
Draft date: February 2, 2024

Stochastic Simulation
and Monte Carlo Methods

Pierre L’Ecuyer
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2.16.4 Other Lévy Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.16.5 The gamma process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
2.16.6 The variance-gamma process . . . . . . . . . . . . . . . . . . . . . . . 225
2.16.7 The inverse Gaussian process . . . . . . . . . . . . . . . . . . . . . . 227
2.16.8 The normal inverse Gaussian process . . . . . . . . . . . . . . . . . . 228
2.16.9 The stable process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

2.17 Stationary Autocorrelated Stochastic Processes . . . . . . . . . . . . . . . . 228



Table of Contents V

2.17.1 Time series and autocorrelation . . . . . . . . . . . . . . . . . . . . . 229
2.17.2 Autoregressive processes and ARIMA models . . . . . . . . . . . . . 229
2.17.3 ARTA and VARTA models . . . . . . . . . . . . . . . . . . . . . . . . 230
2.17.4 Other ways of inducing autocorrelation between the underlying uniforms230

2.18 Fitting a Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
2.18.1 Estimating the Parameters . . . . . . . . . . . . . . . . . . . . . . . . 232
2.18.2 Assessing goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . 233
2.18.3 Testing goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . 234

2.19 Performance Measures over Finite and Infinite Time Horizons . . . . . . . . 236
2.19.1 Finite horizon, additive cost function . . . . . . . . . . . . . . . . . . 237
2.19.2 Discounted costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
2.19.3 Ratios and other nonlinear functions of expectations . . . . . . . . . 239
2.19.4 Infinite-horizon, long-term average . . . . . . . . . . . . . . . . . . . 240
2.19.5 Total discounted cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
2.19.6 Finite vs infinite horizon . . . . . . . . . . . . . . . . . . . . . . . . . 242

2.20 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3 Uniform Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . 253
3.1 Major Issues, Definitions, and Requirements . . . . . . . . . . . . . . . . . . 253

3.1.1 Why not just use a physical device? . . . . . . . . . . . . . . . . . . . 253
3.1.2 Generators Based on a Deterministic Recurrence . . . . . . . . . . . . 254
3.1.3 Quality Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
3.1.4 Statistical Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

3.2 Linear Recurrences Modulo m . . . . . . . . . . . . . . . . . . . . . . . . . . 258
3.2.1 The Multiple Recursive Generator . . . . . . . . . . . . . . . . . . . . 258
3.2.2 Alternative representations . . . . . . . . . . . . . . . . . . . . . . . . 259
3.2.3 Jumping Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
3.2.4 Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
3.2.5 What if m is a Power of Two? . . . . . . . . . . . . . . . . . . . . . . 264
3.2.6 Linear Recurrences With Carry . . . . . . . . . . . . . . . . . . . . . 265
3.2.7 The Lattice Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 267
3.2.8 Figures of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

3.2.8.1 The dual lattice and distance between hyperplanes. . . . . . 272
3.2.9 Figures of merit based on several projections . . . . . . . . . . . . . . 275
3.2.10 Bounds on ℓI and nI in terms of the MRG coefficients . . . . . . . . . 276
3.2.11 MRG Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 278
3.2.12 Combined MRGs and LCGs . . . . . . . . . . . . . . . . . . . . . . . 282

3.3 Generators Based on Recurrences Modulo 2 . . . . . . . . . . . . . . . . . . 283
3.3.1 A General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 283
3.3.2 Jumping Ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
3.3.3 Combined F2-Linear Generators . . . . . . . . . . . . . . . . . . . . . 286
3.3.4 Measures of Uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . 286
3.3.5 Lattice Structure in Spaces of Polynomials and Formal Series . . . . . 290
3.3.6 The LFSR Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
3.3.7 The GFSR, Twisted GFSR, and Mersenne Twister . . . . . . . . . . 293



VI Table of Contents

3.3.8 The WELL RNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
3.3.9 Xorshift Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
3.3.10 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

3.4 Nonlinear RNGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
3.4.1 Speed Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

3.5 Statistical Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
3.6 RNG Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

4 Non-Uniform Random Variate Generation . . . . . . . . . . . . . . . . . . . . . . 305
4.1 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

4.1.1 Inversion for Discrete Distributions . . . . . . . . . . . . . . . . . . . 307
4.1.2 Inversion for Continuous Distributions . . . . . . . . . . . . . . . . . 309

4.2 The Alias and Acceptance-Complement Methods . . . . . . . . . . . . . . . 313
4.3 Composition and Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.4 The Rejection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

4.4.1 The principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
4.4.2 Rejection with composition and recycling . . . . . . . . . . . . . . . . 322

4.5 Change of variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.5.1 General formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
4.5.2 Rejection with a change of variable . . . . . . . . . . . . . . . . . . . 324
4.5.3 A univariate change of variable . . . . . . . . . . . . . . . . . . . . . 325
4.5.4 A generalized ratio-of-uniforms method . . . . . . . . . . . . . . . . . 327

4.6 Thinning a Point Process with Time-Varying Rate . . . . . . . . . . . . . . . 328
4.7 Kernel Density Estimation and Generation . . . . . . . . . . . . . . . . . . . 329
4.8 Special Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
4.9 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.10 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

5 Output Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
5.1 Quality and Precision of Statistical Estimators . . . . . . . . . . . . . . . . . 335
5.2 Estimation of a finite-horizon expectation . . . . . . . . . . . . . . . . . . . 336

5.2.1 Small samples, normal observations . . . . . . . . . . . . . . . . . . . 337
5.2.2 Large samples, central-limit effects . . . . . . . . . . . . . . . . . . . 337
5.2.3 Confidence Intervals for Discrete distributions . . . . . . . . . . . . . 338
5.2.4 Distribution-free confidence intervals for the mean * . . . . . . . . . . 339
5.2.5 Fixed sample size vs sequential estimation . . . . . . . . . . . . . . . 340

5.3 Confidence regions for vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.3.1 Bonferroni Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.3.2 Confidence ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

5.4 Confidence intervals for functions of expectations . . . . . . . . . . . . . . . 344
5.4.1 The delta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
5.4.2 Confidence interval for a ratio of expectations . . . . . . . . . . . . . 346
5.4.3 Confidence Interval on the Variance . . . . . . . . . . . . . . . . . . . 348
5.4.4 Confidence Intervals for the Ratio of Two Variances . . . . . . . . . . 349



Table of Contents VII

5.4.5 Confidence intervals on the covariance and correlation . . . . . . . . . 350
5.5 Relative performance: comparing systems . . . . . . . . . . . . . . . . . . . 350

5.5.1 Confidence intervals on the difference between two means . . . . . . . 350
5.5.2 Comparing more than two systems . . . . . . . . . . . . . . . . . . . 351

5.6 Estimating a root or a minimum of a function . . . . . . . . . . . . . . . . . 352
5.7 Estimating quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
5.8 Functional estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
5.9 Bootstrap confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . 355
5.10 Estimation of Steady-State Performance: The Setup . . . . . . . . . . . . . 358

5.10.1 Autocorrelation in stationary stochastic processes . . . . . . . . . . . 359
5.10.2 Continuous-time setup . . . . . . . . . . . . . . . . . . . . . . . . . . 362
5.10.3 Average cost per unit of time . . . . . . . . . . . . . . . . . . . . . . 362
5.10.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
5.10.5 Generating the initial state from the equilibrium distribution . . . . . 365
5.10.6 Initial Bias Detection and Reduction . . . . . . . . . . . . . . . . . . 365
5.10.7 Truncated Horizon: One long run or multiple runs . . . . . . . . . . . 368

5.11 Confidence intervals using a single long run . . . . . . . . . . . . . . . . . . 369
5.11.1 Batch Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
5.11.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
5.11.3 Standardized time series . . . . . . . . . . . . . . . . . . . . . . . . . 373

5.12 Regenerative Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
5.12.1 Classical Regenerative Processes . . . . . . . . . . . . . . . . . . . . . 374
5.12.2 Renewal Reward Theorem . . . . . . . . . . . . . . . . . . . . . . . . 375
5.12.3 Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
5.12.4 Discounted Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
5.12.5 Harris-recurrent and m-dependent regenerative processes . . . . . . . 377

5.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

6 Efficiency Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
6.2 Motivating Examples and Heuristics . . . . . . . . . . . . . . . . . . . . . . 383

6.2.1 Variance reduction for the call center example . . . . . . . . . . . . . 383
6.2.2 Sensitivity to the service speed . . . . . . . . . . . . . . . . . . . . . 388

6.3 Correlation Induction: Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 391
6.3.1 Covariance between functions of a single uniform . . . . . . . . . . . 391
6.3.2 Quadrant dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
6.3.3 Functions of several random variables . . . . . . . . . . . . . . . . . . 394

6.4 Common Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
6.4.1 Sufficient conditions for variance reduction . . . . . . . . . . . . . . . 396
6.4.2 CRNs for very small differences . . . . . . . . . . . . . . . . . . . . . 399
6.4.3 Comparing regenerative models . . . . . . . . . . . . . . . . . . . . . 409
6.4.4 Generalizations and related techniques . . . . . . . . . . . . . . . . . 410

6.5 Control Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
6.5.1 Setting and optimal coefficients . . . . . . . . . . . . . . . . . . . . . 411
6.5.2 Types of control variables . . . . . . . . . . . . . . . . . . . . . . . . 412



VIII Table of Contents

6.5.3 Estimating the optimal coefficients: asymptotic theory . . . . . . . . 413
6.5.4 A multinormal setting . . . . . . . . . . . . . . . . . . . . . . . . . . 414
6.5.5 Splitting for control variates . . . . . . . . . . . . . . . . . . . . . . . 415
6.5.6 Pilot runs are often inefficient . . . . . . . . . . . . . . . . . . . . . . 417
6.5.7 Known variance of the controls . . . . . . . . . . . . . . . . . . . . . 418
6.5.8 Multiresponse estimation . . . . . . . . . . . . . . . . . . . . . . . . . 418
6.5.9 Linear metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
6.5.10 Nonlinear functions of means and nonlinear controls . . . . . . . . . . 419

6.5.10.1 Linear controls for a function of means . . . . . . . . . . . . 419
6.5.10.2 A more general setting with nonlinear controls . . . . . . . . 420

6.5.11 Moments matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
6.5.12 Biased control variates . . . . . . . . . . . . . . . . . . . . . . . . . . 424
6.5.13 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

6.6 Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
6.6.1 Extended CMC and filtered Monte Carlo . . . . . . . . . . . . . . . . 429
6.6.2 Filtered Monte Carlo for Poisson input . . . . . . . . . . . . . . . . . 430
6.6.3 Conditional expectation for smoothing small differences . . . . . . . . 431

6.7 Indirect Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
6.8 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

