
Version: June 9, 2025

Lattice Tester Guide

C++ software tools for measuring the uniformity
of integral lattices in the real space

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle

Université de Montréal

Abstract: Lattice Tester is a C++ software library to compute theoretical measures of
uniformity (or figures of merit) for lattices in the t-dimensional integer space Zt (all points
have integer coordinates). Such lattices are encountered for example (after rescaling) in
quasi-Monte Carlo integration by lattice rules and in the analysis of uniform random number
generators defined by linear recurrences modulo a large integer. Measures of uniformity
include the length of the shortest nonzero vector in the lattice or in its dual (the spectral
test), the Beyer ratio, as well as figures of merit that take normalized versions of these
measures for projections of the lattice onto subsets of the t coordinates, and then take a
weighted sum or the worst-case over the class of considered projections. Lattice Tester is
used in particular in the LatNet Builder and LatMRG software tools, designed to construct
and analyze lattice rules and multiple recursive linear congruential generators, respectively.

Keywords: integration lattice; lattice structure; shortest vector; spectral test; LLL
reduction; BKZ reduction.

Acknowledgement: François Blouin, Erwan Bourceret, Anna Bragina, Ajmal Chau-
mun, Raymond Couture, Marco Jacques, François Paradis, Marc-Antoine Savard, Richard
Simard, Mamadou Thiongane, Josée Turgeon, and Christian Weiß have contributed to this
software.

1



1 Introduction

The purpose of Lattice Tester is to compute certain figures of merit (FOMs) that serve as
measures of uniformity for integral lattices in the t-dimensional space Zt, i.e., for which all
the lattice points have integer coordinates. For general background on lattices in the real
space, see for example [5, 8, 72, 83]. The types of lattices that we consider here are lattices
Lt in the real space Rt that contain Zt and whose points have coordinates that are all integer
multiples of 1/m for some integer m > 0. The integrality property is obtained by rescaling
the original lattice Lt by the integer factor m, so we work with the rescaled lattice Λt = mLt

instead of the original one.

The lattices Lt are discrete vector spaces in Rt and one is often interested in the (finite)
intersection of Lt with the t-dimensional unit hypercube [0, 1)t. This is the case for lattice
rules, which are multivariate integration methods that take the average value of a function
at this set of points (sometimes randomly shifted modulo 1) to estimate the integral of the
function over the unit cube [38, 40, 52, 54, 83]. Bounds on the worst-case or mean square
integration error, for example, can be obtained in terms of FOMs that measure the uniformity
of the lattice. This same set of points Lt ∩ [0, 1)t is also the set of all vectors of t successive
values produced by certain types of linear random number generators (RNGs) in scalar or
matrix form. This includes linear congruential generators (LCGs), matrix LCGs, (linear)
mutiple recursive generators (MRGs), an combinations of these [9, 32, 60, 46, 33, 37, 59, 63].
In these settings, we want the point set to cover the unit hypercube as uniformly as possible.

A standard way of measuring this uniformity is the spectral test [11, 27, 49, 36], that
computes the length of a shortest nonzero vector in the dual lattice. The inverse of this length
represents the maximal distance between successive hyperplanes in a family of equidistant
hyperplanes that contain all the lattice points. We want this maximal distance to be not
too large, for the points to cover the space evenly. Lattice Tester permits one to compute
this distance for the lattice and for any of its projections onto a subset of coordinates,
which are also lattices. This is the typical target task that the software has been designed
for. We compute a shortest nonzero lattice vector using a branch-and-bound (BB) integer
programming optimization procedure which is a slightly modified version of the algorithm
of [15].

An important difference between lattice rules and the lattices obtained from RNGs, from
the practical viewpoint, is that the number η of lattice points per unit of volume, i.e., the
number of lattice points in the unit hypercube [0, 1)t, called the lattice density, is usually
modest (at most in the millions) for lattice rules, but much larger (say, 2200 or more) for
RNGs. For this reason, the FOMs used for these two applications typically differ. The most
popular measures for lattice rules (e.g., Pα with weights) can be computed in a time that
increases at least linearly with η and are therefore unusable when η > 2100. The spectral
test, whose computing time is exponential in t in the worst case but only logarithmic in η,
is more appropriate for such large values of η, and therefore to test the lattice structure of
RNGs. It has also been used to measure the uniformity of lattice rules [21, 52, 64, 65] and
for lattice point sets used in computer graphics [12, 26].

2



In this document, we denote the lattice dimension by t, following many papers and books
on LCGs; e.g., [27, 32, 33]. Most papers on lattice rules use s or d instead, while most books
and papers on lattice reduction theory use n. We define the dimension t as the number of
coordinates in the lattice vectors. It could happen in general that the lattice has a smaller
dimension in the sense that it contains less than t independent vectors. But this does not
occur in our setting.

The rest of the document is organized as follows. In Section 2, we give a brief historical
account on how this software grew. In Section 3, we define the lattices considered here and
recall their main properties. Section 4 lists the main problems addressed by the software.
Section 5 explains how to obtain a basis (triangular or not) from a set of (possibly depen-
dent) generating vectors. Section 6 shows how to compute the m-dual of a given basis.
In Section 7, we review different forms of lattice basis reduction: Korkine-Zolotarev and
Minkowski-reduced basis, pairwise reduction, LLL reduction with factor δ, and blockwise
Korkine-Zolotarev reduction with factor δ. Applying some of these reductions before finding
a shortest vector with the BB algorithm is important (often essential) for performance. Sec-
tion 8 outlines our BB procedure to compute a shortest nonzero vector in the lattice. The
main version is for the L2 norm, but it also works for the L1 norm, which is computationally
more expensive. In Section 9 and 10, we define and discuss the various normalizations and
figures of merit that the software can compute. In Section 11, we summarize what the soft-
ware is doing and how it is organized. Section 12 describes several examples of programs that
use the library and illustrate key properties of the algorithms, including their performance.

Lattice Tester is implemented as a C++ library meant to be used by other software. It
is currently used by LatMRG [48] and by LatNet Builder [51]. The software is available on
GitHub [47].

2 Historical notes

The first version of this software was a single Pascal program written around 1985, which
implemented the spectral test algorithm given in [14, 27]. It was used for [29, 30, 31]. An
new version written in the Modula-2 language in 1988 incorporated procedures to search
for good multiple recursive generators based on figures of merit that involved normalized
version of the spectral test [44]. It used SENTIERS [57] for the arithmetic with arbitrarily
large integers. That version was used for [45, 46]. Several improvements led to the Modula-2
version of the LatMRG [49, 50], which was used for [33, 43, 35, 36, 58, 61, 62], for example.
LatMRG incorporated the better algorithm from [15] to compute a shortest nonzero vector
in a lattice, the LLL algorithm for pre-reduction, computing a Minkowski-reduced basis,
various types of representation of numbers, various figures of merit, searching procedures,
and more.

Around 2000, Modula-2 compilers were no longer available and we decided to port
LatMRG to C++. Between 2000 and 2010, Richard Simard made a rough translation from
Modula-2 (which was not an object-oriented language) to C++. Several students also made

3



various changes and additions along the years. For the arithmetic with large numbers, we
switched from SENTIERS to GMP and NTL. In 2014, David Munger separated LatMRG
in two pieces: (1) Latcommon, which became Lattice Tester in 2017) [55], whose task is
to compute measures of uniformity for arbitrary integer lattices, and (2) the new LatMRG
which uses those facilities to test the lattice structure of linear RNGs and to search for good
generators under various types of constraints. The rationale for having Lattice Tester (or
Latcommon) as a separate software was that it can be used to analyze lattices for other pur-
poses than testing or selecting RNGs. Latcommon was also used in 2014 in Lattice Builder[55]
and Lattice Tester is now also used in LatNet Builder [53].

3 Lattices in the real space and in the integer space

3.1 Integral lattices in the real space

We consider lattices over Z (or Z-lattices) in the real space Rt, which are discrete subspaces
of the real vector space Rt that can be expressed as

Lt =
t∑

j=1

Zvj =

{
v =

t∑
j=1

zjvj | each zj ∈ Z

}
, (1)

where t is a positive integer, and v1, . . . ,vt are linearly independent (nonzero) vectors in Rt

which form a basis of the lattice. The matrix V , whose ith row is vi, is a generator matrix
of Lt. In this document, unless indicated otherwise, the vectors are row vectors and their
indices start at 1, to agree with the usual mathematical notation. (In the software code,
they start at 0.) We can write v = (v1, . . . , vt) in (1) as v = zV where z = (z1, . . . , zt). If
we multiply V by any unimodular t× t matrix, we get another basis, and any basis can be
obtained in this way [77].

The determinant of the matrix V is equal to the volume of the fundamental parallelepiped
defined as {v = λ1v1 + · · · + λtvt | 0 ≤ λi ≤ 1 for 1 ≤ i ≤ t}. It is independent of the
choice of basis. It is called the fundamental volume (or determinant) of Lt, and denoted
det(Lt) = det(V ). The quantity ηt = 1/det(Lt) = 1/det(V ) = det(V −1) is called the
density of Lt and it represents the average number of points per unit of volume. When Lt

contains Zt, the density ηt is an integer equal to the cardinality of the point set Lt ∩ [0, 1)t.
In our setting, this will always occur.

For a given lattice Lt and a subset of coordinates I = {i1, . . . , is} ⊆ {1, . . . , t}, we denote
by LI the projection of Lt onto the s-dimensional subspace determined by the coordinates
in I. This projection is also a lattice, whose density ηI divides that of Lt. This density ηI is
often equal to ηt, but is sometimes smaller. There are exactly det(LI)/det(Lt) = ηt/ηI points
of Lt that are projected onto each point of LI . In group theory language, LI corresponds to
a coset of Lt.

4



A shifted lattice is a lattice Lt shifted by a constant vector v0 ̸∈ Lt, i.e., a point set of
the form L′

t = {v + v0 : v ∈ Lt}, where Lt is a lattice. The uniformity of a shifted lattices
L′
t can be analyzed by subtracting the shift and analyzing the (unshifted) lattice Lt.

We assume that a norm ∥ · ∥ in Rt has been selected to measure the length of lattice
vectors. By default, it is the L2 (Euclidean) norm, but in some situations we may use a
different one, for example the L1 norm. We denote the norm of v by ∥v∥. We also denote
by v ·w the standard scalar product of vectors v and w (the inner product that corresponds
to the L2 norm).

The dual lattice of Lt is defined as L∗
t = {w ∈ Rt | w · v ∈ Z for all v ∈ Lt}. The dual of

a given basis v1, . . . ,vt is the set of vectors w1, . . . ,wt in Rt such that vi ·wj = δij, where
δij = 1 if i = j, and δij = 0 otherwise. The vectors w1, . . . ,wt form a basis of the dual
lattice. These wj’s are the columns of the matrix V −1, the inverse of the matrix V . We
define W = (V −1)t, so that the rows of W form the dual basis. To dualize a lattice means
interchanging V for W , i.e., when switching between the primal and dual. The density η∗t of
L∗
t is the inverse of the density of Lt; that is, 1/det(L

∗
t ) = det(Lt) = det(V ) and η∗t = 1/ηt.

The dual lattice is a key tool to study the uniformity of a lattice point set for the following
reason. For any vector w ∈ L∗

t and any integer z, the set {v ∈ Rs : w ·v = z} is a hyperplane
orthogonal to w. When z goes through all the integers in Z, these sets form a family of
equidistant parallel hyperplanes that cover all points of Lt, because v ·w ∈ Zt for all v ∈ Lt.
If w is an integer multiple of another dual lattice vector, this remains true, although the
family will contain more hyperplanes than necessary to contain all the points. The Euclidean
distance between successive hyperplanes in this family is the distance between the origin and
the hyperplane with z = 1, i.e., the length of the shortest nonzero vector from the origin to
that hyperplane. This length turns out to be 1/∥w∥2, the inverse of the length of the dual
vector w [27, 41]. Therefore, if we compute the Euclidean length of the shortest nonzero
vector in L∗

t and take the inverse of this length, we get the distance between successive
hyperplanes for the family for which this distance is the largest.

Likewise, the length of the shortest nonzero vector in L∗
t with the L1 norm, minus 1, is

equal to the minimal number of parallel hyperplanes required to cover Lt ∩ (0, 1)t, the set of
lattice points that lie in the open unit hypercube [69, 14]. If we insist on covering also the
point 0, i.e., Lt ∩ [0, 1)t, then we need one extra hyperplane when all coordinates of w have
the same sign [27, Exercise 3.3.4-16].

Because of these properties, computing shortest nonzero vectors in dual lattices with
the L2 or L1 norms is an important task. We want these shortest vectors to be as long as
possible, given the constraints we have on the lattice density.

3.2 Rescaling the primal and dual to integral lattices

In Lattice Tester, it is assumed that all basis vector coordinates are integers, so they can be
represented exactly on a computer. In case the basis vectors are rational, it is always possible
to find positive integers m1 and m2 such that Λt = m1Lt ⊆ Zt and Λ∗

t = m2L
∗
t ⊆ Zt, then we

5



can work with the rescaled lattice Λt and its m-dual rescaled lattice Λ∗
t , where m = m1m2.

That is, we rescale either V or W or both by the integer factors m1 and m2. The densities
of the rescaled lattice Λt and of its m-dual Λ∗

t are then related by mt/det(Λ∗
t ) = det(Λt) =

mt
1det(Lt). For all the applications that we are using this software for, L∗

t is already an
integral lattice, and only Lt is rescaled by m. This rescaling divides the density by mt in t
dimensions. We will denote by ΛI the projection of Λt onto a subset I of coordinates, and
by Λ∗

I its m-dual.

In the software and in much of the remainder of this document, we assume that the
appropriate rescaling has already been done and we work directly with the rescaled lattice
Λt, and its m-dual Λ∗

t = L∗
t , which are both Z-lattices over Zt. Having integral lattices

permits us to always represent vector coordinates exactly on the computer. From now on,
we will use V with rows v1, . . . ,vt to represent a basis of Λt (and not of Lt as in the previous
section) and W with rows w1, . . . ,wt for a basis of its m-dual lattice Λ∗

t . We say that V
and W are m-dual to each other.

Since V ·W t = mI and all the entries of V andW are integers, each vectormei (m times
the ith unit vector ei) can be expressed as an integer linear combination of the basis vectors
in V (equivalently, Lt contains all integer vectors) and also as an integer linear combination
of the basis vectors in W . Therefore, each vector mei must belong to both the primal and
m-dual lattices, for i = 1, . . . , t. This means that any linear combination of lattice vectors
modulom gives another lattice vector, and similarly for them-dual. Therefore, all operations
on vectors to construct or reduce a basis (see the following sections) can be performed modulo
m, as long as the mod m operation does not exclude a vector mei from the lattice. To avoid
such exclusion, we can always assume when building a basis that the vectors mei belong
implicitly to the set of generating vectors. The fact that all vectors mei belong to the lattice
also implies that any basis for the projection LI onto a subset I of coordinates must contain
|I| independent vectors, so it must be a square matrix, and similarly for its m-dual. This
property is convenient when studying the uniformity of projections.

For a Z-lattice with basis V , the m-dual basis W can be computed for any integer
m ≥ 1, but the entries of W are not necessarily all integers for all m. This holds only if the
lattice Lt generated by V /m contains Zt, or equivalently if all vectors mei are integer linear
combinations of the rows of V . In the applications targeted by this software, this condition
is satisfied. The software assumes that the condition holds and takes advantage of this. We
will work sometimes only with V , sometimes only with W , and sometimes with both.

As a special case, we have a rescaled integration lattice of rank 1 [13, 52, 83] if the rows of
V have the form v1 = a = (a1, a2, . . . , at) for some integer vector a whose first coordinate a1
dividesm, and v2 = me2, . . . ,vt = met complete the basis, wherem is a positive integer. For
such a lattice, it is easy to enumerate the lattice points that lie in the rescaled unit hypercube
[0,m)t and then map them to their unscaled versions in [0, 1)t: the rescaled points are simply
ia mod m for i = 0, 1, . . . ,m− 1. They are distinct if and only if at least one coordinate of
a is relatively prime to m. The projection ΛI of Λt onto a subset I of coordinates has m
distinct points for all nonempty subsets I if and only if all coordinates of a are relatively
prime to m. The latter condition is usually imposed in applications.

6



When the lattice Lt corresponds to vectors of t successive outputs from a linear multiple
recursive generator (MRG) of order k with modulus m [32, 34, 48] and t ≥ k, one has
Λt = mLt, det(Lt) = m−k, det(Λt) = mt−k (which gets very large when t gets large), and
det(L∗

t ) = det(Λ∗
t ) = mk. When Lt comes from a rank-1 lattice rule with m points, we

have this with k = 1. Note that det(Λt) grows exponentially with t and may not be easily
representable on the computer for very large m and t. In the software, we avoid computing
it (or its multiplicative inverse, the density) directly for this reason. We compute and use
its logarithm instead.

For the projection I of an MRG-based lattice onto the first s coordinates with s < k, we
have det(LI) = m−s, det(ΛI) = 1, and det(L∗

I) = det(Λ∗
I) = ms. For a projection I onto

s < k non-successive outputs, we may have det(LI) > m−s and det(L∗
I) = det(Λ∗

I) < ms.
We have the strict inequality when points are projected over each other, so the density of

LI becomes smaller than ms. There is an example of this in the LatMRG guide [42]. 1

3.3 Lengths of shortest nonzero vectors in a lattice and its pro-
jections

For the applications targeted by this software, the lattices and their projections are defined
by first constructing the rescaled primal lattice Λt, sometimes taking projections ΛI or adding
coordinates for this primal lattice, and then computing the m-dual of the lattice or of the
projection. If w is in the m-dual L∗

t and we add one coordinate to the lattice to get Λt+1,
then it suffices to add a zero coordinate to w and this new vector will be in the m-dual L∗

t+1.
This means that when we add a new coordinate, the length of the shortest nonzero m-dual
vector cannot increase, it can only decrease or remain the same. By the same argument,
the length of a shortest nonzero vector in the m-dual of a projection ΛI of Λt cannot be
smaller than the one in L∗

t . This property does not apply to the primal lattice. Things are
not symmetric because we are not making direct projections of the m-dual. In the primal
lattice, the shortest vector lengths can only increase when we add coordinates, because if v
is a shortest nonzero vector in Λt, then the projection of v on the coordinates in I belongs
to ΛI and cannot be longer than v. So the shortest vector length cannot increase when we
remove coordinates and cannot decrease when we add coordinates.

What typically happens is that when t increases, at some point the length of the shortest
nonzero vector in Λt becomes m and each mei is a shortest nonzero vector. In particular,
suppose that Λt∩ [0,m)t contains m points and that its projection on each single coordinate
is Zm = {0, . . . ,m− 1}. This implies that none of the m− 1 nonzero points in Λt ∩ [0,m)t

has a zero coordinate. In that case, a shortest nonzero vector can be at a corner of the
hypercube [0,m]t, or otherwise all of its coordinates must be nonzero. But in the latter case,
its Euclidean length must be at least

√
t, and therefore mei is necessarily a shortest nonzero

vector whenever t ≥ m2. Often, this occurs already for a much smaller dimension t0, and
then for all t ≥ t0.

1From Pierre: Give specific example number when that guide is ready.

7



As a simple worst-case example, suppose a basis of Lt is (1/m, . . . , 1/m) and the unit
vectors vi = ei for i ≥ 2, so a basis for Λt is v1 = (1, . . . , 1) and vi = mei for i ≥ 2. Then for
the L2 norm, v1 is a shortest vector of length

√
t for t ≤ m2 and any ei is a shortest vector

of length m for t ≥ m2. For the L1 norm v1 is a shortest vector of length t for t ≤ m. Note
that all the points of Λt ∩ [0,m)t are on a single line in this case.

As another example, if m = 5, v1 = (1, 2, 3, 4, . . . ), and vi = mei for i ≥ 2, then the only
lattice points that belong to (0, 1)t are jv1 mod m for j = 1, . . . ,m − 1. For t = 4, these
points are (1, 2, 3, 4), (2, 4, 1, 3), (3, 1, 4, 2), (4, 3, 2, 1). They all have an L2 norm of

√
30 > m,

so the shortest vectors in 4 dimensions or more are the vectors mei, of length m, regardless
of the other coordinates of v1. For the L1 norm, this occurs already in 3 dimensions.

Larger examples are examined in Section 12.6.

4 Problems of Interest with Integral Lattices

In this document (and software), we are particularly interested in the following problems for
integral lattices over Z.

A. Lattice Basis Construction. Given a set of vectors (not necessarily independent)
with integer coordinates, find a basis for the lattice generated by these vectors. Note
that our representation of a lattice on the computer is by a lattice basis, so the first
step is always to construct such a basis.

B. Find m-Dual Lattice Basis. Given a lattice basis, compute the corresponding m-
dual basis.

C. Lattice Basis Reduction (LBR). Given a lattice basis, find another basis whose
vectors are nearly orthogonal or as short as possible in some sense. There are many
variants and definitions of this.

D. Shortest Vector Problem (SVP). Find a shortest nonzero vector in the lattice,
with a proof that it is shortest.

E. Approximate Shortest Vector Problem (ASVP). Find a short vector that is not
much larger than a shortest nonzero vector in the lattice.

The next sections explain how we can solve each of these problems and how it is im-
plemented in Lattice Tester. Problems A, B, and E are relatively easy, whereas D is much
harder. For C, there are many ways of defining the concept of reduced basis and the difficulty
depends on this definition. For example, LLL-reduction (a weak form of basis reduction)
takes only polynomial time, whereas Minkowski and Korkine-Zolotarev reduction take ex-
ponential time in the dimension, with the currently available algorithms [5, 72]. The best
known algorithms for Problem D take exponential time as a function of the dimension, but

8



in practice we can solve reasonably large instances, particularly in situations where a very
short vector can be identified very quickly.

In Problems B to D, vector lengths are usually measured with the Euclidean (L2) norm
and this is what we assume in the rest of this manual, except when indicated otherwise.
Sometimes we are interested in other norms. In particular, the software handles the L1

norm for Problems D and E.

5 Building a Basis from a Set of Generating Vectors

5.1 Context and motivation

In many cases, a lattice basis and its m-dual are obtained directly from the problem specifi-
cation, so there is no Problem A to solve. This occurs for example for the lattice that corre-
sponds to successive output values produced by a multiple recursive generator [27, 32, 49].
But in some situations, we need to extract a basis from a set of possibly dependent generating
vectors.

Given a finite set of (nonzero) integer vectors v1, . . . ,vr ∈ Zt that are not necessarily
independent, we want to construct a basis for the lattice generated by these vectors together
with the vectors mei in t dimensions. We may also want to obtain the corresponding m-dual
basis. Here, t is the dimension of the vectors, r can be smaller, equal, or larger than t. If
some of these vectors are zero, we can simply remove them and work with those that remain.
In our setting, we know a priori that the vectors mei for i = 1, . . . , t must belong to the
lattice, so we always add them to the set of generating vectors, often implicitly. This implies
that the generated lattice must have t dimensions.

One important situation in which this basis construction problem occurs is when we
need to construct a basis for the projected rescaled lattice ΛI onto the subset of coordinates
I ⊂ {1, . . . , t}, given a basis for Λt. By projecting the vectors of Λt onto the s coordinates
in I, with s < t, we obtain a set of dependent s-dimensional vectors that, together with the
vectors mei in s-dimensions, generate the s-dimensional lattice ΛI . We typically want to
use this set to build a basis for ΛI and perhaps the corresponding m-dual basis. Both of
these bases will be s× s invertible matrices (i.e., t is replaced by s here). Another common
situation is when we already have a basis for ΛI , and we want to add one coordinate to the
set I, or replace one coordinate of I by a different one, and we want to recover a basis for
the modified ΛI and perhaps its m-dual as well.

Given a set S of generating vectors for a lattice, if a new set S ′ is obtained from S by
applying any of the following operations, then S and S ′ generate the same lattice. The
operations allowed are: (1) change the sign of a vector (multiply it by −1); (2) add (or
subtract) an integer multiple of one vector to another one; (3) remove a vector if it is
zero. Multiplying a vector by a constant other than ±1 is not allowed. In case S already
corresponds to the rows of a basis matrix V , one can permute the rows of V , multiply a

9



row by −1, or add an integer multiple of one row to another one. Each of these operations
corresponds to multiplying V by a unimodular matrix, so it only transforms V into another
basis of the same lattice.

5.2 The gcd triangular construction method

We say that we have an upper-triangular basis of Λt when the matrix V is upper triangular,
and a lower-triangular basis when it is lower triangular. In both cases, the determinant of
the lattice is the product of the diagonal elements: det(Λt) = v1,1 · · · vt,t. One advantage of
having a triangular basis is that it is very easy to compute its m-dual; see Section 6. We now
describe algorithms to compute an upper or lower triangular basis for the lattice generated
by v1, . . . ,vr together with the vectors me1, . . . ,met which are added implicitly to form a
set of generating vectors. At the end, the vectors x1, . . . ,xt will form a triangular basis
whose diagonal elements are all positive.

Our first algorithm will return an upper-triangular basis. We have r generating vectors in
t dimensions. For the simplest case where the r vectors are in one dimension (t = 1), these
vectors are just r integers denoted v1, . . . , vr. We first replace each vj by vj mod m, so we
now have 0 ≤ vj < m for all j. Then we compute c = gcd(v1, . . . , vr,m) > 0, the greatest
(positive) common divisor of these r integers and m. When doing this, we skip the vj’s that
are zero. This c belongs to the lattice and every lattice point must be an integer multiple of
c, so c is a lattice basis. This gcd can be computed via Euclid’s algorithm as follows: start
with c = m and for j = 1, . . . , r, if vj ̸= 0, compute c := gcd(c, vj). If all vj’s are 0, we get
c = m.

For t > 1, we compute an upper-triangular basis as follows. Let vi = (vi,1, . . . , vi,t) for
i = 1, . . . , r. We first replace each vi,j by vi,j mod m, to obtain a set of r generating vectors
with 0 ≤ vi,j < m for all (i, j), together with the vectors mei. Let c1 = gcd(v1,1, . . . , vr,1,m),
assuming here that the zero values are skipped. If c1 = m, which means that vi,1 = 0 for all
i, we take x1 = me1 as our first basis vector. Otherwise, we exploit the fact that c1 can be
written as c1 = a0,1m+a1,1v1,1+ · · ·+ar,1vr,1 for some integers ai,1 ∈ Z, −m < ai,1 < m, that
can be computed while doing Euclid’s algorithm. Then the lattice vector x1 = a1,1v1+ · · ·+
ar,1vr mod m has c1 > 0 as its first coordinate, and this is the first vector of our triangular
basis. Since this c1 divides each nonzero vi,1, we can put vi = vi − (vi,1/c1)x1 mod m for
i = 1, . . . , r, so all these generating vectors now have 0 as their first coordinate, and their
other coordinates are in Zm = {0, . . . ,m − 1}. The new set v1, . . . ,vr,x1,me2, . . . ,met

generates the same lattice as before. Note that me1 is no longer needed, since it can be
obtained as an integer linear combination of the other vectors. Here we compute the
vector x1 only after computing c1, and we modify the vectors vi only after computing x1.
This is more efficient than updating x1 while computing the gcd, especially when t is large,
because it could save a few vector operations if some coefficients ai,1 are 0. On the other
hand, the cost of updating the vi’s is the same both ways.

Then we repeat the same process with the new vectors v1, . . . ,vr, but using their second
column. If vi,2 = 0 for i = 1, . . . , r, we put x2 = me2. Otherwise, we compute c2 =

10



gcd(v1,2, . . . , vr,2,m) = a1,2v1,2+ · · ·+ar,2vr,2 mod m, we put x2 = a1,2v1+ · · ·+ar,2vr mod m
as our second basis vector, and we use x2 to zeroes the nonzero second coordinates of the
vi’s via vi = vi − (vi,2/c2)x2 mod m for all i.

Then we do the same for the third column, and so on, until we have x1, . . . ,xt. At that
point, all the vi will be zero and we will no longer need any of the mei. All these operations
preserve the property that after each step j, the vectors v1, . . . ,vr together with x1, . . . ,xj

that have been computed so far and mej+1, . . . ,met, are a set of generating vectors for our
lattice. At the end, the vi are all zero, we no longer need the mei’s, and x1, . . . ,xt form an
upper-triangular invertible matrix which gives an upper triangular lattice basis.

Observe that after we put all the elements vi,j of column j to 0 by doing vi = vi −
(vi,j/cj)xj mod m for all i, none of these elements will be used again in any way. Therefore
we can save computations by performing this subtraction only for the columns j + 1 to t,
leaving “garbage” in the previous columns. That is, we just do vi,k = vi,k−(vi,j/cj)xj,k mod m
for k = j + 1, . . . , t and i = 1, . . . , r.

To compute the gcd and the coefficients ai,j, for the first column we proceed incrementally
by first putting g0 = m, and then computing gi = gcd(gi−1, vi,1) if vi,1 ̸= 0 and gi = gi−1

otherwise, for i = 1, . . . , r. At the end we have c1 = gr. Each time we compute gcd(gi−1, vi,1),
Euclid’s algorithm also returns two integers (a′i−1, a2) such that gi = a′i−1gi−1 + aivi,1, for
i = 1, . . . , r. With easy calculations, this gives us the integers a0,1, a1,1, . . . , ar,1 such that
c1 = gr = a1,1v1,1 + · · ·+ ar,1vr,1. We use the same process for all the other columns.

In what we have just described, the coordinates of the vectors xi that are above the diag-
onal are reduced modulo m in a way that they are never negative. To make the basis vectors
shorter, it is also possible to reduce these coordinates so they lie in {−m/2 + 1, . . . ,m/2}
instead of {0, . . . ,m − 1}. We call this modulo m reduction toward zero and we denote it
by “mod0”. Starting with shorter basis vectors is generally better when we apply the BB
algorithm of section 8.5 and also when reducing a basis with LLL. For this reason, we use
this reduction toward zero in our implementation.

The complete procedure is stated in Algorithm 1.

