: Images, videos, spatio-temporal data, ...
- Discrete structured data: strings, trees, graphs, ...
- In both cases, one can leverage linear and tensor algebra to design learning algorithms.

Outline

(1) An Introduction to Tensors and Tensor Networks
(2) Tensor Networks for ML

- Adaptive Learning of Tensor Decomposition Models
- VC dimension of Tensor Network Models
- Tensorized Random Projections

Tensors

$\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}$
$\mathbf{M}_{i j} \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right]$

$$
\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

$\left(\mathcal{T}_{i j k}\right) \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right], k \in\left[d_{3}\right]$

Tensors and Machine Learning

(i) Data has a tensor structure: color image, video, multivariate time series...

(ii) Tensors as parameters of a model: polynomial regression, higher-order RNNs, weighted automata on trees and graphs...

(iii) Tensors as tools: tensor method of moments [Anandkumar et al., 2014], layer compression in neural networks [Novikov et al., 2015], deep learning theoretical analysis [Cohen et al., 2015]...

Tensors

$\mathbf{M} \in \mathbb{R}^{d_{1} \times d_{2}}$
$\mathbf{M}_{i j} \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right]$

$$
\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}
$$

$\left(\mathcal{T}_{i j k}\right) \in \mathbb{R}$ for $i \in\left[d_{1}\right], j \in\left[d_{2}\right], k \in\left[d_{3}\right]$

Tensors are not easy...

MOST TENSOR PROBLEMS ARE NP HARD

CHRISTOPHER J. HILLAR AND LEK-HENG LIM

Abstract. The idea that one might extend numerical linear algebra, the collection of matrix computational methods that form the workhorse of scientific and engineering computing, to numerical multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears very promising and has attracted a lot of attention recently. We examine here the computational tractability of some core problems in numerical multilinear algebra. We show that tensor analogues of several standard problems that are readily computable in the matrix (i.e. 2-tensor) case are NP hard. Our list here includes: determining the feasibility of a system of bilinear equations, determining an eigenvalue, a singular value, or the spectral norm of a 3-tensor, determining a best rank-1 approximation to a 3 -tensor, determining the rank of a 3 -tensor over \mathbb{R} or \mathbb{C}. Hence making tensor computations feasible is likely to be a challenge.
[Hillar and Lim, Most tensor problems are NP-hard, Journal of the ACM, 2013.]

Tensors are not easy...

MOST TENSOR PROBLEMS ARE NP HARD

CHRISTOPHER J. HILLAR AND LEK-HENG LIM

Abstract. The idea that one might extend numerical linear algebra, the collection of matrix computational methods that form the workhorse of scientific and engineering computing, to numerical multilinear algebra, an analogous collection of tools involving hypermatrices/tensors, appears very promising and has attracted a lot of attention recently. We examine here the computational tractability of some core problems in numerical multilinear algebra. We show that tensor analogues of several standard problems that are readily computable in the matrix (i.e. 2-tensor) case are NP hard. Our list here includes: determining the feasibility of a system of bilinear equations, determining an eigenvalue, a singular value, or the spectral norm of a 3-tensor, determining a best rank-1 approximation to a 3 -tensor, determining the rank of a 3 -tensor over \mathbb{R} or \mathbb{C}. Hence making tensor computations feasible is likely to be a challenge.
[Hillar and Lim, Most tensor problems are NP-hard, Journal of the ACM, 2013.]
... but training a neural network with 3 nodes is also NP hard [Blum and Rivest, NIPS '89]

Forget rows and columns... Now we have fibers!

- Matrices have rows and columns, tensors have fibers ${ }^{1}$:

(a) Mode-1 (column) fibers: $\mathbf{x}_{: j k}$

(b) Mode-2 (row) fibers: $\mathbf{x}_{i: k}$

(c) Mode-3 (tube) fibers: $\mathbf{x}_{i j}$:

Fig. 2.I Fibers of a 3 rd-order tensor.
${ }^{1}$ fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].