6.8.1 Deterministic allocation to strata . . . . . . . . . . . . . . . . . . . . 436
6.8.2 Dynamic allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
6.8.3 Random allocation with poststratification . . . . . . . . . . . . . . . 441

6.9 Antithetic Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
6.9.1 A General Antithetic Variates Framework . . . . . . . . . . . . . . . 442
6.9.2 Antithetic pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444
6.9.3 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . 446

6.10 Quasi-Monte Carlo Point Sets and Sequences . . . . . . . . . . . . . . . . . . 448
6.10.1 Digital nets and sequences: definitions . . . . . . . . . . . . . . . . . 449
6.10.2 Equidistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
6.10.3 Digital shift and matrix scramble . . . . . . . . . . . . . . . . . . . . 452
6.10.4 The van der Corput sequence and (0, k, 2) nets . . . . . . . . . . . . . 454
6.10.5 Sobol’ sequences and nets . . . . . . . . . . . . . . . . . . . . . . . . 455
6.10.6 Faure sequences and nets in prime base b. . . . . . . . . . . . . . . . 457
6.10.7 Niederreiter and Niederreiter-Xing sequences. . . . . . . . . . . . . . 458
6.10.8 Hammersley Point Sets and Halton Sequence . . . . . . . . . . . . . . 458
6.10.9 Integration Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
6.10.10Polynomial Integration Lattices . . . . . . . . . . . . . . . . . . . . . 462
6.10.11Recurrence-based point sets . . . . . . . . . . . . . . . . . . . . . . . 462

6.11 Randomized Quasi-Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 463
6.11.1 General Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
6.11.2 Randomizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464

6.11.2.1 Random shifts. . . . . . . . . . . . . . . . . . . . . . . . . . 464
6.11.2.2 Random matrix scrambles. . . . . . . . . . . . . . . . . . . . 464
6.11.2.3 A deeper scramble. . . . . . . . . . . . . . . . . . . . . . . . 465
6.11.2.4 Asymptotic variance bounds. . . . . . . . . . . . . . . . . . 465



Table of Contents IX

6.11.3 Randomly-shifted lattice rules . . . . . . . . . . . . . . . . . . . . . . 466
6.11.3.1 Variance expression. . . . . . . . . . . . . . . . . . . . . . . 466
6.11.3.2 Adding a baker transformation. . . . . . . . . . . . . . . . . 466

6.11.4 Digital nets with a random digital shift . . . . . . . . . . . . . . . . . 466
6.11.5 Randomizing the Halton sequence . . . . . . . . . . . . . . . . . . . . 468
6.11.6 Variance Decomposition and Effective Dimension . . . . . . . . . . . 468
6.11.7 Transforming the Function f . . . . . . . . . . . . . . . . . . . . . . . 469

6.11.7.1 Change of variables. . . . . . . . . . . . . . . . . . . . . . . 469
6.11.7.2 Periodizing the function. . . . . . . . . . . . . . . . . . . . . 470
6.11.7.3 Reducing the effective dimension. . . . . . . . . . . . . . . . 471

6.11.8 Examples of applications to option pricing . . . . . . . . . . . . . . . 472
6.12 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

6.12.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
6.12.2 General formulation and key properties . . . . . . . . . . . . . . . . . 479
6.12.3 Zero-variance simulation of a Markov chain . . . . . . . . . . . . . . . 483
6.12.4 Zero-variance for a general Markov chain . . . . . . . . . . . . . . . . 484
6.12.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
6.12.6 When things can go wrong . . . . . . . . . . . . . . . . . . . . . . . . 496
6.12.7 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
6.12.8 Links with large deviations theory . . . . . . . . . . . . . . . . . . . . 498
6.12.9 IS for heavy-tailed distributions . . . . . . . . . . . . . . . . . . . . . 498
6.12.10Adaptive IS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6.12.11To probe further . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498

6.13 Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6.13.1 A rare-event setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
6.13.2 Multilevel splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
6.13.3 Splitting: examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

6.14 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549



X Table of Contents



Preface

The real preface is not yet written. Meanwhile, I collect here some comments and remarks
that could be useful.

General Comments

This book started as class notes for the graduate class “IFT6561, Simulation: Aspects
Stochastiques”, at Université de Montréal, around 1992. The first versions were partly in-
spired by Bratley, Fox, and Schrage (1987) and Law and Kelton (1991). A draft of the book
in current format was distributed to the students already in 2003, and made available online
privately every year after that.

The results of the numerical examples were obtained by using the Stochastic Simula-
tion in Java (SSJ) library (L’Ecuyer, Meliani, and Vaucher 2002, L’Ecuyer and Buist 2005,
L’Ecuyer 2023). The Java programs used for this can be found on the GitHub site of SSJ
(L’Ecuyer 2023). Several examples are related to computational finance, because master
students from that field often formed the majority in the IFT6561 class.

Chapter 1 gives an introduction to stochastic simulation. Its main goal is to provide an
intuitive understanding of the key ideas and principles via simple examples and numerical
illustrations. It aims to give the reader a proper insight into the most elementary and impor-
tant concepts, and develop motivation for the further chapters by pointing out various types
of difficulties that can arise and techniques that can be used to address these difficulties.
Detailed analysis of these techniques, advanced methods, theory, and special cases, are left
out for the other chapters. This chapter can serve for a short introductory course just by
itself.

Appendix A offers a condensed review of key topics and results in probability, statistics,
and stochastic modeling, that can be useful to understand the material of the book. It gives
short elementary introductions to Markov chains and queuing theory, in particular.
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Notation

What follows is a partial list of the notation, abbreviations, and symbols often used in the
book. As a general rule, we use uppercase letters for random variables and lowercase for
the values they take (their realizations). Vectors and matrices are usually in boldface. By

default, all vectors are column vectors. 1

0 A vector whose coordinates are all 0.

1 A vector whose coordinates are all 1.

⌈x⌉ Ceiling of x; i.e., smallest integer ≥ x.

⌊x⌋ Floor of x; i.e., largest integer ≤ x.

(0, 1)t The t-dimensional unit hypercube.

Ai Often used for time between arrivals of customers i and i+ 1.

A2
n Anderson-Darling statistic.

AR(p) Autoregressive process of order p.

B(·) Used to denote a standard Brownian motion.

Ci Cost (or reward) incurred at the ith event epoch.

cdf Cumulative distribution function.

CLT Central limit theorem.

CMC Conditional Monte Carlo.

Corr Linear correlation.

Cov Covariance.

CRN Common random numbers.

C(X) Can be the expected computing cost for the estimator X.

CTMC Continuous-time Markov chain.

CV Control variate.

Dn Kolmogorov-Smirnov statistic.

Dn(Pn) The extreme discrepancy.

1From Pierre: This list needs to be updated.
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D∗
n(Pn) The star discrepancy.

D
∗(p)
n (Pn) The Lp-star discrepancy.

det Determinant.

DTMC Discrete-time Markov chain.

E Mathematical expectation.

ei The ith event of the simulation.

ei The ith unit vector, with a 1 in position i and zeros elsewhere.

En Integration error.

Eff Efficiency (of an estimator).

f Used to denote a density or the integrand in MC integration.

F Cumulative distribution function (cdf).

F−1 Inverse cdf.

F̂n Empirical cdf.

F2 The finite field with two elements, 0 and 1, in which all operations are performed
modulo 2.

Fi The σ-field generated by the history up to time ti.

FCFS First-come first-served.

FIFO First-in first-out.

GFSR Generalized feedback shift register.

GI/GI/1 A single-server queue with independent interarrival times and service times, with gen-
eral distributions.

HRMS Highly-reliable Markovian system.

i Often denotes the number of a replication or the index of a point for QMC methods.
May also be an event number in discrete-event simulation.

i.i.d. Independent and identically distributed.

I The indicator function: I(x) = 1 when x is true; I(x) = 0 otherwise.
Sometimes denote the interval [0, 1] in random number generation.

IS Importance sampling.

j Often denotes a regenerative cycle or the number of a replication.

L Used to denote the likelihood ratio.

ln Natural logarithm.

LCG Linear congruential generator.

LFSR Linear feedback shift register.

LHS Latin hypercube sampling.

LRS Linear recurring sequence.
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MC Monte Carlo.

MCMC Markov chain Monte Carlo.

mgf Moment generating function.

M/M/1 A single-server FIFO queue with independent exponential interarrival times and service
times.

M/M/s An s-server FIFO queue with independent exponential interarrival times and service
times.

MRG Multiple recursive generator.

MSE Mean square error.

n Number of simulation runs (sample size) or number of points in QMC point set.

N(t) Number of events that have occurred by time t.

Nc(t) Number of customers having started their service by time t.

N(0, 1) The standard normal distribution.

N(µ,Σ) Multivariate normal with mean µ and covariance matrix Σ.

NORTA Normal to anything. Models a multivariate distribution using a normal copula.

o(f(x)) We write g(x) = o(f(x)) to mean that g(x)/f(x) → 0 when x → ∞, or when x → 0,
depending on the context.

O(f(x)) The set of all functions g such that there is a constant K for which |g(x)| ≤ K|f(x)|
for all x sufficiently large (when we are interested in x → ∞), or sufficiently small
(when we are interested in x → 0). For historical reasons, the standard practice is to
write g(x) = O(f(x)) instead of g(x) ∈ O(f(x)) to mean that g belongs to O(f(x)).

O(f(x)) We write g(x) = O(f(x)) to mean that there is a constantK for which |g(x)| ≥ K|f(x)|
for all x sufficiently large (when we are interested in x→∞), or sufficiently small (when
we are interested in x→ 0).

P Probability.

Pn A point set of cardinality n, for QMC methods.

Pn(I) The projection of Pn on the lower-dimensional subspace determined by the coordinates
that belong to I.

P-P Probability-probability (plot).

pdf Probability density function.

pmf Probability mass function.

Q(t) The length of a queue at time t.

Q̄T Average queue length from time 0 to time T .

Q-Q Quantile-quantile (plot).

QMC Quasi-Monte Carlo.

R The real numbers.
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R Rank correlation matrix.

RE Relative error.

RNG Random number generator.

RQMC Randomized quasi-Monte Carlo.

r.v. Random variable.

S2
n Sample variance of n observations (usually X1, . . . Xn).

Si Service time of customer i.

S State space of the simulation model.

Si State of the simulation model at time ti.

SA Stochastic approximation.

SA Sample average approximation.

SSJ Stochastic simulation in Java.

σ2 The (theoretical) variance.

t Transposition operator, for vectors and matrices.

t Often denotes the dimension of an integral.

ti Epoch of occurrence of the i-th event ei.

T Simulation time horizon.

U , Uj Often denotes a uniform random variable over (0, 1).

U , Uj Usually denotes a random vector uniformly distributed over (0, 1)t.

un The nth output value of a uniform RNG.

U(0, 1) The uniform distribution over (0, 1).