To compute a lower-triangular basis, we proceed in the same way but starting from the
last column and lower right corner instead of the first column and upper left corner. We first
replace each vi by vi mod m. Then we compute the gcd ct between the last coordinates that
are nonzero, andm; that is, ct = gcd(v1,t, . . . , vr,t,m) = a0,tm+a1,tv1,t+· · ·+ar,tvr,t. If ct = m,
we take xt = met as our last basis vector, otherwise we take xt = a1,tv1+ · · ·+ar,tvrmod0 m.
This last vector has ct > 0 as its last coordinate. Since ct divides each nonzero vi,t, we can
put vi = vi − (vi,t/ct)xt mod m for i = 1, . . . , r, so all our previous generating vectors now
have zero as their last coordinate. The new set v1, . . . ,vr,me1, . . . ,met−1,xt generates the
same lattice as before.

Then, we repeat the same process with the new vectors v1, . . . ,vr, but using their next-
to-last column. We compute ct−1 = gcd(v1,t−1, . . . , vr,t−1,m) = a0,t−1m+ a1,t−1v1,t−1 + · · ·+
ar,t−1vr,t−1 mod m. If ct−1 = m, we take xt−1 = met−1, otherwise we put xt−1 = a1,t−1v1 +
· · ·+ ar,t−1vrmod0 m. We use xt−1 to zeroes all nonzero next-to-last coordinates of the vi’s

11



Algorithm 1: Computing an upper-triangular basis from generating vectors

UT(v1, . . . ,vr):
// v1, . . . ,vr,me1, . . . ,met are assumed to be generating vectors

for i = 1, . . . , r do
vi ← vi mod m;

for j = 1, . . . , t do
cj ← gcd(v1,j, . . . , vr,j,m) = a0,jm+ a1,jv1,j + · · ·+ ar,jvr,j;
if cj = m then

xj = mej

else
xj = a1,jv1 + · · ·+ ar,jvrmod0 m;
for i = 1, . . . , r do

for k = j + 1, . . . , t do
vi,k = vi,k − (vi,j/cj)xj,k mod m.

via vi = vi − (vi,t−1/ct−1)xt−1 mod m for all i. Then we do the same for column t− 2, and
so on, until we have x1, . . . ,xt. All these operations preserve the property that the vectors
v1, . . . ,vr together with me1, . . . ,mej−1,xj, . . . ,xt are always a set of generating vectors for
our lattice. At the end, the vi are all zero and x1, . . . ,xt form a lower-triangular invertible
matrix which gives an lower triangular lattice basis.

Again, when doing vi = vi − (vi,j/cj)xj mod m for all i, to save time we just do vi,k =
vi,k − (vi,j/cj)xj,k mod m for k = 1, . . . , j − 1 and i = 1, . . . , r, because the other elements
vi,k will never be used again.

This procedure is stated in Algorithm 2.

Algorithm 2: Computing a lower-triangular basis from generating vectors

LT(v1, . . . ,vr):
// v1, . . . ,vr,me1, . . . ,met are assumed to be generating vectors

for i = 1, . . . , r do
vi ← vi mod m;

for j = t, . . . , 1 do
cj ← gcd(v1,j, . . . , vr,j,m) = a0,jm+ a1,jv1,j + · · ·+ ar,jvr,j;
if cj = m then

xj = mej

else
xj = a1,jv1 + · · ·+ ar,jvrmod0 m;
for i = 1, . . . , r do

for k = 1, . . . , j − 1 do
vi,k = vi,k − (vi,j/cj)xj,k mod m.

The two algorithms just described for the upper-triangular and lower-triangular construc-
tions are implemented in the BasisConstruction.h file.

12



A similar algorithm to compute an upper-triangular basis is briefly described in Section
7 of [10] and in Section 3 of [49], and was implemented in the Modula-2 version of LatMRG.
One difference is that instead of computing each gcd’s ci before modifying any vector, the
old algorithm modifies the vectors along the way while computing the gcd. The code was
also written in a different way. The old method is also offered in BasisConstruction.h, for
testing and comparisons. Our newer versions are much faster, as we will see in Section 12.5.

5.3 The LLL construction method

NTL uses a different approach to build a basis with a modified LLL procedure that identifies
and eliminates along the way the vectors that can be expressed as integer linear combinations
of the other ones. Instead of constructing a triangular basis, it tries to reduce the length
of each vector as much as possible by subtracting a multiple of another vector (a pairwise
reduction) having a smaller index, and exchanging vectors whenever a vector becomes sig-
nificantly shorter than its predecessor, as in the LLL reduction. The algorithm is stated in
[5, Page 109]. See also [23, 74]. It provides a basis that in general is not triangular, but
is comprised of shorter vectors than the procedures of Section 5.2. This approach is imple-
mented in the LLL functions of NTL, which are accessible from our ReducerStatic.h file.
Instead of giving a basis as input to these functions, one can just give a set of generating
vectors.

Speed comparisons between LLL and triangular basis constructions are reported in Sec-
tions 12.5 and 12.4. In general, if the end goal is to obtain an LLL-reduced primal basis,
it is slightly more effective to use the LLL construction directly rather than construct a
triangular basis and apply LLL afterwards. But if the end goal is to obtain an LLL-reduced
m-dual basis, it is more effective to construct a triangular basis, then compute its (triangu-
lar) m-dual, and apply LLL to it. The reason is that computing the m-dual is significantly
faster in the triangular case (see Section 6). Also, doing the LLL construction or reduction
before applying the gcd triangular method does not improve the speed of the latter.

5.4 Direct construction for a rank-1 integration lattice

For a rank-1 integration lattice with generating vector a = (1, a2, . . . , at) in t dimensions
(we always take a1 = 1 for simplicity), a basis for Λt = mLt is formed by the rows vi of the
matrix

V =


v1

v2
...
vt

 =


1 a2 . . . at
0 m . . . 0
...

...
...

0 . . . m 0
0 . . . 0 m

 (2)

13



whose m-dual is

W =


w1

w2
...
wt

 =


m 0 . . . 0 0
−a2 1 . . . 0 0
...

...
. . .

...
...

−at−1 0 . . . 1 0
−at 0 . . . 0 1

 . (3)

For the case of a Korobov lattice, we have aj = aj−1 mod m for all j, for some integer a > 0.
This also applies to an LCG with modulus m and multiplier a, whose successive states follow
the recurrence xn = axn−1 mod m, so any vector of t successive states must be an integer
multiple of the vector (1, a, a2, . . . , at−1) modulo m.

Suppose we have constructed a basis in t = s− 1 dimensions, we reduced it in some way
(e.g., by LLL or otherwise), and we now want to increase its dimension to t = s. We can of
course just naively reconstruct the basis and its m-dual in s dimensions directly as above.
But if s is large and the basis in s− 1 dimensions was already reduced to a basis with short
vectors, we may not want to lose this previous reduction work and prefer to expand the
current basis to account for the new coordinate. This can be done as follows.

We need to add one row and one column to the current basis matrices V and W (which
differ from those written above). Let vi,j and wi,j denote the current elements of these
matrices. The new row of V can simply be mes = (0, . . . , 0,m). For the new column, notice
that vi in the new basis must be equal modulo m to vi,1 times the vector (1, a2, . . . , as),
because it must be a linear combination modulo m of the initial basis vectors. Therefore,
we must have vi,s = asvi,1 mod m for all i. This gives the new basis.

In case we have reduced versions of both the primal and m-dual bases in s−1 dimensions
and we want to extend both of them to s dimensions, it suffices to add a zero coordinate to
each vector of the current m-dual basis, then add the vector

ws = es −
1

m

s−1∑
i=1

vi,swi,

where the wi are the previous m-dual basis vectors. One can verify that we indeed have
V W t = mI with the new matrices. With this approach, one never has to compute the m-
dual basis by inverting the primal one, but the m-dual basis must be maintained whenever
we perform reduction operations on the primal, and vice-versa. The LLL implementation
from NTL does not do that.

The previous construction requires that we update either only the primal, or both the
primal and m-dual bases together. In case we want to maintain only the m-dual and not the
primal, a simple alternative is to add a zero coordinate to each vector of the current basis,
then we add the vector

ws = es − ase1 = (−as, 0, . . . , 0, 1).

This provides a basis for the m-dual lattice and this construction is certainly faster than the
previous one. In both cases, the first s−1 vectors of them-dual basis are already reduced and

14



we only need to update the reduction to account for the new vector. The difference between
the two choices of ws is only a sum of vectors that were already in the (s− 1)-dimensional
lattices, so they just give two different bases for the same lattice.

Suppose now that we are given a subset I ⊂ {1, . . . , t} and we want to construct a basis
for ΛI or Λ∗

I . When we analyze the lattice structure of recurrence-based RNGs, it suffices
to consider only subsets I that contain the first coordinate, i.e., 1 ∈ I, because all other
projections are identical to such projections, due to the projection-stationary property (see
Section 10). In this case where 1 ∈ I, we can just select in V the columns and rows whose
indices are in I, and this forms an upper-triangular basis of ΛI , because when we remove the
columns that are not in I, the rows whose numbers are not in I become zero. It also suffices
to select in W the rows and columns whose indices are in I and they form a lower-triangular
basis of the m-dual lattice Λ∗

I . If s = |I|, then det(ΛI) = ms−1 and det(Λ∗
I) = m. Thus,

triangular bases for these projections and their m-duals can be found directly, without any
computation.

When the first coordinate does not belong to I, on the other hand, after selecting the
columns of V whose numbers are in I, we obtain s = |I| columns and s + 1 nonzero rows,
which we have to reduce to obtain a basis. If we only want a basis for the primal lattice,
we can use LLL for that. If we want a basis for the m-dual lattice, then it is usually better
to first compute an upper-triangular basis for the primal, and then compute the m-dual of
that basis. Some functions in BasisConstruction.h do that.

If I = {i1, . . . , is}, the s+ 1 nonzero rows are the rows of the matrix
ai1 . . . ais
m . . . 0
...

. . .
...

0 . . . m

 .

If we apply the lower-triangular gcd method of Section 5.2 (with r = 1) to this matrix,
the first step will be to compute c1 = gcd(ai1 ,m) = b1ai1 + b2m by Euclid’s algorithm, and
put x1 = b1v1 + b2v2 mod m, where v1 = (ai1 , . . . , ais) and v2 = me1 are the first two
rows of the above matrix. The vector x1 = (x1, . . . , xs) has x1 = c1 as its first coordinate,
and its other coordinates are xj = b1aij mod m for j = 2, . . . , s. Then we replace v2 by
v2 − (m/c1)x1 mod m, so its first coordinate becomes 0.

Recall that c1 must be a divisor of m. In particular, we always have c1 = 1 if m is prime,
or if m is a power of 2 and a1 is odd. For all good LCG or lattice rule constructions, we
should have c1 = 1. If c1 = 1, then the new v2 is zero and an m-dual basis can be computed
directly, exactly as in (3), with xj in place of aj. For the lattices coming from RNGs and
QMC, we should always have c1 = 1. If c1 > 1, then the first coordinate of any lattice
vectors must be a multiple of c1 so the first coordinate can only take m/c1 distinct values.
This means that the projection onto that first coordinate is not regular, it loses points. The
next example illustrates this case.

15



Example 1. Let m = 8, t = 3, and a = (a1, a2, a3) = (1, 2, 3). The basis and its m-dual are

V =

1 2 3
0 8 0
0 0 8

 and W =

 8 0 0
−2 1 0
−3 0 1

 .

Both the primal and the m-dual are integral lattices that contain 8Z3. If we take the
projection of this lattice onto the coordinates I = {2, 3}, we have a set of generating vectors
given by the three rows of the last two columns of V . When we upper-triangulate this 3× 2
matrix, we obtain c1 = gcd(2, 8) = 2. The triangular basis matrix V ′ of this projection and
its m-dual basis W ′ are then

V ′ =

(
2 3
0 4

)
W ′ =

(
4 0
−3 2

)
.

A shortest vector in this m-dual basis is (1, 2), whose Euclidean length is
√
5. The distance

between successive lines that cover all the points in the non-rescaled version LI of the primal
projection is 1/

√
5. This is the relevant quantity to measure the uniformity of the projection.

If we project directly the initial m-dual basis onto the coordinates in I = {2, 3}, we obtain
a lattice whose basis is the identity, which is quite different than the W ′ above. A shortest
nonzero vector in the m-dual has length 1 in that case.

There are similar construction procedures for the lattices generated by an MRG; this is
explained in the LatMRG guide [48].

6 Computing the m-Dual of a Basis

The general case. For a given (integer) square basis matrix V , one can obtain the corre-
sponding (integer) m-dual basis W by solving the linear system V W t = mI, in which all
matrix entries are integer. In other words, W t = mV −1. It can be computed exactly (in
integer arithmetic) as follows. Let adj(V ) denote the adjugate (or adjoint) of V , which is
the transpose of the cofactor matrix C, whose element (i, j) is ci,j = (−1)i+jdi,j, where di,j
is the determinant of the (t − 1) × (t − 1) matrix obtained by deleting row i and column j
of V . One has

V · adj(V ) = adj(V ) · V = det(V ) · I,

which is a diagonal matrix whose diagonal elements are all equal to det(V ). In our case,
all the di,j are integers, so all elements of adj(V ) are integers. Clearly, we have W t =
(m/det(V ))adj(V ), or equivalently W = (m/det(V ))C. Since all elements of W are known
to be integers, all the elements of adj(V ) must be divisible by det(V )/m, which is also an
integer. We have an implementation of this only for integers in ZZ representation. It uses
the NTL function inv from mat ZZ.h to compute C in integer arithmetic, then it divides its
elements by det(V )/m. This is implemented by mDualBasis in BasisConstruction.h.

16



The two triangular methods that follow are much faster than this general method. See
the speed comparisons in the TestBasisConstructSpeedTri example of Section 12.5.

The upper-triangular case. If V is upper-triangular, which occurs for example if it
was constructed from a set of generating vectors by the gcd method described in Subsection 5,
this system can be solved easily to yield a lower-triangular W , with explicit formulas. If vi,j
and wi,j are the elements of V and W , respectively, then we can write (with W transposed)v1,1 . . . v1,t

...
. . .

...
0 . . . vt,t


w1,1 . . . 0

...
. . .

...
wt,1 . . . wt,t

 = V W t = mI,

whose solution is given by wi,i = m/vi,i for i = 1, . . . , t and

wi,j = −
1

vj,j

i∑
k=j+1

vk,jwi,k

for 1 ≤ j < i ≤ t [77]. All these wi,j’s are integers, as are all the terms of the sum and also
vj,j, so all the computations can be made exactly in integer arithmetic with ordinary integer
division, by using large enough integers. This is implemented by mDualUpperTriangular in
BasisConstruction.h.

The lower-triangular case. Essentially the same algorithm works for a lower-triangular
basis V . We can writev1,1 . . . 0

...
. . .

...
vt,1 . . . vt,t


w1,1 . . . w1,t

...
. . .

...
0 . . . wt,t

 = V W t = mI,

whose solution is wi,i = m/vi,i for i = 1, . . . , t and

wi,j = −
1

vj,j

j−1∑
k=i

vj,kwi,k

for 1 ≤ i < j ≤ t. This is implemented by mDualLowerTriangular.

The m-dual of a projection. It is important to understand that in general, the m-dual
of the projection ΛI of a rescaled lattice Λt onto a subset I of coordinates is not the same
as the projection of the m-dual lattice Λ∗

t = L∗
t onto the same subset I of coordinates, even

if no projection is losing points. The next example illustrates this.

Example 2. Take m = 5, t = 2, I = {1}, v1 = (1, 2), and v2 = (0, 5). The m-dual basis
in this case is w1 = (5, 0) and w2 = (−2, 1), and the m-dual lattice Λ∗

t turns out to be the
same as Λt. We have

V =

(
1 2
0 5

)
and W =

(
5 0
−2 1

)
.

17



This lattice and its m-dual both have density 1/5 in two dimensions. The projection ΛI

of Λt onto any single coordinate is Z, the set of all integers, which has density 1, and the
same holds for the projections of the m-dual Λ∗

t . The points never project onto each other.
The m-dual of the projection ΛI = Z is Λ∗

I = mZ = {. . . ,−10,−5, 0, 5, 10, . . . }, which has
density 1/5. This is also the dual of LI = Z/5 = {. . . ,−2/5,−1/5, 0, 1/5, 2/5, . . . }, in which
the distance between “hyperplanes” is 1/5, the inverse of the length of the shortest nonzero
vector in mZ. This m-dual mZ differs from the projection of Λ∗

t onto a single coordinate,
which is Z. So the projection of the m-dual is not the same as the m-dual of the projection.
This occurs because the density of the projection ΛI is not the same as the density of the
full lattice Λt.

7 Lattice Basis Reduction

In Euclidean spaces, which are closed under linear combinations with real coefficients, it is
trivial to select an orthogonal basis, i.e., a finite set of vectors which are pairwise-orthogonal
and generate the space, and these vectors can be as small as we want. For lattices over
Z, which are closed to linear combinations with integer coefficients only, things are more
complicated. In this setting, it is often of interest to find a lattice basis which is as orthogonal
as possible and whose vectors are as short as possible, in some sense. This idea of reduced
basis has many specific definitions. We recall and explain those that are implemented in
Lattice Tester. In particular, basis reduction is an essential first step when we want to find
a shortest nonzero vector in the lattice (the SVP problem). In Sections 7 to 10, unless
indicated otherwise, the vector lengths are Euclidean lengths (i.e., we assume that the L2

norm is used), and what we say applies to a lattice Lt which is not necessarily rescaled to
integers. In the software, on the other hand, the lattices are always rescaled to integers, to
make sure that the basis vectors can always be represented exactly.

7.1 Basis reduction in one dimension

The simplest case is that of a one-dimensional lattice. Then, a basis is just a single nonzero
integer v1 = c ̸= 0 and the lattice is the set of all (integer) multiples of c. The two vectors c
and −c are the shortest nonzero vectors. Moreover, as we saw earlier, the lattice generated
by two or more distinct integers has a basis (and shortest vector) c given by the gcd of these
integers.

7.2 Basis reduction in two dimensions

For a two-dimensional lattice (t = 2), one can reduce a given basis {v1,v2} using an extension
of Euclid’s algorithm, called the Lagrange reduction method [28, 71], defined as follows. The
method is often attributed to Gauss and named Gaussian reduction or Gauss-Lagrange
reduction [5].

18



We start with the two basis vectors v1 and v2 sorted by increasing (Euclidean) length,
so v1 is the shortest. At each step, we try to reduce v2 as much as possible by subtracting
an integer multiple of v1. The optimal multiple to subtract turns out to be

q = round (v1 · v2/v1 · v1),

where round means rounding to the nearest integer and we always break equalities by taking
the value closest to 0 (e.g., round (±1/2) = 0). If q = 0, we stop, otherwise v2 is now shorter
than v1, so we swap the two vectors and try again to reduce v2 with v1. At the end of the
procedure, v1 is a shortest nonzero vector in the lattice and there exists no other basis whose
two vectors are both smaller than v2. This basis is reduced in the strongest possible way, in
all the senses that we will discuss later.

7.3 Successive minima

The successive minima of a lattice Lt are the positive real numbers λ1 ≤ λ2 ≤ · · · ≤ λt <∞
for which λj is the smallest real number λ for which Lt contains j linearly independent
vectors of Lt whose length does not exceed λ. A basis of t vectors for which vector j has
length λj cannot be reduced further. It is important to realize, on the other hand, that in
four or more dimensions, a set of linearly independent vectors that satisfy this condition is
not necessarily a basis. And in five or more dimensions, there may exist no lattice basis
v1, . . . ,vt for which ∥vj∥ = λj for all j. See [71, Page 33].

The convex body theorem of Minkowski states that if C is a convex subset of Rt symmetric
about the origin, and if vol(C) ≥ 2tdet(Lt), then C contains at least one nonzero vector
of Lt. As a special case, by taking C as a t-dimensional ball of radius r, C = {v ∈
Rt such that ∥v∥ ≤ r}, we have vol(C) = rtVt where Vt is the volume of a unit ball in t
dimensions, and C must contain a nonzero lattice point as soon as rtVt ≥ 2tdet(Lt), i.e.,
when r ≥ 2[det(Lt)/Vt]

1/t. This gives an upper bound on the length of the shortest nonzero
vector in Lt:

λ1 ≤ 2[det(Lt)/Vt]
1/t. (4)

Rogers [75] proved that the 2 in this inequality can be replaced by
√
t/3. This gives the

upper bound
λ1 ≤ min(2,

√
t/3)[det(Lt)/Vt]

1/t. (5)

In [76], he proved even better bounds, given by asymptotic expressions; see Section 9. The
θn given in the last equation on page 39 of [76] is an upper bound on vol(C)/det(Lt). For the
Euclidean norm, this gives rtVt ≥ θtdet(Lt) and then the upper bound λ1 ≤ [θtdet(Lt)/Vt]

1/t.

A second theorem of Minkowski states that

2t

t!
≤ Vt

det(Lt)

t∏
j=1

λj ≤ 2t. (6)

19



These results are valid not only for the Euclidean norm, but for other norms as well.
For the L1 norm, for example, we have Vt = 2t, so the upper bound in (4) becomes λ1 ≤
[det(Lt)]

1/t.

In one and two dimensions, the simple gcd-based methods mentioned in Sections 7.1 and
7.2 easily provide a basis whose vector lengths reach the successive minima. But in more
than two dimensions, there is no such effective method that reduces the basis vectors in an
optimal way. There are also different definitions of the notion of reduced basis. We discuss
some of them.

7.4 Gram-Schmidt orthogonalization and size-reduced basis

For any set of linearly independent vectors v1, . . . ,vd in Rt, with d ≤ t, the Gram-Schmidt
orthogonalization (GSO) process produces a set of d orthogonal vectors v∗

1, . . . ,v
∗
d as follows.

Let v∗
1 = v1 and for i = 2, . . . , d,

v∗
i = vi −

i−1∑
j=1

µi,jv
∗
j

where

µi,j =
vi · v∗

j

v∗
j · v∗

j

.

In the real space, these these vectors v∗
i are exactly orthogonal and form a basis. The basis

vectors can also be made as small as we want. But for a lattice basis, this does not hold.
The coefficients µi,j are generally not integers, so even if the vi are lattice vectors, the v∗

i

are generally not. In lattice reduction, the aim to obtain a basis formed by lattice vectors
vi that are “close” to the v∗

i in some sense, and nearly orthogonal.

The reduced vector v∗
i ∈ Rt is the projection of vi onto the subspace that is orthogo-

nal to the space generated by v1, . . . ,vi−1. If vi is nearly orthogonal to that space, then
µi,1, . . . , µi,i−1 will all be close to 0. A basis v1, . . . ,vt is said to be size-reduced if for all
1 ≤ j < i ≤ t, |µi,j| ≤ 1/2. This means that one cannot reduce the length of the vector vi by
subtracting from it an integer multiple of vj for some j < i. The LLL algorithm discussed
in Section 7.8 provides such a size-reduced basis.

7.5 Korkine-Zolotarev-reduced basis

A basis v1, . . . ,vt is called Korkine-Zolotarev-reduced (KZ-reduced, also called Hermite-
reduced or Hermite-Korkine-Zolotarev-reduced by some authors [5]) if (a) it is size-reduced
and (2) for 1 ≤ i ≤ t, v∗

i has the same length as a shortest nonzero vector in the projection
of Lt on the subspace that is orthogonal to the space generated by v1, . . . ,vi−1.

20



An equivalent (recursive) definition is that (i) |µi,1| ≤ 1/2 for 1 < i ≤ t; (ii) v1 is a shortest
nonzero vector in Lt; and (ii) the projections vi − µi,1v1 of v2, . . . ,vt on the subspace that
is orthogonal to v1 is Korkine-Zolotarev-reduced.

Algorithms to compute a KZ-reduced basis are given in [20, 24, 25] and further explained
in [5, Chapter 11]. These algorithms are very costly in CPU time; they running time is
exponential in t. Computing a KZ-reduced basis is obviously more expensive than finding
a shortest nonzero lattice vector. In practice, we use a weakened version of KZ reduction
named BKZ, described in Section 7.9.

7.6 Minkowski-reduced basis

A basis v1, . . . ,vt is Minkowski-reduced if for each i < t, given v1, . . . ,vi−1, we have that vi

is a shortest nonzero lattice vector for which v1, . . . ,vi can be extended to a basis of Lt.

The ratio of lengths of the shortest and longest vectors in a Minkowski-reduced basis,
∥v1∥/∥vt∥, is called the Beyer quotient [3]. In general, a given lattice may have several
Minkowski-reduced bases. All of them must have the same length for v1 (a shortest vector),
but the vectors vi for i > 6 may have different lengths. In particular, two Minkowski-reduced
bases may have different lengths for their longest vector vt, which means that for t > 6, the
Beyer quotient of a lattice Lt is not unique. To make it unique, one could take the shortest
vt over all Minkowski-reduced bases, i.e., define the Beyer quotient of Lt as the largest ratio
∥v1∥/∥vt∥ over all Minkowski-reduced bases.

Algorithms to compute a Minkowski-reduced basis can be found in [1, 2, 17, 20]. These
algorithms take exponential time in t. The algorithm of [1], implemented in Lattice Tester,
makes successive applications of a procedure that solves the SVP, with some additional con-
straints. In t dimension, at least t SVPs must be solved (and sometimes much more), which
means that computing a Minkowski-reduced basis is generally much more time-consuming
than computing the shortest vector.

Dealing with the round-off errors during the Cholesky decomposition when solving the
SVP (see Section 8) is an important question here, because a small error in the bounds
of the BB algorithm can lead to wrong results. One may miss a shorter vector and, as a
result, (conceivably) not obtain a true Minkowski-reduced basis at the end of the reduction
algorithm. In that case, one may consider redoing the computations with arbitrary-precision
floating-point numbers, for verification. This is of course much slower.

7.7 Pairwise reductions

There is no easy and effective generalization of Euclid’s algorithm to compute a KZ-reduced
or Minkowski-reduced basis in more than two dimensions. Known algorithms have computing
times that grow exponentially in the dimension. For this reason, various heuristics have been
proposed to reduce the length of basis vectors at low cost.

21



One simple heuristic discussed and recommended in [14, 27] is a pairwise reduction
method, which consists in trying to reduce the length of a basis vector vi by subtracting from
it q times another basis vector vj, for some integer q and given indices i ̸= j. The Euclidean
length of the new vector v = vi − qvj is minimized by taking q = round(vi · vj/vj · vj),
where round(x) denotes the integer nearest to x. If this q is nonzero, we can replace vi by
the strictly shorter vector vi − qvj in the basis. This can be tried with all pairs i ̸= j, and
repeated until running through all pairs gives no further improvement. See [77, Algorithm
2.4.1].

For a two-dimensional lattice, this is equivalent to the Lagrange reduction method dis-
cussed earlier, which always provides a shortest lattice vector. In more than two dimensions,
this is only a heuristic and does not provide a shortest vector in general.

When vi is replaced by vi − qvj in the basis, to update the dual basis at the same time,
it suffices to replace wj by wj + qwi. One can easily verify that this preserves the duality
property. More generally, if vi is replaced by vi −

∑
j ̸=i qjvj for some integers qj, the dual

basis can be updated by replacing wj by wj + qjwi for each j ̸= i.

Dieter [14] suggested to also apply pairwise reductions to the dual basis. The motivation
was that reducing the vectors of the dual basis often lead to a reduction of the vectors of the
primal basis. To do this, we try to reduce the length of a dual basis vector wi by replacing
this vector by wi− qwj, where q = round(wi ·wj/wj ·wj). If q ̸= 0 and if the corresponding
primal basis vector vj + qvi is not longer than vj, then we make the replacement. This can
also be tried for all pairs i ̸= j, and repeated until it gives no improvement. However, these
reductions in the dual basis are not really useful, because the pairwise reduction with q in
the dual is exactly equivalent to a pairwise reduction in the primal basis with −q instead
of q. Moreover, the LLL and BKZ reductions described in the next subsections are much
more effective than these pairwise reductions, and adding the pairwise reductions either
before or after them does not really help. Therefore, we recommend to ignore those pairwise
reductions. On the other hand, LLL and BKZ are actually comprised of a succession or
combination of several pairwise reductions.

7.8 LLL reduction

In a landmark paper, Lenstra, Lenstra, and Lovász [66] proposed a form of lattice basis
reduction known as LLL reduction, which in a sense generalizes the Lagrange reduction, and
became very important and influential. The book [72] covers much of the developments of
LLL reduction and its variants in the 30 years that followed. For 1/4 < δ ≤ 1, we say that
a basis is LLL reduced with factor δ if

1. it is sized-reduced;

2. for 1 ≤ i < t, we have δ ∥v∗
i ∥2 ≤ ∥vi+1(i)∥2 = ∥v∗

i+1 + µi+1,iv
∗
i ∥2, where vj(i) denotes

the component of vj which is orthogonal to v1, . . . ,vi−1.

22



For such a reduced basis, we have the following bounds on the squared ratio between the
length of vi and the ith successive minimum λi, for i = 1, . . . , t [66]:

(δ − 1/4)i−1 ≤
(
∥vi∥
λi

)2

≤
(

1

δ − 1/4

)t−1

. (7)

In practice, the ratio is often equal (or very close) to 1 when i is not too large, e.g., less
than 20. Then, the length of v1 is at most slightly larger than the length dt of a shortest
nonzero vector in the lattice, and the lengths of the other basis vectors are also not much
larger than the shortest possible. We will illustrate this later with numerical examples. For
this reason, an LLL-reduced basis tends to yield a much thinner BB tree when computing
the shortest nonzero vector as in Section 8. Some authors fix δ at 3/4 [20, 67, 72], but we
prefer values closer to 1. In Lattice Tester, we use δ = 0.99999 as the default value for both
LLL and BKZ in ReducerStatic.h, but the user can pass another value as a parameter. In
NTL, the recommended and default value is 0.99.

Note that the vectors of a LLL-reduced basis are not necessarily sorted by increasing
order of length, and v1 is not necessarily the shortest vector in the basis, but when δ is close
to 1, it is typically not much longer than the shortest vector in the basis or in the lattice.
The right side of (7) for i = 1 and δ ≈ 1 gives approximately ∥vi∥/λi ≤ (4/3)(t−1)/2.

LLL reduction is weaker than other forms such as KZ or Minkowski reductions. In
particular, it does not guarantee that the shortest basis vector v1 is a shortest nonzero
lattice vector. However, in contrast to these other reduction forms, LLL-reduction only
takes polynomial time. A key idea to obtain a proven polynomial-time bound was to ignore
swaps (reorderings) of basis vectors that bring only a marginal gain. This controls the total
number of swaps and then the total work. If we do all the swaps that bring some gain (i.e.,
take δ = 1) there is no proof of polynomial time, although the method still work well in
practice in most cases. See [71].