Tensors: Multiplication with Matrices

Tensors: Multiplication with Matrices

$\mathbf{A M B}^{\top} \in \mathbb{R}^{m_{1} \times m_{2}}$

$$
\mathcal{T} \times{ }_{1} \mathbf{A} \times 2 \mathbf{B} \times{ }_{3} \mathbf{C} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}
$$

Tensors: Multiplication with Matrices

$\mathbf{A M B}^{\top} \in \mathbb{R}^{m_{1} \times m_{2}}$

$\boldsymbol{T} \times{ }_{1} \mathbf{A} \times 2 \mathbf{B} \times{ }_{3} \mathbf{C} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$
ex: If $\boldsymbol{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ and $\mathbf{A} \in \mathbb{R}^{m_{1} \times d_{1}}, \mathbf{B} \in \mathbb{R}^{m_{2} \times d_{2}}, \mathbf{C} \in \mathbb{R}^{m_{3} \times d_{3}}$, then $\boldsymbol{T} \times{ }_{1} \mathbf{A} \times{ }_{2} \mathbf{B} \times{ }_{3} \mathbf{C} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ is defined by

Tensors: Multiplication with Matrices

$\mathbf{A M B}^{\top} \in \mathbb{R}^{m_{1} \times m_{2}}$

$\boldsymbol{T} \times{ }_{1} \mathbf{A} \times 2 \mathbf{B} \times{ }_{3} \mathbf{C} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$
ex: If $\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$ and $\mathbf{A} \in \mathbb{R}^{m_{1} \times d_{1}}, \mathbf{B} \in \mathbb{R}^{m_{2} \times d_{2}}, \mathbf{C} \in \mathbb{R}^{m_{3} \times d_{3}}$, then $\mathcal{T} \times{ }_{1} \mathbf{A} \times 2 \mathbf{B} \times{ }_{3} \mathbf{C} \in \mathbb{R}^{m_{1} \times m_{2} \times m_{3}}$ is defined by

$$
\left(\mathcal{T} \times 1 \mathbf{A} \times 2 \mathbf{B} \times{ }_{3} \mathbf{C}\right)_{i_{1}, i_{2}, i_{3}}=\sum_{k_{1}=1}^{n_{1}} \sum_{k_{2}=1}^{n_{2}} \sum_{k_{3}=1}^{n_{3}} \mathcal{T}_{k_{1} k_{2} k_{3}} \mathbf{A}_{i_{1} k_{1}} \mathbf{B}_{i_{2} k_{2}} \mathbf{C}_{i_{3} k_{3}}
$$

for all $i_{1} \in\left[d_{1}\right], i_{2} \in\left[m_{2}\right], i_{3} \in\left[d_{3}\right]$.

Tensor Networks

Degree of a node \equiv order of tensor

$\mathbf{v} \in \mathbb{R}^{d}$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Tensor Networks

Degree of a node \equiv order of tensor

Edge \equiv contraction

Matrix product:

$(\mathbf{A B})_{i_{1}, i_{2}}=\sum_{k=1}^{n} \mathbf{A}_{i_{1} k} \mathbf{B}_{k i_{2}}$

Tensor Networks

Degree of a node \equiv order of tensor

$\mathbf{v} \in \mathbb{R}^{d}$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Inner product:

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$

Degree of a node \equiv order of tensor

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Inner product between tensors:

$\langle\mathcal{S}, \boldsymbol{V}\rangle=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \sum_{i_{3}=1}^{d_{3}} \mathcal{S}_{i_{1} i_{2} i_{3}} \mathcal{T}_{i_{1} i_{2} i_{3}}$

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$

$$
\text { Degree of a node } \equiv \text { order of tensor }
$$

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Frobenius norm of a tensor:

$$
\|\mathcal{S}\|_{F}^{2}=\sum_{i_{1}=1}^{d_{1}} \sum_{i_{2}=1}^{d_{2}} \sum_{i_{3}=1}^{d_{3}}\left(\mathcal{S}_{i_{1} i_{2} i_{3}}\right)^{2}
$$

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$
d

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Trace of an $n \times n$ matrix:

$$
\operatorname{Tr}(\mathbf{M})=\sum_{i=1}^{n} \mathbf{M}_{i i}
$$

Tensor Networks

Degree of a node \equiv order of tensor

Edge \equiv contraction

Tensor times matrices:

$\left(\mathcal{T} \times{ }_{1} \mathbf{A} \times{ }_{2} \mathbf{B} \times{ }_{3} \mathbf{C}\right)_{i_{1}, i_{2}, i_{3}}=\sum_{k_{1}=1}^{n_{1}} \sum_{k_{2}=1}^{n_{2}} \sum_{k_{3}=1}^{n_{3}} \mathcal{T}_{k_{1} k_{2} k_{3}} \mathbf{A}_{i_{1} k_{1}} \mathbf{B}_{i_{2} k_{2}} \mathbf{C}_{i_{3} k_{3}}$

Tensor Networks

$\mathbf{v} \in \mathbb{R}^{d}$

Degree of a node \equiv order of tensor

$\mathbf{M} \in \mathbb{R}^{m \times n}$

$\mathcal{T} \in \mathbb{R}^{d_{1} \times d_{2} \times d_{3}}$

Edge \equiv contraction

Hyperedge \equiv contraction between more than 2 indices:

$$
\sum_{i=1}^{n} \mathbf{u}_{i} \mathbf{v}_{i} \mathbf{w}_{i}
$$

Tensor Decomposition Techniques

- Tensors can get huge quickly:
- 3rd order tensor of shape $d \times d \times d$: d^{3} parameters
- 4th order tensor of shape $d \times d \times d \times d$: d^{4} parameters
- 10th order tensor of shape $d \times d \times \cdots \times d$: d^{10} parameters

Tensor Decomposition Techniques

Simple idea: decompose a tensor into product of small factors.

Tensor Decomposition Techniques

Simple idea: decompose a tensor into product of small factors.

- Similar to matrix factorization:
- If $\mathbf{M} \in \mathbb{R}^{m \times n}$ and $\mathbf{M}=\mathbf{A B}$ with $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times n}$

Tensor Decomposition Techniques

Simple idea: decompose a tensor into product of small factors.

- Similar to matrix factorization:
- If $\mathbf{M} \in \mathbb{R}^{m \times n}$ and $\mathbf{M}=\mathbf{A B}$ with $\mathbf{A} \in \mathbb{R}^{m \times r}$ and $\mathbf{B} \in \mathbb{R}^{r \times n}$
$\Rightarrow r(m+n)$ parameters instead of $m n \ldots$

Tensor Decomposition Techniques

- Tucker decomposition [Tucker, 1966]:

$\Rightarrow R_{1} R_{2} R_{3}+d_{1} R_{1}+d_{2} R_{2}+d_{2} R_{2}$ parameters instead of $d_{1} d_{2} d_{3}$.

Tensor Decomposition Techniques

- Tucker decomposition [Tucker, 1966]:

$\Rightarrow R_{1} R_{2} R_{3}+d_{1} R_{1}+d_{2} R_{2}+d_{2} R_{2}$ parameters instead of $d_{1} d_{2} d_{3}$.

Tensor Decomposition Techniques

- CP decomposition [Hitchcock, 1927]²:

${ }^{2}$ fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].

Tensor Decomposition Techniques

- CP decomposition [Hitchcock, 1927]²:

$\Rightarrow R\left(d_{1}+d_{2}+d_{3}\right)$ parameters instead of $d_{1} d_{2} d_{3}$.
${ }^{2}$ fig. from [Kolda and Bader, Tensor decompositions and applications, 2009].

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

$\Rightarrow d_{1} R_{1}+R_{1} d_{2} R_{2}+R_{2} d_{2} R_{3}+R_{3} d_{4}$ parameters instead of $d_{1} d_{2} d_{3} d_{4}$.
- If the ranks are all the same ($R_{1}=R_{2}=\cdots=R$), can represent a vector of size 2^{n} with $\mathcal{O}\left(n R^{2}\right)$ parameters!

Tensor Decomposition Techniques

- Tensor Train decomposition [Oseledets, 2011]:

$\Rightarrow d_{1} R_{1}+R_{1} d_{2} R_{2}+R_{2} d_{2} R_{3}+R_{3} d_{4}$ parameters instead of $d_{1} d_{2} d_{3} d_{4}$.
- If the ranks are all the same $\left(R_{1}=R_{2}=\cdots=R\right)$, can represent a vector of size 2^{n} with $\mathcal{O}\left(n R^{2}\right)$ parameters!
- We can also efficiently perform operations on TT tensors:
- Inner product, sum, component-wise product, ... all in time linear in n for vectors of size d^{n}.