VN Cumulative cost for the first N events.

Vρ,N Cumulated discounted cost for the first N events, with discount rate ρ.

V ∞
ρ Total discounted cost over an infinite horizon.

v̄ Average cost per unit of time over an infinite horizon.

Var The variance.

vol The volume.

VRF Variance reduction factor.

VRT Variance reduction technique.

X Usually denotes a random variable, often the output of a simulation.

Xi A copy of X.

X̄n Sample average of X1, . . . Xn.

Wi Waiting time (in queue) for customer i.

W̄n Average waiting time of the first n customers.
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w.p.1 With probability 1.

Z, Zj Often denotes a standard normal random variable.

β The bias of an estimator.

Γ (·) The gamma function; see Eq. (5.35).

λ(t) Rate (or intensity) of a Poisson process.

Λ(t) Cumulative rate of a Poisson process.

Φ(·) Used to denote the standard normal distribution function.

Ψt The set of all t-dimensional vectors of successive output values of a RNG.

ΨI The set of all vectors of output values of a RNG, for lacunary index set I.

µ Usually denotes a theoretical mean (expectation) to be estimated by simulation.

ω A sample point (an element of Ω); represents the underlying randomness.

Ω Sample space.

ρ(X, Y ) Linear correlation between X and Y .

ρs(X, Y ) Rank (or Spearman’s) correlation between X and Y .

Θ(f(x)) We write g(x) = Θ(f(x)) to mean that we have both g(x) = O(f(x)) and g(x) =
O(f(x)).



1. Introduction

1.1 Systems, Models, and Simulation

1.1.1 Modeling and simulation

In this book, simulation means running a computer program to imitate (simulate) the be-
havior of a system. Simulation permits one to try out various kinds of actions and even make
bad decisions without paying the real price for one’s mistakes. Think of flight simulators and
computer games. Simulation has thousands of serious applications, for planning and decision
making in manufacturing, material handling systems, computer and communication systems,
logistics, transportation, health care, military operations, security, economics and finance,
and so on. It is used in sciences (physics, chemistry, biology, medicine, etc.) to better under-
stand how things behave, in computer graphics to generate images and movies by simulating
light paths, and we could go on. In most applications, simulation involves random sampling
from carefully selected probability distributions.

What we actually simulate on a computer is a model of the system of interest, which is a
simplified abstract (conceptual, mathematical) representation of something that may or may
not exist. Its purpose is to better understand the behavior of the system that it represents,
often to improve its design or control or to make external decisions about it. Models are
used when experimenting with the system itself is impossible (it may not even exist), or too
costly, or just inconvenient. Simulation means reproducing and observing the behavior of the
model by running a computer program that behaves like the model.

Generally speaking, conceptual or mathematical models are abstract constructions that
may exist only in the mind. Mathematical models used for simulation must be precisely
defined, by a set of logical relationships, mathematical equations, and probability laws used
to represent the randomness (uncertainty) in the system. All mathematical models simplify
reality. In most cases, the model is better defined than the real system. It must be defined
well enough so that all its relevant behavior and properties can be determined in a practical
way: analytically, numerically, or by simulation, i.e., by running the model on a computer
with certain (typically random) inputs and observing the output. A good abstract model
often greatly improves our understanding of the system’s behavior.

Simulation can also be performed with physical models, which are scaled-down versions
of the system (e.g., miniature representations). Examples include an airplane wing in a
wind-tunnel, artificial waves produced in a swimming pool to test the effect of a storm
on different shapes of breakwaters, toy dinosaurs used in movie production, or a miniature
representation of a city block. In the first example, the model may be used to obtain relatively
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precise measures of performance expressed as numerical values, whereas in the last one, the
goal could be to evaluate (visually) how well a new building to be constructed would fit its
environment. In recent decades, physical models in practically all areas have been replaced
by mathematical models simulated on computers. We will not discuss them any further in
this book.

Simulation is also used for other purposes than imitating the behavior of systems by
simulating models. For example, it is a very powerful tool to estimate high-dimensional
integrals, to optimize complicated functions, and to solve large systems of equations, by
using random sampling, as we shall see later. Using random sampling in such settings is
often called Monte Carlo simulation. This is widely used in engineering, numerical analysis,
computational statistics, machine learning, operations research, and many other areas.

1.1.2 Types of mathematical models

Figure 1.1 crudely classifies mathematical models in three types. The left side corresponds
to simplification and the right side represents better realism.

mathematical
model

numerical
resolution simulation

analytical
formula

Fig. 1.1. Classes of models

The simplest and easiest-to-handle models lend themselves to analytic solutions, i.e., the
performance measure of interest can be quickly evaluated by a simple mathematical formula.

Example 1.1 Suppose you know the position, angle, and speed of the shot when it leaves
the hand of your favorite Olympic shot-putter. Then you can compute the distance of the
throw pretty accurately without having to simulate, by using classical ballistic formulas.
Assuming that wind and air resistance are negligible, that the shot is launched at angle θ
from the horizontal, speed v (in meters per second), and at x0 meters ahead and y0 meters
above the starting point of measurement on the ground (the front of the throwing circle),
then the distance in meters is given by the analytic (balistic) formula: ♣ Picture to be

added.

d = x0 +
v cos θ

g

(
v sin θ +

√
(v sin θ)2 + 2gy0

)
, (1.1)

where g ≈ 9.8 meters per squared second (m/s2) is the downward vertical acceleration due
to gravity. We will not prove or derive this formula here. It has been derived using the laws
of classical mechanics, by assuming that the horizontal speed is constant, the vertical speed
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changes at constant rate −g, and the measurement is made at the point where the center of
the shot hits the ground. In practice, the measurement is made at the closest mark left on the
ground by the shot, and we could make an adjustment to the formula for this. Computing d
with this formula is very easy once we know (x0, y0, v, θ).

If we replace the shot by a javelin or a discus or a football, the effect of the wind, object
orientation, and rotation are no longer negligible, so the simple balistic formula (1.1) is no
longer sufficient. □

Analytical formulas are available for certain (simple) inventory models, reliability models,
queuing models, and so on (see, e.g., Hillier and Lieberman 2021, Wolff 1989). Using an
available formula is much easier than developing and programming a simulation model.
Deriving an analytical formula, on the other hand, is generally more difficult, involves higher
mathematical sophistication, and often requires making strong and unrealistic assumptions
on the behavior of the real-life system.

In other situations, the relevant quantities can be computed or closely approximated
by deterministic numerical algorithms such as those used in linear, nonlinear, and dynamic
programming, differential-equation solvers, and so on. Solving ordinary or partial differential
equations by deterministic numerical methods such as finite differences or finite elements is
often called simulation in the literature. In this book, we focus on situations where the model
or the solution method (or both) involves uncertainty and random sampling. The class of
techniques that rely on random sampling for solving problems are also known (collectively)
as the Monte Carlo method (Fishman 1996, Hammersley and Handscomb 1964, Liu 2001,
Rubinstein 1981, Sobol’ 1994, and Section 1.4 below). This name was coined by physicists
working on nuclear weapons at Los Alamos (USA) during World War II, at a time when the
prime spot for games of chance was Monte Carlo, on the French Côte d’Azur.

As a model gets too complicated, analytical or numerical solutions become impossible
to obtain, and one must rely on simulation. More realistic models are usually be more
complicated. Simulation models typically require fewer simplifying assumptions, and hence
tend to be more credible because they have the flexibility to better capture the real system.
Simulation is often easier to understand and justify, for the (non-specialist) managers and
customers, than analytical formulas or mathematical programming algorithms. On the other
hand, a simple analytic model may give much more insight into what is most important, e.g.,
could make you understand why policy A is better than policy B. Simulation can also be
used to validate a simple analytical model. If the simple formula and the (more detailed and
realistic) simulation give similar results, one will be more willing to rely on the approximation
provided by the simple formula.

Example 1.2 Suppose we want to study a service system that operates from 8:00 to 18:00
(10 hours in total). Customers arrive at random, one by one, and their arrival rate may
depend on the time of the day. In our model, we decide to assume that the customers have
independent (random) service times, whose probability distribution can be estimated and
is the same for all customers. There are s servers and the customers are served by order
of arrival. We may be interested in the average waiting time in the queue per customer, or
the fraction of customers whose waiting time exceeds a given number, or perhaps the entire
distribution of the customer’s waiting times, in the long run. This could model the queue for
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tellers in a bank, or at an ice-cream shop, or the waiting times of calls in a telephone call
center, for example.

We could develop a detailed model of this situation using estimates of all the probability
distributions involved, which are possibly time-dependent, and then simulate the model for
a large number of days to estimate the performance measures of interest with sufficient
accuracy. If we wish, we could also simulate customer abandonments, servers taking a break
for a few minutes, and other fine details.

An alternative widely-used by managers is to partition the day into p time periods of
equal length, often 15 or 30 minutes each, and assume that over each such period we have
an M/M/s queueing system in steady-state, as defined in Section A.19. For this type of
model, we assume that over each period j = 1, . . . , p, the arrivals times follow a stationary
Poisson process with rate λj customers per minute (i.e., the times between successive arrivals
are independent and exponential with mean 1/λj), the service times are independent and
exponential with rate µj (i.e., with mean 1/µj), there are s = sj > λj/µj identical servers,
and the system has been evolving for an infinite amount of time with these parameters. This
model neglects the boundary effects across periods (the fact that the queue is more likely
to be smaller at the beginning of a period if the previous period had a smaller arrival rate,
for example). Obviously, there is no chance that all these assumptions are exactly true; the
simplified model is used only as an approximation for which performance measures of interest
can be computed exactly and easily for each period, using the M/M/s queueing formulas.

Under the M/M/s model for period j, the waiting time W (j) of a “random” customer in
that period is a random variable whose exact probability distribution is given by Equations
(A.12) and (A.14) of the appendix. The probability γj(x) = P[W (j) > x] under this model
can be computed by these formulas. A customer selected at random over a long period (a
large number of days) will arrive in period j with probability pj = λj/(λ1+· · ·+λp), and then
the probability that its waiting time exceeds x can be computed by the weighted average

γ(x) =

p∑
j=1

pjγj(x).