The original LLL algorithm is stated in [66, 79] and [77, Algorithm 2.4.5]. It uses at most
O(t4 log ∥vt∥2) operations where vt is the longest vector in the original basis. Storjohann [84]
proposed a modified LLL algorithm that requires at most O(t3 ln ∥vt∥2) operations instead.
It is used in FLINT; see sections 22.31 to 22.33 of [19]. He also gave an algorithm that
achieves a better rate using fast matrix multiplication techniques. However, the latter is
likely to be faster only for very large t, due to a larger hidden constant. See [70, 80] for
surveys of other variants and improvements and their complexity analysis.

In Lattice Tester, we use the efficient C++ implementations of the original LLL available
in NTL [81], with very small changes for example to recover the square lengths of the basis
vectors. The NTL implementations are available for all the different types of Real, but the
basis vector coordinates must be represented in the type NTL::ZZ, so they are stored exactly
as integers of arbitrary length. In these implementations, the (squared) vector lengths and
the µi,j can be represented either approximately in floating point or exactly as large integers
or as rational numbers (ratios of two integers). In the latter case, all the computations are
exact but take more time. The floating-point versions are faster and usually sufficient when
using LLL for pre-reduction. The floating-point numbers can be either in double precision

23



(64 bits), quadruple precision (128 bits), or with arbitrary precision (the RR type offered by
NTL). The input vectors do not have to be independent; they can be just a set of dependent
generating vectors, and the functions will return an LLL-reduced basis preceded by some
zero vectors in the output matrix.

We also made an implementation for the types <Int = int64 t, Real = double>, but it
is not really faster than the NTL implementation with <Int = NTL::ZZ, Real = double>.

7.9 Schnorr’s blockwise Korkine-Zolotarev (BKZ) reduction

The concept of BKZ reduction was introduced by Schnorr [78] and a practical algorithm to
obtain a BKZ-reduced basis is given in [79]. There are also NTL implementations (exact or
floating-point) which are available in Lattice Tester, just like for LLL. BKZ generalizes LLL
in the sense that instead of imposing only the restriction that δ∥v∗

i ∥2 ≤ ∥vi+1(i)∥2 for each i,
this condition is extended to the k − 1 vectors vi+1(i), . . . ,vmin(i+k−1,t)(i). For 1/4 < δ < 1,
a basis is said to be BKZ-reduced for block sizes k with factor δ if

(i) it is sized-reduced;

(ii) for each i = 1, . . . , t − k + 1, the k vectors vi(i), . . . ,vmin(i+k−1,t)(i) are Korkine-
Zolotarev-reduced with a factor δ, which is equivalent to saying that

δ∥v∗
i ∥2 ≤ [λ1(Oi(v1, . . . ,vmin(i+k−1,t)))]

2,

where λ1(Oi(v1, . . . ,vj)) denotes the length of a shortest vector in the latticeOi(v1, . . . ,vj)
which is the projection of the lattice generated by v1, . . . ,vj onto the space that is or-
thogonal to that spanned by v1, . . . ,vi−1.

With k = 2, this is equivalent to LLL-reduction with factor δ.

The shortest vector v1 in such a reduced basis satisfies

∥v1∥2/λ2
1 ≤ α

(t−1)/(k−1)
k

where αk ≤ k1+ln k, when k− 1 divides t− 1 [78]. We recommend BKZ as the most effective
reduction method in practice. We will see in the numerical examples that in large dimensions,
applying only LLL to reduce the basis before computing a shortest vector is often insufficient
and leads to failure, whereas BKZ with a block size of 10 or 12 is much more effective.

24



8 Shortest Vector Problem

8.1 Problem formulation

In this section, we assume that we have a integral lattice, so all basis coordinates are integers.
Computing the exact length of a shortest nonzero vector in Λt for large t is known to be a
very hard problem. This length is the first minimum, λ1, but we also denote it by dt to make
the dependence on t more explicit. (Often, we want to compute it for several projections of
the original lattice onto subsets of s < t coordinates.) In Lattice Tester, we compute dt with
a BB procedure adapted from [15]. This exact procedure can be very costly (exponential in
t in the worst case). It is generally much faster when the lattice basis has been pre-reduced
using some of the procedures described in Section 7, most notably LLL and BKZ. After these
pre-reductions, the basis vectors are typically shorter and the length of the shortest basis
vector is not much larger than dt. In fact, it is often equal to dt, but we do not know for sure
that there is no shorter vector until we have applied the full BB procedure. When t is large,
LLL and BKZ rarely yield a shortest vector. See the numerical examples in Sections 12.4
and 12.8. On the other hand, the length of the current shortest basis vector always provides
an upper bound on dt. When making a computer search for good lattices, if the current
shortest vector is deemed too small, we can immediately reject the current candidate and
stop the computations for this candidate, to save time.

Let v1, . . . ,vt be independent vectors that form a lattice basis, and are the rows of V .
Computing a shortest non-zero vector amounts to finding integers z1, . . . , zt, not all zero,
such that the vector v = (v1, . . . , vt) = z1v1 + · · · + ztvt = zV is as short as possible.
Trying all combinations for those zj’s is not a viable option. Suppose we want to find the
shortest vector with respect to the Lp norm, defined by ∥v∥p = (|v1|p + · · · + |vt|p)1/p. We
can formulate this as an integer programming optimization problem with decision variables
z1, . . . , zt, as follows:

Minimize ∥v∥p (8)

Subject to v = zV =
t∑

i=1

zivi, zi ∈ Z,
t∑

i=1

|zi| > 0. (9)

An optimal solution to this problem with p = 2 is a vector of length dt. We denote by b(p)
the Lp norm of the shortest currently-known vector in this lattice. This b(p) is an upper
bound on the length of a shortest vector, and when running the algorithm, we are only
interested in finding vectors shorter than that.

In our BB algorithm, we fix successively zt, then zt−1, then zt−2, etc. At each step, for any
fixed values of zt, . . . , zj+1 that we consider, we compute a finite range (interval) of values
of zj such that all values outside this range cannot lead to a better solution, and we scan
the values of zj in this range. A key part of the algorithm is how we obtain the bounds
that define this range. In the following two subsections, we explain two ways of doing that:
(1) with a triangular basis and (2) with a Cholesky decomposition of the matrix of scalar
products of basis vectors. The set of all partial solutions form a tree called the BB tree.

25



To compute a shortest vector in the m-dual lattice, it suffices to interchange the primal
and m-dual bases (dualize), and everything else works the same.

8.2 Bounds obtained using a lower-triangular basis

A first approach assumes that V = L, a lower-triangular matrix with integer elements ℓi,j
that can be represented exactly. This L may have been obtained via the gcd construction
method of Section 5.2. The lattice can be Λt or its m-dual Λ∗

t , for example. Recall that any
lattice vector v can be written as v = (v1, . . . , vt) = zL for z = (z1, . . . , zt) and that ℓi,k = 0
for i < k, so we have

vk =
t∑

i=k

ziℓi,k = zkℓk,k + rk where rk =
t∑

i=k+1

ziℓi,k.

We can assume that zt ≥ 0, because if zt < 0, we can simply replace z by −z and it gives
a lattice vector of the same length. To save work, we never consider negative values for zt.
We denote the partial sum

sj(p) =
t∑

k=j+1

|vk|p,

which depends on zt, . . . , zj+1. Then, for any 1 ≤ j ≤ t, we have

∥v∥pp ≥
t∑

k=j

|vk|p = sj−1(p) = |vj|p + sj(p) = |zjℓj,j + rj|p + sj(p). (10)

Recall that b(p) is the Lp norm of the shortest vector that has been found so far. This short
vector does not have to be in the triangular basis, it can be found separately. The vector
v can be shorter only if it satisfies sj−1(p) < b(p)p, for all j > 0. That is, we must have
|zjℓj,j + rj|p < b(p)p − sj(p) > 0, which implies⌈

−(b(p)p − sj(p))
1/p − rj

ℓj,j

⌉
≤ zj ≤

⌊
(b(p)p − sj(p))

1/p − rj
ℓj,j

⌋
. (11)

This can be rewritten as

zmin
j = zmin

j (p) := ⌈cj − δj(p)⌉ ≤ zj ≤ ⌊cj + δj(p)⌋ =: zmax
j (p) = zmax

j , (12)

where

cj = − rj
ℓj,j

= − 1

ℓj,j

t∑
i=j+1

ziℓi,j = −
t∑

i=j+1

ziℓ̃i,j (13)

is the center of the interval and does not depend on p, while

δj(p) =
(b(p)p − sj(p))

1/p

ℓj,j
(14)

26



is the radius of the interval when b(p)p − sj(p) > 0 (otherwise the interval is empty). For
j = t, we have ct = rt = st(p) = 0 and zt is never negative, so the bounds on zt simplify to

zmin
t := 0 ≤ zt ≤ ⌊b(p)/ℓt,t⌋ =: zmax

t . (15)

For j < t, cj and δj(p) depend on zt, zt−1, . . . , zj+1. What we have just done is to fix
zt, . . . , zj+1 and relax the integrality constraints on zj, . . . , z1. When considering the possible
values of zj, we can restrict ourselves to the integers that lie in the interval specified by (12)
and (15). The ℓ̃i,j = ℓi,j/ℓj,j can be precomputed to avoid the divisions by ℓj,j.

In view of (14) we prefer to have b(p) as small as possible and ℓj,j > 0 as large as possible,
to reduce the range of values of zj that must be examined. But as we have seen earlier, we
always have

∏t
j=1 ℓj,j = det(Λt), which is 1 over the density of the lattice, so it is not possible

to increase all the ℓj,j’s. Typically, the projection of the lattice Lt onto any single coordinate
contains all the integer multiples of 1/m, so for Λt it contains all the integers. This implies
in particular that ℓ1,1 = 1 for an upper-triangular basis and ℓt,t = 1 for any lower-triangular
basis, so the range of values of zt at the first level of the tree, given in (15), will usually be
large unless b(p) is already very small. This usually limits the efficiency of using a triangular
basis for the BB. That is, we expect that too many nodes will have to be examined in the
BB tree.

8.3 Bounds obtained via a Cholesky decomposition

Bounds for the L2 norm. This approach works for the L2 norm, i.e., for p = 2. As in
[1, 15, 17, 73], for any given basis V , we compute the Cholesky decomposition of the matrix
V V t of inner products of the basis vectors (also called the Gram matrix):

V V t = LLt

where L is a lower-triangular matrix with real-valued elements ℓi,j. For any lattice vector v,
using the same notation as in (10), we can write

∥v∥22 = vvt = zV V tzt = zLLtzt =
t∑

k=1

v2k ≥ sj−1(2) = |zjℓj,j + rj|2 + sj(2). (16)

This gives the same bounds as in (11) and (12), valid only for p = 2, because for other values
of p we do not have this quadratic form for the norm.

Some Cholesky decomposition algorithms return the upper triangular matrix U = Lt

instead of L. One can simply transpose it to get L. Our implementation uses the LDL
Cholesky decomposition [85] instead of the classical one. The LDL decomposition decom-
poses a symmetric positive definite matrix A (such as A = V V t) as A = L̃DL̃t where L̃
is a lower-triangular matrix whose diagonal elements are all 1, and D is a diagonal matrix
whose elements are all positive (when A is positive definite). The advantage of this decom-
position is that it does not require taking square roots. It works as follows, where the ai,j,

27



ℓ̃i,j, and dj are the elements of A, L̃, and D (this dj should not be confounded with the
length dt defined in Section 8.1):

d1 = a1,1,

ℓ̃2,1 = a2,1/d1,

d2 = a2,2 − (ℓ̃2,1)
2d1,

...

dj = aj,j −
j−1∑
k=1

(ℓ̃j,k)
2dk,

ℓ̃i,j =
1

dj

(
ai,j −

j−1∑
k=1

ℓ̃i,kℓ̃j,kdk

)
for all i > j.

Note that ℓ̃j,j = 1. One has L = L̃D1/2 where D1/2 is a diagonal matrix with elements d
1/2
j .

We can then recover ℓi,j via ℓj,j = d
1/2
j and ℓi,j = d

1/2
j ℓ̃i,j for all i > j. When computing cj

and δj(p) for the bounds (12) for p = 2, we can use the fact that ℓi,j/ℓj,j = ℓ̃i,j and ℓpj,j = dj,
so there is no need to compute the ℓi,j explicitly. We can write (for p = 2):

cj = − rj
ℓj,j

=
t∑

i=j+1

zi
ℓi,j
ℓj,j

=
t∑

i=j+1

ziℓ̃i,j and

δj(2) =
(b(2)2 − sj(2))

1/2

ℓj,j

where the ℓi,j and sj(2) come from the Cholesky decomposition, and we have the same
formula as in (12) for the bounds:

⌈cj − δj(2)⌉ ≤ zj ≤ ⌊cj + δj(2)⌋ (17)

for j < t and 0 ≤ zt ≤ ⌊b(2)/ℓt,t⌋ as in (15). This is what we use in our implementation.

Bounds for the Lp norm for 0 < p < 2 with the Cholesky decomposition. To
compute the shortest nonzero vector with respect to the Lp norm instead of the Euclidean
norm, Algorithm 3 with the Cholesky decomposition still works, with small modifications,
when 0 < p < 2. A better solution v must satisfy ∥v∥p < b(p). But since ∥v∥p ≥ ∥v∥2 when
0 < p < 2, a shorter v must satisfy ∥v∥2 ≤ ∥v∥p < b(p), so we must have

b(p)2 > ∥v∥22 ≥
t∑

k=j

|vk|2 = |zjℓj,j + rj|2 + sj(2). (18)

The same reasoning that led to (11) then gives

⌈cj − δj(p)⌉ ≤ zj ≤ ⌊cj + δj(p)⌋ (19)

28



with

cj = −
rj
ℓj,j

and δj(p) =
(b(p)2 − sj(2))

1/2

ℓj,j

when we use the Cholesky decomposition to find a shortest vector for the Lp norm for p < 2.
This is what we use in our implementation for p = 1.

The fact that b(p)2 ≥ b(2)2 implies that the new bounds are wider, so the BB tree
becomes larger and the algorithm takes more time to execute.

Another option would be to use the algorithm proposed by [14] and discussed in [27,
Exercise 3.3.4-16]. This algorithm uses both the basis matrix V and its m-dual W to obtain
different bounds that replace those in (11). We expect it to be slower.

8.4 Numerical errors in the decomposition and bounds

The LDL Cholesky factorization is computed in floating point, since the values are not
necessarily integers, because of the divisions by dj. There is a possibility that during the
Cholesky decomposition, some dj becomes negative for a large value of j, due to numerical
round-off errors, particularly when m is large, and/or the dimension is large, or when the
basis is not pre-reduced very well. When this happens, this means that the values we obtain
make no sense and ℓj,j cannot be computed, so the BB algorithm fails when we use these
bounds. The risk that this happens can be minimized by using the RR high-precision floating-
point type from NTL (see Section 11.2) for the Cholesky factorization and for computing the
bounds on the zj. When the BB fails in this way with the double real-number representation,
we can switch to RR and try again. We can also try to improve the pre-reduction by applying
BKZ with a δ closer to 1 and perhaps a larger block size.

It is important to realize that even when all diagonal elements remain positive, there
is still the possibility of an error in the bounds due to numerical imprecision, which can
lead to an erroneous BB algorithm. The bounds in (12), (17), and (19) are computed in
floating point before being truncated to integers. The computations are therefore not exact
and there is a possibility of missing a valid value of zj and then a slightly shorter vector
because of that. If the error makes the bounds larger than they should be, we will visit
more nodes than necessary in the BB algorithm, but this cannot lead to missing the shortest
vector. If the error makes the bounds narrower than they should, then we could miss the
shortest vector. In the software, one has the option to add a small safety margin ϵ > 0 to
the radius δj(2) in all the bounds (12), (17), and (19), before truncating them to integers.
2 By default, ϵ = 0, but this value can be increased (e.g., to ϵ = 10−6 or something like
that) with the function setEpsBounds in the ReducerBB class. Note that if adding a very

2From Pierre: We thought about adding the same ϵ to b(p)2 − sj(2) when checking if this quantity is
positive to see if there is still hope of finding a shorter vector in that branch before computing the bounds.
But this sometimes leads to taking the square root of a negative value of b(p)2− sj(2) when computing ‘dc”
in the recursive function tryZShortVec.

29



small safety margin ϵ leads to a new shortest vector, its length cannot be much smaller than
the one obtained without the safety margin. Adding a larger ϵ will usually increase the
running time without returning a much shorter vector. Adding this margin can help, but it
does not solve all possible numerical issues. It does not prevent the numerical errors in the
Cholesky decomposition. It is therefore recommended to check the calculations using ZZ +

RR representations with larger precision for the RNGs that we want to retain, after making
a search.

In an earlier version of our software, we were always maintaining the m-dual basis along
with the primal basis and were using the dual basis to compute the second half of the
Cholesky decomposition, for j > t/2, to improve stability. The computations were then
always made in double. We no longer do that because we no longer maintain the dual
basis. We rather use RR to obtain higher accuracy. The method of Section 8.2 avoids these
numerical approximation issues but typically gives much wider bounds (some larger values
of δj(p)).

8.5 The branch-and-bound (BB) procedure

We now describe the BB procedure used to compute dt by solving the integer programming
problem (8–9). This algorithm works for all p ≥ 1 if L is a triangular basis and for 0 <
p ≤ 2 if L was obtained from a Cholesky decomposition. Recall that the bounds on zt are
0 ≤ zt ≤ δt(p) = b(p)/ℓt,t. Here, we exploit the fact that if v = zV is a lattice vector, then
−v = −zV is also a lattice vector with exactly the same length. This permits us to ignore
the negative values of zt and thereof cut the BB tree in half. We would like b(p) to be as
small as possible, to reduce the range of values that must be examined.

The algorithm explores a BB tree in which each node corresponds to a partial solution
(zt, . . . , zj+1). This node has a son (zt, . . . , zj+1, zj) for each value of zj that satisfies the
bounds (12) and (15), or their equivalent when using Cholesky, and with ϵ possibly added as
described in Section 8.4. The root corresponds to the initial state when no variable is fixed,
the nodes at the first level is when only zt is fixed, and so on. This root has a son for each zt
such that 0 ≤ zt ≤ b(p)/ℓt,t. When no zj satisfies the bounds (11), i.e., the interval is empty,
the corresponding node has no son, so this branch is a dead end. When we reach a tree leaf
that represents a full admissible solution (zt, . . . , z1), we have just found a new candidate
vector v that may be shorter than our current shortest vector v1. If it is indeed shorter, we
update b(p), we take note of its length and of the corresponding z, and we continue searching
for a better z until we have explored the full tree. At the end, we return the best z that we
have found. In case there are many shortest vectors, we could easily also store and return
all the corresponding z’s.

Instead of always exploring the full tree with the same basis and same Cholesky decom-
position as we do, another possibility could be that when we find a shorter vector v, we
update the basis so that the new basis will now contain v as its new v1, we change the other
vectors (if needed) in a way that they still form a basis of our lattice, we redo the Cholesky
decomposition, we exit completely from the recursive procedure and restart for j = t with

30



the new basis. This could be worthwhile if the length of v1 has reduced significantly, be-
cause the new tree is likely to be thinner, but not much if the initial b(p) is very close to the
length of a shortest vector, which usually happens when we use LLL and BKZ to pre-reduce
beforehand. So we do not do this.

Our recursive implementation of this BB procedure is sketched in Algorithm 3. The
initial call would be BB(V ,0, (1, 0, . . . , 0), t). At the end, z∗ will contain an optimal z.
This procedure is implemented in ReducerBB.h.

Algorithm 3: : Recursive BB procedure for the SVP

BB(V , z, z∗, j):
// zj+1, . . . , zt are fixed and we examine the possible values for zj;
if j = 0 then

// We are at a tree leaf;
if z ̸= 0 and ∥zV ∥p < b(p) then

z∗ ← z // We found a shorter nonzero vector;
return;

compute sj(p), rj, and the bounds zmin
j and zmax

j in (12) or (15);

if zmin
j > zmax

j then
return;

// Otherwise, try all admissible values of zj, starting from the center if j < t;
if j = t then

i2 = 0
else

i2 ← ⌈zmin
j + zmax

j )/2⌉;
i1 ← i2 − 1;
while i1 ≥ zmin

j or i2 ≤ zmax
j do

if i1 ≥ zmin
j then

zj ← i1; BB(V , z, z∗, j − 1); i1 ← i1 − 1;
if i2 ≤ zmax

j then
zj ← i2; BB(V , z, z∗, j − 1); i2 ← i2 + 1;

return;

The total time taken by this BB algorithm is roughly proportional to the number of
tree nodes that we visit, i.e., the number of calls to the recursive BB procedure. In the
worst case, this number grows exponentially with the dimension. It is therefore important
to reduce the size of the tree as much possible. For this, it helps to start with b(p) as small
as possible, because this shortens the search interval determined by the bounds (11) at each
level j, and can therefore greatly reduce the number of nodes that must be examined. Pre-
reductions help doing this. For the same reason, it also helps if we quickly find a tree leaf
that corresponds to an improved solution, because it can reduce (dynamically) the size of
the tree. We found experimentally that searching the BB tree depth-first from the center
is usually the most effective approach, because it permits one to find a shorter v1 faster.
That is, at each level j, instead of scanning the interval for zj from one size to the other,

31



we scan it by starting with the zj that is closest to the center, then we examine the second
closest, etc. With this procedure, since the interval for zt is symmetric about 0, we start with
zt = 0. For zt = 0, the interval for zt−1 is also symmetric about 0 so we start with zt−1 = 0,
and so on. Therefore the first visited branch corresponds to the trivial “solution” in which
zt = · · · = z1 = 0, and this solution is rejected. The second visited branch corresponds to
zt = · · · = z2 = 0 and z1 = 1, i.e., v = v1.

8.6 Inserting a new shorter vector in the basis

After we have found a new vector

v =
t∑

i=1

zivi (20)

shorter than all the current basis vectors vi, we may want to insert this new vector v in the
basis to continue working with this modified basis and benefit from the new shorter vector.
This is useful in particular when we reuse and extend this basis to a basis in t+1 dimensions
as discussed in Section 5.4, in order to find a shortest vector in t + 1 dimensions. In case
zi = ±1 for some i, we can simply replace vi by v in the basis, since vi can be expressed in
terms of the other vectors as

vi = ziv − zi

t∑
j=1, j ̸=i

zjvj.

This is the easy case.

If |zi| > 1 for all the nonzero zi’s, a first option would be to take the set v,v1, . . . ,vt as
a set of generating vectors and apply the modified LLL procedure mentioned in Section 5.3
to reduce this set into a basis that contains v. This is basically the same as applying LLL.

A second option which is more direct and often faster operates by changing some basis
vectors vi in a way that when we express v in terms of the new vi’s, at least one of the
coefficients zi is ±1. The idea of this approach comes from [1]. We first find the largest
indices i < j ≤ t such that |zj| > 1 and |zi| > 1, and let ci,j = gcd(zi, zj). There must be
at least two nonzero zi’s and the gcd of all the nonzero zi’s must be 1, otherwise we could
divide v by this gcd and obtain a shorter vector. When there are negative zi’s, we define
gcd(zi, zj) = gcd(|zi|, |zj|). We will apply transformations to (zi,vi) and (zj,vj) by applying
the Euclidean algorithm until the new zj is 0 and the new zi is ±ci,j. The basis will be
changed along the way, but it will always remain a basis. Let q = zi/zj (integer division,
truncated toward 0). Note that |zi − qzj| ≤ min(|zj| − 1, |zi|). We can write

zivi + zjvj = (zi − qzj)vi + zj(vj + qvi).

This shows that we can replace vj by vj + qvi in the basis and replace zi by zi − qzj, and v
is still given by (20). We then exchange (zi,vi) with (zj,vj). We repeat this process until
zj = 0. Then, the new zi must be ±ci,j.

32



If zi = ±1, we can now exchange v with this vi in the basis and we are done. Otherwise,
there must be some i′ < i for which zi′ ̸= 0. We take the largest one, put j = i and i = i′, and
we repeat the same process as above. We must end up with zi = ±1 at some point, because
the gcd of the original nonzero zj’s must be 1. Then we can replace the corresponding (new)
vi by the new shorter vector v in the basis. Note that the lengths of the other basis vectors
may increase during this process, and some of them may end up with very large coordinates.
In our empirical experiments, however, this happened rarely. In most cases, we find zj = ±1
right from the start. This algorithm is implemented by the function insertBasisVector in
ReducerBB.

8.7 Numerical illustration

We now provide a numerical example to illustrate what happens when we perform the BB
procedure using the triangular vs Cholesky method for the bounds, for the primal andm-dual
lattice, and with the L1 and L2 norms. The code used for this experiment is in TestBBSmall,
in the examples. See also Section 12.3.

We consider the primal lattice associated with an LCG with modulus m = 1021 and
multiplier a = 73 in t = 4 dimensions. The initial basis (2) for the rescaled lattice Λt is

V 0 =


1 73 224 16
0 1021 0 0
0 0 1021 0
0 0 0 1021


If we apply LLL with factor δ = 0.99 to this V (0), we obtain the reduced basis

V r =


55 −69 68 −141
69 −68 141 83
−68 141 83 −67
−127 −82 140 10


The first vector of this basis, v = (55,−69, 68,−141), is already a shortest vector in the
lattice with respect to the L2 norm. Its square length with respect to this norm is 32291
and its length is

√
32291 ≈ 179.697.

To verify that it is indeed a shortest vector for the L2 norm, we apply the BB proce-
dure, using either a Cholesky decomposition or a lower-triangular basis. For the Cholesky
decomposition, we find that V r(V r)t = Lc(Lc)t where

Lc =


179.697 0 0 0
0.050231 189.213 0 0
0.197331 −0.236249 181.382 0
0.210059 0.214608 0.542857 172.58

 .

The upper bound for z4 in (15) is then zmax
4 = ⌊b(2)/ℓt,t⌋ = ⌊179.697/172.58⌋ = 1, so we

only need to consider z4 = 0 or 1. Starting with z4 = 0 leads first to the trivial vector

33



z = (0, 0, 0, 0), which must be discarded, and then to z = (1, 0, 0, 0), which corresponds to
the current shortest vector. Starting with z4 = 1 leads to no better candidate. There was
only 5 calls to the recursive BB procedure in total, and no shorter vector was found.

With the lower-triangular basis approach, if we take the value closest to 0 when doing
the modulo m operation, we find the basis

Ll =


1021 0 0 0
0 1021 0 0
0 0 1021 0
−319 196 14 1


In the BB procedure, we use the same initial shortest vector square length for the L2 norm,
b(2)2 = 32291. The bounds (15) on z4 are 0 ≤ z4 ≤ ⌊b(2)/ℓt,t⌋ = 179, so there are 180 values
to consider. For most of them, no more than one or two values of z3 must be examined. The
total number of calls to the recursive BB procedure was 245. There was of course no shorter
vector.

We now look for a shortest vector for the L1 norm. The vector (55,−69, 68,−141) is
a shortest one with respect to the L2 norm, and it has L1 length 333. This means that
b(1) = 333 is an upper bound on the length of a shortest vector for the L1 norm, and we
can use this b(1) in the Cholesky decomposition approach for the L1 norm. The Cholesky
matrix Lc is the same. The bounds on z4 are again 0 and 1, so we only have two values to
look at. Going down the tree, with z = (−1, 0, 1, 0) we find the vector v = (14, 1, 73, 224),
whose L1 length is 312. Then with z = (0, 0,−1, 1) we find v = (−196,−14,−1,−73), with
L1 length of 284. This is a shortest vector for this norm. There was 16 calls to the recursive
BB procedure.

With the triangular approach, we start with the same lower-triangular basis Ll as above,
and use 333 as the length of a shortest known vector. The BB procedure finds the shorter
vector v = (1, 73, 224, 16) with length 314 for z = (5,−3, 0, 16), and then v = (196, 14, 1, 73)
with length 284 for z = (23,−14,−1, 73). The total number of calls to the recursive BB
procedure was 386.

We can do the same experiment for the m-dual lattice. Its initial basis as in (3) is

W 0 =


1021 0 0 0
−73 1 0 0
−224 0 1 0
−16 0 0 1

 .

Applying LLL with factor δ = 0.99 gives the reduced basis

W r =


−2 2 −1 5
0 −5 −3 1
1 2 −5 −3
−5 −3 1 0

 ,

34



whose first vector w = (−2, 2,−1, 5) has square length b(2)2 = 34. The Cholesky matrix in
this case is

Lc =


5.83095 0 0 0
−0.058823 5.90613 0 0
0.088235 0.349073 5.52131 0
−0.235294 0.0438449 −0.519209 5.3696

 .

Here, zmax
4 =

⌊√
34/5.3696

⌋
= 1. By using it in the BB algorithm, we only need 6 calls to the

recursive BB procedure to conclude that there is no shorter vector. With the lower-triangular
basis approach, we find the basis

Ll =


1021 0 0 0
−73 1 0 0
−5 −3 1 0
0 −5 −3 1


We use again b(2)2 = 34. The values of z4 that must be examined here are only 0 to 5, but
there is a total of 458 calls to the recursive BB procedure.

When looking for a shortest vector for the L1 norm, we start with w = (0,−5,−3, 1),
the second vector of the reduced basis, whose L1 length is 9. When using the Cholesky
decomposition with b(1) = 9, we find that this is a shortest vector after 16 calls to the
recursive procedure. If we use the triangular basis approach instead, we need 500 calls.

We repeated the same experiment with the same parameters but in 8 dimensions, and
then with m = 1048573 and a = 29873, in 4 dimensions. The results are summarized in
Table 1. We see that in all cases, the triangular approach leads to more calls of the recursive
BB procedure than the Cholesky decomposition. The L1 norm also tends to require more
recursive calls than the L2 norm. More extensive experiments in a wider range of dimensions,
and timing comparisons, are reported in Section 12.8.

Aside from the larger number of recursive calls, another insidious problem often occurs
with the triangular approach, especially when m is large: the center cj of the interval in (13)
can easily get very far away from 0, which can cause numerical instabilities, as shown in the
next example.

Example 3. For m = 1048573 and a = 29873, for the dual lattice in 4 dimensions, we have
the lower-triangular basis

Ll =


1048573 0 0 0
−29873 1 0 0
−166086 203765 1 0
400114 331129 −289737 1

 .