Tensor Decomposition Techniques

- Tensor Ring decomposition [Zhao et al., 2016]:

Tensor Decomposition Techniques

- Tensor Ring decomposition [Zhao et al., 2016]:

$\Rightarrow R_{4} d_{1} R_{1}+R_{1} d_{2} R_{2}+R_{2} d_{2} R_{3}+R_{3} d_{4} R_{4}$ parameters instead of $d_{1} d_{2} d_{3} d_{4}$.

Tensor Networks: Summary

- Tensor networks \equiv graphical notation to describe complex operations on tensors

Tensor Networks: Summary

- Tensor networks \equiv graphical notation to describe complex operations on tensors
- Tensor decomposition \equiv efficient way to compress high dimensional objects
\hookrightarrow can be used to compress neural networks (e.g., [Novikov et al., 2015])

Tensor Networks: Summary

- Tensor networks \equiv graphical notation to describe complex operations on tensors
- Tensor decomposition \equiv efficient way to compress high dimensional objects
\hookrightarrow can be used to compress neural networks (e.g., [Novikov et al., 2015])
- Tensor network methods \equiv algorithms to efficiently perform operations on (or optimize) very high dimensional objects

Tensor Networks: Summary

- Tensor networks \equiv graphical notation to describe complex operations on tensors
- Tensor decomposition \equiv efficient way to compress high dimensional objects
\hookrightarrow can be used to compress neural networks (e.g., [Novikov et al., 2015])
- Tensor network methods \equiv algorithms to efficiently perform operations on (or optimize) very high dimensional objects
\Rightarrow Lots of interesting open problems and connections with quantum physics and formal languages.

Tensor Networks: Summary

- Tensor networks \equiv graphical notation to describe complex operations on tensors
- Tensor decomposition \equiv efficient way to compress high dimensional objects
\hookrightarrow can be used to compress neural networks (e.g., [Novikov et al., 2015])
- Tensor network methods \equiv algorithms to efficiently perform operations on (or optimize) very high dimensional objects
\Rightarrow Lots of interesting open problems and connections with quantum physics and formal languages.
\Rightarrow Tensors are the new matrices (linear \rightarrow multilinear) and tensor networks make it "easy" to reason about tensors, tensor decomposition and multi-linear algebra.

Outline

(1) An Introduction to Tensors and Tensor Networks
(2) Tensor Networks for ML

- Adaptive Learning of Tensor Decomposition Models
- VC dimension of Tensor Network Models
- Tensorized Random Projections

Joint work with Meraj Hashemizadeh, Michelle Liu and Jacob Miller

Tensor Decomposition Techniques

- Lots of ways to decompose a tensor:

CP

Tucker

Tensor Train

Tensor Ring

Hierarchical Tucker

PEPS
\Rightarrow How to choose the right decomposition model for a given ML problem?
\Rightarrow Can we design adaptive algorithms, learning the decomposition structure from data?
\Rightarrow What are the different implicit bias encoded in each decomposition model?
$\Rightarrow \ldots$

Tensor based optimization problems

- A lot of tensor problems can be formulated as

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

where L is a loss function and rank is some notion of tensor rank (e.g. TT, TR, CP, ...).

Tensor based optimization problems

- A lot of tensor problems can be formulated as

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

where L is a loss function and rank is some notion of tensor rank (e.g. TT, TR, CP, ...).

- Tensor Decomposition

$$
L(\mathcal{W})=\|\mathcal{T}-\mathcal{W}\|_{F}^{2}
$$

Tensor based optimization problems

- A lot of tensor problems can be formulated as

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

where L is a loss function and rank is some notion of tensor rank (e.g. TT, TR, CP, ...).

- Tensor Classification

$$
L(\mathcal{W})=\sum_{i=1}^{N} \operatorname{CCE}\left(y_{i}, f\left(\mathcal{X}_{i}\right)\right) \quad \text { where } f\left(\boldsymbol{\mathcal { X }}_{i}\right)=\operatorname{sign}\left(\left\langle\mathcal{W}, \boldsymbol{\mathcal { X }}_{i}\right\rangle\right)
$$

Tensor based optimization problems

- A lot of tensor problems can be formulated as

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

where L is a loss function and rank is some notion of tensor rank (e.g. TT, TR, CP, ...).