With the M/M/s approximation, the quantities of interest are much faster to compute
than with simulation. This advantage could be particularly significant if we want to evaluate
several configurations of the system, for example to optimize the value of sj in each period.
On the other hand, the M/M/s approximation might be too unrealistic for our needs. To
assess this, we may first validate the approximation by comparing the values it gives with
those observed in the real system or those obtained by simulation, to see if we can use the
less expensive approximation with confidence. □

A mathematical model is called stochastic if its specification involves randomness, and
deterministic otherwise. For example, linear programming or ordinary differential equation
models are deterministic, while queuing or reliability models are stochastic because the arrival
times and service times in the queuing model and the lifetimes of components in the reliability
model are usually random. A simulation model of ambulances is a city must be stochastic,
because the times and physical origins (addresses) of ambulance calls and the travel times
of the ambulances are random. Inventory and supply chain models are stochastic as soon as
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demands or delivery times are random. Simulating stochastic models involve the generation
of random variables on the computer and can benefit from special tools for proper statistical
analysis of the results and for reducing the variance of statistical estimators. Models may also
be classified as static or dynamic. In a static model, the time plays no significant role. For
example, we might want to estimate the probability that all the nodes in a given network are
connected, given that we know the probability, for any pair of nodes, that there is a direct
link between these nodes, and that these direct links are independent. Dynamic models are
those that evolve in time, and for which we are interested in quantities that depend on this
evolution. Examples include queuing networks, inventory models, and so on. Most models
examined in this book are dynamic and stochastic.

The time-evolution (or space-evolution, in some cases) of a model is sometimes described
by a set of differential equations. The state then changes continuously with time (or space),
and simulating this process is called continuous simulation. In other cases, as far as the
logical relationships and equations are concerned, everything happens only at discrete points
in time, which are not necessarily evenly spaced, and are typically random. These points are
called the event times, and what happens at any of these time points is called an event. Such
models are called discrete-event models; examples will be examined in Sections ?? and 1.12,
for instance. When the event times are deterministic and evenly spaced (e.g., the ith event
occurs at time ti = i), we have a discrete-time model. There also exists hybrid models, for
which the state may change abruptly at certain event times and would evolve continuously
between these events according to differential equations (either deterministic or stochastic).

Discrete-event stochastic simulation is widely used to study the performance on complex
systems encountered in manufacturing, logistics, communication, transportation, health-care,
economics, finance, etc. It can be used for example to compare the performances of different
configurations of a factory, or a communication network, or the ambulances in a large city,
or each restaurant in a fast-food chain, etc. It can be used to estimate the probability of a
delay that exceeds a given threshold in a construction project, or for a given train in a large
rail network, or for an airline flight or a delivery truck, etc. More examples are given in the
rest of the book.

1.1.3 Advantages and disadvantages of simulation

Playing with a mathematical model has many advantages over experimenting with the real
system:

• It is non-destructive: One can make mistakes for free. One can test different layouts,
designs, operating policies, schedules, etc., to answer “what-if” questions without com-
mitting real resources or causing costly damage.

• The system of interest does not have to exist: It may be totally virtual (as in computer
games) or planned to be built in the future. A material handling system, for example,
can be tested by simulation in the context where it is going to operate, before being
built or installed.

• Similar experiments (e.g., with the same inputs but slightly different policies, or with
either the same or different realizations of the underlying random variables in the case
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of a stochastic simulation) can be repeated at will, under the same conditions. This can
be used to improve accuracy when estimating the differences between the performances
of two or more systems, and for optimization via simulation.

• A simulation model can often be run at a much faster rate than the real system.
For example, two years of operation of a manufacturing plant may be simulated in
a few minutes on a computer. It can also be the opposite. For example, a realistic
simulation of a human hearth for one second can take hours of computing with millions
of processors (Fedele et al. 2023).

• Simulation can be coupled with graphical animation, so one can visualize how the
system evolves, either in accelerated mode or in slow motion. This permits one to
better understand the general behavior of the system, or observe special phenomena
in greater details, and gain insight into how things actually work.

• Specially designed simulation tools can be used for teaching and training students,
managers, pilots, etc.

Building and running simulation models also offers some challenges:

• The modeling and programming often requires a lot of time and money. The quality
and utility of a model depends highly on the skill of the modeler and on the quality and
volume of the available data, which is often not what we would like. Building realistic
stochastic models and estimating their parameters from available data can be a very
difficult task in general, more difficult than programming and running simulations
(Macal et al. 2013).

• In their plain forms, stochastic simulation and Monte Carlo methods produces only
point estimates for a fixed set of model parameters rather than the “optimal” solu-
tion. Developing effective methods for stochastic optimization by simulation provides
additional challenges. This is typically more difficult than, say, with traditional math-
ematical programming tools.

1.1.4 Models and programs

Nowadays, most simulations are performed on computers; the models are implemented as
computer programs. One should distinguish between the real system, the model, and the
simulation program (also called computerized model; see Figure 1.2). The model is only a
conceptual (abstract) mathematical construct which, in a sense, is itself simulated on the
computer by the simulation program. It is important to make the distinction because the
model must be precisely defined “separately” from the program, in the sense that the abstract
model still exists regardless of whether it is implemented in a simulation program.

In some cases, the program may only approximate the model. For example, if some
inventory model specifies that the size of the demand for a given day is a Poisson random
variable with mean λ, then the simulation program will determine the demand size using
some (deterministic) algorithm that produces numbers that “look like” random variates from
the Poisson distribution (see Chapter 4). As another example, a model may be defined over
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Fig. 1.2. Simulation models and programs

an infinite time horizon, and the performance measure of interest defined as a long-term
(steady-state) average, whereas the program can only run over a finite horizon.

Building a mathematical model of a real-life system is called modeling. It involves ab-
straction, simplification, approximation, assumptions, and the like. Writing a simulation
program from the model is programming. Making sure that the program is correct (i.e., re-
ally corresponds to the model) is called verification and has to do with software engineering.
Checking whether the model is a realistic representation of the real-life system is called vali-
dation. A correct program for a valid model should behave in essentially the same manner as
the real-life system for the purpose of the intended application of the simulation model when
both are fed with the same inputs.

In general, proper modeling and validation is much more difficult than programming
and verification. Modeling is an art for which there are guidelines and principles, but no set
of universal procedures that can be followed systematically. Part of it must be learned by
practice and experience. The notion of validity is relative, because a model will never corre-
spond exactly to the real-life system. Details must be neglected, often on a priori grounds, to
keep the model tractable, even when there is no rigorous proof that such neglect is justified.
As a result, there is no such thing as an “absolutely valid” model. One must be pragmatic:
a model is considered valid if it is accurate enough for its target application. So, validity
depends on the model’s purpose. A model valid for studying a given property of a certain
system might no longer be valid to estimate a different property of the same system later
on. For a given performance measure of interest, the difference between the value of the
performance measure for the model and that for the real system is the modeling error. It
depends of course on the performance measure that we consider.

Making a model more realistic is costly. Validation is also costly by itself. There should
be a compromise between modeling and validation costs on the one hand, and costs due to
the consequences of an invalid (or not realistic enough) model on the other hand, i.e., the
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costs of modeling error. It is pointless to spend more than the cost of modeling error to
correct for the modeling error.

Useful simulation models and programs tend to be often modified and expanded. Both
the modeling activity and the results from the simulation program reveal new information
along the way, so the modeling process has to be incremental and flexible. Often, certain
aspects of the system (probability laws, operating procedures, etc.) change with the passing
of time (sometimes because of decisions made as a consequence of the simulation study
itself) and the model must be regularly updated. For instance, one may decide to have a
more detailed model of a certain subsystem. Pritsker (1998) discusses these issues.

Example 1.3 As an illustration, suppose one wishes to build a model to simulate the
operations of a large airport over a period of one year. Clearly, one cannot model everything
that happens in the airport: the model would be too large, too costly to develop and run, and
the required detailed data would most likely not be available anyway. The aspects that are
important to model faithfully would depend on the model purpose. They would not be the
same if, for example, the model is to be used by an airline carrier to study the distribution of
waiting times at registration desks, or by border control services to determine their staffing
as a function of time, or by the airport management to study the delays in takeoffs and
landings. □

Examples of simplified models will be given in this book; many others can be found in
the Proceedings of the annual Winter Simulation Conference.

1.1.5 Monte Carlo methods

Monte Carlo methods refer to a general family of techniques that involve random sampling
for solving a problem. It is not only used to imitate (simulate) the behavior of a given
system. These techniques have a wide range of applications where there is no system to
be simulated in the original problem formulation, but a purely artificial stochastic model is
constructed whose simulation permits one to solve (approximately) a problem of interest.
They are heavily used for example in computer graphics, machine learning, computational
statistics, computational biology, computational physics, finance, and many other areas.

The plain vanilla Monte Carlo methods are to estimate integrals, expressed as mathe-
matical expectations (Section 1.4), which may or may not correspond to the average of a
performance measure in some system of interest. The method is also used to solve linear
systems of equations and partial differential equations, to estimate the cardinality of large
sets of combinatorial objects (counting), to optimize a function with respect to certain pa-
rameters (see Section 1.15), and to estimate parameters in Bayesian statistics, for example
(Asmussen and Glynn 2007, Kroese, Taimre, and Botev 2011, Liu 2001, Robert and Casella
2004).

In optimization applications of the Monte Carlo method, there are situations where the
objective function to be optimized can be evaluated exactly at any point, and the evaluation
points are selected by Monte Carlo sampling. In other situations, only noisy evaluations
of the function and/or of some constraints are available. Sometimes, these evaluations are
obtained themselves by Monte Carlo. Often, the function is hard to optimize because it has
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a multitude of local optima and we inject randomness in the optimization algorithm to be
able to visit (at random) a larger and better selection of local optima than with our best
deterministic algorithm.

An important type of approach having applications in several areas is Markov chain
Monte Carlo (MCMC) (Asmussen and Glynn 2007, Chib 2004, Robert and Casella 2004,
Häggström 2002). It applies to situations where we need to generate samples from a prob-
ability measure known only up to a multiplicative constant, and for which we do not know
how to generate samples directly. The idea of MCMC is to construct an artificial ergodic
Markov chain whose steady-state distribution is the probability distribution of interest, and
to simulate that chain long enough to get samples having approximately the desired distri-
bution. The main technique for constructing this chain is the Metropolis-Hasting algorithm.
See Section 4.9.

1.2 Examples of Simple Simulation Models

Example 1.4 A stochastic activity network is a directed acyclic graph (N ,A), where N
is a set of nodes that contains one origin (source) and one destination (sink), and A is a
set of arcs corresponding to activities. Each activity j ∈ A has a random duration Yj with
cdf Fj(·), so P[Yj ≤ x] = Fj(x) for all x. This duration Yj can be viewed as the length of
arc j. Figure 1.3 gives an illustration with a network of 9 nodes and 13 arcs, taken from
Elmaghraby (1977). Such networks are used in PERT-type methodologies for planning and
scheduling activities in large complex projects, often with thousands or more activities. They
are static stochastic models. The network (or project) completion time T is the length of the
longest path from the source to the sink. This longest path is also called the critical path. Its
length T is a random variable. In Figure 1.3, there are 6 different paths, whose lengths are

W1 = Y2 + Y6 + Y11,

W2 = Y1 + Y3 + Y6 + Y11,

W3 = Y1 + Y5 + Y11,

W4 = Y1 + Y4 + Y8 + Y10 + Y11,

W5 = Y1 + Y4 + Y8 + Y9 + Y13,

W6 = Y1 + Y4 + Y7 + Y12 + Y13,

and we have T = max(W1, . . . ,W6).
For a numerical illustration, we take the same cdf’s Fj as in Avramidis and Wilson

(1998), Section 4.1. For the activities j = 1, 2, 4, 11, 12, we have Yj = max(0, Ỹj) where Ỹj
has a normal distribution, Ỹj ∼ N(θj, σ

2
j ) with mean θj and standard deviation σj = θj/4.