With the L2 norm, the shortest vector obtained after LLL had square length 219, so the
upper bound on z4 is ⌊

√
219⌋ = ⌊14.7986⌋ = 14. When we put z4 = 14, the third coordinate

of our candidate vector w will be z3− 14× 289737 = z3− 4056318 and the sum of squares of
its last two coordinates will be 142 + (z3 − 4056318)2, which must not exceed 219. For this,

35



Table 1: Summary of the behavior of the BB algorithm for an LCG with modulus m = 1021
and a = 73 in 4 dimensions (above) and 8 dimensions (below), for the primal and m-dual
lattices, with two different norms and the two decomposition methods. The last two columns
give the length of the shortest vector and the number of calls to the recursive BB procedure
when computing the shortest vector.

m = 1021, a = 73, 4 dimensions

primal/dual norm decomp min length num calls BB

primal L2 Cholesky
√
32291 5

primal L2 triangular
√
32291 245

primal L1 Cholesky 284 16
primal L1 triangular 284 386

dual L2 Cholesky
√
34 6

dual L2 triangular
√
34 458

dual L1 Cholesky 9 16
dual L1 triangular 9 500

m = 1021, a = 73, 8 dimensions

primal/dual norm decomp min length num calls BB

primal L2 Cholesky
√
152466 8

primal L2 triangular
√
152466 844

primal L1 Cholesky 948 1050
primal L1 triangular 948 2748

dual L2 Cholesky
√
6 18

dual L2 triangular
√
6 1576

dual L1 Cholesky 4 216
dual L1 triangular 4 708

m = 1048573, a = 29873, 4 dimensions

primal/dual norm decomp min length num calls BB
primal L2 Cholesky 10036.8 4
primal L2 triangular 10036.8 10195
primal L1 Cholesky 18910 4
primal L1 triangular 18910 19260
dual L2 Cholesky 14.8 4
dual L2 triangular 14.8 7116
dual L1 Cholesky 21 4
dual L1 triangular 21 6204

36



we must have 4056314 ≤ z3 ≤ 4056322. Then when we take z3 = 4056320 for instance, with
a similar calculation we find that we must have −826540680610 ≤ z2 ≤ −826540680602. In
large dimensions, the numbers sometimes keep increasing like this and this leads to numerical
issues. This occurs mostly when the lower-triangular basis vectors have large entries. It gets
worse when m is larger and gets a bit worse if the entries below the diagonal are reduced
modulo m in a way that they are non-negative instead of taking the value closest to 0 as
done by default in Lattice Tester. See Section 12.7 for more examples of what can happen
with this.

9 Normalized Measures of Uniformity

The length of the shortest nonzero vector in a lattice or its dual gives information about
the uniformity of the points, but what is a “good” value for this length? It depends on the
lattice density and also on the dimension. To obtain a “normalized” measure that is easier
to interpret and can be compared across different densities and numbers of dimensions, it is
common to take the ratio between the actual shortest vector length and the largest possible
value that can be obtained for the given density and dimension (or an estimate of that
value). This gives a number between 0 and 1, and we want it to be close to 1 as much as
possible, because we want the shortest vector to be as large as possible. This measure can
also be computed for several projections of the lattice on subsets of coordinates, and then we
can take the worst-case or some (weighted) average over the selected projections as a FOM
for this lattice. We now explain what support Lattice Tester offers for this. We first discuss
upper bounds on the shortest vector length, to define the normalized measures. Such bounds
were already mentioned in Section 7.3. In Section 10, we look at figures of merit that take
several projections into account.

Bounds for the Euclidean norm. In this section, until stated otherwise, we assume
that the vector lengths are measured with the Euclidean norm, and we consider the (primal)
lattice Lt with density ηt in t dimensions. We can view a lattice as a way of packing the
space by non-overlapping spheres of radius dt/2, with one sphere centered at each lattice
point. We have ηt spheres per unit of volume. If we rescale by the factor 2/dt so that the
radius of each sphere is 1, we obtain δt = (dt/2)

tηt unit spheres per unit volume. This
number δt is called the center density of the lattice. The largest possible center density of
unit spheres for a general t-dimensional lattice is δ∗t = (γt/4)

t/2, where γt is the Hermite
constant for dimension t [8, 18, 71]. This gives the following upper bound d∗t (ηt) on dt for a
general lattice Lt of density ηt:

dt ≤ d∗t (ηt)
def
= 2(δ∗t /ηt)

1/t = γ
1/2
t η

−1/t
t . (21)

For t ≥ k, under the assumption that Lt has density ηt = mk, the right side becomes
γ
1/2
t m−k/t, whereas for the dual lattice L∗

t it becomes γ
1/2
t mk/t. This is for the non-rescaled

lattice Lt. The Hermite constants γt are known (proved) exactly only for t ≤ 8 and t = 24.
These known values are given in Table 2.

37



Table 2: The Hermite constants for t ≤ 8 and t = 24 dimensions

t 2 3 4 5 6 7 8 24

γt (4/3)1/2 21/3 21/2 81/5 (64/3)1/6 641/7 2 4

In view of (21), a good way to normalize dt to a value between 0 and 1 is by taking
dt/d

∗
t (ηt). This is convenient for comparing uniformity measures for different values of t

and ηt, and we will use that to define figures of merit that take several projections into
account. For t > 8 and t ̸= 24, where the exact value of γt is unknown, we can replace it
by an approximation or by a bound on γt. Mächler and Naccache [68] suggest a reasonable
formula for the exact values of γt for 1 ≤ t ≤ 24. The formula matches the values known
so far, but it remains a conjecture. It could nevertheless be used to compute reasonable
normalization constants. Another option is to use proved lower or upper bounds on the
Hermite constants γt. We now discuss various available bounds of this type.

Recall that δ∗t = (γt/4)
t/2, so γt = 4(δ∗t )

2/t. Conway and Sloane [8], in Table I.1 of their
preface, give the highest center densities δt currently attained by known lattice constructions
in up to 48 dimensions and in a few larger dimensions. These δt are lower bounds on δ∗t , so

γB
t = 4δ

2/t
t is a lower bound on γt. This Table I.1, as well as Table 1.2 on page 15 of [8],

also give the largest center densities reached by any known construction, but some of these
constructions are not lattices. In 10, 11, ans 13 dimensions, for example, the densest known
packings are not lattices. Note that to bound γt, we can only consider the center densities
of lattice constructions.

One important type of high-density lattice construction is the laminated lattice, discussed
in Chapter 6 of [8]. The densest known lattice packings in dimensions 1 to 26, except for
dimensions 10 to 13, attained by these constructions. By taking the center density δt of the
best laminated lattice in t dimensions, we get the lower bound γt ≥ γL

t = 4λ
−1/t
t , where the

constants λt = δ−2
t are given in [8, Table 6.1, page 158] for t ≤ 48, For t ≤ 8, one has γL

t = γt.

The Minkowski-Hlawka theorem [22, 82] says that there exists lattices with density
satisfying δt ≥ ζ(t)/(2t−1Vt) where ζ(t) =

∑∞
k=1 k

−t is the Riemann zeta function and
Vt = πt/2/(t/2)! is the volume of a t-dimensional sphere of radius 1. This provides a lower
bound on γt given by

γZ
t = 4[ζ(t)/(2t−1Vt)]

2/t.

Note that if we replace γt in (21) by one of the lower bounds just given, we no longer
have an upper bound on dt, but only a lower bound on the upper bound on dt, and then it
is conceivable that the normalized value could exceed 1. If this occurs with the bound γB

t ,
than it would mean that we have found a denser lattice for this t than the best ones known
so far. The author believes that this is unlikely to happen, and that if it happens the change
will be small, so using γB

t to approximate γt seems to be the best choice.

If we insist on having a true upper bound on γt, an old upper bound valid for all t is [4]:

γt ≤ (2/π)(Γ(2 + t/2))2/t.

38



Another upper bound is obtained via the bound of Rogers on the density of sphere packings
in general (lattices or not) [8]. By using this bound for lattice packings, we get

γR
t = 4× 22R(t)/t

where R(t) can be found in Table 1.2 of [8] for t ≤ 24, and can be approximated with O(1/t)
error and approximately 4 decimal digits of precision, for t ≥ 25, by

R(t) =
t

2
log2

(
t

4πe

)
+

3

2
log2(t)− log2

(
e√
π

)
+

5.25

t+ 2.5
.

One also has γR
t = (Vtθt)

2/t where θt is given by the last equation of Rogers [76], and Vt is
the volume of a unit sphere in t dimensions. Table 1 in [36] gives the ratio (γL

t /γ
R
t )

1/2, of
the lower bound on dt based on γL

t over the upper bound based on γR
t , for 1 ≤ t ≤ 48. This

ratio tends to decrease with t, but not monotonously.

Tighter upper bounds on sphere packing densities (in general) were obtained via linear
programming inequalities by Cohn and Elkies [7], for up to 36 dimensions. These bounds
are also given in Table 2 of [6]. They provide upper bounds on γt which we denote γC

t . Our
best available upper bounds on the unknown γt’s (for t > 8 and t ̸= 24) are then γC

t for
t ≤ 36 and γR

t for t > 36.

Simple upper bounds that are linear in t and are valid for all t ≥ 2 have been proposed
in [87, 86] and references given there: γt ≤ 2t/3, γt ≤ 1+ t/4, γt ≤ (t+6)/7, γt ≤ t/8+ 6/5,
and γt ≤ t/8.5 + 2. All these bounds increase linearly in t, and they are given by decreasing
order of slope. The latest one is the sharpest when t ≥ 109.

We denote by ℓt the Euclidean length of the shortest nonzero vector in the dual lattice
L∗
t . Recall that 1/ℓt corresponds to the distance between successive parallel hyperplanes that

contain all the lattice points in Lt [11, 27]. For a good quality lattice, we want this distance
to be small, so we want ℓt to be large [27, 49]. Since the density of L∗

t is η∗t = 1/ηt, we have
the upper bound

ℓt ≤ ℓ∗t (ηt) := γ
1/2
t η

1/t
t . (22)

We can then normalize ℓt to ℓt/ℓ
∗
t (ηt) ∈ (0, 1]. Again, γt can be replaced by an approximation,

good scores are close to 1, and bad ones are close to 0.

Bounds for the Lp norm for all p > 0. In general, for 0 < q < p, we always have

∥v∥p ≤ ∥v∥q ≤ t(p−q)/pq∥v∥p, (23)

which follows from Hölder’s inequality. By taking q = 2, the first inequality says that for
p ≥ 2, ∥v∥p ≤ ∥v∥2, which implies that the bounds (21) and (22) are also valid for the Lp

norm for any p ≥ 2. By taking p = 2 and 0 < q < 2, the second inequality tells us that

∥v∥q ≤ t(2−q)/2q∥v∥2. (24)

So the bounds (21) and (22) can be transformed into bounds valid for the Lq norm for
0 < q < 2 by multiplying their right-hand side by t(2−q)/2q, or equivalently replacing γt by

39



γ
(p)
t = t(2−q)/qγt for each t. These transformed bounds remain upper bounds when they

contain the exact values of γt or upper bounds on γt. But when γt is approximated by a
lower bound such as γB

t or γL
t , then the transformed bounds are neither upper bounds nor

lower bounds, they are only approximations.

For the special case of the L1 norm (q = 1), this gives γ
(1)
t = tγt and then

d
(1)
t ≤ (tγt)

1/2η
−1/t
t and ℓ

(1)
t ≤ (tγt)

1/2η
1/t
t , (25)

where d
(1)
t and ℓ

(1)
t are the shortest vector lengths with the L1 norm in the primal and m-

dual lattices. Recall that ℓ
(1)
t − 1 corresponds to the minimal number of hyperplanes that

contain L∗
t ∩ (0, 1)t, the dual lattice points that are in the open unit hypercube, as we saw

in Section 3. If we replace γt in (25) by an upper bound, the inequalities still hold, but if
we replace γt by γB

t for example, they become only approximate (not proven inequalities),
although the right side can still be a good choice the normalization.

Alternative upper bounds on d
(1)
t and ℓ

(1)
t are obtained by applying the general convex

body theorem of Minkowski [14, 69]. It says that for a lattice of density ηt, the shortest
vector length cannot exceed (t!/ηt)

1/t. This implies that by taking γM
t = (t!)2/t,

d
(1)
t ≤ d

∗(1)
t (ηt)

def
= (γM

t )1/2η
−1/t
t and ℓ

(1)
t ≤ ℓ

∗(1)
t (ηt)

def
= (γM

t )1/2η
1/t
t . (26)

The upper bounds (25) and (26) can then be used to normalize the shortest vector lengths
for the L1 norm, with γt in (25) replaced by an approximation when t > 8, just like for the
bounds in (25).

The normalizer classes. In Lattice Tester, the class Normalizer and its several sub-
classes whose names start with Norma... compute normalization factors that correspond
to different approximations of the constants γt, where ηt is the density of the lattice Lt

(non rescaled) in t dimensions. These normalization factors are then modified to obtain
bounds for the rescaled lattice Λt. To make sure that we can handle lattice densities that
are very large or very small, the computations are done using the log (in natural basis) of
the normalization constants, then we apply the exponential function.

The bounds are computed by assuming that the lattice Lt has density ηt = mk for t > k
and mt for t ≤ k. This corresponds to the lattice Lt generated by an MRG with modulus
m and order k. We assume that this lattice is rescaled by a factor m, so the rescaled lattice
Λt in t dimensions has density

η̃t = ηt/m
t =

{
1 for t ≤ k;

mk−t for t > k.

See our discussion at the end of Section 3.2. When t≫ k and m is large, this density is very
small, which means that the shortest nonzero vector is usually very large. We denote by d̃t
the L2 length of a shortest nonzero vector in Λt. In the software, we compute the bounds
for the rescaled lattice because this is the one we use when working with the primal lattice.

40



When we work with the dual, the rescale makes no difference, because the m-dual is not
rescaled. The m-dual of Λt, which is also the dual of Lt, has density

η∗t =

{
m−t for t < k;

m−k for t ≥ k.

For the projections in t ≤ k dimensions, tighter bounds can be obtained by observing
that all vectors in Λt and L∗

t must have integer coordinates. In the best case, Λt = Zt, the
set of all integer vectors, and then the shortest nonzero vector must have length 1, while the
bound d∗t (η̃t) = d∗t (1) is γ

1/2
t > 1. The smaller bound comes from the fact that the points are

forced to have a rectangular grid structure in the best case, and this is not optimal. In this
case, we may prefer to use 1 instead of γ

1/2
t for the normalization. The γ

1/2
t factor measures

the gain obtained by allowing general non-integral lattices instead of just rectangular grids.
For the m-dual, regardless of the dimension, the vectors mei always belong to the lattice,
which means that the length of a shortest nonzero vector can never exceed m. Therefore,
the upper bound ℓ∗t (ηt) = γ

1/2
t m for t ≤ k can be replaced by m. This is what we compute

in Normalizer.h.

All the upper bounds discussed so far also hold for the length d̃I of a shortest vector in
the projection ΛI of Λt onto a set I of s coordinates, and for the length ℓI of a shortest vector
in its m-dual L∗

I , with t replaced by s, if we assume that the density of the lattice ΛI is the
same as that of Λs, namely mk−s for s > k and 1 for s ≤ k. For a subset I of cardinality s,
with the L2 norm, an upper bound on d̃I is then

d̃∗s(m, k) = d∗s(η̃s) =

{
1 for s ≤ k;

γ
1/2
s m1−k/s for s > k.

(27)

The log of this bound is

ln d̃∗s(m, k) =

{
0 for s ≤ k;

0.5 ln γs + (1− k/s) lnm for s > k.
(28)

Likewise, an upper bound on ℓI for the m-dual lattice L∗
I is

ℓ̃∗s(m, k) =

{
m for s ≤ k;

ℓ∗s(ηs) = γ
1/2
s mk/s for s > k.

(29)

The log of this bound is

ln ℓ̃∗s(m, k) =

{
lnm for s ≤ k;

0.5 ln γs + (k/s) lnm for s > k.
(30)

The subclasses of Normalizer compute approximations of these bounds (for the L2 norm) by
using approximations of the γs’s. They also compute approximate bounds for the L1 norm,
simply by replacing the approximations of γs by approximations of γ

(1)
s . See Section 11.8.

41



Losing points in projections. It happens sometimes that the density of a projection
ΛI onto a set I of s coordinates is smaller than 1 for s ≤ k or smaller than mk−s for s > k.
We give a simple numerical example of that below. This means that points are projected
onto each other and ΛI is a bad projection because it has a smaller density than the original
lattice. Note that this happens if and only if the linear transformation from the initial
state (x0, . . . , xk−1) to the output vector (ui1 , . . . , . . . uis) is not one-to-one, i.e., when the
corresponding matrix does not have full rank. Note that the true density of the projection
can be computed easily by calculating the determinant of a triangular basis, but we do not
really want to normalize by using the true density of the projection in this case, because a
smaller density already means that the quality of the lattice is bad.

When a projection has smaller density, the density of the m-dual will be larger, so the
shortest vector in the dual space will typically be smaller, because the upper bound on its
length is actually smaller than the value of ℓ∗I(ηt) that we compute. Then the standardized
measure ℓI/ℓ

∗
I(ηt) that we compute will be smaller and the quality of the lattice will be

deemed very poor, as it should.

If we use only the lengths of the shortest vectors in the primal space, we have the opposite.
If the density has been reduced, then the standardized measure d̃I/d

∗
I(η̃t) will be too large,

eventually larger than 1, so the bad projection is likely to be left undetected. Therefore,
when looking for bad projections ΛI using the standardized measures, we better stick to the
dual space. When we observe a standardized measure larger than 1 for a projection in the
primal lattice, it is most likely because the density has been reduced by doing the projection,
and not because of an error in the software or in the bounds.

For a rank-1 lattice whose coefficients aj are all nonzero and relatively prime to m, all
projections have the same density m, so this lower-density problem cannot occur. This holds
for example for a LCG whose multiplier a is relatively prime to m.

Example 4. Normalized values that exceed 1. This is a simple example in which a
projection has a smaller density than the full lattice. Consider an MRG with order k = 3,
modulus m = 13, and multipliers (a1, a2, a3) = (7, 0, 4). See the LatMRG guide [42] for more
details about MRGs. For t = 4 dimensions, the standard basis matrix V in Eq. (13) of the
LatMRG guide is

V =


1 0 0 4
0 1 0 0
0 0 1 7
0 0 0 13


This lattice has density 1/det(V ) = 1/13, while its projection onto the first one, two, or
three coordinates has density 1. Many of the two- or three-dimensional projections may also
have density 1, and the standardized measures are computed by assuming that they have
that density. When a t-dimensional integral lattice has density 1, it must be Zt, and the
length of a shortest nonzero vector must be 1.

By taking columns 1, 3 and 4 of this matrix V to obtain a set of generating vectors, and
applying the triangulation method, we obtain the following triangular basis for the projection

42



ΛI onto coordinates I = {1, 3, 4}:

VI =

1 0 4
0 1 7
0 0 13


A shortest vector in this projection is (0, 2, 1), whose square length is 5. It is minus the last
vector plus twice the second one. But the density of this projection is 1/13, not 1. That is,
the lattice LI for this projection has only 132 points in the unit cube [0, 1)3, not 133 points
as we may have expected. We have 13 times fewer points, which is not good. If we compute
d̃I/d̃

∗
I(η̃t) by assuming that the density is 1, we obtain approximately 2.236, which is larger

than 1.

10 Figures of Merit That Examine Projections

For any normalized measure of uniformity for Lt or Λt as defined in the previous section,
one can compute this measure not only for Lt but also for LI for any subset of indices
I = {i1, . . . , is} ⊆ {1, . . . , t}. This can be done for a selected class I of subsets I. For each
I ∈ I, the uniformity measure is normalized to a value between 0 and 1. Then one can give
a weight ωI to each subset I ∈ I and take the (possibly weighted) sum or the worst case
(minimum) of the normalized values as a FOM for the lattice Lt. The same can be done for
the m-dual lattice L∗

t and projections L∗
I . This can be done for either the L2 or L1 norm.

As a concrete example of a standard FOM available in Lattice Tester, for each selected
I with |I| = s, we can take the Euclidean length ℓI of the shortest nonzero vector in the
dual lattice LI and normalize it to ℓI/ℓ̃

∗
s(m, k) with ℓ̃∗s(m, k) defined in (29). Here we take

the density that LI has when there is no loss of points in the projections, as explained at
the end of the previous section. That is, we assume a density of η̃I = mmin(1,s−k) for ΛI

and η∗I = 1/ηI = m−min(s,k) for the m-dual L∗
I . The unknown γt’s are replaced by estimates

such as γL
t or γB

t , for example. For an integer d ≥ 1 and a vector of arbitrary non-negative
integers t = (t1, · · · , td), we define the general weighted worst-case FOM

Mt = Mt1,...,td = min
1≤s≤d

min
I∈Ss(ts)

ℓI

ωI ℓ̃∗s(m, k)
(31)

where s = |I|,

S1(t1) = {I = {1, . . . , s} | d+ 1 ≤ s ≤ t1}, (32)

Ss(ts) = {I = {i1, . . . , is} | 1 ≤ i1 < · · · < is ≤ ts}, (33)

and ωI > 0 for all I considered. Note that we divide by the weight, so the term in (31)
that corresponds to a set I having a small weight is inflated, which reduces its importance
because the minimum then becomes less likely to be reached by this term. Giving a large
weight, in contrast, increases the importance. This FOM takes the worst case over all the

43



projections onto s successive dimensions for d < s ≤ t1, and onto sets of possibly non-
successive coordinates that are not too far apart in up to d dimensions. Note that if ts ≥ s,
then Ss(ts) contains {1, . . . , s}, and if this holds for all 2 ≤ s ≤ d, then there is no loss in
starting S1(t1) with the projection I = {1, . . . , d + 1}, because the projections onto s ≤ d
coordinates are already accounted for. If we want to consider only the projections in S1(t1)
for a given d > 1, it is allowed to select that d and take t2 = · · · = td = 0.

This type of FOM was proposed in [37, 39, 52], for example, and is also available in LatNet
Builder and LatMRG [48, 51]. It is usually computed for the m-dual lattice projections Λ∗

I

[49]. The special case of (31) with d = 1 and unit weights,

Mt1 = min
2≤s≤t1

ℓs/ℓ
∗
s, (34)

has been used for ranking and selecting LCGs and MRGs [16, 33, 35, 36, 46, 58, 61, 62].

This FOM can also be defined in the primal lattice, and it works for either the L2 or
L1 norm. For the primal lattice, it suffices to replace ℓI/ℓ̃

∗
s(m, k) by d̃I/d̃

∗
s(m, k) for each

I in (31). For the L1 norm, the bounds in the denominators are modified appropriately as
explained in Section 9. These FOMs are implemented in Lattice Tester in FigureOfMeritM.h

and FigureOfMeritMDual.h.

To get an idea of how many terms there are in (31), note that the set S1(t1) has cardinality
t1 − d, S2(t2) has cardinality

(
t2
2

)
= t2(t2 − 1)/2, and more generally Ss(ts) in (33) has

cardinality
(
ts
s

)
, for 2 ≤ s ≤ d. Therefore Mt1,...,td is a worst case over (t1 − d) +

∑d
s=2

(
ts
s

)
projections. This number increases quickly with d unless the ts are very small. For example,
if d = 4 and ts = 32 for s = 1, . . . , 4, there are 28 + 496 + 4, 960 + 35, 960 = 41, 444
projections. The last three terms in this sum are the projections of order 2, 3, and 4.
Note the very large number of projections of order 4. Also, the number of projections
onto successive coordinates (only 28) is very small compared to the total number. When
too many projections are considered, we inevitably find some bad ones, so the worst-case
figure of merit is (practically) always small, and can no longer distinguish between good
and mediocre behavior in the most important projections. Moreover, the time to compute
Mt1,...,td increases with the number of projections. We should therefore make a compromise
and consider only the projections deemed important. We suggest using the criterion (31)
with d equal to 4 or 5, and ts decreasing with s.

When projections of certain orders are too numerous, we may want to give smaller weights
to these projections so they do not occupy the whole stage. We could think of giving weights
ωI that decrease with s, the cardinality of I, and perhaps also with the spacing ts − t1.
Various ways of specifying the weights ωI for subsets of coordinates are implemented in
Lattice Tester in subclasses of the abstract class Weights. These weights are routinely used
when constructing rank-1 lattice rules for quasi-Monte Carlo [55, 53, 51], usually to give
more weight to the low-order projections in FOMs defined as a sum over the projections,
but they are typically not used for RNGs.

The most general type of weights are projection-dependent weights, which permit one to
specify a separate weight ωI for each projection I. However, this quickly becomes imprac-
tical when the number of dimensions increases, since there are 2t − 1 values to specify in

44



t dimensions. At the other extreme, uniform weights give the same weight ωI = 1 to all
the projections I. They are the most restrictive ones. In between, we find order-dependent
weights, for which ωI depends only on the cardinality of I: we select real numbers Γi for
i = 1, . . . , t and put ωI = γ|I| for each I. For product weights, we select a real number γi
for each coordinate i, usually γi ≤ 1, and we put ωI =

∏
i∈I γi for each I. For each of the

last two types, only t real numbers have to be selected. Their multiplicative combination
gives the product-and-order-dependent (POD) weights, for which ωI = Γ|I|

∏
j∈I γj. All these

types of weights are implemented in classes having the corresponding names.

When the lattice comes from a linear RNG based on a recurrence (like for an LCG, an
MRG, a Korobov lattice rule, etc.), we say that we have a recurrence-based point set [56, 38].
In this case, shifting all coordinate indices of a set I by the same constant does not change
the point set: we say that the point set is projection-stationary. Then we can impose the
extra condition i1 = 1 in the definition of Ss(ts) without changing the value of Mt1,...,td in
(31). That is, for s ≥ 2, we can replace Ss(ts) by the smaller set

S(1)
s (ts) = {I = {i1, . . . , is} | 1 = i1 < · · · < is ≤ ts}. (35)

In our implementations, the user has the choice of imposing this condition or not. We write
the FOM M

(1)
t = M

(1)
t1,...,td

when the condition is imposed.

The set S
(1)
s (ts) in (35) has cardinality

(
ts−1
s−1

)
. In this case, Mt1,...,td is a worst case over

(t1 − d) +
∑d

s=2

(
ts−1
s−1

)
projections, which can be much smaller than for the earlier example.

For d = 4 and ts = 32 for all s, we now have 28 + 31 + 465 + 4495 = 5019 projections,
compared to 41, 444 in the earlier case. The total number is smaller, but the projections of
order 4 still dominate, so one should probably take a smaller value for t4.

As another example, if d = 5 and (t1, . . . , td) = (32, 32, 16, 12, 10), then there are 27 +
31 + 120 + 220 + 210 = 608 projections. Here, the number of projections of different orders
is more balanced.

A different type of FOM offered in Lattice Tester is the following one. Let qI be the
maximum of the Beyer quotients of all Minkowski-reduced lattice bases of LI , and denote
q{1,...,t} by qt. We prefer values of qI close to 1. Similar to (31) and (34), we can define

Qt = Qt1,...,td = min
1≤s≤d

min
I∈Ss(ts)

qI (36)

and
Qt1 = min

2≤t≤t1
qt. (37)

Although the qt’s in this FOM can be computed with Lattice Tester, computing qt is much
more time consuming than computing the spectral test and we do not think that it is more
relevant for measuring the uniformity. We have a legacy implementation of (37) mainly
because one referee requested it for the paper [46]. This measure is used for the primal
lattice [49].

The classes FiguresOfMeritM and FiguresOfMeritMDual in Lattice Tester implement the
FOM (31) for the primal and them-dual, respectively. One important practical consideration

45



is that these FOM functions must take as inputs some thresholds outside of which the
evaluation procedure can be stopped prematurely. For instance, if we are making a search
for MRG parameters that maximize the FOM, we will give a minimal value lowBound such
that as soon as we encounter a projection for which the FOM is below this value, we stop
the FOM calculation and exit immediately. This is important, because when searching for
RNGs with a good lattice structure, for example, we typically want to examine millions of
candidates, and we can reject the great majority of candidates (say > 99.9%) after looking
at the spectral test results (or even just LLL reductions) in relatively low dimensions, so
there is no need to do the expensive high-dimensional evaluations. This can make a huge
difference in CPU times (see the example in Section 12.11).

Because of this frequent early exit, the order in which the two terms in (31) are evaluated
can have a significant impact on the performance. Since the evaluation cost increases rapidly
with the dimension, we prefer to evaluate the low-dimensional projections first, in the hope
that the high-dimensional ones will have to be evaluated only in rare cases. Specifically,
we start with the projections I in s = 2 dimensions, then s = 3, etc., and we finish with
the projections onto successive coordinates, in the set S1(t1). Numerical experiments have
confirmed that this can make a important difference.

In (31), one could also replace the min by a sum and reverse the terms in the fraction.
We would then want to minimize that FOM instead of maximizing it. One drawback would
be that most of the terms would have to be computed before we know that the FOM is too
large, so the gain from early exit is likely to be smaller.

11 Main facilities provided by Lattice Tester

11.1 General overview

Here we give a tour of what the software provides and how to use it. The goal is to tell
the user where to find the most important ingredients. Detailed examples are provided in
Section 12.

We start with a general overview of all the files, then we discuss the important ones in
slightly more details. The main type of object handled by this software is an integral lattice,
represented in the base class IntLattice. Each IntLattice object has a dimension t, a
scaling factor m, a basis, an m-dual basis (optional), a norm to measure vector lengths, etc.
The class IntLattice contains methods to manipulate the lattice and to perform certain
operations such as to compute and store the norms of the basis and m-dual basis vectors,
permute the basis vectors, sort them by length, etc.

The abstract class IntLatticeExt extends IntLattice and contains (additional) virtual
methods that must be defined in its subclasses because they depend on how the lattices are
constructed. It is a skeleton for the specialized subclasses that define specific types of lattices.
There are virtual methods to construct a basis or an m-dual basis, to extend the current

46



basis (or its m-dual) by one coordinate, to construct the lattice defined as the projection of
the full lattice on a subset of coordinates indices, and recompute a basis for different numbers
of dimensions and subsets of coordinates. One subclass of IntLatticeExt offered in Lattice
Tester is Rank1Lattice, whose objects are the lattices of rank 1 commonly used for lattice
rules in quasi-Monte Carlo integration. Other subclasses are defined in LatMRG.