- Tensor Completion

Observed pixels

Original image

Tensor based optimization problems

- A lot of tensor problems can be formulated as

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

where L is a loss function and rank is some notion of tensor rank (e.g. TT, TR, CP, ...).

- Tensor Completion

$$
L(\mathcal{W})=\sum_{(i, j, k) \in \Omega}\left(\mathcal{W}_{i j k}-\mathcal{X}_{i j k}\right)^{2}
$$

where Ω is the set of observed entries

A greedy algorithm for adaptive learning of TN structures

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

- We do not want to assume a fixed decomposition model.
- We want an algorithm that can adaptively find the best decomposition model for the task at hand.

A greedy algorithm for adaptive learning of TN structures

$$
\min _{\mathcal{W} \in \mathbb{R}^{d_{1} \times \cdots \times d_{p}}} L(\mathcal{W}) \quad \text { s.t. } \quad \operatorname{rank}(\mathcal{W}) \leq R
$$

- We do not want to assume a fixed decomposition model.
- We want an algorithm that can adaptively find the best decomposition model for the task at hand.
\hookrightarrow We optimize the loss both with respect to the TN structure and the core tensors of the TN:
$\min _{\text {Tensor Network Structure }} \min _{\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(p)}} L\left(\operatorname{TN}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(p)}\right)\right)$

$$
\text { s.t. } \operatorname{size}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(p)}\right) \leq C
$$

A greedy algorithm for adaptive learning of TN structures

$\min _{\text {Tensor Network Structure }} \min _{\mathcal{G}^{(1)}, \ldots, \mathcal{G}^{(p)}} L\left(\operatorname{TN}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(p)}\right)\right)$
s.t. $\operatorname{size}\left(\mathcal{G}^{(1)}, \cdots, \mathcal{G}^{(p)}\right) \leq C$

- Pbm: the space of TN structures is exponentially large...
- We propose a simple greedy approach:
- Start with a rank one tensor
- Optimize the loss wrt the core tensors.
- Greedily choose an edge to increment in the TN.
- Repeat until the parameters budget is reached.

Greedy Algorithm Overview

- Start with a random rank one tensor.

Greedy Algorithm Overview

- Optimize the loss wrt the core tensors.

Greedy Algorithm Overview

- Consider all possible rank one increments on internal edges.

Greedy Algorithm Overview

- Optimize the loss wrt core tensors for each possible increment.

Greedy Algorithm Overview

- Select the most promising rank increment and repeat...

Greedy Algorithm Overview

- Select the most promising rank increment and repeat...

Greedy Algorithm Overview

- Select the most promising rank increment and repeat...

Implementation Details and Limitations

- At each iteration of greedy, we restart the optimization from the previous solution.
- No internal nodes are added to the initial TN structure (cannot represent Tucker).
- No hyperedge (cannot represent CP).
- Computationally expensive.

Experiment: Tensor decomposition

- Objective: compress a given tensor (with unknown tensor network structure) by decomposing it.
- Three target tensors of size $7 \times 7 \times 7 \times 7 \times 7$:

"Triangle" target tensor

Experiment: Tensor decomposition

Tensor structures recovered by Greedy

TR target tensor

"Triangle" target tensor

Experiment: Tensor completion

Original image

Observed pixels

- Initial image is reshaped into a $6 \times 10 \times 10 \times 6 \times 10 \times 10 \times 3$ tensor

Experiment: Tensor completion

TT (rank=18) 10093 param.

Greedy (iter=4) 295 param.

Greedy (iter=17) 10635 param.

TR (rank=2)
220 param.

TR (rank=18) 17820 param.

Greedy (iter=6) 1041 param.

Greedy (iter=23) 20175 param.

TT (rank=10) 3547 param.

TT (rank=26) 19967 param.

Greedy (iter=10) 3273 param.

Greedy (iter=26) 26085 param.

TR (rank=10) 5500 param.

TR (rank=26) 37180 param.

Greedy (iter=12) 4905 param.

Greedy (iter=31) 37695 param.