The other Yj’s are exponential with mean θj. The values of the mean activity durations
θ1, . . . , θ13 are 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5, respectively.

To get a first crude estimate of the project duration T , one may just replace each Yj by
its expectation θj, then compute W1, . . . ,W6 and their maximum, which is the length T of
the longest path. For our network, this gives 48.2, which is the length W6 of the path that
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Fig. 1.3. Example of a stochastic activity network, from Elmaghraby (1977)

follows the arcs 1, 4, 7, 12, 13. This simplistic type of approximation is often used in practice,
but it is very naive and tells us little about the real behavior of the random variable T . First
of all, it generally differs from the true mathematical expectation of T , which turns out to
be significantly larger than 48.2, as we will see in a moment. It also says nothing about the
likelihood that T takes a value larger than a given threshold x, which could be the true
event of interest for instance in case we must pay a large fine if the completion time exceeds
a given deadline.

We may be interested in estimating the expected project duration µ = E[T ], and/or
the probability px = P[T > x] = E[I[T > x]] that the project completion time exceeds a
given time x, for example. (Recall that I denotes the indicator function.) No efficient nu-
merical method is available for computing these expectations exactly in general, for large
complex networks. To estimate the true values of µ and px, and perhaps other quantities,
we can simulate the model on a computer n times, independently, and take empirical av-
erages. The random variables Yj are simulated by generating pseudorandom numbers that
are transformed to imitate independent realizations of these random variables, as explained
in Section 1.3. In our case, we need functions that return normal random variates with a
given mean and variance and exponential random variates with a given mean. Once we have
generated all the random variates Yj, we can easily compute the length T of the longest path
by taking the maximum over the six paths as shown earlier. For larger networks, there are
efficient standard algorithm that can compute T in O(m) time, where m is the number of
activities (Hillier and Lieberman 2021). We repeat this n times, independently, and compute
T1, . . . , Tn, the n realizations of T . The averages

T̄n =
1

n

n∑
i=1

Ti and
1

n

n∑
i=1

I[Ti > x]

are unbiased estimators of µ and px, respectively.
We simulated this model n = 20 times. The average of the 20 realizations of T was

T̄n = 65.32, and 2 values out of 20 (which is 10%) exceeded x = 90. How accurate are these
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estimates of µ and p90? By repeating the experiment 5 times, we obtained the following
values:

average 65.32 67.25 61.47 60.60 59.14
number above 90 2 2 1 3 1

The numbers vary, which illustrates the importance of assessing the accuracy of estimators
in stochastic simulation. We also see that all values are largely above 48.2, which suggests
that the true mean µ is significantly larger than 48.2. See Exercise 1.5 to understand why.

Values of T
0 25 50 75 100 125 150 175 200

Frequency (×103)

0

5

10
T = x = 90

T = 48.2

average = 64.04

ξ̂0.99 = 134.2

Fig. 1.4. A histogram of the n = 100, 000 realizations of T in Example 1.4.

To get a better idea of the distribution of T , let us simulate a much larger number
n of realizations of T , and look at their empirical distribution. We simulated the model
n = 100, 000 times. Figure 1.4 gives a histogram of the n realizations of T , which ranged
from 15.7 to 282.7, with an average of T̄n = 64.04. This average is again significantly larger
than the deterministic approximation of 48.2 given earlier. To measure the accuracy of this
estimate, we can compute a confidence interval on µ in the standard way as follows. The
empirical variance of T1, . . . , Tn was S2

n = 1
n−1

∑n
i=1(Ti−T̄n)2 = 471.6. Then a 95% confidence

interval on µ (see Sections 1.4.3 and A.13) is given by (64.04±1.96Sn/
√
n) = (63.90, 64.17).

To estimate px for any given x > 0, we can compute Y (x) =
∑n

i=1 I[Ti > x], the number
of realizations for which T > x, and estimate px = P[T > x] by Y (x)/n. In our experiment,
the number of realizations with T > 90 was Y (90) = 11, 385, so our estimate of P[T > 90]
is Y (90)/n = 0.1138, or 11.38%. The variance of Y (x)/n is Var[I[T > x]]/n = px(1− px)/n,
which admits the unbiased estimator S2

n/n
def
= (Y (x)/n)(1 − Y (x)/n)/(n − 1), and a 95%

confidence interval on px would be (Y (x)/n± 1.96Sn/
√
n), where Sn depends implicitly on

x. In our experiment, for x = 90, we have S2
n = 0.1009 and the confidence interval on p90 is

then (0.1138± 1.96
√

0.1009/n) = (0.1119, 0.1158).
We also had 1% of the realizations giving T > 134.2, so the latter value provides an

estimation of the 99% quantile of the distribution of T . Quantile estimation is discussed
further in Example 1.12 and Section 5.7.
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Finally, the histogram in the figure gives an estimation of the density of the random
variable T . A good estimate of this density gives much more information than all the averages
and confidence intervals mentioned so far, since it tells us about the entire distribution of T .
Better (more accurate) density estimators than the histogram are examined in Section 2.9.4.
In the forthcoming sections and chapters, we will also see how to construct more efficient
estimators for µ and px.

Other variants of this static simulation model occur in applications. For example, one
may be interested in the length T of the shortest path in a transportation or communication
network with random arc lengths. The indicator I[T > x] could be replaced by another
(general) function of the Yj’s, for which we want to estimate the expectation or perhaps even
the entire probability distribution. □

Example 1.5 Static reliability of a multicomponent system. The reliability of complex
systems is often analyzed in the following framework, which covers reliability networks, relia-
bility diagrams, and fault trees as special cases (Ball, Colbourn, and Provan 1995, Gertsbakh
1989, Gertsbakh and Shpungin 2010, Rubino 1998). This applies to a wide variety of sys-
tems, such as communication networks, computer systems in banks, power plants, production
systems, aircrafts, military devices, etc. We consider a model in which the system hasm com-
ponents, which can be in state 0 (failed) or 1 (operational). In a static model, the time plays
no role. This could mean that the system is observed at a fixed point in time, for example,
or that components are never repaired and a component is declared “failed” if it fails some-
times during a mission of the system. Let Y = (Y1, . . . , Ym)

t represent the states of the m
components (the vector Y is transposed). A structure function Φ : {0, 1}m → {0, 1} maps
each possible configuration Y to either 0 (the system is failed) or 1 (the system is opera-
tional). The reliability of the system is defined as r = P[Φ(Y ) = 1], the probability that the
system is operational. If we assume that the components are independent and component j
has reliability rj = P[Yj = 1], for all j, then

r =
∑
Y ∈U

∏
{j:Yj=1}

rj
∏

{j:Yj=0}

(1− rj),

where U = {Y : Φ(Y ) = 1}. Each term in this sum represents the probability of the given Y ,
which is the product of probabilities rj for the components that are operational (Yj = 1) and
the probabilities 1− rj for the failed components (Yj = 0). In principle, r can be computed
directly by this formula. But since there are 2m different possible values for the vector Y ,
the number of terms in the sum typically increases exponentially in m, which means that
computing this expression requires a time that also increases exponentially with m and is
therefore impractical in general when m is large. The Monte Carlo method gets around this
drawback by sampling a random subset of the terms of the sum instead of enumerating them
all, and estimating r from that. Here we assume that Φ(Y ) can be computed efficiently for
any Y ∈ {0, 1}m.

This gives the following simple way of estimating r by Monte Carlo: Generate n inde-
pendent copies of Y , say Y1, . . . ,Yn, compute Xi = Φ(Yi) for each i, and estimate r by the
average X̄n = (X1 + · · ·+Xn)/n.

For many applications, the structure function Φ is defined in terms of a graph G = (N ,A)
with a set of nodes N and a set of edges (undirected arcs) A. Each edge j connects two
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nodes and can be either operational or failed; edge j corresponds to the jth component. Let
G(Y ) denote the subgraph of G that contains only the edges j for which Yj = 1. In some
situations, two special nodes s0 (the source) and s1 (the destination) are selected in N and
we have Φ(Y ) = 1 (the system is operational) if and only if nodes s0 and s1 are connected
by at least one path in G(Y ). This requirement can also be made with directed arcs. More
generally, a subset of special nodes S ⊆ N is specified a priori and Φ(Y ) = 1 if and only if
all pairs of nodes in S are connected by at least one path in G(Y ). Sometimes, the paths
must be directed, sometimes not. These types of structure functions are easy to evaluate,
for any given Y , using standard graph algorithms. For example, to check if all nodes in S
are connected, it suffices to construct a minimal spanning tree for S using the edges of G(Y )
only, and there are well-known efficient algorithms to do that (Hillier and Lieberman 2021).

In many reliability applications, another important difficulty arises from the fact that
r is very close to 1, and one is interested in estimating the unreliability 1 − r, which is
the probability of system failure and is very small. For example, if 1 − r = 10−8, we will
observe on average only one failure every 100 million simulation runs. Thus, to estimate
the failure probability with reasonable accuracy with standard Monte Carlo, we would need
a huge number of simulation runs, and this is not always practical, especially for complex
systems where each run requires significant computing time. Fortunately, efficient rare event
simulation techniques have been developed for this (frequent) type of situation (Juneja and
Shahabuddin 2006, Rubino and Tuffin 2009, L’Ecuyer et al. 2011, Botev et al. 2013, Botev,
L’Ecuyer, and Tuffin 2016). We will return to this in Sections 1.6 and 6.12.