The file BasisConstruction provides static methods to construct a lattice basis from an
arbitrary set of generating vectors, to compute the m-dual of a given basis, and to compute
a basis for the projection of a lattice onto a given subset of coordinates. The constructed
basis can be LLL-reduced, or can be upper- or lower-triangular. In many cases, a lattice
basis can be constructed directly by exploiting the definition and structure of the lattice.
This is done in the subclasses of IntLatticeExt.

The file ReducerStatic provides static functions to reduce a lattice basis via LLL or
BKZ by using modified versions of NTL functions, using the L2 norm to measure vector
lengths. For the LLL and BKZ algorithms, we use slightly modified versions of the NTL
implementations, whose header files are LLL FPInt.h and LLL lt.h. Our versions permit
one to recover the square length of the basis vectors and always return the shortest vector
in first place. These algorithms are used by BasisConstruction and ReducerStatic.

The class ReducerBB offers tools to compute a shortest lattice vector via the BB algo-
rithm, with either the L2 norm or the L1 norm. It also offers a procedure to compute a
Minkowski-reduced basis and the Beyer quotient. All these tools require that a lattice basis
has already been constructed.

The length of the shortest vector can be normalized (usually to a value between 0 and 1)
by using one of the normalizations implemented in the Norma · · · subclasses of Normalizer.
There are several possibilities, for either the L1 or L2 norm.

A subset I of coordinates is represented by an object of the class Coordinates. Such a
subset defines a projection LI of the lattice. A CoordinateSets object can represent a set
of such subsets of coordinates; i.e., a set of projections of the lattice. Examples of such sets
of subsets are given in Eqs. (32) and (33).

In the subclasses of Weights, named Weights· · · , facilities are offered to give different
weights to specific subsets of coordinates (uniform weights, product weights, order-dependent
weights, POD weights, projection-dependent weights). This can be used to compute FOMs
as discussed in Section 10.

The following files provide basic tools used mostly in other classes of files. They are
described later in this section. EnumTypes collects the definitions of all basic enumeration
types used in Lattice Tester (some are also used in other packages). FlexTypes defines the
flexible integer and real types for vectors and matrices. Util implements simple utility
functions. Num implements some mathematical functions. NTLWrap extends certain NTL
classes and offers a few basic utilities not offered in NTL. Random implements a 64-bit uniform
random number generator, used when we make random selections. ParamReader provides
functions to read data from a file. Writer and WriterRes provide functions to format and
write output. Some of these functions are not (or no longer) used directly in Lattice Tester,
but they may be used elsewhere.

47



11.2 Representing large numbers, vectors, and matrices

Floating-point real numbers. Lattice Tester uses flexible types to represent integers
and real numbers. The generic types are named Int for the integers and Real for the real
numbers. For the Int type, one may use 64-bit integers (int64 t in C, commonly named
long in NTL and C++) when this is sufficient to represent all basis coordinates and make the
required integer computations (but see also the next paragraph), or use NTL::ZZ, which can
represent integers of arbitrary size. For the Real type, when Int = ZZ, we have the same
four choices as in the LLL functions of NTL: double, xdouble, quad float, and the RR

arbitrary-precision floating-point type of NTL. When Int = int64 t, the only admissible
choice is Real = double. This makes five combinations of types. The file FlexTypes.h

defines the following code names for these five combinations:

code Int Real details

LD int64 t double

ZD ZZ double

ZX ZZ xdouble https://libntl.org/doc/xdouble.cpp.html

ZQ ZZ quad float https://libntl.org/doc/quad_float.cpp.html

ZR ZZ RR https://libntl.org/doc/RR.cpp.html

In our experiments, we found that using LD was never much faster than using ZD, and
sometimes it was even slower, depending on the compiler and computer. We now briefly
describe the xdouble, quad float, and RR floating-point types. There are more detailed
explanations in the NTL files at the links given in the last column of the table.

An xdouble (extended double) has the same precision as a double (about 53 bits) but
an extended exponent range, so much larger real numbers can be handled. It is represented
by an ordinary double that contains the mantissa and an exponent, together with a 64-bit
integer (long) that stores another number used to increase the exponent.

A quad float (quadruple precision) gives about 106 bits of precision. The number x is
represented as x1+x2 where x1 is a double that represents x with about 53 bits of precision
as usual, and x2 is another double used to add an extra 53 bits to the mantissa. The value
of |x2| never exceeds the value represented by the least significant bit of x1 if we put this bit
at 1, so it does not change the mantissa that is already in x1, except perhaps for its last bit.

The NTL::RR type refers to an arbitrary precision floating-point real number x = 2e×m,
represented by (m, e), where m is a p-bit mantissa represented as a ZZ integer, and e is the
exponent represented as a 64-bit integer (long). By default, the mantissa has p = 150 bits,
but this p can be changed via the RR::SetPrecision static function. The current precision
can be saved and restored by using a RR::RRPush object. The results of all operations with
RR objects are rounded (after the operation) to p bits of precision, so the relative error does
not exceed 2−p.

A types code can be used in application programs to select the appropriate combina-
tion. For this, it suffices to define the variable TYPES CODE to one of these four values, at

48

https://libntl.org/doc/xdouble.cpp.html
https://libntl.org/doc/quad_float.cpp.html
https://libntl.org/doc/RR.cpp.html


the beginning of the program, before including the FlexTypes.h file and before any other
instruction. See the program TestBasisConstructSmall in the examples. For instance, to
select Int = ZZ and Real = double (a common choice), one would use the line:

#define TYPES CODE ZD

Another way of selecting the two flexible types Int and Real is to pass the desired types
in the class and function templates. The program TestReducersSpeed in the examples
shows how to do that. In a nutshell, if a class or a function is declared as

template<typename Int, typename Real> fname(...);

calling it as in

fname<NTL::ZZ, double>(...);

will fix Int to NTL::ZZ and Real to double inside the function, and inside the functions
called by this function with these template parameters, recursively. The compiler will then
compile the code with the right types.

High-accuracy real numbers are needed mostly for the Cholesky decomposition in the BB
procedure for computing a shortest vector, and also in the LLL and BKZ functions. Using
xdouble or quad float can accommodate larger or more accurate numbers, but makes the
programs run more slowly. The RR type can handle arbitrarily large real numbers, but the op-
erations are then much slower than for the other types. See the example TestReducersSpeed
for speed comparisons.

In applications in which Lattice Tester is used to screen out a very large number of
lattices to find a few good ones, one can first perform the computations with the standard
type double, and then recompute (verify) with the higher-precision floating-point numbers
only for the lattices that have been retained.

Vectors and matrices. Vectors and matrices of Int and Real are also defined in
FlexTypes.h. We have IntVec and IntMat for integers, and RealVec and RealMat for real
numbers. These are implemented as NTL vectors and matrices. These types are sometimes
used in templates when instantiating objects.

The NTL::vector objects are allocated some space initially, then enlarged whenever
needed. When they are resized to larger values, the space they occupy increases. When
they are resized to smaller values, the space they occupy does not decrease, only their
current dimensions (given by hidden local variables in the object) decreases. For a vector,
length() returns the current (or logical) length (or size), while MaxLength() returns the
space that the object occupies, which is at least as large as the largest length it had in its
life. The function SetLength(a) sets the current length to a while SetMaxLength(m) sets

49



the current max length (space) to m. By default, range checks for indices are not done,
but if NTL RANGE CHECK is defined, code is added to test if 0 <= i < v.length(). This
check is not performed by default. See https://libntl.org/doc/vector.cpp.html for
more details.

The NTL::matrix objects are implemented in a similar way, but with a key difference:
when the number of columns change, the matrix is destroyed and a new matrix object is
created (and initialized), which brings significant overhead. If only the number of rows is
changed, the matrix is resized just like a vector. For this reason, we really want to avoid
resizing the number of columns in those matrices. The function SetDims(r, c) changes
the dimensions to r rows and c columns. The length of the rows cannot be larger than c
as for vectors. If mat is a matrix, then mat[i] returns row i, which is an NTL vector, and
mat[i][j] returns element (i, j) of the matrix.

To avoid the resizing of matrices, in Lattice Tester we often reserve space for the largest
dimensions that we need and reuse the same objects without resizing them. For example,
each basis is stored in a IntMat object with maxDim rows and columns, which is allocated
only once. If the current basis has dim < maxDim dimensions, then only the upper-left
corner of the matrix (first dim rows and columns) is used to store the current basis. Our
functions have been implemented to use the matrices in that way. Each IntLattice object
has internal dim and maxDim variables.

On the other hand, the LLL and BKZ implementations of NTL do not work that way.
They take matrices that must have the exact right dimensions. For this reason, we have mod-
ified the files LLL FP, LLL RR, etc., from NTL to new versions named LLL FPInt, LLL RR lt,
etc., that can work with only parts of the matrices, as just described. The file LLL FPInt

also works for both Int = ZZ and Int = int64 t. The modified static functions also return
the square lengths of the basis vectors (those in NTL do not).

The TestMatrixCreationSpeed example in Section 12.2 illustrates the importance of
avoiding the frequent creation of new objects, e.g., creating new objects inside functions that
are called several times, or resizing the number of columns of an IntMat object frequently.

11.3 IntLattice and IntLatticeExt

IntLattice is a base class for Lattice Tester. It represents an arbitrary integral lattice in
t dimensions, with a primal basis made of t independent t-dimensional integral vectors, a
scaling factorm, anm-dual basis, and a choice of norm (L1 or L2 norm). Various constructors
are available. Usually, only the primal basis or only them-dual basis is maintained, not both.
The basis vectors are stored as the rows of a matrix of integers (IntMat) and their norms
are stored in a vector of real numbers (RealVec). These norms are not always updated
immediately when vectors are changed, but only when needed. There are several methods to
set the primal or the m-dual basis to a given matrix, the norms of the primal or m-dual basis
vectors, to check if the norm of a vector is up-to-date or not, to permute basis vectors, to sort
them by length, to print the basis matrices, etc. The function buildProjection constructs

50

https://libntl.org/doc/vector.cpp.html


the lattice that corresponds to the projection of the current IntLattice onto a specific
set of coordinates, and returns it in another IntLattice object passed as a parameter.
The function buildProjectionDual does the same for the m-dual of this projection. These
methods have default (general) implementations that are intended to be overridden by faster
specialized implementations in subclasses. An IntLattice object contains several protected
variables, so we should avoid creating many of these objects and rather reuse the same one,
for example when searching for good lattices.

The class IntLatticeExt offers additional virtual methods which must be implemented
in subclasses. The reason is that these methods can be implemented only in subclasses that
construct specific types of lattices. They permit one to build a basis for the lattice, to build
a basis for the projection of the lattice onto a subset of coordinates, to extend the dimension
of the lattice by one coordinate while leaving the current basis coordinates unchanged, to
write a string that describes the lattice, and all of this for either the primal or the m-dual.

In the Modula-2 version, the primal and m-dual bases were maintained together, so they
were always m-dual to each other. This is no longer true. They are now maintained almost
independently of each other, and only one of them is maintained, in particular because
LLL, BKZ, and BB change either the primal or the dual, but not both. There is a current
dimension for the primal basis and another one for the m-dual basis. When one of them
is not built, its current dimension is 0. These dimensions are accessible via getDim() and
getDimDual().

11.4 BasisConstruction

This file offers only static functions to construct a basis from a set of generating vectors that
are not necessarily independent, to construct a triangular basis, to construct the basis for a
projection onto a given subset of coordinates, and to compute the m-dual of a given basis.
These functions use the algorithms discussed in Sections 5 and 6. The implementation uses
IntMat matrices and some functions rely on NTL. Most of the computations on basis vectors
in these functions are done modulo m (except for the vectors mei which cannot be replaced
by 0), so no number should exceed m.

The functions upperTriangularBasis and lowerTriangularBasis construct an upper-
triangular basis and a lower-triangular basis, respectively, using the gcd construction algo-
rithm of Section 5.2. The function LLLBasisConstruction constructs an LLL-reduced basis
from a set of generating vectors. The returned basis is not triangular in general, but it is
usually comprised of shorter vectors. All these functions assume that the rescaled unit vec-
tors mei always belong to the lattice, and they add them implicitly to the set of generating
vectors.

The functions mDualBasis, mDualLowerTriangular, and mDualUpperTriangular com-
pute the m-dual of a given basis for the general case and for the triangular case, respectively,
as explained in Section 6. The first one is more general but it is much slower.

51



The function projectMatrix takes a given lattice basis and a given set I of coordinates,
and extracts a set of generating vector for the projection of this lattice onto the coordinates
in I. The functions projectionConstructionLLL and projectionConstructionUpperTri

use LLL and the GCD upper-triangular construction method, respectively, to compute a
basis for the projection from the set of generating vectors. These methods are for arbitrary
lattices and projections. In the subclasses of IntLatticeExt, there are more efficient spe-
cialized functions that exploit the structure of certain types of lattices to directly construct
bases for projections of the lattice and for the m-duals of those projections. For example,
Rank1Lattice implements the direct construction methods discussed in Section 5.4.

All functions in the BasisConstruction file are static, so there is no need to create an
object to use them. We also avoid as much as possible to create new vectors and matrices
inside these functions, and the physical size of the IntMat objects can be larger than what
is used, so the user can re-use the same vectors and matrices over successive calls.

11.5 LLL and BKZ functions

The header files LLL FPInt.h and LLL lt.h specify the functions we use for LLL and BKZ.
The versions defined in LLL lt.h are just slightly modified versions of the NTL implemen-
tations for Int = ZZ combined with any of the four Real types. Their implementations are
in four separate LLL * lt.cc files. The file LLL FPInt.h contains implementations that
work for Real = double and Int = int64 t or Int = ZZ. These different implementa-
tions are available by using the templates for Int and Real in BasisConstruction and
ReducerStatic.

11.6 ReducerStatic

The file ReducerStatic offers static functions to reduce a given basis via LLL or BKZ, using
the L2 norm (only) to measure vector lengths. Their implementation uses functions from
LLL FPInt.h and LLL lt.h, which are our modified versions of corresponding NTL functions
declared in https://github.com/u-u-h/NTL/blob/master/doc/LLL.txt. In LLL FPInt,
the Int type can be either int64 t or ZZ, and the LLL algorithm is implemented using
mostly “double’s” for the Gram-Schmidt orthogonalization. In the other variants, the Int

type must be ZZ, and the Real type can be double, quad float, xdouble, or NTL::RR.

11.7 ReducerBB

The class ReducerBB implements functions to find a shortest non-zero vector in a given
lattice via the BB algorithm [49], with either the L2 norm or the L1 norm. These functions
require that a lattice basis has already been constructed. We recommend to always apply
the LLL or BKZ pre-reductions from ReducerStatic before invoking the BB algorithm. See
the example TestReducersSpeed in Section 12.8 for more on that.

52

https://github.com/u-u-h/NTL/blob/master/doc/LLL.txt


Our BB algorithm is based on a Cholesky decomposition of the Gram matrix, as described
in Section 8.3. We also implemented the version based a lower-triangular basis described in
Section 8.2, to make comparisons, but the latter leads to a slower BB algorithms, because it
generally gives much wider bounds.

Our algorithms do not use the m-dual basis, in contrast to the method of [14]. They
only use the rescaled primal basis. If we want to compute a shortest vector in the m-dual
lattice, we must build a basis for m-dual, then dualize the lattice so the m-dual becomes
the primal (IntLattice::dualize does that) and apply the desired reduction methods. All
the subclasses of IntLatticeExt must have facilities to build a basis for either the primal
or the m-dual, for the whole lattice or a projection.

The shortestVector function computes a shortest vector in the lattice, using the norm
selected for this lattice (either L2 or L1), while reductMinkowski computes a Minkowski-
reduced basis. Both use a recursive BB procedure and several internal variables (including
vectors and matrices) in ReducerBB. For this reason, they have no static version. These
functions do not apply any pre-reduction by themselves. Before calling them, one should
reduce the basis via an LLL or BKZ reduction, to reduce the size of the BB search.

To use shortestVector or reductMinkowski, one must create a ReducerBB object that
maintains the internal variables, and points internally to an IntLattice object. Creating a
new Reducer object for each IntLattice that we want to handle is inefficient and should be
avoided. It is recommended to create a single Reducer object that contains an IntLattice

object with a maximal dimension large enough to handle all the lattices that we want to
examine, and just update the contents of this IntLattice object when going from one lattice
to the next. The norm type, dimension, basis, vector lengths, etc., will be taken from this
IntLattice object.

Changing the IntLattice object inside the ReducerBB can also be done easily and effi-
ciently with the function setIntLattice(&lat). In most cases, this function just changes
the pointer to the new internal IntLattice object. If the reserved space for the internal
vectors and matrices in the ReducerBB object is not sufficient for the dimension of the new
IntLattice, this space is also enlarged as needed. It is never reduced. The other internal
variables do not have to be updated when the internal lattice is changed, those that are
needed are recomputed inside the shortestVector and ReductMinkowski functions.

In ReducerBB, the amount of details that is shown on the terminal during execution can
be changed by the setVerbosity function. This can be useful in case we want to follow in
details what transformations are made and what happens at each node of the BB tree.

11.8 Normalizer

The class Normalizer and its subclasses compute and store the normalizing constants dis-
cussed in Section 9. A specific Normalizer should be created by invoking the constructor
of a subclass. The preferred constructor is the one that takes lnm and k as input. This
constructor assumes that the primal lattice has been rescaled by a factor m, and that its

53



density in t dimensions (after rescale) is η̃t = ηt/m
t = mk−t for t > k and 1 for t ≤ k. This

corresponds to the lattice Lt generated by an MRG with modulus m and order k, whose
density before the rescaling is ηt = mk for t > k and mt for t ≤ k. The bounds are computed
for the rescaled lattice Λt, for which the log density is max(0, k − t) lnm, which depends on
t. For the m-dual lattice, the density is η∗t = m−k for t ≥ k and η∗t = m−t for t < k, so the
log density is −min(t, k) lnm. The corresponding bounds are computed by the constructor.
By default, the bounds are computed for the L2 norm, but they will be computed for the L1

norm if that choice of norm is passed to the constructor. In that case, the constants γt are
replaced internally by the modified γ

(1)
t defined in Section 9. This is done in the function

that returns the value of γt in the subclasses.

Passing (lnm, k) to the constructor of a subclass will give the bounds for the rescaled
primal lattice, while passing (− lnm, k) will give the bounds for the m-dual lattice. The logs
of the bounds for the rescaled primal and for its m-dual are given in (28) and (30). These
bounds are computed internally by the function computeBounds(logm,k) for a selected range
of dimensions, usually for up to 48 dimensions only, because in most cases the estimates of γt
are available only for t ≤ 48. If we have passed − lnm for the first parameter, the function
finds that this parameter is negative and computes the bound for the m-dual, otherwise
it computes the bound for the rescaled primal. Then the exponential function is taken to
recover the final bounds from their logs. We work with the logs of the bounds because
the density itself is sometimes extremely large or extremely small. There is also another
constructor that takes the log of the lattice density as input, but it can work only when the
density is the same for all t, which is not true (at least for the primal lattice) in our setting.

The different subclasses use different estimates of the constants γt, so they give slightly
different bounds. Some choices of estimates are lower bounds on the constants γt, so they do
not provide true upper bounds on the shortest vector lengths, but only low-biased estimates.
Other choices are upper bounds on the γt. The bounds are precomputed for a selected range
of dimensions t by the constructor. They can then be accessed either for one dimension
at a time (via the getBound function) or as a vector for all the selected dimensions (via
getBounds). In most cases, the maximum dimension is 48. The available subclasses of
Normalizer are the following:

class name bound type norm symbol origin
NormaBestLat lower L2 γB

t Best known lattice packing [8]
NormaLaminated lower L2 γL

t Best laminated lattice [8]
NormaMinkHlaw lower L2 γZ

t Minkowski-Hlawka lower bound
NormaBestUpBound upper L2 γC

t Best known upper bound [7, 6]
NormaRogers upper L2 γR

t Roger’s upper bound [8]
NormaMinkL1 upper L1 γM

t Upper bound from Minkowski [69]

We recommend using either the best lower bound given in NormaBestLat or the best
upper bound given in NormaBestUpBound. Both use the exact values of γt when they are
known. Otherwise, the latter use the bounds from [7] for up to t = 36 dimensions, and the
bounds of Rogers for t > 36. The best lower and upper bounds for t ≤ 36 are compared

54



in [7, 6] in terms of bounds on sphere packing densities. For the L1 norm, one can use

modified versions of these bounds by transforming them into bounds on γ
(1)
t , as explained

in Section 9. This can be done simply by passing the appropriate norm to the constructor
of the Normalizer object.

When making a search and examining millions of lattices, one should create a single
Normalizer object and re-use it, not construct a new one for each lattice that is examined.

11.9 Weights

The abstract class Weights provides an interface to specify weights ωI given to projections
I when defining a figure of merit as in (31), or more generally as in [53], Equation (8). Its
subclasses (whose names start by Weights...) define different types of weights, as explained
in Section 10. The class names are the names of the weights. These different types of weights
are used in LatNet Builder. When studying RNGs, it is most common to use either uniform
weights (all weights are 1) or order-dependent weights (the weight depends only on the
cardinality of the projection). When using (31) with a large number of low-dimensional
projections, for example, we may want to give smaller weights in the dimensions in which
the projections are too numerous, because otherwise the minimum is almost always attained
for one of them. Since the FOM is a minimum and we divide by the weight, a smaller weight
gives less importance to the corresponding projection in the FOM.

To apply such weights to projections, one should create a arbitrary Weights object, spec-
ify the desired weights inside that object, and then call the function getWeight(projection)

on that object each time we want to retrieve the weight of a given “projection”.

11.10 Coordinates and CoordinateSets

A Coordinates object is a C++ set that represents a set of coordinate indices, often non-
successive, and which determine a projection. These objects are created and returned by the
classes in the CoordinateSets namespace. The coordinates are assumed to start at 1 (the
first coordinate) and be listed in increasing order in the set.

A CoordinateSets object corresponds to a set of subsets of coordinate indices, i.e.,
a set of Coordinates objects. For example, the set Ss(ts) in (33) corresponds to a

CoordinateSets object. Its alternative S
(1)
s (ts) in (35) is another one. The sets⋃

2≤s≤d

Ss(ts) and
⋃

2≤s≤d

S(1)
s (ts)

are also CoordinateSets objects, which can be constructed using the functions provided in
the class FromRanges in CoordinateSets.h. These types of objects are used when computing
a FOM such as (31). The function FigureOfMeritM::setTVector shows how to construct
them. The idea is to create a FromRanges object, then add projections to it. In the following

55



example, projSet represents a set of projections. The two includeOrder statements add
the projections in S2(8) and S3(8), namely all pairs and triples of distinct coordinates from
{1, . . . , 8}.

CoordinateSets::FromRanges projSet = new CoordinateSets::FromRanges;
projSet->includeOrder (2, 1, 8, false);
projSet->includeOrder (3, 1, 8, false);

The “false” in these statements indicates that coordinate 1 is not always included. To in-
clude S(1)(2, 8) and S(1)(3, 8), i.e., the subsets of the pairs and triples that contain coordinate
1 in the sets above, one can do

projSet->includeOrder (2, 2, 8, true);
projSet->includeOrder (3, 2, 8, true);

The “true” indicates that we always include coordinate 1. The second parameter is 2 because
coordinate 1 is already included, so the other coordinates must be from the set {2, . . . , 8}.

11.11 Figures of merit

The classes whose names start by FigureOfMerit compute figures of merit (FOMs) for
an arbitrary IntLatticeExt object. In particular, FigureOfMeritM and FigureOfMeritQ

compute the FOMs defined in (31) and (37) for the rescaled primal lattice and its projections,
whereas FigureOfMeritDualM does it for the m-duals of the projections. Other FOMs may
be added in the future.

When computing an FOM, the lengths of the shortest vectors in the projections can be
just approximated by the lengths of the shortest basis vector obtained after applying pre-
reductions such as LLL or BKZ, or they can be calculated exactly by using the BB algorithm
after applying these pre-reduction. The former is faster but not exact.

The constructor of FigureOfMeritM requires the integer vector (t1, . . . , td) used in (31),
a Weights object that defines the weights given to the projections, a Normalizer object
used to normalize the vector lengths in the FOM (see Section 11.8), an optional ReducerBB
object used in case we perform the BB (if no ReducerBB is given, no BB is performed),
and an optional includeFirst boolean parameter which must be set to “true” if we want
to include only the projections that contain coordinate 1 as in (35) (the default value is
“false”). The reductions are always applied in the order LLL→ BKZ→ BB. Each of them
can be “on” or “off”, which gives 8 possible combinations. By default, the pre-reduction
method is BKZ with δ = 0.99999 and blocksize = 10. This can be changed via the
functions setLLL and setBKZ. To remove LLL or BKZ, it suffices to set its δ parameter
to 0.0. After a FigureOfMeritM object has been created, one can still change its vector
(t1, . . . , td), its weights, or its normalizer, via the appropriate functions.

The class FigureOfMeritMDual is very similar to FigureOfMeritM, except that it com-
putes the shortest vectors in the m-duals of the projections. As we saw earlier, this is not
the same as computing them for the projections of the m-dual, which is what would be done
if we first dualize the full primal lattice and then use FigureOfMeritM for the dual.

56



In either case, the function computeMerit computes the FOM for a given lattice. It
has two parameters: the lattice for which we want to compute the FOM, and a second
IntLattice object used internally to store the projections onto non-successive coordinates.
The maxDim (dimension of the array that stores the basis) for this second object should be
large enough to store the largest projection. We recommend to re-use the same one when
the FOM is computed for many lattices, and this is the reason why we put it as a parameter.

The norm used to compute the vector lengths is the norm associated with the lattice
for which we compute the FOM. The norm used for the normalization is the one associated
with the Normalizer object that was passed to the constructor. These two choices of norm
should be the same, otherwise the normalization will be inconsistent. Likewise, the values of
(m, k) for the given lattice must be consistent with those that were used when computing
the bounds in the Normalizer.

The computeMerit function first calls computeMeritNonSucc, which goes through all
projections in the sets S2(t2), . . . , Sd(td) in this order, then it calls computeMeritSucc, which
goes through the projections in S1(t1). These two functions can also be called directly if
desired. For each projection, the function finds (or approximates) a shortest nonzero vector,
computes its square length, computes the normalized merit for that projection, which is
usually a value between 0 and 1, and it updates the minimum. Each of these functions returns
the minimum merit that was found. They have an optional input parameter “minmerit” in
case we want to pass a current minimum value obtained by looking at previous projections.
By default, this value is “infinite” (MAX DBL).

These functions use a minimal threshold of acceptability of the FOM named lowbound.
As soon as the normalized merit value of one of the projections gets below lowbound, we
know that the FOM will be below this bound and we can immediately stop computations
for this lattice. By default, this lower bound is zero, but it can be changed via the function
setLowBound. This “early exit” can make a huge difference in the efficiency when we examine
thousands or millions of candidates to search for good lattices. The lowbound may be set to
the best FOM found so far, for example.

The level of details that is printed on the terminal or saved in local variables when
the figures of merit are computed can be set by the setVerbosity and setCollectLevel

functions. These functions take an integer from 0 to 4. With the default value (0), nothing
is printed of saved. With values from 1 to 4, we print or collect increasingly more details,
such as the worst-case projection, the corresponding shortest vector, its square length, its
merit value, etc.

11.12 Rank1Lattice

This is a subclass of IntLatticeExt to handle rank-1 lattices as described in Section 5.4.
This class permits one to test the other facilities by providing a simple concrete implemen-
tation of the virtual class IntLatticeExt. It is used for most of the examples of Section 12.
To construct a Rank1Lattice, we need to select a modulus m and a generating vector

57



a = (a1, . . . , at) in t dimensions, with a1 = 1. For a Korobov lattice, this vector will be
a = (1, a, a2 mod m, . . . , at−1 mod m) and it suffices to select the integer a. Otherwise, we
pass the vector a and the condition that a1 = 1 is tested internally. It is also assumed that
gcd(aj,m) = 1 for all j, although this is not tested. The functions described in Section 5.4
are used to construct bases for the lattice, for its projections, and for their m-duals.

11.13 EnumTypes

This file collects the definitions of various enumeration types used in Lattice Tester or in
other packages that depend on Lattice Tester. Some of them may be no longer used.

11.14 Other files

The following files provide basic and general utilities that can be used either in Lattice Tester
and in other packages that depend on Lattice Tester. Many of these functions might not be
used anywhere anymore after all those years of changes in these packages, but they are still
available in case they could be useful.

Util implements basic utility functions to make conversions across different types, reset
variables, compute power functions, square roots, logarithms, inverses, integer divisions,
rounding, modulo operations, Euclidean algorithm for gcd, scalar product, norms, vector
and matrix operations with our flexible types, some streaming operators, etc. Some of these
functions rely on NTL, or implement overloads of NTL functions for standard types, so these
functions can be used with our flexible types.

Num implements mathematical functions such as factorial, Bernoulli polynomials, har-
monic functions, and Fourier series. They are not used directly by Lattice Tester, but by
other packages that depend on Lattice Tester.

NTLWrap offers a few basic utilities not available in NTL. It is in the NTL namespace,
because it can be seen as an expansion of NTL.

Random implements a 64-bit uniform random number generator, used when we make
random selections, for example when searching for generators or QMC point sets with a
good lattice structure.

Chrono can provide multiple “stopwatch” objects to measure the CPU time consumed
by various parts of a program, and return the results in readable string format, in the time
units of our choice. Chrono is often more convenient than ctime because it predefines various
output formats, so it is more flexible.

58



12 Examples of programs that use Lattice Tester

Here we discuss testing programs that use Lattice Tester and are included in the GitHub
distribution. Some of them were used to make experiments to compare algorithms and
implementations for certain tasks. The descriptions below should be read while looking at
the code and result files for these examples. The result files are available with the distribution
in the examples and examples/results subdirectories and we do not reproduce them here,
but we show and discuss subsets of the results. The computations were made on a Intel
Core i9-12900H processor running Ubuntu. The computing times may vary slightly across

executions. 3

We will use the notation LLLx to denote LLL with factor δ = 0.x, BKZx-k for BKZ with
factor δ = 0.x and blocksize k, and “+BB” to indicate that BB was applied.