Experiment: Tensor completion

Einstein Image Completion

Experiment: Tensor completion

Greedy (iter 2)

Greedy (iter 3)

Greedy (iter 4)
(6) (10)

Greedy (iter 6)
(6) (10) $-\frac{3}{-10)} \underbrace{3(6)}_{3}$

Greedy (iter 12)

Greedy (iter 31)

Conclusion

- We propose a general adaptive learning algorithm for tensor problem
- First step towards algorithms for general TN rather than specific tensor decomposition models
- Experimental results are very encouraging

Conclusion

- We propose a general adaptive learning algorithm for tensor problem
- First step towards algorithms for general TN rather than specific tensor decomposition models
- Experimental results are very encouraging
- Future directions (ongoing):
- Theory: convergence rate analysis
- Add support for internal nodes and hyperedges
- Beyond Greedy:
\star develop heuristics for more efficient search
» backtracking (e.g. A* algorithm)
- experiments on compressing neural networks

Outline

(1) An Introduction to Tensors and Tensor Networks
(2) Tensor Networks for ML

- Adaptive Learning of Tensor Decomposition Models
- VC dimension of Tensor Network Models
- Tensorized Random Projections

Joint work with Behnoush Khavari

Statistical Framework of Learning

- Classification problem: Given
- a sample $S=\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right\} \subset \mathcal{X} \times\{-1,+1\}$ drawn i.i.d. from an unknown distribution D
- a class of hypothesis $\mathcal{H} \subset\{-1,1\}^{\mathcal{X}}$
- a loss function ℓ
we want to find $h \in \mathcal{H}$ which minimizes the risk

$$
R(h)=\underset{(x, y) \sim D}{\mathbb{E}} \ell(h(x), y)
$$

Statistical Framework of Learning

- Classification problem: Given
- a sample $S=\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right\} \subset \mathcal{X} \times\{-1,+1\}$ drawn i.i.d. from an unknown distribution D
- a class of hypothesis $\mathcal{H} \subset\{-1,1\}^{\mathcal{X}}$
- a loss function ℓ
we want to find $h \in \mathcal{H}$ which minimizes the risk

$$
R(h)=\underset{(x, y) \sim D}{\mathbb{E}} \ell(h(x), y)
$$

- Empirical Risk Minimization: D is unknown, instead we minimize the empirical risk on S

$$
\hat{R}_{S}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)
$$

Statistical Framework of Learning

- Classification problem: Given
- a sample $S=\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{n}, y_{n}\right)\right\} \subset \mathcal{X} \times\{-1,+1\}$ drawn i.i.d. from an unknown distribution D
- a class of hypothesis $\mathcal{H} \subset\{-1,1\}^{\mathcal{X}}$
- a loss function ℓ
we want to find $h \in \mathcal{H}$ which minimizes the risk

$$
R(h)=\underset{(x, y) \sim D}{\mathbb{E}} \ell(h(x), y)
$$

- Empirical Risk Minimization: D is unknown, instead we minimize the empirical risk on S

$$
\hat{R}_{S}(h)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(h\left(x_{i}\right), y_{i}\right)
$$

- $\hat{R}_{S}(h)$ is an unbiased estimator of $R(h)$. The quality of this estimator depends on
- the sample size n
- the complexity of the hypothesis class \mathcal{H}.

Statistical Framework of Learning

- We want to find $h \in \mathcal{H}$ which minimizes the risk

$$
R(h)=\underset{(x, y) \sim D}{\mathbb{E}} \ell(h(x), y)
$$

- Empirical Risk Minimization: D is unknown, instead we minimize the empirical risk on S
- $\hat{R}_{S}(h)$ is an unbiased estimator of $R(h)$. The quality of this estimator depends on
- the sample size n
- the complexity of the hypothesis class \mathcal{H}.
- Many measures of complexity, here we focus on the VC dimension
- $d_{V C}(\mathcal{H})$: maximum number of points that hypohtesis in \mathcal{H} can separate in all 2^{n} ways.

Problem

- We consider a classification problem with tensors:

$$
R(h)=\sum_{i=1}^{n} \ell\left(y_{i}, h\left(\boldsymbol{\mathcal { X }}_{i}\right)\right) \quad \text { where } h\left(\boldsymbol{\mathcal { X }}_{i}\right)=\operatorname{sign}\left(\left\langle\boldsymbol{\mathcal { W }}, \boldsymbol{\mathcal { X }}_{i}\right\rangle\right)
$$

and \mathcal{W} is parameterized as a tensor network with an arbitrary structure

- Goal: Characterize the complexity of the hypothesis class \mathcal{H}_{G} for an arbitrary tensor network structure G.