For a numerical illustration, consider the graph of Figure 1.3 and suppose that the system
is operational if and only if there is a directed path going from node 0 to node 8. For example,
if links 1, 3, 4, 7, and 10 are failed, the system is still operational, whereas if links 11 and 13
are failed, it is not. We want to estimate the unreliability, which is the probability 1− r that
the system is not operational. Suppose each link j has reliability rj = 0.9, for 1 ≤ j ≤ 13. We
simulated this model n = 105 times and nodes 0 and 8 were disconnected for 4786 of those
realizations, giving an unreliability estimate of 0.04786 (approximately 4.8%). Then we made
the same experiment with rj = 0.998 for all j and the two nodes were disconnected for 3 of
the 105 realizations, giving an unreliability estimate of 3× 10−5. Finally, we tried rj = 0.999
for all j and the two nodes were never disconnected, giving an unreliability estimate of 0.
Needless to say, these last two estimates are inaccurate, because system failure occurs too
rarely to obtain a reliable estimator of its probability with our current sample size. The true
unreliability in the last case cannot be exactly zero. To get better estimates in the (frequent)
situations where the rj are close to 1, we must either increase n substantially or (preferably)
construct more clever estimators. □

Example 1.6 Approximate counting. The Monte Carlo method is useful for counting
(approximately) the number of elements in a large finite set S, in situations where the set is
too large to enumerate its elements explicitly and there is no practical way to compute its
exact cardinality. The idea is to find a larger finite set R that contains S, whose cardinality
|R| is known, and such that an efficient algorithm is available to sample random elements
uniformly in R (i.e., in a way that each element of R has the same probability 1/|R| of being
selected, each time). We assume that it is easy to check if a given element of R belongs to
S or not. Because |R| is known, to estimate |S| it suffices to estimate p = |S|/|R| and then
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multiply by |R|. For this, we just sample n random elements uniformly and independently
from R, count the number Y of those elements that belong to S, and estimate |S| = |R| p
by |R|Y/n. Note that Y has the Binomial(n, p) distribution. We will see in Section 4.4 that
the elements that fall in S also have the uniform distribution over S.

As a simple illustration, consider the set R of all four-letter words, and suppose we
want to know how many of those words contain exactly three different letters (i.e, twice the
same letter and two other different letters). This small problem can be solved exactly by
combinatoric calculations, but let us ignore that and see how the number can be estimated
by Monte Carlo. Here, R is the set of 264 four-letter words and S is the subset of those words
that satisfy the property. To estimate |S|, we sample n words fromR independently, count the
number Y of them that have three different letters, and the (unbiased) estimator is 264Y/n.
To generate an element of R, it suffices to generate four random letters independently of
each other. This can be generalized to L-letter words for an arbitrary positive integer L, and
the property of “exactly three different letters” can be replaced by any other property that
is easy to check.

For a less trivial example, consider the set of two-way tables with r rows and c columns.
Let a1, . . . , ar, b1, . . . , bc be fixed positive integers such that a1 + · · ·+ ar = b1 + · · ·+ bc. Let
S be the set of two-way tables with integer entries ei,j ≥ 0 and for which the sum of entries
over row i is ai and the sum over column j is bj, for all i and j. A tiny illustration that can
be solved easily by hand is given below, for a 2× 3 table with row sums a1 = 4, a2 = 2, and
column sums b1 = b2 = b3 = 2.

e1,1 e1,2 e1,3 a1 = 4
e2,1 e2,2 e2,3 a2 = 2
b1 = 2 b2 = 2 b3 = 2

Here, e1,1 cannot take other values than 0, 1, and 2, because the first column sum is 2. If
e1,1 = 0, we must have e2,1 = 2, then e2,2 = e2,3 = 0, and then e1,2 = e1,3 = 2. If e1,1 = 1, then
e2,1 = 1, and either e2,2 = 0 = 1 − e2,3 or e2,2 = 1 = 1 − e2,3, and the other values are fixed
automatically in each case. If e1,1 = 2, then e2,1 = 0 and e2,2 has three possible values: 0, 1,
or 2. In each case, there is a single choice for the other values. This gives a total of |S| = 6
possible solutions. This case is easy, but for larger tables and larger sums, the number of
possibilities explodes very quickly. How can we compute or estimate |S| then, when it is very
large?

Let R be the set of tables whose sum in row i is ai for each i. It is easy to generate a
random table uniformly from R: For each row i, construct an array with ai + c entries, with
ai entries equal to 0 and c entries equal to 1. Then generate a random permutation of these
ai + c elements (see Exercise 1.3). Here, the 1’s represent separators between the columns,
the number ei,1 of 0’s before the first 1 gives the count in the first column, and the number
ei,j of 0’s between the (j− 1)th and jth 1 gives the count in column j. The reader can verify
that this gives equal probability to any distinct allocation of the ai entries to the columns, in
row i, because all permutations have the same probability of being selected. Once the table
has been generated, it is easy to check the column sums to see if this table belongs to S or
not. One drawback of this simple algorithm, however, is that for large tables, the probability
p that the generated table belongs to S is likely to be extremely small, in which case we will
have a rare-event problem and our estimator of |S| will be very unreliable, similar to the
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numerical illustration of Example 1.5. This comes from the fact that the set R selected here
is too large. More efficient sampling schemes for this problem are examined by Blanchet and

Rudoy (2009) and later in this book. 1 See Exercise 1.9 for another example. □

Example 1.7 Estimating volume. The sampling scheme of Example 1.6 extends to infinite
sets and continuous spaces. Suppose we want to estimate the volume vol(S) of some bounded
set S ⊂ Rd. We assume that this volume is too difficult or costly to compute exactly, but
that for any point y ∈ Rd it is easy to verify if y ∈ S or not. The idea is to select a larger
set R that contains S and such that it is easy to compute K = vol(R) and also to sample
points uniformly in R. To estimate µ = vol(S), one samples n independent points Y1, . . . ,Yn

uniformly inR, count the fraction of those points that belong to S, and multiply this fraction
by vol(R) to estimate vol(S). Denoting Bi = I[Yi ∈ S], this gives the unbiased estimators

B̂n =
1

n

n∑
i=1

Bi

for p = vol(S)/vol(R) and KB̂n for µ. The Bi are i.i.d. Bernoulli random variables with
parameter p, so E[Bi] = E[B2

i ] = p,

E[KB̂n] = K E[Bi] = Kp = µ,

and

Var[KB̂n] = K2Var[Bi]/n = K2p(1− p)/n = µ(K − µ)/n.

Section 4.4 will also tell us that the points that fall in S have the uniform distribution over S,
so the method just described provides a simple way to sample independent points uniformly
over the set S. It is called the rejection method.

A simple (well-known) illustration is the following. Since we know that π is the surface of
a disc of radius 1, we can estimate π by estimating this surface via Monte Carlo. This can be
done by taking S as the unit disc centered at (0, 0), R as the 2× 2 square that contains the
disc (with the same center), and apply the estimation method just described. To simplify,
one can also take S as the positive quadrant of the disc and R as the unit square [0, 1]2 that
contains this quadrant, as shown below, and apply the same method to estimate π/4.

0 1

1

Each point (U1, U2) is generated in [0, 1]2 by generating two independent random numbers
uniformly over [0, 1], and the point belongs to S if and only if U2

1 + U2
2 ≤ 1. The proportion

of the n points that satisfy this condition, multiplied by 4, gives an unbiased estimator of π.

1From Pierre: To do. Also give other applications for this.
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Moreover, the points that fall in S are uniformly distributed over S. See also Exercises 1.18
and 1.19. □

Example 1.8 Distribution of the number of collisions in a hashing scheme. Hashing is a
storage technique allowing fast retrieval of information. To illustrate the principle, suppose we
want to store and access information about different types of items in an inventory system,
where each item type has a unique identifier (either a name or a number) and there are
too many potential identifiers to assign one physical memory location to each possibility and
guarantee a fast direct access (with no need for a search). If identifiers are 48-bit numbers, for
example, then there are 248 (more than 250 trillions) possibilities. Using a list that contains
only the identifiers in use would require searching the list each time we want to access the
information on one item, making the access too slow.

A hashing function maps each potential identifier to an address in {0, . . . , k − 1} in a
random-looking way, where k represents the number of physical memory locations actually
reserved for storage (i.e., the size of the hashing table). Typically, k is much less than the
number of possibilities. Each identifier is thus mapped to a specific storage location that
can be computed very quickly. But collisions may happen. We say that there is a collision
whenever a new identifier is mapped to a storage location already occupied by another
identifier. There are several ways of handling collisions in hashing tables; see any good book
on data structures in computer science.

Suppose that M distinct identifiers are used, i.e., there are M types of items in the
inventory, whereM is a random variable having the Poisson distribution with mean λm. That
is, P[M = j] = e−λmλjm/j! for j = 0, 1, 2, . . . . The addresses of the M different identifiers
are assumed to be independent random variables, uniformly distributed over {0, . . . , k− 1}.
Let C be the number of collisions. Note that C =M −D where D is the number of distinct
addresses to which the identifiers are mapped. The following figure illustrates a simple case
where k = 25, M = 10, C = 3, and D = 7. Each square represents an address and the red
points represent collisions.

• • • •• ••• • •

If k is large and λc = λ2m/(2k) is small, it can be shown (see, e.g., L’Ecuyer, Simard,
and Wegenkittl 2002) that the random variable C has approximately the Poisson distribution
with mean λc. This also holds ifM is fixed to the constant λm (instead of being random). The
precise result says that in both cases, if k →∞ and λ2m/(2k)→ λc simultaneously, then the
distribution of C converges to a Poisson distribution with mean λc. This implies in particular
that when k is large and λc is small, the expected number of collisions is approximately λc,
the probability of no collision is approximately e−λc , the probability of more than c collisions
is approximately 1−

∑c
i=0 λ

i
ce

−λc/i!, and so on. This is an example of an analytic model.
For example, if the identifiers are 48-bit numbers, there are 248 possibilities. If λm = 215

identifiers are used on average, and if we take k = 222 physical addresses, then λc = 230/223 =
27 = 128, so we expect around 128 collisions.