12.1 TestBasisConstructSmall

This small example illustrates the use of static functions from the file BasisConstruction.h.
These functions apply directly to IntMat objects that contain the basis matrices rather than
to IntLattice objects. We examine a five-dimensional lattice obtained from an LCG with
a small modulus m = 1021 and multiplier a = 12. We also look at its projection on a subset
of three coordinates.

In the program, the flexible types Int and Real are selected and fixed once for all in
the first line of code by uncommenting one of the five choices of combination. For example,
we uncomment “#define TYPES CODE ZD” to select Int = ZZ and Real = double. If we
change this selection, we have to recompile the program. In the next examples, we will show
how to make the selection by using template parameters and make several selections of types
from the same code, without recompiling.

We then declare and resize IntMat objects to hold the bases that we will manipulate, and a
vector sqlen of size 1 that we will use to recover the square length of the shortest basis vector
after each LLL reduction. The constructor of Rank1Lattice constructs a IntLatticeExt

object in which the primal basis will be maintained. The function buildBasis constructs an
initial upper-triangular basis directly, as described in Section 5.4, and we copy it in basis1.
This basis and the length of its first basis vector are printed here and also between the

3From Pierre: * In most of these examples, we create a vector sqlen of size 1 to collect the square shortest
vector length. There would be no need to do this if the reducer and BB functions would return this length
either in a Real or in a double, and return 0 when the function fails. This would be a little simpler, although
we would also have to collect the value in a Real or in a double. Sometimes, the square length might not
fit in a double, so better use a Real. Note that currently, the the BB returns only a boolean, but the LLL
and BKZ reducers (e.g., all the functions in LLL lt.h) return the dimension of the reduced basis, and this is
used in BasisConstruction::LLLConstruction0. If we return the shortest vector length instead, we would
need to recover the dimension in a different way. Thus, making this changes would trigger a lot of small
changes all around, in the code, in the doc, in the examples, in the guide, etc., so we have to look carefully
at all the consequences before making it. For now, let us leave it as it is.

59



following function calls, to show what is going on. The reader should execute the program
and look at the code and the output while reading the following.

We apply LLL with delta = 0.5 to obtain a basis which is not triangular but is
made of shorter vectors. We do it again with delta = 0.99999, for comparison. In
both cases, the square length of the first basis vector after LLL is 34190. Then we call
lowerTriangularBasis to transform this reduced basis to a lower-triangular basis in basis2,
and we call upperTriangularBasis to transform the latter into an upper triangular basis,
which differs from the initial one in only one entry: −314 instead of 707, which is equivalent
modulo 1021. We then compute the m-dual of this upper-triangular basis, and reduce it by
applying LLL with δ = 0.99999. The shortest vector in that m-dual basis has square length
6. All these bases are maintained directly as IntMat objects, not inside the Rank1Lattice

object.

After that, we look at the projection of this lattice onto the subset of coordinates {1, 3, 5}.
We first construct a proj object that contains these three coordinates. We then show how
to compute a basis for this projection in three ways: (1) we put in basisProj a set of
generating vectors for this projection and we apply an LLL construction to this set to obtain
a basis in basisProj; (2) we make an upper-triangular projection construction from basis2

into basisProj; (3) we create a new projLattice2 lattice object and we call the function
buildProjection to build a basis for the projection in this object. All these bases are three-
dimensional, even though they are sometimes stored in higher-dimensional matrices. Using
LLL may be appropriate only when we only want a basis for the primal projection and want
it to be reduced. The upper-triangular method is faster and more appropriate if we also want
a basis for the m-dual of the projection, as shown a few lines below. These first two methods
work for an arbitrary lattice basis. The third method has a specific implementation which
exploits the fact that for a Rank1Lattice, under mild conditions, the basis of a projection
and its m-dual can be constructed directly, as explained in Section 5.4. It is usually more
efficient for this reason.

Our next step is to pass the triangular basis basisProj to mDualUpperTriangular to
obtain the m-dual basis basisDualproj. We then use LLL to reduce this m-dual basis and
we look at the shortest basis vector. A basis for the m-dual of the projection can also be con-
structed directly by using the specialized function buildProjectionDual in Rank1Lattice,
which is typically faster. We show how to do that.

Finally, we show what happens when we construct a basis for the projection of them-dual
basis for the full lattice instead of the m-dual of the projection. In the basis that we get for
the projection of the m-dual, all three basis vectors have length 1. This illustrates the fact
that projecting the m-dual directly does not give the same lattice than taking the m-dual of
the projection.

The program output is in file examples/results/testBCSmall.res. This program can
be run with any of the five different types codes, and with various choices of the modulus m
and multiplier a. The reader is encouraged to experiment with it.

60



12.2 TestMatrixCreationSpeed

This example compares different resizing options for an IntMat object when the required
matrix size changes frequently. A first option is to create a single matrix of sufficiently large
dimension for all the tasks that we need to do, and use this matrix without ever resizing it.
When the required space is smaller, we just use the upper left corner of that matrix, for the
size we need. This way, we avoid reserving blocks of memory for new matrices again and
again. One potential drawback with this approach is that if we need a very large matrix
once in a while and only a small matrix most of the time, using the very large matrix all the
time may slow down the program by clogging the cache memory more than necessary.

A second (intermediate) option is to create a single matrix object as above, with a fixed
number of columns large enough for all our tasks, and resize the number of rows when
needed. That way, when the number of rows is reduced, the same block of memory is kept,
as explained in Section 11.2, and a new block of memory is reserved only when we need more
than what is currently allocated. This can be advantageous compared with the first option
in situations in which we need a small matrix for a long time and a larger matrix only later.

A third option is to resize the single matrix each time the required dimension changes. If
it changes only once in a while, this will not bring much overhead, and may be advantageous
compared to the first two options because we do not have to always carry a large matrix.

Two other options (four and five) are to always resize the matrix or to always create a
new matrix when we need one. These two options are practically equivalent and can bring
significant overhead if we need new matrices very often.

The program TestMatrixCreationSpeed compares these five options in two different
settings, using the six matrix sizes s ∈ {5, 10, 20, 30, 40, 50}. In the first setting, for each
of the five options, for each matrix size s, we repeat the following r = 100, 000 times: we
change the first s diagonal elements of our IntMat object, whose dimension must be at
least s × s. In replication i, we add i + j to the element (j, j). In the end, we add the
diagonal elements for each size and we print the sums, to make sure that the compiler does
not optimize out the additions. The sums are not the same for all five options because some
reset the matrices differently. In the second setting, we change the order of the loops: The
outside loop is on the replication number and the inside loop is on the size s. Option will
resize the matrix much more eften in this case. These two settings are implemented by
the functions testLoopDimOut and testLoopDimIn. The results are in testMCSpeed64 for
Int = int64 t and in testMCSpeedZZ for Int = NTL::ZZ. The timings are summarized in
Table 3.

As expected, everything takes more time with the ZZ integers than with int64 t, by
a factor of about 3 to 5. Options 4 and 5, as well as option 3 in the second setting, are
much slower than the others. They are the cases where we reallocate a new block of memory
(via a resize or a new object creation) each time we use a matrix. For the other methods,
for which the resize occurs rarely or never, the speeds are comparable. Bottom line: it is
worthwhile to avoid reallocating memory for matrix objects. Note that reading the clock for
the timings brings overhead that could be significant when we do fewer replications or if we

61



do a separate timing for each dimension. Instructions that were doing that are commented
out in the program.

Table 3: Timings (microseconds) for the TestMatrixCreationSpeed example.

Method Int = int64 t Int = NTL::ZZ

setting 1 setting 2 setting 1 setting 2
1. One matrix, no resize 49653 66500 284391 281340
2. One matrix, resize rows often 58172 58178 292091 294787
3. One matrix, resize when needed 52884 2654279 284623 7638361
4. One matrix, resize often 2682655 2706314 7908641 7607095
5. New matrix each time 2413822 2393043 8556413 8495962

12.3 TestBBSmall

This example compares different ways of finding a shortest vector in a lattice by using
shortestVector from ReducerBB to apply the BB procedure. We consider the L1 and L2

norms, compare the Cholesky and Triangular decompositions in the BB algorithm, and do
this for both the primal and m-dual lattices. This program was used for the examples of
Section 8.7.

The function findShortest finds a shortest vector for a given setting. This function is
given a Korobov lattice korlat and a reducer red. It first builds a lattice basis, applies
LLL to get a reduced basis and a first candidate for a shortest vector, whose square length
will be used in the BB algorithm, and finally calls red.shortestVector to find a shortest
vector. The latter function will print the shortest vector found and its square length since
the verbosity level of the reducer was set to 2.

The detailed output for m = 1021 with a = 73, and for m = 1048573 with a = 29873,
is in files examples/results/testBBSmall10-4dim.res, testBBSmall10-8dim.res, and
testBBSmall20-4dim.res. Part of it is reproduced in Section 8.7.

12.4 TestBasisConstructSpeedLLL

This example illustrates again the use of functions from BasisConstruction and compares
their timings, for LLL reductions in up to 70 dimensions. Here, we use template parameters
to select the flexible types from the main function instead of fixing them at the beginning of
the file. This way, we can run the program with all five combinations of types in the same
run, without recompiling. In the main, we call testLoop with different choices for the two
template parameters <Int, Real>. This function calls transformBasesLLL several times
with the same template parameters to make timing experiments.

62



The function transformBasesLLL starts with an initial (primal) basis basis0 for a Ko-
robov lattice (that corresponds to an LCG), makes a copy of basis0 into basis1, and applies
successive reductions to basis1. It first applies LLL with δ = 0.5 and looks at the squared
length of the shortest basis vector, then continues with this reduced basis and applies LLL
with δ = 0.8, then continues again with δ = 0.99, and finally with δ = 0.99999, each time
recording the squared length of the shortest basis vector. The values are labeled by LLL5,
LLL8, LLL99, and LLL99999 in the results. After that, it restarts from the initial basis0
and applies LLL directly with δ = 0.99999, to compare the timings between the previous
incremental reduction with increasing values of δ and a direct LLL reduction with δ very
close to 1. This direct reduction is labeled LLL99999-new in the results. We want to see
if the incremental reduction could be faster, and/or could lead to a shorter shortest vector,
than the direct reduction. Then, the function calls upperTriangularBasis to recover an
upper-triangular basis from the LLL-reduced basis, and mDualUpperTriangular to compute
the m-dual of this triangular basis, which turns out to be lower triangular. It then applies
the same sequence of incremental LLL reductions to this m-dual basis, as well as the direct
reduction, with the same values of δ.

The transformBasesLLL function is called several times, as follows. We consider LCGs
with modulus m and numRep = 1000 different values for the multiplier a. For each value
of a and each number of dimensions in {5, 10, 20, 30, 40, 50, 60, 70}, we construct the lattice
basis basis0 and call transformBasesLLL. We add the CPU times and sum the square
vector lengths over all values of a for each operation type (or method) and each number
of dimensions. The timings are to compare the speeds. The sum of square vector lengths
are used to compare the reduction methods in terms of the shortest vector lengths that are
obtained, and to test for consistency and correctness. These sums should be the same when
we change the Real type, for example. We ran this experiment for m = 1048573, a prime
number near 220, and m = 1099511627791, a prime number near 240. In each case, we tried
different combinations for the types Int and Real.

The complete results are in the directory examples/results, in testBCSpeedLLL20.res

for the smaller m and testBCSpeedLLL40.res for the larger m, for the different types codes.
Figure 1 shows part of the results for m = 1099511627791 with the <ZZ, double> types.
Table 4 gives the total time to run testLoop for all the dimensions, with the different types
codes. We see that for this example, in the computing environment we used, using the types
<ZZ, RR> is about 25 times slower than <ZZ, double>. We also find that using <int64 t,

double> is slower than <ZZ, double>, because the LLL implementation is slower.

By comparing the sums of square lengths in Figure 1, we see that taking δ closer to 1
usually gives shorter vectors. This is clearly the case in the m-dual lattice. For the primal,
this is true in less than 50 dimensions, but after that the difference is much smaller. We
also find that performing LLL by increasing δ incrementally can be faster than doing it
directly with a δ very close to 1, and often leads to shorter vectors than when we call LLL
directly with the largest δ. This suggests that an incremental approach may provide a better
pre-reduction, which could lead to a faster BB algorithm afterward. As an illustration, in
Table 1, in 30 dimensions, the sum of times for LLL5, LLL8, LLL99, and LLL99999 is
about 1.13 seconds and the sum of square lengths of shortest vectors after these reductions

63



TestBasisConstructSpeedLLL with m = 1099511627791
Types: Int = NTL::ZZ, Real = double
Number of replications (different multipliers a): 1000

Timings for different methods, in basic clock units (microseconds):

Dimension: 10 20 30 40 50 60 70

LLL5 64869 219722 403349 662631 992828 1425139 1952965
LLL8 9454 105528 320263 558927 867797 1249442 1740953
LLL99 6439 59711 324137 756823 1158413 1640169 2256611
LLL99999 4446 22733 87235 235154 217145 341597 525429
LLL99999-pnew 86986 664243 1867248 3270545 4839269 6671719 8795632
UppTri 7345 19610 38004 60208 78052 96182 116560
mDualUT 2173 10891 31267 69461 130790 221707 345579
LLL5-dual 38815 106590 145790 191292 248674 321531 414551
LLL8-dual 8910 88210 214656 285721 365275 465224 585702
LLL99-dual 6054 53389 250845 477284 605111 750198 922590
LLL99999-dual 4281 22005 72351 160969 253837 364170 474355
LLL99999-dnew 46986 258713 646636 937362 1079113 1239884 1424416

Sums of square lengths of shortest basis vectors (same values for all flexible types):

Dimension: 20 30 40 50 60

LLL5 2.16230e+26 9.03316e+26 1.2074e+27 1.20893e+27 1.20893e+27
LLL99999 1.13522e+26 4.21957e+26 9.4600e+26 1.20851e+27 1.20893e+27
LLL99999-pnew 1.13838e+26 4.28475e+26 9.7951e+26 1.20849e+27 1.20893e+27
LLL5-dual 46535 39233 35574 33287 31688
LLL8-dual 26056 17529 16349 15647 15085
LLL99999-dual 24939 14647 12784 12226 11873
LLL99999-dnew 25152 14923 13271 12819 12487

Figure 1: Partial output of TestBasisConstructSpeedLLL with m = 1099511627791.

is about 4.219× 1026, whereas the corresponding values for LLL99999-new are 1.87 seconds
and 4.285× 1026. For the m-dual lattice, the numbers are about 0.58 seconds with 14647 for
the square lengths in the incremental case and 0.65 seconds with 14923 in the direct case.
The behavior is similar in larger dimensions.

The timings in the figure also suggest that upperTriangularBasis is much faster than
LLL with δ = 0.5 to compute a basis. This is when the number of generating vectors
is already equal to the dimension. Note that for a Rank1Lattice, the basis can also be
constructed directly as explained in Section 5.4.

12.5 TestBasisConstructSpeedTri

Here we make similar experiments as in the previous example, but we focus on comparing
efficiencies of triangular and m-dual basis constructions methods instead of LLL. We start
from an LLL-reduced basis of a rank-1 lattice that comes from an LCG, and we compare
three ways of obtaining an m-dual basis: (1) via the general mDualBasis function, (2) by

64



Table 4: Total times in seconds to run the TestBasisConstructSpeedLLL example for up
to 70 dimensions.

Code <Int, Real> m = 1048573 m = 1099511627791
LD <long, double> 26.6 —
ZD <ZZ, double> 18.5 60.5
ZX <ZZ, xdouble> 85.2 320.3
ZQ <ZZ, quad float> 110.7 543.2
ZR <ZZ, RR> 805.8 2363.3

inverting a lower-triangular basis, and (3) by inverting an upper-triangular basis. In each
case, we look at the time required to compute the m-dual, the time required to apply LLL to
this m-dual basis, and the square length of the shortest vector obtained after LLL, to check
if these shortest lengths are about the same for the three methods.

Specifically, we evaluate the time taken by each of the following operations as imple-
mented in the function triangularBases. The same value of δ is used each time LLL is
applied to either a primal or m-dual basis. This function starts with the initial (primal)
basis basis0 and applies LLL to basis0 to reduce it. For each of the three methods, it will
make a copy of basis0 and work only with that copy, because the triangulation functions
damage the basis on which they act. It first calls the mDualBasis function with basis4, a
copy of basis0 made with the exact correct dimensions because mDualBasis requires that,
and recovers the m-dual in basis5, to which LLL is then applied. For the second method,
basis0 is copied to basis1, which is used to construct a lower-triangular basis in basis2,
from which an upper-triangular m-dual basis is computed into basisdual as explained in
Section 5, and LLL is applied to this m-dual basis. For the third method, basis0 is copied
again to basis1, which is used to construct an upper-triangular basis in basis2. To see how
much faster the algorithm runs when the basis is already upper-triangular, it applies it again
to basis2 to obtain basis1 (this is UppTri2). Then, the m-dual of basis1 is computed into
basisdual and LLL is applied to this lower-triangular m-dual basis.

After these three methods have been tried, the function compares triangulations in the
m-dual, by using a copy of basisdual each time. It first copies basisdual to basis1 and
transforms it to a lower-triangular basis in basis2. It copies basisdual to basis1 again
and transforms it to an upper-triangular basis in basis2. It repeats the latter with the old
triangularization method of [10] instead, to compare. Finally, it calls upperTriangularBasis
again with the already upper-triangular basis2, to see how much faster it will run.

The results are in files testBCSpeedTri*.res. Figure 2 shows partial results for
m = 1099511627791 with the <ZZ, double> types and δ = 0.5 for LLL. A first impor-
tant observation from these results is that to obtain an m-dual basis, it is much faster to
build a triangular basis and invert it (Methods 2 and 3) than to use the general mDualBasis
function (Method 1). Methods 2 and 3 take about the same time. For the primal lattices,
constructing a triangular basis is also much faster than calling LLL even with δ = 0.5.

65



TestBasisConstructSpeedTri with m = 1099511627791
Number of replications (different multipliers a): 1000
Types: Int = NTL::ZZ, Real = double, LLL with delta = 0.5

Dimension: 10 20 30 40 50 60 70

Timings for the different tasks, in basic clock units (microseconds):
LLLPrimal 67535 224808 406621 669468 1008176 1441399 1986495
mDualBasis 107525 606000 1586903 3114663 5357904 8735251 13112882
LLLDualmDual 7719 41978 91636 141429 215628 371684 639091
LowTriP 8074 21428 33671 46946 61583 77690 94271
mDualLow 2447 11505 36044 81561 150934 249679 379418
LLLDualUT 41166 110638 153111 205156 273312 367328 486884
UppTriP 7640 20836 34103 46840 61152 77320 94629
UppTriP2 3376 7400 12982 20260 29104 38767 49751
mDualUp 2326 11096 34141 78909 150710 255054 397538
LLLDualLT 37877 102498 141079 188595 249021 327039 427511
LowTriDual 27095 81832 117833 160245 211429 270323 336945
UppTriDual 24677 102941 227294 385100 573943 792551 1034139
UppTriDualOld 75321 361897 820844 1496258 2443413 3719883 5352611
UppTriDual2 10875 33301 62133 98969 148263 206553 268886

Sum of square lengths after each of the LLL in dual, with delta = 0.5:
LLLDualmDual 227899 31490 27101 27413 26336 25707 24705
LLLDualUT 240555 46798 40303 35597 34554 31690 30720
LLLDualLT 240824 46535 39233 35574 33287 31688 30531

Sum of square lengths after each of the LLL in dual, with delta = 0.99999 :
LLLDualmDual 225731 25183 14521 12620 12885 13605 14358
LLLDualUT 225646 25035 14714 12992 12555 12299 12079
LLLDualLT 225642 25152 14923 13271 12819 12487 12266

Figure 2: Partial output of TestBasisConstructSpeedTri with m = 1099511627791.

For comparison, we also tried with δ = 0.99999 and the time required for LLLPrimal

(not shown in the figure) was about five times larger, while the shortest primal vector was
of course smaller on average. When we look at the sums of squares in the lower part of the
figure, we see that the shortest m-dual vector found by LLL is much shorter on average with
δ = 0.99999 than with δ = 0.5, except in 10 dimensions. We also see that with δ = 0.5, the
shortest vector obtained by LLL is significantly shorter when the m-dual basis is constructed
by Method 1 compared with Methods 2 and 3, whereas with δ = 0.99999, there is not much
difference and Method 1 even gives larger vectors in the largest dimensions. This behavior
indicates that when δ is small, the reduction that we performed on the primal basis helps
getting shorter vectors in the m-dual basis, but when the δ used to reduce the m-dual is
very close to 1, starting from a basis that is more reduced does not help as much. This was
confirmed by separate experiments with different choices of δ for the primal and the m-dual.
To make sure that the m-dual bases were correct, in some experiments we also applied the
full BB algorithm after LLL to obtain the exact shortest vector in each case, and found that
the three methods gave identical sums of squares (smaller than those in the figure) in that
case.

66



TestBasisConstructSpeedTri with m = 1048573
Number of replications (different multipliers a): 1000
Types: Int = NTL::ZZ, Real = double, LLL with delta = 0.5

Dimension: 10 20 30 40 50 60 70

Timings for the different tasks, in basic clock units (microseconds):
LLLPrimal 30630 75784 126755 194028 272800 386172 504242
mDualBasis 68956 296381 695048 1375940 2401785 3763748 5822523
LLLDualmDual 7721 34422 63813 105717 188594 339405 572687
LowTriP 7792 18358 29108 41242 54977 69851 86566
mDualLow 2362 11975 37416 82247 150454 247439 373449
LLLDualUT 24955 55120 82514 123192 177130 254118 356616
UppTriP 7617 18854 29270 41396 54973 69536 85109
UppTriP2 3501 8000 13992 21843 31244 41680 53267
mDualUp 2302 11681 36955 83995 159291 267457 414301
LLLDualLT 24373 53809 78673 115812 166293 232287 321837
LowTriDual 23929 55221 86816 127242 175466 230325 293517
UppTriDual 23514 94215 201257 331340 491562 671524 873623
UppTriDualOld 62418 275570 651031 1245900 2112957 3295329 4853358
UppTriDual2 10981 32576 61241 98267 143325 213744 277215

Sum of square lengths after each of the LLL in dual, with delta = 0.5:
LLLDualmDual 15453 7359 6735 6361 6027 5867 5708
LLLDualUT 15928 8649 7658 7066 6858 6476 6312
LLLDualLT 16137 9018 7967 7404 7083 6801 6593

Types: Int = int64_t, Real = double, LLL with delta = 0.5:
Timings for the different tasks, in basic clock units (microseconds):
LLLPrimal 20577 60583 107096 174427 255014 367332 501161
LowTriP 1107 2531 4206 6888 9689 13164 17133
mDualLow 471 1523 3551 6905 12335 19991 30542
LLLDualUT 23084 85694 173690 315645 530782 840609 1246320
UppTriP 1025 2306 4154 6462 9255 12399 16162
UppTriP2 566 1537 3131 5278 7875 11081 14723
mDualUp 425 1329 3208 6377 10939 17331 25673
LLLDualLT 19359 69813 142780 259480 433359 679195 1009453
LowTriDual 2678 5900 9326 14353 21119 28964 38609
UppTriDual 3049 9625 18664 30502 44744 62162 82340
UppTriDualOld 3486 16463 45618 98687 182035 302210 466088
UppTriDual2 1674 4564 8919 15185 22946 32813 44195

Figure 3: Partial output of TestBasisConstructSpeedTri with m = 1048573.

67



Once we have a partially reduced m-dual basis, we observe that transforming it to a
triangular one takes much more time than in the primal, and that computing an upper-
triangular one is much slower than a lower-triangular one. The reason for this is that
the m-dual basis obtained from either LLLDualUT or LLLDualLT. has a large part on its
right side that is almost already lower-triangular. This is shown in more details in the
TestBasisTriSmall example of Section 12.6. Changing the order of the calls of the two
functions does not change this behavior. Finally, we also see that the old triangulation
algorithm (UppTriDualOld) is about five times slower than the new one and that running
the algorithm that constructs a triangular basis is significantly faster when the basis is
already triangular (UppTriP2 and UppTriDual2).

Figure 3 shows similar results form = 1048573 and also some timings to compare int64 t

vs ZZ for the choice of Int. We see that the triangularization procedures run much faster
with int64 t than with ZZ, while the LLL procedures are slower.

12.6 TestBasisTriSmall

This example examines what happens when we apply LLL and construct triangular bases
for the primal and m-dual lattices associated with an LCG with modulus m and multiplier
a. It illustrates the properties described in Section 3.3. We want to see for instance what
happens when mei becomes a shortest vector in the primal and what are the consequences
on the primal and m-dual bases.

The program takes fixed values of m and a, and performs the following in 5, 10, 15, . . . , 35
dimensions. It first builds a primal basis basis0 and reduces it with LLL. Then it copies it
to basis1, builds a lower-triangular basis from basis1 to basis2, computes the m-dual of
this triangular basis in basisdual, applies LLL to this m-dual, and recovers the length of
the shortest nonzero vector. Then it copies basis0 to basis1 again and repeats the same
operations, but with upper-triangular instead of lower-triangular in basis2. After each
operation, it prints the basis, so we can see how it looks like and how things evolve when we
increase the dimension. The results for various m are in files testBasisTriSmall*.res.

Let us look for example at testBasisTriSmall10-5.res, which contains the results for
m = 1021 with a = 73, with δ = 0.5 for LLL. We see that in 20 dimensions already, more
than half of the vectors in the reduced primal basis have the form mei. In 25 dimensions or
more, the shortest vector also has that form, so its length is m = 1021. The true shortest
vector in the m-dual in 20 or more dimensions has length

√
3 ≈ 1.732 for this example,

but LLL does not always find it. It often returns a shortest vector of length 2. In the m-
dual, a simple upper-triangular basis is the identity except for the last column and a simple
lower-triangular basis is the identity except for the first column. When these matrices are
transformed by LLL, we get very short vectors, so there are many zeros, and the zeros lie
mostly on the right side of the basis matrix. In large dimensions, the right part of the reduced
basis is almost equal to the right part of the identity matrix, except for the last column when
we start from the upper-triangular basis. In all cases, we see this behavior roughly beyond
the first 8 to 10 columns. For larger m, such as m = 1048573 and m = 1073741827, this

68



appears in slightly larger dimensions and after a few more columns, but the same behavior is
also observable. So in large dimensions, the reduced basis is close to being lower-triangular,
and this explains why transforming it to lower-triangular is faster than transforming it to
upper-triangular, as we saw in Figures 2 and 3.

12.7 TestNormDecompSpeed

This example compares the two methods to obtain bounds in the BB, the triangular basis vs
the Cholesky decomposition, with the L2 and L1 norms, for the primal and m-dual lattices
associated with LCGs. The function compareNormsDecomp calls testLoop for each case,
for a given m. The testLoop function examines numRep values of a. For each one, it
sets the lattice object korlat to the associated lattice, and for each of numSizes selected
numbers of dimensions in {4, 6, 8, . . . }, it calls performReduction. The latter constructs the
appropriate basis, applies BKZ to reduce it, then calls shortestVector to apply the BB.
It also measures the time to apply BKZ+BB and the square length of the shortest vector,
and add these values to counters for the given dimension. These counters are used to print
results.

Figures 4 and 5 show the results for m = 1021 with Real = double and m = 1048573
with Real = NTL::RR. In Figure 4, we see that the combination of Cholesky method with
the L1 norm takes much more time than the other ones, for both the primal and m-dual,
especially in 8 or more dimensions. For this example, the triangular method takes about
the same time for the L1 and L2 norm. the Cholesky method is faster for the L2 norm but
slower for the L1 norm.

Figure 5 shows how things change with the triangular method when we increase m. The
timings for that method increase tremendously. This is the first reason why we ran this
method only for 4 and 6 dimensions. The second reason, which is also the reason why we
used Real = NTL::RR for that case, is that with this method, the bounds on the zj’s can take
extremely large values when m and the dimension are large. We have seen this in Example 3

already and we see it again here, as follows. 4

Example 5. If we use Real = double with m = 1048573, for a = 426593, in t = 6
dimensions, for the m-dual lattice with the triangular method, with either norm, the
TestNormDecompSpeed program appears to run forever. Why is that? The lower-triangular
m-dual basis for that case is

L =


1048573 0 0 0 0 0
−426593 1 0 0 0 0
−180317 −313423 1 0 0 0
462641 −48144 −290030 1 0 0
419429 69904 269633 459375 1 0
524285 524282 −1 −524286 −524281 1

 .

4From Pierre: *** We should make more extensive testing to check if this oscillatory behavior observed
in Examples 3 and 5 can also occur with the Cholesky decomposition and when. It probably does if the
pre-reduction is not good enough?

69



Compare L2 vs L1 norms, and Cholesky vs Triangular decompositions.

Types: Int = NTL::ZZ, Real = double

TestNormDecomp with m = 1021

Number of replications (different multipliers a): 1000

PRIMAL lattice, Norm: L2NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10 12 14

Microseconds: 6450 13830 25889 43719 71770 112120

Aver. squares: 19172.243 68906.201 148415.328 248996.637 343256.604 464481.866

Aver. calls BB: 4 7 11 22 39 98

Total time for everything: 0.28 seconds

PRIMAL lattice, Norm: L2NORM, Decomposition: TRIANGULAR

Num dimens: 4 6 8 10 12 14

Microseconds: 10291 20998 38756 65731 104105 167362

Aver. squares: 19172.243 68906.201 148415.328 248996.637 343256.604 464481.866

Aver. calls BB: 172 422 828 1454 2242 3671

Total time for everything: 0.41 seconds

PRIMAL lattice, Norm: L1NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10 12 14

Microseconds: 9932 47286 823962 2716689 5724406 10920108

Aver. squares: 53421.824 251337.26 703808.764 1006605.287 1024485.797 1030976.305

Aver. calls BB: 9 54 689 2220 3334 4592

Total time for everything: 20.25 seconds

PRIMAL lattice, Norm: L1NORM, Decomposition: TRIANGULAR

Num dimens: 4 6 8 10 12 14

Microseconds: 11493 26430 59100 89296 108892 138097

Aver. squares: 53421.824 251337.26 703808.764 1006605.287 1024485.797 1030976.305

Aver. calls BB: 284 853 2166 3143 3208 3234

Total time for everything: 0.44 seconds

DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10 12 14

Microseconds: 6734 13448 23816 38654 59358 90120

Aver. squares: 18.683 6.805 4.963 4.162 3.859 3.743

Aver. calls BB: 4 7 14 27 62 156

Total time for everything: 0.26 seconds

DUAL lattice, Norm: L2NORM, Decomposition: TRIANGULAR

Num dimens: 4 6 8 10 12 14

Microseconds: 13232 27406 50007 81111 122046 184529

Aver. squares: 18.683 6.805 4.963 4.162 3.859 3.743

Aver. calls BB: 208 477 1055 1802 2825 4566

Total time for everything: 0.51 seconds

DUAL lattice, Norm: L1NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10 12 14

Microseconds: 10899 42349 312071 3064502 15573982 144380934

Aver. squares: 48.752 21.984 17.722 15.485 14.31 13.988

Aver. calls BB: 9 47 383 2959 16448 134192

Total time for everything: 163.41 seconds

DUAL lattice, Norm: L1NORM, Decomposition: TRIANGULAR

Num dimens: 4 6 8 10 12 14

Microseconds: 14057 29198 54184 89037 131649 202759

Aver. squares: 48.752 21.984 17.722 15.485 14.31 13.988

Aver. calls BB: 256 575 1297 2169 3179 5255

Total time for everything: 0.55 seconds

Figure 4: Partial output of TestNormDecompSpeed with m = 1021.