Main Result

Theorem
Let $G=(V, E$, dim $)$ be a tensor network structure, let \mathcal{H}_{G} be the corresponding hypothesis class. The following hold:

- $d_{V c}\left(\mathcal{H}_{G}\right) \leq 2 N_{G} \log (12|V|)$
where
- N_{G} is the number of parameters in the tensor network
- $|V|$ is the number of vertices in the tensor network structure

Main Result

Theorem

Let $G=(V, E, \operatorname{dim})$ be a tensor network structure, let \mathcal{H}_{G} be the corresponding hypothesis class. The following hold:

- $d_{V C}\left(\mathcal{H}_{G}\right) \leq 2 N_{G} \log (12|V|)$
- For any $\delta>0$, with probability at least $1-\delta$ over the choice of S, we have for any $h \in \mathcal{H}_{G}$

$$
R(h)<\hat{R}_{S}(h)+2 \sqrt{\frac{2}{n}\left(N_{G} \log \frac{8 e n|V|}{N_{G}}+\log \frac{4}{\delta}\right)}
$$

where

- N_{G} is the number of parameters in the tensor network
- $|V|$ is the number of vertices in the tensor network structure

Discussion

- Our bound can be applied to any family of multilinear low rank classifiers, e.g. low rank matrix classifiers
- Our bound improves previous results in special cases (e.g. low rank matrices)
- Future work
- lower bounds
- structured risk minimization

Outline

(1) An Introduction to Tensors and Tensor Networks
(2) Tensor Networks for ML

- Adaptive Learning of Tensor Decomposition Models
- VC dimension of Tensor Network Models
- Tensorized Random Projections

Joint work with Beheshteh T. Rakhshan, published at AISTATS 2020.

Motivation

- Random projection (RP) and tensor decomposition: Two tools to deal with high-dimensional data
- But RP cannot scale to very high-dimensional inputs (e.g. high-order tensors)
- We use tensor decomposition to scale Gaussian RP to high-order tensors

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Theorem (JL, 1984)

Let $\varepsilon>0$ and $\mathbf{x}_{1}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{d}$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\left\|f\left(\mathbf{x}_{i}\right)\right\|=(1 \pm \varepsilon)\left\|\mathbf{x}_{i}\right\|$ for all $i=1, \cdots, m$.

- Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...

Random Projections (RP)

- Goal: find a low-dimensional projection $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}(k \ll d)$ that preserves distances (with high proba.).
- Johnson-Lindenstrauss Transform (or Gaussian RP).

$$
f: \mathbf{x} \mapsto \frac{1}{\sqrt{k}} \mathbf{M} \mathbf{x} \quad \text { where } \mathbf{M}_{i j} \sim_{i i d} \mathcal{N}(0,1) \text { for each } i, j
$$

Theorem (JL, 1984)

Let $\varepsilon>0$ and $\mathbf{x}_{1}, \cdots, \mathbf{x}_{m} \in \mathbb{R}^{d}$. If $k \gtrsim \varepsilon^{-2} \log m$, then, with high proba., $\left\|f\left(\mathbf{x}_{i}\right)\right\|=(1 \pm \varepsilon)\left\|\mathbf{x}_{i}\right\|$ for all $i=1, \cdots, m$.

- Applications: sketched linear regression, randomized SVD, pre-processing step in ML pipeline, ...
- Pbm: if $\mathbf{x} \in \mathbb{R}^{d^{N}}$ is a high-order tensor represented in CP/TT format, the Gaussian RP has $d^{N} k$ parameters...