However, the Poisson distribution is only an approximation. If k is small, or if we want
to assess the quality of the Poisson approximation for moderate values of k, the true distri-
bution of C can be estimated by simulation. For this, we first generate M from the Poisson
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Table 1.1. Observed frequency Yc of each number c of collisions for an experiment with n = 107

and k = 10, 000, when M is fixed at λm = 400 (M fixed), when M is Poisson with mean 400 (M
Poisson), and expected frequency if C is Poisson with mean 8 (Expected). The expected frequencies
in blue are smaller than those predicted by the (simplified) Poisson approximation, whereas those
in red are larger.

c M fixed M Poisson Expected

0 3181 4168 3354.6
1 25637 32257 26837.0
2 105622 122674 107348.0
3 288155 316532 286261.4
4 587346 614404 572522.8
5 948381 957951 916036.6
6 1269427 1247447 1221382.1
7 1445871 1397980 1395865.3
8 1434562 1377268 1395865.3
9 1251462 1207289 1240769.1
10 978074 958058 992615.3
11 688806 692416 721902.0
12 442950 459198 481268.0
13 260128 282562 296164.9
14 141467 162531 169237.1
15 71443 86823 90259.7
16 33224 43602 45129.9
17 14739 20827 21237.6
18 5931 9412 9438.9
19 2378 3985 3974.3
20 791 1629 1589.7
21 310 592 605.6
22 79 264 220.2
23 26 83 76.6
24 5 33 25.5
25 5 10 8.2
26 0 2 2.5

≥ 27 0 3 1.0
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Table 1.2. Same as in Table 1.1, but with k = 100 and λm = 40.

c M fixed M Poisson Expected

0 1148 17631 3354.6
1 14355 100100 26837.0
2 84046 294210 107348.0
3 302620 600700 286261.4
4 744407 951184 572522.8
5 1340719 1238485 916036.6
6 1828860 1379400 1221382.1
7 1941207 1353831 1395865.3
8 1634465 1194915 1395865.3
9 1103416 956651 1240769.1
10 602186 705478 992615.3
11 267542 485353 721902.0
12 97047 309633 481268.0
13 29161 187849 296164.9
14 7195 107189 169237.1
15 1363 58727 90259.8
16 224 30450 45129.9
17 35 15115 21237.6
18 4 7271 9438.9
19 0 3311 3974.3
20 0 1468 1589.7
21 0 607 605.6
22 0 258 220.2
23 0 110 76.6
24 0 44 25.5

≥ 25 0 30 11.7
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distribution (or take M equal to its constant value, if M is assumed to be a constant), then
we generate M independent random integers, uniformly distributed over {0, . . . , k− 1}, and
let C be the number of times we get an integer already obtained before (the number of colli-
sions). We repeat this simulation n times, independently, and let C1, . . . , Cn be the n values
of C thus obtained. If n is large, the expected number of collisions, E[C], can be estimated
by the average C̄n = (C1 + · · · + Cn)/n, and for each c ≥ 0, the probability pc = P[C = c]
that there are exactly c collisions can be estimated by Yc/n where Yc =

∑n
i=1 I[Ci = c] is the

number of times that we have observed exactly c collisions. These Yc/n provide the empirical
distribution of C1, . . . , Cn, which estimates the entire probability distribution of the random
variable C.

For a numerical illustration, we simulated this model n = 107 times with k = 10, 000
and λm = 400, both for M constant and M having the Poisson distribution. The 10 million
observed realizations of C ranged from 0 to 25 for M = 400 and from 0 to 29 when M
had the Poisson distribution. Table 1.1 reports the frequency Yc of each value of c in the
experiment, for each case, and also gives nλc, the expected number of occurrences of c under
the assumption that C is a Poisson random variable with mean λc = λ2m/(2k) = 8. We
show a table with numbers instead of a plot because the differences are harder to see on a
plot. We find that when M is fixed, the values of C from 3 to 9 occur more frequently than
expected, whereas all values smaller then 3 or larger than 9 occur less frequently. Thus, C
has less variance than a Poisson random variable with mean 8. When M has the Poisson
distribution, we observe the opposite: the values of C from 0 to 7 or larger than 18 occur more
frequently than expected, while the other values occur slightly less frequently (with a few
exceptions due to random noise). The empirical mean and variance are 7.87 and 7.47 for the
fixed case, and 7.89 and 8.10 for the Poisson case. These numbers are actually equal to the
exact mean and variance up to the given digits, for the respective models. For comparison,
the Poisson random variable used for the approximation has mean and variance both equal
to 8. The fact that the true variance is larger whenM is random makes perfect sense, because
taking M random must increase the variance.

For smaller values of k, the approximation error by the Poisson model is likely to be
larger. To illustrate this, we made the same experiment with k = 100 and λm = 40, which
also gives λc = λ2m/(2k) = 8. The results with n = 107 are in Table 1.2. The Poisson
approximation is definitely worse in this case. For M = λm = 40 (fixed), the empirical
mean and variance of the n realizations of C are 6.90 and 4.10. When M has the Poisson
distribution with mean 40, they are 7.03 and 8.48. The approximation error is smaller in
the latter case, but still significant. In both cases, the Poisson approximation overestimates
E[C]. The approximation may nevertheless be good enough if we only need a very rough
estimate of E[C].

In a careful study, we would also compute a confidence interval on the probability of
each value of c, for each case, to assess the accuracy of the estimates. □

♣ Add an example of a discrete-time Markov chain

Example 1.9 Stochastic path tracing in computer graphics. Image synthesis by com-
puter is a very important activity nowadays. Sequences of high-quality images must be
produced when making special effects in movies and in video games (in real time), for exam-
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ple. Computer-generated images are also important in architectural design to view buildings,
landscapes, and other structures before they are built, to test interior lighting designs, to
view the appearance of various types of objects before they are fabricated, and for many
other purposes. An image represented as a two-dimensional array of pixels is defined by
specifying the color of each pixel. Ideally, this color should be determined by summing up
all the light that reaches the eye of the observer (or camera) by passing through the area
that corresponds to that pixel. This sum can be written as an integral which in all but ex-
tremely simplified configurations is impossible to evaluate exactly, but can be estimated via
Monte Carlo by sampling incoming directions at random, and tracing backward to find all
(or most) important sources of light coming from that direction. Several refined techniques
must be used to make this procedure efficient. The complete details are not simple, but here
we sketch the key ideas. See also Dutré, Bala, and Bekaert (2006) and Pharr, Jakob, and
Humphreys (2016).

♣ Add picture: draw camera (point) and pixel (square), plus a few objects and lines
that go through the pixel.

We assume a static three-dimensional scene in which nothing depends on time, with
three-dimensional objects and some light sources. Let x be a point on the surface of an object
in the scene. Put a sphere of unit radius centered at x, and consider the unit hemisphere
obtained by cutting this sphere in two with the plane tangent to the surface at x and taking
the piece that contains nx, the normal vector of unit length pointing outwards of the surface
at x. This normal vector ends at the pole of the retained hemisphere. The direction Θ of a
ray of light outgoing from point x corresponds to a point on this hemisphere. A surface area
on this hemisphere is called a solid angle. The radiance L(x→ Θ) going from x in direction
Θ is the power (in watts) transmitted in this direction per unit of solid angle and per unit of
surface area projected in this direction. The radiance L(x← Θ) coming to x from direction
Θ is defined similarly. One can decompose

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ) (1.2)

where Le(x→ Θ) is the radiance emitted from point x (e.g., if x is at the surface of a light
source) and Lr(x→ Θ) is the radiance coming from other sources and surfaces and reflected
at x in direction Θ. The rendering equation in computer graphics is the combination of
Eq. (1.2) with

Lr(x→ Θ) =

∫
Ωx

fr(x, Ψ → Θ)L(x← Ψ) cos(nx, Ψ)dωΨ , (1.3)

where Ωx is the unit hemisphere for point x, dωΨ represents the solid angle on the hemisphere
that corresponds to an infinitesimal neighborhood of the direction Ψ , fr(x, Ψ → Θ) is the
bidirectional reflectance distribution function (BRDF) which specifies the proportion of the
light coming at x from direction Ψ that will be reflected from x in direction Θ, and cos(nx, Ψ)
is the cosine of the angle between the normal vector nx and the direction Ψ . This cosine
factor accounts for the fact that light that arrives from a direction close to the normal has
more impact than light that arrives at a larger angle. The BRDF is the most complicated
part and there are many models for it, depending on the properties of the surface on which x
lies. For example, a mirror will reflect most of the light from one direction as a narrow beam
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in a single direction, whereas a fabric or a piece of wood would diffuse the light in a wider
range of directions. Here we have implicitly assumed that all surfaces are opaque, so the
light can only be reflected in one hemisphere. For semi-transparent surfaces and materials,
on which refraction or transmission can also occur, one can replace the hemisphere by a
full sphere. We also did not mention the light frequencies (or colors). Ideally, we would like
to have the radiance for each frequency, so L(x → Θ) should actually be a function of the
frequency, which may be approximated by partitioning the range of visible frequencies into
a finite number of intervals and computing the radiance for each interval. A less costly (and
more popular) approach is to express the radiance as a three-dimensional vector giving the
contribution to each color (red, green, blue) in the RBG system. This model also makes other
simplifying assumptions not discussed here (Dutré, Bala, and Bekaert 2006, Pharr, Jakob,
and Humphreys 2016).

Solving the integral equation given by (1.2) and (1.3) would (in principle) give the
radiance L(x → Θ) at all surface points x and in all directions Θ, but this is usually
much too difficult. Approximate solutions can sometimes be computed using finite element
schemes often called radiosity methods. But the best quality images are produced via Monte
Carlo sampling combined with variance reduction methods.

In its basic form, the backward path tracing Monte Carlo scheme works as follows. A
given pixel of the image corresponds to a small rectangular surface. Ideally, the color of the
pixel would be determined by averaging over all points p in the pixel, the radiance from p in
the direction of the eye, for each frequency (or base color). This average is an integral that
is much too difficult to compute, but we can estimate it by Monte Carlo by sampling say
n0 random points p over the pixel rectangle. For any given p, let Θ be the direction from p
to the eye, and let x be the first surface point that is encountered when moving from p in
the opposite direction −Θ. The radiance L(p ← Θ) that hits p in direction Θ is the same
as that leaving x in direction Θ, L(x → Θ). This L(x → Θ) is expressed by the rendering
equation, which contains another integral, this time with respect to the incoming direction
Ψ to x. Monte Carlo can be applied to estimate this integral as well, for each sample point
p, say by sampling n1 random incoming directions for each. For each of the n0 × n1 pairs
(x, Ψ), we find the nearest surface point y from x in direction −Ψ , estimate the radiance
L(x ← Ψ) = L(y → Ψ), compute the corresponding integrand in (1.3). For each x (i.e.,
each p) in the sample, these integrands are averaged over the n1 realizations of Ψ , and the
radiance emitted at x is added, to obtain an estimate of L(x → Θ) = L(p ← Θ). These
values are averaged over the n0 sampled realizations of p to estimate the average radiance of
the pixel. But to do this, we need estimates of the L(y → Ψ) that appear in the integrands.
They are obtained simply by applying the procedure recursively. At level ℓ of the recursion,
we estimate each integral by averaging over say nℓ samples. The recursion is stopped at
some level ℓmax and the remaining terms (beyond that level) are neglected. This corresponds
to assuming that light becomes negligible after being reflected ℓmax times. Of course, this
introduces bias.

This simple path tracing method is in fact too inefficient, because the number of paths
grows exponentially with the number of recursion levels, and it may take many levels for
any given path to hit a light source and have a nonzero contribution. As an illustration, if
we take 28 = 256 samples for each integral at each recursion level, and we use ℓ levels of
recursion, the total number of paths at level ℓ will be 256ℓ+1. For ℓ = 10, this gives 288 paths,
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which is impractical. One may of course decrease the number of sample paths by taking
smaller values of nℓ (possibly nℓ = 1) for ℓ > 0. But reducing the nℓ values increases the
variance while reducing ℓmax increases the bias by removing all contributions that come after
several reflections. Effective implementations use various types of modifications to improve
efficiency.