70



Compare L2 vs L1 norms, and Cholesky vs Triangular decompositions.

Types: Int = NTL::ZZ, Real = NTL::RR

TestNormDecomp with m = 1048573

Number of replications (different multipliers a): 1000

PRIMAL lattice, Norm: L2NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10

Microseconds: 91392 295727 729583 1518998

Aver. squares: 574748394 6882739584 2.69639e+10 6.34973e+10

Aver. calls BB: 4 6 10 18

Total time for everything: 2.64 seconds

PRIMAL lattice, Norm: L2NORM, Decomposition: TRIANGULAR

Num dimens: 4 6

Microseconds: 16727791 66251719

Aver. squares: 574748394 6882739584

Aver. calls BB: 24216 93236

Total time for everything: 82.98 seconds

PRIMAL lattice, Norm: L1NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10

Microseconds: 108385 426770 2867497 45972817

Aver. squares: 1601226335 2.68178e+10 1.35785e+11 3.92460e+11

Aver. calls BB: 8 54 680 10777

Total time for everything: 49.38 seconds

PRIMAL lattice, Norm: L1NORM, Decomposition: TRIANGULAR

Num dimens: 4 6

Microseconds: 19020298 92880047

Aver. squares: 1601226335 2.681784853e+10

Aver. calls BB: 40440 189829

Total time for everything: 111.90 seconds

DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10

Microseconds: 75651 208867 473994 956314

Aver. squares: 548.739 66.099 25.916 15.301

Aver. calls BB: 4 6 11 20

Total time for everything: 1.73 seconds

DUAL lattice, Norm: L2NORM, Decomposition: TRIANGULAR

Num dimens: 4 6

Microseconds: 24941961 98359657

Aver. squares: 548.739 66.099

Aver. calls BB: 29755 100178

Total time for everything: 123.30 seconds

DUAL lattice, Norm: L1NORM, Decomposition: CHOLESKY

Num dimens: 4 6 8 10

Microseconds: 91089 342252 2502629 32882394

Aver. squares: 1523.097 256.456 126.819 85.13

Aver. calls BB: 8 56 683 8759

Total time for everything: 35.83 seconds

DUAL lattice, Norm: L1NORM, Decomposition: TRIANGULAR

Num dimens: 4 6

Microseconds: 26962131 113116951

Aver. squares: 1523.097 257.224

Aver. calls BB: 42872 146147

Total time for everything: 140.08 seconds

Figure 5: Partial output of TestNormDecompSpeed with m = 1048573.

71



After BKZ, the L2 norm of the shortest vector in that lattice is b(2) =
√
51. The bounds

on z6 are then 0 ≤ z6 ≤ ⌊
√
51/ℓ6,6⌋ = 7. By putting red.setVerbosity(4) for the reducer

in the code, we can see a trace of all the visited nodes in the BB tree and the bounds
computed at each node. Figure 6 shows a small piece of that large trace. The index j in that
figure is 1 less than in this guide, because the indices in the code start at 0 instead of 1. We
see that at some stage in the BB algorithm, we have z6 = 0, z5 = 1, z4 = −459375, and the
bounds for z3 are −133232800890 ≤ z3 ≤ −133232800876. When we take the middle value
z3 = −133232800883, we get the bounds −41758246267372424 ≤ z2 ≤ −41758246267372409.
These values are about 4.1758× 1016 and are not represented exactly in a double. For this
reason, they are in fact incorrect. The correct values (obtained with Real = NTL::RR)
are −41758246267372420 ≤ z2 ≤ −41758246267372406. At that point, the program will
continue executing with the wrong bounds and probably make similar errors in many other
places.

...
tryZ: vector z: [0, 0, 0, -459375, 1, 0]
j=2, center[j]= -1.33233e+11, min= -133232800890, max= -133232800876

tryZ: vector z: [0, 0, -133232800883, -459375, 1, 0]
j=1, center[j]= -4.17582e+16, min= -41758246267372424, max= -41758246267372409

tryZ: vector z: [0, -41758246267372416, -133232800883, -459375, 1, 0]
j=0, center[j]= -1.69886e+16, min= -16988611736010400, max= -16988611736010401
...

tryZ: vector z: [0, 0, 0, 0, 0, 1]
j=4, center[j]= 524281, min = 524274, max= 524288

tryZ: vector z: [0, 0, 0, 0, 524281, 1]
j=3, center[j]= -2.40841e+11, min= -240841060096, max= -240841060082

tryZ: vector z: [0, 0, 0, -240841060089, 524281, 1]
j=2, center[j]= -6.98513e+16, min= -69851274021071552, max= -69851274021071537

tryZ: vector z: [0, 0, -69851274021071544, -240841060089, 524281, 1]
j=1, center[j]= -2.1893e+22, min= -9223372036854775808, max= 9223372036854775807

Figure 6: Pieces of a detailed trace from TestNormDecompSpeed with m = 1048573.

Many steps later, we have at some point z6 = 1, z5 = 524281, z4 = −240841060089,
we get the bounds −69851274021071552 ≤ z3 ≤ −69851274021071537, and with z3 =
−69851274021071544, we get −9223372036854775808 ≤ z2 ≤ 9223372036854775807, which
is not only incorrect, but gives an enormous interval. Basically, the program will run forever
to try all those values of z2. This occurs because the true bounds in absolute value are too
large to be represented correctly. It can be corrected by using the NTL::RR representation,
but it will be slow. This is an important drawback of computing the BB bounds with the
triangular method. For large m, using the Cholesky decomposition is usually much faster.

72



12.8 TestReducersSpeed

This example compares the performances of various pre-reduction strategies when finding a
shortest nonzero vector with the BB combined with the Cholesky method, for both the primal
and the m-dual of a Korobov Rank1Lattice. In the code, we use template parameters for
the types, so we can compare different Real types in the same program execution. The top
function called by the main is comparePreRed. It calls testLoop for the primal lattice, then
for the m-dual. The function testLoop makes the experiment for a given m, a given norm
type and a given type of decomposition, for either the primal or the m-dual. It examines
numRep values of the multiplier a of the corresponding LCG. For each choice of a and each
selected number of dimensions, it calls compareManyReductions to try and compare various
reduction methods. For each method, the performReduction function first (re)builds the
appropriate basis (primal or m-dual) from scratch for the relevant number of dimensions.
In the m-dual case, it calls dualize to put this m-dual basis in place of the primal basis.
Then it applies the selected reduction methods and recovers in len2 the square length of
the shortest basis vector. In case the BB procedure is applied, it also recovers the number
of calls to the recursive BB procedure (the number of visited nodes in the BB tree) and
the number of those nodes that are tree leaves (at which we test a fully specified vector z).
These values as well as the CPU time, are added to counters that cumulate the sum of CPU
times, the sum of square lengths, the number of visited nodes, and the number of visited
leaves, for each dimension and each method. The sums of CPU times and the average per
run for the other counters are printed in tables after the experiment is completed.

The function compareManyReductions tests 18 different reduction methods. Each one
has a number meth and a short name names[meth] given in an array at the beginning of
the program. The first four methods apply only LLL or BKZ reductions and do not run
the BB algorithm. For this reason, they are much faster, but they do not always find a
shortest nonzero lattice vector. All other methods, whose short names end by “+BB”, run
the BB algorithm after the pre-reduction and always find a shortest vector. Note that the
BKZ function always starts internally by applying LLL with the same δ, so there is no need
to do it explicitly. Recall that the results of Figure 1 suggested that an incremental strategy
that first makes one or more LLL pass(es) with a smaller δ could give better results than
applying LLL directly with the target δ. This was with LLL only, no BKZ was applied, and
it is unclear a priori if this incremental strategy can be worthwhile when we do BKZ and BB.
To see that, the fourth method applies an incremental strategy without the BB, and the last
three methods do that before the BB. L5+L9+BKZ-k means LLL with δ = 0.5 followed by
LLL with δ = 0.9 followed by BKZ with δ = 0.99999 and blocksize k. L8+BKZ-k is similar,
but does LLL only with δ = 0.8.

Numerical results are in files examples/results/testRedSpeed*.res, where “*” is 10
for m = 1021, 20 for m = 1048573, and 40 for m = 1099511627791. We took numRep = 100
different multipliers a for m = 1021 and numRep = 50 for the other m.

Figures 7, 8, and 9 show partial results for the m-dual, for m = 1099511627791, 1048573,
and 1021, respectively, with the <ZZ, double> types. Figure 10 gives partial results for the
primal lattice for m = 1021 with the <int64 t, double> types. For each column of each

73



TestReducersSpeed with m = 1099511627791
Types: Int = NTL::ZZ, Real = double
Number of replications (different multipliers a): 50
DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY.

Num. dimensions: 5 10 20 30 40

Computing times in microseconds:

LLL5 667 2119 5420 7349 11160
LLL99999 586 2532 13435 32540 46944
BKZ99999-10 575 2509 17465 67577 168436
L5+L9+BKZ-10 663 2768 17659 65919 162216

LLL99999+BB 660 3207 19430 208532 73554207
BKZ99999-6+BB 599 3177 22393* 144172* 19888233
BKZ99999-8+BB 551 3031 23161 149543 15309212
BKZ99999-10+BB 528 2926 23701 154806 16261578
BKZ99999-12+BB 517 2871 24310 152247 14199518
BKZ999-6+BB 520 2821 22428 148173 21815602
BKZ999-8+BB 503 2787 23103 152991 16436182
BKZ999-10+BB 503 2767 23586 156544 17473434
BKZ999-12+BB 494* 2731* 24385 150444 13184568
L8+BKZ-10+BB 651 3318 22698 147323 13987731
L5+L9+BKZ-10+BB 742 3496 23571 157068 13822829
L5+L9+BKZ-12+BB 674 3355 24001 160298 12090483*

Average square length of shortest basis vector:

LLL5 36783.70 255.0 46.82 40.64 36.38
LLL99999 36395.12 231.9 25.38 14.84 13.50
BKZ99999-10 36395.12 231.4 25.16 14.28 11.94
L5+L9+BKZ-10 36395.12 231.4 25.14 14.26 11.86
All +BB methods 36395.12 231.4 25.14 14.10 11.50

Average number of calls to the recursive BB procedure ’tryZ’:

LLL99999+BB 5 16 793 129459 58161623
BKZ99999-10+BB 5 16 701 57957 12646861
BKZ99999-12+BB 5 16 693 53608 11006050
BKZ999-10+BB 5 16 697 58726 13659907
BKZ999-12+BB 5 16 680 52185* 10183027
L8+BKZ-10+BB 5 16 687 56562 10830150
L5+L9+BKZ-12+BB 5 16 668* 56555 9309786*

Average number of visited leaves in the BB procedure:

LLL99999+BB 1 1 1 2 7
BKZ99999-12+BB 1 1 1 2 5
BKZ999-12+BB 1 1 1 2 5
L5+L9+BKZ-12+BB 1 1 1 2 5

Total time for everything: 250.9 seconds

Figure 7: Partial output of TestReducersSpeed for m = 1099511627791.

74



TestReducersSpeed with m = 1048573
Types: Int = NTL::ZZ, Real = double
Number of replications (different multipliers a): 50
DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY.

Num. dimensions: 5 10 20 30 40

Computing times in microseconds:

LLL5 458 1361 2762 4186 6016
LLL99999 398 1634 7229 12474 15153
BKZ99999-10 394 1645 12111 43211 70827
L5+L9+BKZ-10 512 2122 13068 43997 78907

LLL5+BB 470 1981 14013 592737 14933865
LLL8+BB 456 2163 11524* 322847 14179214
LLL99999+BB 411 2196 13004 196796 8322403
BKZ99999-6+BB 415 2219 15892 134600 4236738
BKZ99999-8+BB 388 2055 16860 127164* 3801107
BKZ99999-10+BB 381 1946 17702 142975 3044588
BKZ99999-12+BB 383 1892 18164 139357 2517072*
BKZ999-6+BB 378 1846 16026 141825 4242654
BKZ999-8+BB 370 1823 16866 133130 3398739
BKZ999-10+BB 369* 1792 17537 137647 2883433
BKZ999-12+BB 369* 1775* 17957 143816 3116050
L8+BKZ-10+BB 477 2409 17808 140802 3296159
L5+L9+BKZ-10+BB 550 2756 18568 137954 2998657
L5+L9+BKZ-12+BB 500 2583 18942 139505 3138813

Average square length of shortest basis vector:

LLL5 152.02 16.12 8.68 7.78 7.04
LLL99999 151.14 15.46 6.98 5.96 5.62
BKZ99999-10 151.14 15.46 6.84 5.78 5.34
L5+L9+BKZ-10 151.14 15.46 6.82 5.78 5.36
All +BB methods 151.14 15.46 6.82 5.74 5.24

Average number of calls to the recursive BB procedure ‘tryZ’:

LLL5+BB 5 27 5303 460653 11639706
LLL8+BB 5 22 1853 243822 11153257
LLL99999+BB 5 21 1321 135953 6530546
BKZ99999-10+BB 5 21 1081 68703 2296208
BKZ99999-12+BB 5 21 1051 60097* 1861705*
BKZ999-10+BB 5 21 1057 64542 2161005
BKZ999-12+BB 5 21 1045 62695 2335329
L5+L9+BKZ-12+BB 5 21 1028* 60235 2349325

Average number of visited leaves in the BB procedure:

LLL5+BB 1 1 6 13 31
LLL8+BB 1 1 2 7 21
LLL99999+BB 1 1 2 10 26
BKZ99999-10+BB 1 1 2 6 27
BKZ99999-12+BB 1 1 2 7 28
L5+L9+BKZ-12+BB 1 1 2 6 22

Total time for everything: 77.4 seconds

Figure 8: Partial output of TestReducersSpeed for m = 1048573 and m-dual lattice.

75



TestReducersSpeed with m = 1021
Types: Int = NTL::ZZ, Real = double
Number of replications (different multipliers a): 100
DUAL lattice, Norm: L2NORM, Decomposition: CHOLESKY.

Num. dimensions: 10 20 30 40 50 60 70

Computing times in microseconds:

LLL5 1827 3665 6058 9225 13556 19302 26471
LLL99999 2290 7456 11070 15114 20430 27507 36507
BKZ99999-10 2617 17470 42294 74845 105366 143086 193989
L5+L9+BKZ-10 3520 19966 49724 84590 117407 163059 222943

LLL5+BB 3078 16408* 82218* 266307 975886 3601698 10808413
LLL8+BB 3227 17263 92379 309017 1296846 5143418 18017647
LLL99999+BB 3286 18869 90633 303092 1328958 6102461 20877337
BKZ99999-6+BB 3513 24665 96293 265603 799623 2822246 8168659
BKZ99999-8+BB 3200 26173 93132 247950 713821 2659301 7862103
BKZ99999-10+BB 3048 27396 97009 206098 573580 2061635 6030053
BKZ99999-12+BB 2902 29975 99822 218098 509552 1662647* 4726783*
BKZ999-6+BB 2793 24435 96462 256870 808835 2886718 8696810
BKZ999-8+BB 2748 26077 92615 254123 725117 2697742 7726230
BKZ999-10+BB 2708 27158 97193 204866* 600652 2087770 5954333
BKZ999-12+BB 2665* 29843 99448 223191 497162* 1708653 5095630
L8+BKZ-10+BB 3939 30015 100608 213996 644618 2157627 6816609
L5+L9+BKZ-10+BB 4583 31333 106291 230656 651904 2412697 8031166
L5+L9+BKZ-12+BB 4219 32405 111543 241286 533280 1686852 5074948

Average square length of shortest basis vector:

LLL5 4.34 3.37 3.17 3.06 2.96 2.89 2.83
LLL99999 4.23 3.19 2.98 2.87 2.81 2.76 2.76
BKZ99999-10 4.23 3.17 2.90 2.79 2.76 2.76 2.76
All +BB methods 4.23 3.17 2.90 2.78 2.76 2.76 2.76

Average number of calls to the recursive BB procedure ‘tryZ‘:

LLL5+BB 36 2001 21887 88561 360852 1359010 4011824
LLL8+BB 31 1691 24416 102026 479114 1901877 6543645
LLL99999+BB 29 1446 22133 97435 482462 2242583 7374763
BKZ99999-12+BB 29 1130 11443 37710* 129822 518054 1481856*
BKZ999-12+BB 29 1125 11198* 38739 125417* 536394 1612499
L5+L9+BKZ-12+BB 29 1097 12220 38914 127645 506872* 1566186

Average number of visited leaves in the BB procedure:

LLL5+BB 1 7 18 20 22 39 63
LLL99999+BB 1 6 17 22 24 42 70
BKZ99999-12+BB 1 6 19 19 25 49 77

Total time for everything: 181.5 seconds

Figure 9: Partial output of TestReducersSpeed for m = 1021 and m-dual lattice.

76



TestReducersSpeed with m = 1021
Types: Int = int64 t, Real = double
Number of replications (different multipliers a): 100
PRIMAL lattice, Norm: L2NORM, Decomposition: CHOLESKY.

Num. dimensions: 10 20 30 40 50 60 70
Computing times in microseconds:

LLL5 1060 2847 5128 8127 12069 18335 25130
LLL99999 1489 6902 12563 20421 29585 44302 56788
BKZ99999-10 1764 15820 32640 52159 76208 109341 152796

LLL5+BB 927 10286 21196 25657 30972 39236 48592
LLL99999+BB 1353 10407 21820 30683 40706 58698 74091
BKZ99999-10+BB 1408 18219 41236 63503 88447 124551 171087
BKZ999-10+BB 1324 18204 42305 63071 89419 123231 171683
L5+L9+BKZ-12+BB 1594 20496 46809 67890 96173 138186 192576

Average square length of shortest basis vector:

LLL5 266368.4 912875.4 1004531.57 1009269.11 1014006.65 1018744.19 1023481.73
All +BB 253621.6 860224.5 1004531.57 1009269.11 1014006.65 1018744.19 1023481.73

Average number of calls to the recursive BB procedure ’tryZ’:

LLL5+BB 29 3004 6528 6828 6972 6831 6617
LLL99999+BB 23 1364 3533 3450 3305 3642 3578
BKZ99999-10+BB 23 1200 3251 3759 3555 3863 4034
L5+L9+BKZ-12+BB 23 1146 3205 3623 3577 3880 4063

Average number of visited leaves in the BB procedure:

LLL5+BB 1 2 4 4 4 4 4
LLL8+BB 1 2 6 6 6 6 6
L5+L9+BKZ-12+BB 1 1 6 6 6 6 6

Total time for everything: 7.3 seconds

Figure 10: Partial output of TestReducersSpeed for m = 1021 in the primal lattice, with
Int = int64 t.

77



Table 5: Total times in seconds for the TestReducersSpeed example. The timings for up to
70 dimensions for m = 1021 and up to 40 dimensions for the other values of m.

Code <Int, Real> m = 1021 m = 1048573 m = 1099511627791
primal m-dual primal m-dual primal m-dual

LD <long, double> 7.3 169.8 — — — —
ZD <ZZ, double> 10.6 181.5 10.9 76.9 183.0 250.9
ZQ <ZZ, quad float> 61.1 1715.1 80.3 636.7 1562.2 2155.4
ZR <ZZ, RR> — — 615.0 4682.7 — —

table, the fastest time among the +BB methods and the smallest number of visited nodes
are indicated by a red star.

The following comments apply generally to all cases that we tried, and not only to the
cases shown in the figures. The reader is encouraged to look at the detailed results in the
.res files and perhaps try other cases to explore. In less than 20 dimensions, there is not
much difference in speed between the different methods, and the BB does not take much
extra time, because in most cases we already have a shortest vector before the BB and
relatively few nodes are visited in the BB tree.

Applying only LLL before the BB is often the fastest approach in up to 20 dimensions,
and also in more dimensions form = 1021, but for the larger values ofm in larger dimensions,
it is much slower, even with δ = 0.99999. In that case, doing a BKZ reduction before the
BB is more effective, and using a larger blocksize k (around 10 or 12) seems more important
than taking δ closer to 1. Compare BKZ99999 with BKZ999 in Figures 7 and 8, for example.
A block size larger than 12 may be even better in larger dimension; see the TestCholesky

example for an illustration. For the larger m in the m-dual, we removed LLL5+BB and
LLL8+BB because with these methods, the program was taking way too much time to
run (the BB was much too slow) and sometimes failed. The incremental strategy does not
provide much improvement when followed by BKZ and BB. It wins only for the largest m
in 40 dimensions, and not by a large margin. Applying only BKZ with a large enough k
for the pre-reduction performs quite well in general. The case of m = 1021 for the primal
lattice (Figure 10) behaves differently than others: in up to 70 dimensions, the timings and
the number of visited nodes do not increase much with the dimension, and also applying
just LLL5 as a pre-reduction is the fastest approach. This is interesting because in general,
in the worst case, the BB should take exponential time as a function of the dimension.

For the average square lengths, all the “+BB” methods give the same values because they
always find a shortest vector, so we show only one row for these. The values are also the
same across the different types codes. When comparing these (exact) values for the m-dual
lattices, we see that without the “+BB” we do not always find a shortest vector; we get
larger values even with δ = 0.99999. In Figure 7, for example, in 30 and 40 dimensions, the
average square length is more than three times larger after LLL5 only than after BB. This
is very significant!

78



For m = 1099511627791, if we look at the result files and compare, we also find that the
number of visited BB nodes is slightly different for the different Real representations. This
is due to the (small) numerical imprecision when we perform the Cholesky decomposition
and we compute the bounds in the BB algorithm, as explained in Section 8.4. For these
experiments, we used ϵ = 0. We also tried with ϵ = 10−6 instead, and the number of visited
BB nodes was the same in almost all cases (in a few cases it changed by 1 or 2), and the
shortest vector lengths remained the same in all cases.

Table 5 gives the total time to run the experiment for each selection of types. The running
times are slower for Real = quad float compared with double, and much slower with RR,
due to the extra precision. We also see in Table 5 that the total running times are shorter
for the primal lattice than for the m-dual, and this is especially true for smaller m. On the
other hand, the shortest vectors are much longer in the primal than in the dual. On closer
examination, we find that the BB takes more time in the m-dual, but the LLL and BKZ
reductions alone are faster in the m-dual than in the primal. Overall, we found in these
experiments that when BKZ is applied before the BB, doing an incremental LLL reduction
before the BKZ reduction does not help much. This differs from what we saw in Figure 1,
where no BKZ was done.

In addition to these 18 methods, we also tried BB with no pre-reduction at all (Direct
BB) and with pairwise pre-reductions only (Pairwise+BB) but with these methods the BB
was much too slow and often failed because the BB tree had too many nodes (more than
one billion), in 30 and 40 dimensions. With the larger modulus, in 40 dimensions, the BB
also fails most of the time when done after LLL5 and occasionally when done after LLL8,
also because the number of visited BB nodes is excessive. This is why these two methods
do not appear in the table for the larger m. So we really need to perform serious reduction
work before applying the BB. With m = 1099511627791 and Real = double, the BB after
no pre-reduction also fails most of the time even in 5 dimensions because the Cholesky
decomposition gives negative elements on the diagonal. With a large m, we need more
precision for the real numbers, but a good pre-reduction is very important, as we shall see
again in the next example.

12.9 TestCholesky

This example tests the LDL Cholesky decomposition of the matrix of scalar products with
different floating-point representations. The program construct a basis for the m-dual lat-
tice associated with a LCG, applies a pre-reduction to that basis, then performs the LDL
Cholesky decomposition, and prints some information, including the component D of the
decomposition and the bound δt(2) on zt at the first level of the BB. If the doBB variable is
set to true in the main, it also runs the BB algorithm, counts the number of visited nodes
in the BB tree, and prints some of the bounds on the zj’s computed in the BB algorithm.

We ran the program for the 40-bit prime m = 1099511627791, a = 401173573, in 5,
30, and 40 dimensions, with the following three choices of pre-reductions: no pre-reduction,
LLL5, LLL999, BKZ99999-12, and BKZ99999-20, defined as in the previous example. The

79



selected types were Int = ZZ with Real = double, quad float, RR. By default, RR has
150 bits of precision, but in 40 dimensions we also tried RR with 250 bits of precision, to
compare. The complete output is in file testCholesky40.

Table 6: Some values of dt and δt(2) obtained for Example TestCholesky.

t pre-reduction Real dt δt(2) nodes in BB

5 none RR 2.673953322 245332681.4 > 109

5 LLL5 double 139169.2263 0.449210753 5
5 BKZ99999-12 RR 139169.2263 0.449210753 5

30 none RR 0.1578115561 1009864058 > 109

30 LLL5 double 0.1990594272 15.6894119 5628538
30 LLL5 quad float 0.1990594272 15.6894119 5628539
30 LLL5 RR 0.1990594272 15.6894119 5628538
30 LLL999 double 0.9004257043 3.495202968 24945
30 LLL999 quad float 0.9004257043 3.495202968 24945
30 LLL999 RR 0.9004257043 3.495202968 24945
30 BKZ99999-12 double 2.383026895 2.148482748 18466
30 BKZ99999-12 quad float 2.383026895 2.148482748 18467
30 BKZ99999-12 RR 2.383026895 2.148482748 18466
30 BKZ9999999-20 double 2.227871426 2.222036972 10104
30 BKZ9999999-20 quad float 2.227871426 2.222036972 10104
30 BKZ9999999-20 RR 2.227871426 2.222036972 10104

40 LLL5 double 0.1415697397 18.60427812 > 109

40 LLL5 RR 0.1415697397 18.60427812 > 109

40 LLL999 double 0.2163843044 7.129900427 20920057
40 LLL999 quad float 0.2163843044 7.129900427 20920055
40 LLL999 RR 0.2163843044 7.129900427 20920059
40 LLL999 RR-250 0.2163843044 7.129900427 20920054
40 BKZ99999-12 double 1.107460778 3.151607791 18583011
40 BKZ99999-12 quad float 1.107460778 3.151607791 18583012
40 BKZ99999-12 RR 1.107460778 3.151607791 18583010
40 BKZ99999-12 RR-250 1.107460778 3.151607791 18583013
40 BKZ9999999-20 double 0.815408147 3.672897591 5518423
40 BKZ9999999-20 quad float 0.815408147 3.672897591 5518422
40 BKZ9999999-20 RR 0.815408147 3.672897591 5518422
40 BKZ9999999-20 RR-250 0.815408147 3.672897591 5518423

Table 6 shows some values taken from the output file. It gives the values of dt and
δt(2) defined in Section 8.3, and the number of visited nodes in the BB tree. With “no
pre-reduction”, if we take Real = double, the Cholesky factorization fails for all numbers
of dimensions (we get negative diagonal elements due to numerical errors), so no number is
given for that case. For the other Real types and no pre-reduction, the Cholesky factorization
works and the values differ only slightly between the two types, but the bounds δt(2) on zt
are extremely large. Already at the first level of the BB tree, more than 245 million values

80



of zt must be examined when t = 5 (first row of the table), and more than one billion when
t ≥ 30 (fourth row). The full BB algorithm will then take forever to run. This algorithm
stops immediately when one billion nodes have been examined.

With an LLL or BKZ pre-reduction, the bounds are much smaller, and the values of dt
and δt(2) are the same (up to the given numbers of digits) for all real number representa-
tions. That is, the LDL Cholesky method is pretty stable after the basis has been reduced
sufficiently, at least for this example. For t = 5, they are also the same for all types of
pre-reduction, because all pre-reductions give the same basis in that case. For this reason,
we display only two cases in the table. For the larger values of t, however, the BKZ methods
produce narrower bounds than LLL, and are better in terms of the number of visited nodes.
We also see that BKZ99999-20 does better than BKZ99999-12 in large dimensions. When a
pre-reduction is applied, the different types of Real representations give almost all the same
number of visited nodes in the BB, except for small variations. The small variations are due
to small numerical imprecision that depend on the Real type. To reduce the chances of miss-
ing valid tree nodes due to small numerical errors, we can set the safety margin epsBounds in
the program to a value slightly larger than zero, for example 10−6. This notion is discussed
in Section 8.4. We re-ran the entire experiment with epsBounds= 10−6 and the shortest
vector lengths did not change. Moreover, the number of visited nodes were exactly the same
as in Table 6 for all cases!

12.10 TestFOMPairs

In this example, we explore the behavior of the FOM (31) for LCGs with modulus m and
multiplier a, for several values of a. We take the subsets defined in (35), so only the projec-
tions that contain the first coordinate are considered, and we consider two choices for the
vector t = (t1, . . . , td). For each a, we compute the FOM for the primal and for the m-dual
and we find the projection for which the minimum is attained (the worst projection) in each
case.

The program examines numRepVerb = 1000 multipliers a and prints some results in a
data file, one line for each a. In the first four columns, it gives the FOM and the dimension
of the worst-case projection for both the primal and m-dual. In the fifth column, if the
worst-case projection was the same for both the primal and m-dual, it prints the dimension
of that projection, otherwise it prints 0. This data file is then used by LATEX/PGFplots to
make scatter plots of the primal vs m-dual FOMs, using colors that depend on the value in
the fifth column.

The program also counts how many times the worst-case projection has s dimensions,
for each s, for both the primal and the m-dual, and gives this info on the terminal. It also
displays the FOMs and the worst-case projections for the first numRepVerb = 10 multipliers.