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.
- Two important properties that a RP must satisfy:
- $\mathbb{E}\left[\|f(\mathbf{x})\|^{2}\right]=\|\mathbf{x}\|^{2}$ for all \mathbf{x}
- $\lim _{k \rightarrow \infty} \mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]=0$

Objective

- We want to find a RP map $f: \mathbb{R}^{d^{N}} \rightarrow \mathbb{R}^{k}$ such that:
- the number of parameters is linear in N
- computing $f(\mathbf{x})$ is efficient when \mathbf{x} is in the CP or TT format
- f preserves distances with high probability.
- Two important properties that a RP must satisfy:
- $\mathbb{E}\left[\|f(\mathbf{x})\|^{2}\right]=\|\mathbf{x}\|^{2}$ for all \mathbf{x}
- $\lim _{k \rightarrow \infty} \mathbb{V}\left[\|f(\mathbf{x})\|^{2}\right]=0$
\hookrightarrow the rate at which $\mathbb{V}\left[\left[\|f(\mathbf{x})\|^{2}\right]\right.$ converges to 0 captures the quality of a RP.

Tensor Train Random Projection (TT-RP)

- Tensor Train RP:

$$
f_{T T(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the TT format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

Tensor Train Random Projection (TT-RP)

- Tensor Train RP:

$$
f_{T T(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the TT format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

- $\mathcal{O}\left(k N d R^{2}\right)$ parameters instead of $d^{N} k$.
- Efficient computation of $\mathbf{M x}$ when \mathbf{x} is in the CP/TT format.
- We have $\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$.
- We have $\lim _{k \rightarrow \infty} \mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=0 \ldots$

CP Random projection (CP-RP)

- CP Random Projection:

$$
f_{C P(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{2}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

CP Random projection (CP-RP)

- CP Random Projection:

$$
f_{C P(R)}: \mathbf{x} \mapsto \frac{1}{\sqrt{k R^{N}}} \mathbf{M} \mathbf{x}
$$

where each row of $\mathbf{M}=\left(\begin{array}{c}-\mathbf{m}_{1}^{\top}- \\ -\mathbf{m}_{2}^{\top}- \\ \vdots \\ -\mathbf{m}_{k}^{\top}-\end{array}\right) \in \mathbb{R}^{k \times d^{N}}$ is in the CP format:

and the entries of each core tensor \mathcal{G}_{n}^{i} are drawn iid from $\mathcal{N}(0,1)$.

- $\mathcal{O}(k N d R)$ parameters instead of $d^{N} k$.
- Efficient computation of $\mathbf{M x}$ when \mathbf{x} is in the CP/TT format.
- We have $\mathbb{E}\left[\left\|f_{C P(R)}\right\|^{2}\right]=\|\mathbf{x}\|^{2}$.
- We have $\lim _{k \rightarrow \infty} \mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=0 \ldots$

Main Result

Theorem
Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The RP maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathrm{x})\right\|^{2}\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|x\|^{4}$

Main Result

Theorem
Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The $R P$ maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^{4}$
\hookrightarrow The bounds on the variances are substantially different...

Main Result

Theorem

Let $\mathbf{x} \in \mathbb{R}^{d^{N}}$ and $R \in \mathbb{N}$.
The RP maps $f_{T T(R)}$ and $f_{C P(R)}$ satisfy the following properties:

- $\mathbb{E}\left[\left\|f_{C P(R)}(\mathbf{x})\right\|^{2}\right]=\mathbb{E}\left[\left\|f_{T T(R)}(\mathbf{x})\right\|^{2}\right]=\|\mathbf{x}\|^{2}$
- $\mathbb{V}\left[\left\|f_{T T(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathbf{x}\|^{4}$
- $\mathbb{V}\left[\left\|f_{C P(R)}(\mathbf{x})^{2}\right\|\right] \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathbf{x}\|^{4}$
\hookrightarrow The bounds on the variances are substantially different...
- More details in paper on arXiv and Beheshteh's talk at AISTATS 2020.

Experiment Results

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP

Discussion

- We proposed an efficient way to tensorize classical Gaussian RP
- Theory and experiments suggest that TT is better suited than CP for very high dimensional RP
- Future work:
- Leverage results to design efficient linear regression and SVD algorithms
- Beyond classical tensor decomposition: other TN structures better suited for RP?
- Study of statistical properties of TT vectors with random Gaussian cores

Conclusion

- Forget matrices and linear algebra... Tensors and multilinear algebra!
- Tensor networks \equiv unifying language for tensor methods

Conclusion

- Forget matrices and linear algebra... Tensors and multilinear algebra!
- Tensor networks \equiv unifying language for tensor methods

Thank you! Questions?