We take m = 1048573. The two choices of t that are considered are t16 = (16, 16, 12, 10)
with d = 4 and t32 = (32, 32, 16, 12, 10) with d = 5. The number of projections of each type

(the cardinalities of S
(1)
s (ts) for s = 1, . . . , d) is (12, 15, 55, 84) in the first case and (27,

81



5 · 10−2 0.1 0.15 0.2 0.25

5 · 10−2

0.1

0.15

0.2

0.25

5 · 10−2 0.1 0.15 0.2

5 · 10−2

0.1

0.15

0.2

0.25

Figure 11: Scatter plots for the TestFOMPairs example for m = 1048573, with t16 (above)
and t32 (below)

82



Table 7: Distribution of the dimension of worst-case projection for the primal and the m-
dual, in Example TestFOMPairs.

dimension
2 3 4 5 6 > 6

proportion ×1000 90.3 331.3 506.0 6.02 6.02 60.3
t16 num. primal 359 433 207 1 0 0

num. m-dual 370 469 161 0 0 0
proportion ×1000 51.0 197.4 361.8 345.4 1.64 42.8

t32 num. primal 427 392 157 24 0 0
num. m-dual 468 417 105 10 0 0

31, 120, 220, 210) in the second case (see Section 10). Table 7 gives the proportion of the
projections that are in s dimensions, multiplied by 1000, and the number of times that the
worst-case projection had s dimension, for each case. We see that the worst-case was for a
two-dimensional projection more often than what we would expect if it was proportional to
the proportion (indicated in the row “proportion ×1000”), and less often for the projections
in more then three dimensions. The high-dimensional projections onto successive coordinates
were very rarely the critical ones (it occurred only in one case). This behavior suggests that
when making a search with the possibility of early exit when a bad projection is found, it
should be much more effective to start with the low-dimensional projections, because they
are more likely to eliminate candidates and also the values are much faster to compute for
those projections. Of course, the behavior might differ for other types of constructions than
LCGs and for other choices of t.

Figure 11 shows the two scatter plots. Each one has 1000 points (x, y) where x is the
FOM in primal and y is the FOM in m-dual. The blue marks are for when the worst
projection is not the same for the primal and m dual. The brown and orange marks are
for the cases where the worst projection is the same and is in three and four dimensions,
respectively. The red marks are for when the worst projection is the same and is in two
dimensions. All these red marks are on the diagonal, which means that the primal and
m-dual FOMs are always exactly the same! To understand why, it suffices to examine the
basis vectors for these two-dimensional projections by looking at the matrices in (2) and
(3). For the projection onto coordinates {1, s}, the basis vectors are (1, as) and (0,m) where
as = as−1 mod m, and the m-dual basis vectors are (−as, 1) and (m, 0). These primal and
m-dual lattices are essentially the same lattice, mirrored about the horizontal axis and with
the two coordinates exchanged. This means that for each two-dimensional projection, the
lattice structure in the primal and m-dual is exactly the same and the length of the shortest
nonzero vector is always the same.

Apart from the red points which give a perfect correlation between the primal andm-dual
FOMs, the other points only show a weak correlation. We see that the best values of a for
the primal FOM and for the dual FOM are not the same. There are a few points in the

83



lower-left corner (both FOMs are bad) and in the upper-right corner (both FOMs are good),
and no points in the two other corners, which is reassuring, because it means that there are
no case where the FOM is excellent in the m-dual and very bad in the primal, or vice-versa.

12.11 TestFOMSearch

This example compares different ways of making a search for a good LCG multiplier a for
a given prime modulus m in terms of the FOM Mt for a given vector t = (t1, . . . , td), with
coordinate 1 included in all the projections, for either the primal or the m-dual lattices,
with the L2 or L1 norm. The FOM can be computed exactly using BKZ+BB, or only
approximated by using either LLL of BKZ only. When computing the FOM for a given
a, we can either exit the procedure (early discard) as soon as we know that the FOM will
be too small, or we can always complete the computations. The multipliers a that are
considered can be read from a file (from a previous selection), or they can be generated as
the successive powers of a given integer a0, modulo m. The function findBestFOMs supports
all these possibilities. It examines numMult values of a and makes a list of the numBest best
ones based on the FOM fom. The FOM can be either for the primal or for the m-dual,
depending on how it was created. It can be for the L2 or L1 norm, depending on which norm
is used in the lattice objects for which we compute the FOM.

The search methods. The function compareSearchMethods compares five methods
for making the search, for a given FOM, for either the primal or the m-dual lattices. Method
1 is a naive approach used as a basis for comparison. It computes all the terms of the FOM
for all values of a (no early discarding) using BKZ+BB with δ = 0.99999 and k = 10 in
FigureOfMerit to get the exact FOM value in each case. Since this approach takes a lot of
time, for this method we examine only numMultSmall = numMult/100 values of a and we
multiply the timings by 100 to estimate the required time with the larger numMult value.
Method 2 also applies BKZ+BB with the the same parameters, but it uses early discarding.
Method 3 applies only LLL with δ = 0.99999 (no BB) and also use early discarding. We
expect it to be faster than Method 2 but it may not return the best candidate. Method
4 uses two stages with early discarding at each stage. In the first stage, it uses only LLL
with δ = 0.99999 and it retains the numBest0 multipliers in a list. In the second stage, it
tests these retained multipliers from the list using BKZ+BB and it returns the numBest best
ones in the final list. Method 5 does the same as Method 4, except that in the first stage,
it looks only at a restricted number of projections by using a vector t0 of smaller values
instead of t = (t1, ..., td). One of the goals is to see how much time can be saved by using
early discarding and/or a two-stage method with an intermediate list. Note that Method 3
and the first stage of Method 4 or 5 do roughly the same thing for both norms, since LLL
always use the L2 norm, so their timings should not depend much on the norm when we use
the same vector t and we retain the same number of candidates for both norms.

The experiment. The function testPrimalDual runs this experiment first for the
primal lattice projections, then for the m-duals of these projections. We call this function for
the L2 norm with t = (24, 32, 16, 12, 10), t0 = (8, 32, 16, 12), numMult = 100, 000, numBest =

84



Table 8: Summary of the results for example TestFOMSearch with m = 1048573 (above)
and m = 1099511627791 (below). For Method 1, we tested 1000 multipliers a and multiplied
the timings by 100, for each norm. For all other cases, we tested 100,000 multipliers.

m = 1048573 primal m-dual
L2-norm, Method CPU time best FOM CPU time best FOM

1. BKZ+BB, naive 601.7 0.237731 582.2 0.250676
2. BKZ+BB, discard 4.5 0.270944 6.8 0.265395
3. LLL only, discard 2.9 0.270944 5.1 0.265395
4. Stage 1 with LLL and t 4.9 7.3

stage 2 with BKZ+BB 0.022 0.270944 0.030 0.265395
5. Stage 1 with LLL and t0 4.6 6.2

stage 2 with BKZ+BB 0.034 0.270944 0.034 0.265395
L1-norm, Method

1. BKZ+BB, naive 78015.5 0.294960 30331.4 0.318964
2. BKZ+BB, discard 41.1 0.405809 20.2 0.394170
3. LLL only, discard 1.6 0.405809 2.3 0.394170
4. Stage 1 with LLL and t 1.8 2.5

stage 2 with BKZ+BB 3.4 0.405809 0.82 0.394170
5. Stage 1 with LLL and t0 1.4 2.2

stage 2 with BKZ+BB 3.4 0.405809 0.82 0.394170

m = 1099511627791 primal m-dual
L2-norm, Method CPU time best FOM CPU time best FOM

1. BKZ+BB, naive 1025.8 0.241259 700.6 0.223998
2. BKZ+BB, discard 7.6 0.264833 9.2 0.269388
3. LLL only, discard 5.5 0.264833 7.3 0.269388
4. Stage 1 with LLL and t 9.4 10.7

stage 2 with BKZ+BB 0.040 0.264833 0.036 0.269388
5. Stage 1 with LLL and t0 6.4 8.7

stage 2 with BKZ+BB 0.048 0.264833 0.047 0.269388
L1-norm, Method

1. BKZ+BB, naive 57040.3 0.354632 54912.4 0.348062
2. BKZ+BB, discard 28.6 0.378540 26.1 0.377746
3. LLL only, discard 3.0 0.378540 3.1 0.377746
4. Stage 1 with LLL and t 3.2 3.3

stage 2 with BKZ+BB 1.8 0.378540 0.584 0.377746
5. Stage 1 with LLL and t0 2.4 2.8

stage 2 with BKZ+BB 2.4 0.378540 0.585 0.377746

85



3, and numBest0 = 50. This gives a total number of projections of 446 for t and 305 for t0 (we
remove the projections onto 5 non-successive coordinates and onto more than 8 successive
coordinates). Then we call the function for the L1 norm for comparison, this time with
t = (12, 16, 8, 6, 5), t0 = (8, 16, 8, 6), numMult = 100, 000, numBest = 3, and numBest0 = 20.
This gives a total number of projections of 54 for t and 50 for t0 (we remove only the 4
projections of dimension larger than 4). We ran this experiment with m = 1048573 (a prime
number near 220) and then with m = 1099511627791 (a prime number near 240), in both
cases with a0 = 91 (a primitive element mod m = 1048573). Table 8 summarizes the results.
It gives the CPU time (in seconds) and the best FOM found, for each case and each m.
For Method 1, we examined only 1000 multipliers and multiplied the CPU times by 100 to
estimate the required time for numMult = 100, 000. This method generally yields a smaller
FOM value because it examines fewer multipliers. For Methods 4 and 5, we give the timing
for each stage. Note that only Methods 1 and 2 are guaranteed to return the best candidate.

Results for the L2 norm. The results with the L2 norm are very similar for the two
values ofm. Method 1 is clearly too slow and not competitive when we test many candidates.
Method 3 is faster than Method 2 as expected, but not by a large factor. Although it gives
the same best FOM value in this example, this is not always true in general, because it uses
only the LLL approximation. Methods 4 and 5 are not really faster than Method 2, which
may be surprising because intuition may suggest that doing a first screening pass with a
lower-cost FOM should speed up things, but it does not. The reason is that keeping a list of
50 candidates in the first stage reduces the efficacy of early discarding. Reducing the size of
this list improves the speed but increases the chances of missing the best candidate. Method
5 is slightly faster than Method 4, as expected. We also see that the second stage takes
negligible time compared to the first stage. The computing times are slightly longer for the
m-dual than for the primal, except for Method 1. This suggests that the early discarding is
slightly more effective in the primal for this example.

Methods 2 to 5 all retained the same best three multipliers, with the same FOMs, in all
cases (the detailed results are in the files). This happens mainly because the selected FOM
looks almost only at low-dimensional projections, for which LLL already gives a shortest vec-
tor in almost all cases. Methods 1 returned multipliers of lower quality because it examined
fewer candidates. Overall, based on this example, Method 2 should be the preferred choice.

The results may differ significantly if we change the vector t. For example, if we increase
t1 (t[0] in the code) from 24 to 32, this increases the number of projections only by 8,
but the time for Method 1 is multiplied by about 3 to 3.5, for both the primal and m-dual,
whereas the times for Methods 2 and 3 and for the first stage of Methods 4 and 5 increase
by less than 10%, and the best FOM value remains the same in all cases. The explanation is
that the additional projections are in larger dimensions, so doing the BB for these projections
is much more expensive than for the other ones, and Method 1 does it for all candidates,
while the other methods only do it for a few candidates, thanks to the early discarding and
the fact that computeMerit examines the lower-dimensional projections first.

Results for the L1 norm. The behavior with the L1 norm differs, mainly because
running the BB is much more expensive than with the L2 norm and its running time also

86



increases faster with the dimension. Note that the timings here are not directly comparable
with those of the L2 norm, because we look at fewer projections. We selected the vector t
so the timings for Method 2 are roughly of the same magnitude as for the L2 norm. With
the L1 norm and the parameters selected for this example, Methods 4 and 5 are now faster
than Method 2 and their first stage is faster than their second stage for the primal lattice
and almost as fast for the m-dual. This is because Method 2 performs the BB for more
candidates than the two-stage methods, numBest0 is now smaller, and second stage (which
does the BB) is now much slower. This shows that there are situations in which the two-stage
approach makes sense.

If we increase t1 from 12 to 16 here, this adds only 4 projections, but the CPU time for
method 2 is multiplied by about 30 for the primal and 80 for the m-dual.

12.12 TestNormBounds

This program tests and compares the normalization constants used in the subclasses of
Normalizer. These classes use different approximations or bounds for the Hermite constants
γt, as explained in Sections 9 and 11.8. The program prints these different approximations
for t = 1, . . . , 48, so they can be compared visually. It does the same for the approximations
of γ

(1)
t = tγt and the values of γM

t used for the L1 norm. One can see for example which
upper bounds are smallest when we use the L1 norm. Finally, it also prints the center
density values δt = (γt/4)

1/t that correspond to those γt approximations, to check if they
agree with the values found in the references. We do this because most of our bounds on
γt were computed from bounds on δt given in some references. The resulting tables are in
testNormBounds.res.

87



References

[1] L. Afflerbach and H. Grothe. Calculation of Minkowski-reduced lattice bases. Comput-
ing, 35:269–276, 1985.

[2] L. Afflerbach and H. Grothe. The lattice structure of pseudo-random vectors generated
by matrix generators. Journal of Computational and Applied Mathematics, 23:127–131,
1988.

[3] W. A. Beyer, R. B. Roof, and D. Williamson. The lattice structure of multiplicative
congruential pseudo-random vectors. Mathematics of Computation, 25(114):345–363,
1971.

[4] H. F. Blichfeldt. The minimum value of quadratic forms, and the closest packing of
spheres. Mathematische Annalen, 101(1):605–608, 1929.

[5] R. M. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm and
Its Applications. Pure and Applied Mathematics. Chapman & Hall, CRC Press, 2012.

[6] H. Cohn. A conceptual breakthrough in sphere packing. Notices of the American
Mathematical Society, 64(2):102–115, 2017.

[7] H. Cohn and N. Elkies. New upper bounds on sphere packing I. Annals of Mathematics,
157(2):689–714, 2003.

[8] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups. Grundlehren
der Mathematischen Wissenschaften 290. Springer-Verlag, New York, 3rd edition, 1999.

[9] R. Couture and P. L’Ecuyer. Linear recurrences with carry as random number genera-
tors. In Proceedings of the 1995 Winter Simulation Conference, pages 263–267, 1995.

[10] R. Couture and P. L’Ecuyer. Orbits and lattices for linear random number generators
with composite moduli. Mathematics of Computation, 65(213):189–201, 1996.

[11] R. R. Coveyou and R. D. MacPherson. Fourier analysis of uniform random number
generators. Journal of the ACM, 14:100–119, 1967.

[12] S. Dammertz, H. Dammertz, and A. Keller. Efficient search for two-dimensional rank-1
lattices with applications in graphics. In Pierre L’Ecuyer and Art B. Owen, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2008, pages 271–287, Berlin, Heidelberg,
2009. Springer.

[13] J. Dick, P. Kritzer, and F. Pillichshammer. Lattice Rules: Numerical Integration, Ap-
proximation, and Discrepancy. Springer, 2022.

[14] U. Dieter. How to calculate shortest vectors in a lattice. Mathematics of Computation,
29(131):827–833, 1975.

88



[15] U. Fincke and M. Pohst. Improved methods for calculating vectors of short length in
a lattice, including a complexity analysis. Mathematics of Computation, 44:463–471,
1985.

[16] G. S. Fishman. Monte Carlo: Concepts, Algorithms, and Applications. Springer Series
in Operations Research. Springer-Verlag, New York, NY, 1996.

[17] H. Grothe. Matrixgeneratoren zur Erzeugung Gleichverteilter Pseudozufallsvektoren.
Dissertation (thesis), Tech. Hochschule Darmstadt, Germany, 1988.

[18] P. M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, Amster-
dam, 1987.

[19] W. Hart, F. Johanssony, and S. Pancratz. FLINT: Fast Library for Number Theory,
2015. Reference Manual, Version 2.5.2, available at www.flintlib.org/flint-2.5.

pdf.

[20] B. Helfrich. Algorithms to construct Minkowski-reduced and Hermite-reduced lattice
bases. Theoretical Computer Science, 41:125–139, 1985.

[21] F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice sequences
for quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing, 22(3):1117–
1138, 2001.

[22] E. Hlawka. Zur geometrie der zahlen. Mathematische Zeitschrift, 49:285–312, 1943.

[23] J. D. Hobby. A natural lattice basis problem with applications. Mathematics of Com-
putation, 67:1149–1161, 1998.

[24] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing
(STOC’83), pages 193–206, New York, NY, USA, 1983. ACM.

[25] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathemat-
ics of Operations Research, 12(3):415–440, 1987.

[26] A. Keller. Myths of computer graphics. In H. Niederreiter and D. Talay, editors, Monte
Carlo and Quasi-Monte Carlo Methods 2004, pages 217–243, Berlin, 2006. Springer-
Verlag.

[27] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, MA, third edition, 1998.

[28] J. L. Lagrange. Recherches d’arithmétique. Nouveaux mémoires de l’Académie royale
des sciences et belles-lettres de Berlin, 1773.

[29] P. L’Ecuyer. Efficient and portable 32-bit random variate generators. In J. R. Wilson,
J. O. Henriksen, and S. D. Roberts, editors, Proceedings of the 1986 Winter Simulation
Conference, pages 275–277, 1986.

89

www.flintlib.org/flint-2.5.pdf
www.flintlib.org/flint-2.5.pdf


[30] P. L’Ecuyer. A portable random number generator for 16-bit computers. In Model-
ing and Simulation on Microcomputers 1987, pages 45–49. The Society for Computer
Simulation, 1987.

[31] P. L’Ecuyer. Efficient and portable combined random number generators. Communi-
cations of the ACM, 31(6):742–749 and 774, 1988. See also the correspondence in the
same journal, 32, 8 (1989) 1019–1024.

[32] P. L’Ecuyer. Random numbers for simulation. Communications of the ACM, 33(10):85–
97, 1990.

[33] P. L’Ecuyer. Combined multiple recursive random number generators. Operations Re-
search, 44(5):816–822, 1996.

[34] P. L’Ecuyer. Uniform random number generators. In D. J. Medeiros, E. F. Watson,
J. S. Carson, and M. S. Manivannan, editors, Proceedings of the 1998 Winter Simu-
lation Conference, pages 97–104. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc., 1998.

[35] P. L’Ecuyer. Good parameters and implementations for combined multiple recursive
random number generators. Operations Research, 47(1):159–164, 1999.

[36] P. L’Ecuyer. Tables of linear congruential generators of different sizes and good lattice
structure. Mathematics of Computation, 68(225):249–260, 1999.

[37] P. L’Ecuyer. Uniform random number generation. In S. G. Henderson and B. L. Nelson,
editors, Simulation, Handbooks in Operations Research and Management Science, pages
55–81. Elsevier, Amsterdam, The Netherlands, 2006. Chapter 3.

[38] P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307–349, 2009.

[39] P. L’Ecuyer. Random number generation. In J. E. Gentle, W. Haerdle, and Y. Mori,
editors, Handbook of Computational Statistics, pages 35–71. Springer-Verlag, Berlin,
second edition, 2012.

[40] P. L’Ecuyer. Randomized quasi-Monte Carlo: An introduction for practitioners. In
P. W. Glynn and A. B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods:
MCQMC 2016, pages 29–52, Berlin, 2018. Springer.

[41] P. L’Ecuyer. Stochastic simulation and Monte Carlo methods. Draft Textbook, https:
//www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf, 2023.

[42] P. L’Ecuyer. Latmrg user’s guide. https://www-labs.iro.umontreal.ca/~lecuyer/
papers.html (forthcoming), 2025.

[43] P. L’Ecuyer and T. H. Andres. A random number generator based on the combination
of four LCGs. Mathematics and Computers in Simulation, 44:99–107, 1997.

90

https://www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf
https://www-labs.iro.umontreal.ca/~lecuyer/ift6561/book.pdf
https://www-labs.iro.umontreal.ca/~lecuyer/papers.html
https://www-labs.iro.umontreal.ca/~lecuyer/papers.html


[44] P. L’Ecuyer and F. Blouin. BonGCL, un lociciel pour la recherche de bons générateurs
à congruence linéaire. Technical Report DIUL-RT-8803, Compter Science Department,
Laval University, Ste-Foy (Que.), Canada, 1988.

[45] P. L’Ecuyer and F. Blouin. Linear congruential generators of order k > 1. In Proceedings
of the 1988 Winter Simulation Conference, pages 432–439. IEEE Press, 1988.

[46] P. L’Ecuyer, F. Blouin, and R. Couture. A search for good multiple recursive random
number generators. ACM Transactions on Modeling and Computer Simulation, 3(2):87–
98, 1993.

[47] P. L’Ecuyer, E. Bourceret, D. Munger, M.-A. Savard, R. Simard, M. Thiongane, and
C. Weiss. Lattice Tester. https://github.com/pierrelecuyer/latticetester, 2025.

[48] P. L’Ecuyer, E. Bourceret, D. Munger, M.-A. Savard, R. Simard, and P. Wambergue.
Latmrg. https://github.com/umontreal-simul/LatMRG, 2022.

[49] P. L’Ecuyer and R. Couture. An implementation of the lattice and spectral tests for
multiple recursive linear random number generators. INFORMS Journal on Computing,
9(2):206–217, 1997.

[50] P. L’Ecuyer and R. Couture. LatMRG User’s Guide: A Modula-2 software for the theo-
retical analysis of linear congruential and multiple recursive random number generators,
2000. http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-latmrg-m2.

pdf.

[51] P. L’Ecuyer, M. Godin, A. Jemel, P. Marion, and D. Munger. LatNet Builder: A
general software tool for constructing highly uniform point sets. https://github.com/
umontreal-simul/latnetbuilder, 2019.

[52] P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science,
46(9):1214–1235, 2000.

[53] P. L’Ecuyer, P. Marion, M. Godin, and F. Puchhammer. A tool for custom construction
of QMC and RQMC point sets. In A. Keller, editor, Monte Carlo and Quasi-Monte
Carlo Methods: MCQMC 2020, pages 51–70, Berlin, 2022. Springer.

[54] P. L’Ecuyer and D. Munger. On figures of merit for randomly-shifted lattice rules.
In H. Woźniakowski and L. Plaskota, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2010, pages 133–159, Berlin, 2012. Springer-Verlag.

[55] P. L’Ecuyer and D. Munger. Algorithm 958: Lattice builder: A general software tool
for constructing rank-1 lattice rules. ACM Transactions on Mathematical Software,
42(2):Article 15, 2016.

[56] P. L’Ecuyer, O. Nadeau-Chamard, Y.-F. Chen, and J. Lebar. Multiple streams with
recurrence-based, counter-based, and splittable random number generators. In Proceed-
ings of the 2021 Winter Simulation Conference, pages 1–16. IEEE Press, 2021.

91

https://github.com/pierrelecuyer/latticetester
https://github.com/umontreal-simul/LatMRG
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-latmrg-m2.pdf
http://www.iro.umontreal.ca/~lecuyer/myftp/papers/guide-latmrg-m2.pdf
https://github.com/umontreal-simul/latnetbuilder
https://github.com/umontreal-simul/latnetbuilder


[57] P. L’Ecuyer, G. Perron, and F. Blouin. SENTIERS: Un logiciel Modula-2 pour l’arithmé-
tique sur les grands entiers. Technical Report DIUL-RT-8802, Computer Science De-
partment, Laval University, 1988.

[58] P. L’Ecuyer and R. Simard. Beware of linear congruential generators with multipliers
of the form a = ±2q±2r. ACM Transactions on Mathematical Software, 25(3):367–374,
1999.

[59] P. L’Ecuyer and R. Simard. On the lattice structure of a special class of multiple
recursive random number generators. INFORMS Journal on Computing, 26(2):449–
460, 2014.

[60] P. L’Ecuyer and S. Tezuka. Structural properties for two classes of combined random
number generators. Mathematics of Computation, 57(196):735–746, 1991.

[61] P. L’Ecuyer and R. Touzin. Fast combined multiple recursive generators with multipliers
of the form a = ±2q ± 2r. In Proceedings of the 2000 Winter Simulation Conference,
pages 683–689. IEEE Press, 2000.

[62] P. L’Ecuyer and R. Touzin. On the Deng-Lin random number generators and related
methods. Statistics and Computing, 14:5–9, 2004.

[63] P. L’Ecuyer, P. Wambergue, and E. Bourceret. Spectral analysis of the MIXMAX
random number generators. INFORMS Journal on Computing, 32(1):135–144, 2020.

[64] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag, 2009.

[65] C. Lemieux and P. L’Ecuyer. A comparison of Monte Carlo, lattice rules and other
low-discrepancy point sets. In H. Niederreiter and J. Spanier, editors, Monte Carlo and
Quasi-Monte Carlo Methods 1998, pages 326–340, Berlin, 2000. Springer-Verlag.

[66] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[67] L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity. Number 50 in
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadel-
phia, 1986.

[68] Leon Mächler and David Naccache. A conjecture on Hermite constants. Cryptology
ePrint Archive, Paper 2022/677, 2022.

[69] G. Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National
Academy of Sciences of the United States of America, 60:25–28, 1968.

[70] A. Neumaier. Bounding basis reduction properties. Designs, Codes and Cryptography,
84(1):237–259, 2017.

92



[71] P. Q. Nguyen. Hermite constants and lattice algorithms. In Phong Q. Nguyen and
Brigitte Vallée, editors, The LLL Algorithm: Survey and Applications, pages 19–69.
Springer Verlag, Berlin, Heidelberg, 2010.

[72] P. Q. Nguyen and B. Vallée, editors. The LLL Algorithm: Survey and Applications.
Springer Verlag, Berlin, Heidelberg, 2010.

[73] M. Pohst. On the computation of lattice vectors of minimal length, successive minima
and reduced bases with applications. ACM SIGSAM Bulletin, 15:37–44, 1981.

[74] M. Pohst. A modification of the LLL reduction algorithm. Journal of Symbolic Com-
putation, 4:123–127, 1987.

[75] C. A. Rogers. The number of lattice points in a set. Proceedings of the London Mathe-
matical Society, s3-6(2):305–320, 1956.

[76] C. A. Rogers. Lattice coverings of space. Mathematika, 6(1):33–39, 1959.

[77] M.-A. Savard. Générateurs de nombres aléatoires modulo un grand en-
tier, dont l’uniformité est assurée. Master’s thesis, DIRO, Université de
Montréal, 2020. https://www-labs.iro.umontreal.ca/~lecuyer/myftp/theses/

msc-thesis-savard2020.pdf.

[78] C. P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. The-
oretical Computer Science, 53(2):201–224, 1987.

[79] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. In L. Budach, editor, Fundamentals of Computation
Theory: 8th International Conference, pages 68–85, Berlin, Heidelberg, 1991. Springer-
Verlag.

[80] Claus Peter Schnorr. Progress on LLL and lattice reduction. In Phong Q. Nguyen and
Brigitte Vallée, editors, The LLL Algorithm: Survey and Applications, pages 145–178.
Springer Verlag, Berlin, Heidelberg, 2010.

[81] V. Shoup. NTL: A Library for doing Number Theory. Courant Institute, New York
University, New York, NY, July 2018. https://shoup.net/ntl/.

[82] Carl Ludwig Siegel. A mean value theorem in geometry of numbers. Annals of Mathe-
matics, 46(2):340–347, 1945.

[83] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press,
Oxford, 1994.

[84] Arne Storjohann. Faster algorithms for integer lattice basis reduction. Technical report,
Department Informatik, ETH Zurich, 1996. Technical Report 249.

[85] D. S. Watkins. Fundamentals of Matrix Computation. Wiley, second edition, 2002.

93

https://www-labs.iro.umontreal.ca/~lecuyer/myftp/theses/msc-thesis-savard2020.pdf
https://www-labs.iro.umontreal.ca/~lecuyer/myftp/theses/msc-thesis-savard2020.pdf
https://shoup.net/ntl/


[86] Jinming Wen and Xiao-Wen Chang. Sharper bounds on four lattice constants. Designs,
Codes and Cryptography, 90:1463–1484, 2022.

[87] Jinming Wen, Xiao-Wen Chang, and Jian Weng. Improved upper bounds on the Hermite
and KZ constants. In 2019 IEEE International Symposium on Information Theory
(ISIT), pages 1742–1746, 2019.

94


	Introduction
	Historical notes
	Lattices in the real space and in the integer space
	Integral lattices in the real space
	Rescaling the primal and dual to integral lattices
	Lengths of shortest nonzero vectors in a lattice and its projections

	Problems of Interest with Integral Lattices
	Building a Basis from a Set of Generating Vectors
	Context and motivation
	The gcd triangular construction method
	The LLL construction method
	Direct construction for a rank-1 integration lattice

	Computing the m-Dual of a Basis
	Lattice Basis Reduction
	Basis reduction in one dimension 
	Basis reduction in two dimensions 
	Successive minima
	Gram-Schmidt orthogonalization and size-reduced basis
	Korkine-Zolotarev-reduced basis
	Minkowski-reduced basis
	Pairwise reductions
	LLL reduction
	Schnorr's blockwise Korkine-Zolotarev (BKZ) reduction

	Shortest Vector Problem
	Problem formulation
	Bounds obtained using a lower-triangular basis
	Bounds obtained via a Cholesky decomposition
	Numerical errors in the decomposition and bounds
	The branch-and-bound (BB) procedure
	Inserting a new shorter vector in the basis
	Numerical illustration

	Normalized Measures of Uniformity
	Figures of Merit That Examine Projections
	Main facilities provided by Lattice Tester
	General overview
	Representing large numbers, vectors, and matrices
	IntLattice and IntLatticeExt
	BasisConstruction
	LLL and BKZ functions
	ReducerStatic
	ReducerBB
	Normalizer
	Weights
	Coordinates and CoordinateSets
	Figures of merit
	Rank1Lattice
	EnumTypes
	Other files

	Examples of programs that use Lattice Tester
	TestBasisConstructSmall
	TestMatrixCreationSpeed
	TestBBSmall
	TestBasisConstructSpeedLLL
	TestBasisConstructSpeedTri
	TestBasisTriSmall
	TestNormDecompSpeed
	TestReducersSpeed
	TestCholesky
	TestFOMPairs
	TestFOMSearch
	TestNormBounds

	Bibliography