Key improvement methods include importance sampling, Russian roulette, quasi-Monte
Carlo, bidirectional path tracing, and direct illumination, which we now briefly outline. There
are many more. The idea of importance sampling is that instead of sampling p uniformly over
the pixel area, and sampling each direction Ψ uniformly over the hemisphere, one can sample
using a nonuniform density that is larger in areas or directions where the radiance contribu-
tion is larger, and multiply the estimator by an appropriate factor to make it unbiased again.
For more on importance sampling, see Sections 1.6 and 6.12. Ideally, the density should be
proportional to the radiance contribution, but this is impossible to implement exactly, so
in practice one uses heuristics to roughly approximate this density. Russian roulette gives
an effective way of reducing the number of sample paths at higher levels by stopping any
given path with a probability that decreases with the anticipated radiance contribution of
that path. The contribution of each surviving path is multiplied by a weight larger than 1 to
make up for this discarding and recover an unbiased estimator. See Section 6.13 for more on
Russian roulette. With quasi-Monte Carlo, the rectangular pixels and hemisphere surfaces
are sampled more evenly than with independent random points over these surfaces, so the
points cover the surfaces more uniformly. See Sections 1.5.3 and 6.10.

When a scene has few and/or small light sources, it may take a huge number of paths
started from the eye before a reasonable number of them hit a light source within the ℓmax

levels. The paths that do not hit a light source, which may form the great majority, have no
contribution to the estimator and are therefore useless in some sense. In bidirectional path
tracing, paths are also started from the light sources and are combined in some way with the
paths started from the eye. One simple example of this is direct illumination, which estimates
the radiance contribution that comes exclusively from the light sources at level ℓ = 1, i.e.,
directly from the source to the first surface visible in the pixel. The contribution of each light
source can be estimated as follows. Sample a given number of points on the surface of the
light source, and for each of these points, compute the radiance contribution emitted at this
point in the direction of the first point visible to the eye on a pixel. The light sources that
are not directly visible from a point visible to the eye (at least partially) can be discarded a
priori. The number of samples would generally vary across the light sources and depend on
the importance of the source, related to its power. Uniform sampling can be used to generate
the points on the surface of the source, but it is often worth doing importance sampling.
Direct illumination is a very effective way of estimating the level-one contribution to the
incoming radiance at each pixel. One may think of applying a similar technique for each
level ℓ separately, with different numbers of samples across the different levels (the higher
levels may be allocated fewer samples because their contribution is usually less important),
and then sum up the estimated contributions. One could also think of optimizing the number
of samples at each level to minimize the variance for a given total computing budget. This

would be an application of multilevel Monte Carlo, discussed in Section ??. 2 However,

2From Pierre: Not yet written.



1.2 Examples of Simple Simulation Models 23

things are more complicated at levels ℓ > 1 than at the first level. At level 1, sampling one
path reduces to sampling one point on the surface of a light source, but at a higher level ℓ,
directions must also be sampled at the intermediate levels in {1, . . . , ℓ− 1}, so the space of
path possibilities is harder to cover. □

Example 1.10 A tandem queue. Queueing systems, in which entities have to wait for
certain resources to be available, are common in many areas. People wait for their turn at
call centers, health clinic, ticket boots, banks, etc., vehicles wait at intersections, parts wait
for their turn to be processed at various types of machines in a manufacturing plant, packets
of information wait for their turn to be transmitted in communication networks, and so on.
Those types of systems are often simulated for performance evaluation and improvement.
Here we give an illustration with a particular type of queueing system: a tandem queue with
the possibility of blocking.

Figure 1.5 represents a system of m service stations arranged in tandem. Each station
is a single-server queue; it has one server and a waiting line (queue) of customers, possibly
with limited (finite) capacity. Customers arrive randomly to the first station, where they
are served one by one in first come first served (FCFS) order. Since there is a single server
at each station, the customers also exit the stations in first in first out (FIFO) order. If
the server at the first queue is idle when a customer arrives, the server starts serving this
customer immediately, otherwise the customer joins the back of the queue. When the server
completes a service at a station, say station j, if the queue at station j + 1 is not full, the
customer just served at station j joins it and the server at station j starts serving the first
customer in queue if there is one. If the queue at j + 1 is full, the customer just served is
blocked at station j and also blocks server j until a space becomes available at queue j + 1.
Arrivals at queue j correspond to departures at queue j − 1, for j = 2, . . . ,m. At station m,
customers just leave the system upon completing their service.

One may want to estimate the expected wait time per customer at specific stations, or
the expected total waiting time per customer, or the expected total sojourn time in the
system, or the percentage of customers that wait more than a given time x in the long run,
etc. These quantities can be estimated by simulation.

||||||

queue

1

server

||||||

queue

2

server

· · · · · · ||||||

queue

m

server

Fig. 1.5. A tandem queue.

Suppose that station j has capacity cj ≥ 1 (including the customer in service), for
j = 1, . . . ,m, with c1 = ∞ (there is no blocking at the first queue). To simplify the model
(perhaps on first reading), one may just assume that cj = ∞ for each j and ignore all the
terms and sentences that involve blocking, because there is no blocking in that case.

The model evolves as follows. Let T0 = 0. For i ≥ 1, let Ti be the arrival time of customer
i at the first queue and Ai = Ti − Ti−1 the time between arrivals of customers i − 1 and i.
For the ith arriving customer, let Wj,i be its waiting time in queue j, Sj,i its service time
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at station j, Bj,i its blocked time at server j (if any), and Dj,i its departure time from
station j. The first customer arrives at time T1 = A1, leaves the first service station at time
D1,1 = T1 + S1,1 to join queue 2 and starts its service immediately at station 2, then leaves
the second station at time D2,1 = D1,1+S2,1 to join queue 3, and so on. The second customer
arrives at time T2 = T1 + A2. If T2 < D1,1, this customer must wait in the first queue for
D1,1−T2 time units, starts its service at time D1,1, and can leave to join the second queue at
time D1,1 + S1,2 if there is a space available there, and so on. Otherwise it starts its service
at time T2 and can leave at time D1,2 = T2+S1,2. In the case where c2 = 1 (no waiting space
at station 2) and D2,1 > T2 + S1,2, the second customer is blocked at the first queue and we
have D1,2 = D2,1.

All quantities defined above can be computed by a rather simple recurrence as we shall
now explain (see Buzacott and Shantikumar 1993) provided that we know how to generate
the successive interarrival times Ai and the service times Sj,i. These random variables can be
independent with known distributions, but not necessarily. From the Ai’s, we readily obtain
the arrival times Ti, and the departure times Dj,i can be computed from the Ti and the Sj,i

by setting D0,i = Ti, Dj,i = 0 for i ≤ 0, Dm+1,i = 0 for all i, and using the recurrence:

Dj,i = max[Dj−1,i + Sj,i, Dj,i−1 + Sj,i, Dj+1,i−cj+1
] (1.4)

for 1 ≤ j ≤ m and i ≥ 1. In this recurrence, the max is attained by the first term when
customer i does not wait at station j, by the second term if it waits at station j and starts
its service as soon as customer i − 1 leaves station j (the customer is not blocked), and by
the third term if customer i gets blocked and cannot enter the next station at the end of its
service (it enters station j+1 at the time when customer i− cj+1 leaves that station). When
there is no blocking, this last term is zero and can be removed.

Customer i arrives at queue j at time Dj−1,i, and starts its service at the time Dj,i−1

when the previous customer leaves queue j, so its waiting time is Dj,i−1−Dj−1,i, unless this
quantity is negative (the previous customer has already left), in which case the waiting time
is zero. That is:

Wj,i = max[0, Dj,i−1 −Dj−1,i]. (1.5)

Customer i arrives at station j at time Dj−1,i and leaves at time Dj,i, so its sojourn time at
station j is Dj,i −Dj−1,i = Wj,i + Sj,i +Bj,i, and its blocked time is then

Bj,i = Dj,i −Dj−1,i −Wj,i − Sj,i. (1.6)

For infinite buffer sizes (no blocking), we always have Bj,i = 0 and (1.4) simplifies to

Dj,i = max[Dj−1,i, Dj,i−1] + Sj,i.

The special case of a single queue with no blocking is the GI/G/1 model (see Section A.19)
for which we have

W1,i = max[0, D1,i−1 − Ti] = max[0, W1,i−1 + S1,i−1 − Ai]. (1.7)

This is the well-known Lindley recurrence (Lindley 1952, Kleinrock 1975), illustrated in the
following diagram. (We removed the index j = 1 to simplify.) The two down arrows above
the horizontal line represent the arrival times of customers i−1 and i to the system. The red
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down arrows below the horizontal line represent the times when these two customers start
their service. We see in the figure that Ai +Wi = Wi−1 + Si−1. But when Ai > Wi−1 + Si−1,
it means that customer i arrives after customer i − 1 has left, and then Wi = 0. This gives
the formula (1.7).

↓ ↓

↓ ↓

←−−−−−− Ai −−−−−−→←−−−−− Wi −−−−−→

←− Wi−1 −→←−−−−−−−−− Si−1 −−−−−−−−−→
time −→

The type of blocking described above is known as production blocking. Another type is
communication blocking, where service at a given station starts only when the queue at the
next station is not full. In that case, we have

Dj,i = max[Dj−1,i, Dj,i−1, Dj+1,i−cj+1
] + Sj,i.

Algorithm 1 : Simulating a tandem queue with production blocking

1: Let T0 = 0 and D0,0 = D1,0 = 0;
2: for j = 2 to m do
3: for i = −cj + 1 to 0 do

4: let Dj,i = 0;
5: for i = 1 to Nc do
6: generate Ai from its distribution;
7: let D0,i = Ti = Ti−1 + Ai;

8: let Wi = Bi = 0;
9: for j = 1 to m do
10: generate Sj,i from its distribution;

11: let Dj,i = max[Dj−1,i + Sj,i, Dj,i−1 + Sj,i , Dj+1,i−cj+1
];

12: let Wj,i = max[0, Dj,i−1 −Dj−1,i] and Wi = Wi +Wj,i;

13: let Bj,i = Dj,i −Dj−1,i −Wj,i − Sj,i and Bi = Bi +Bj,i;

14: Compute and return the averages:

15: W̄Nc = (W1 + · · ·+WNc)/Nc and B̄Nc = (B1 + · · ·+BNc)/Nc .

Algorithm 1 simulates the first Nc customers in the tandem queue with production
blocking, via (1.4), and computes the waiting time and blocking time of each customer and
their averages across customers. The scope of the “for” loops in the algorithms (all over
this book) is indicated by the indentation. When there is no blocking (cj = ∞ for all j)
the expression shaded in light brown must be replaced by “i = 0” only, and the expressions
shaded in light violet must be removed.

If instead of fixing Nc, we want to fix a time horizon T and simulate all customers that
arrive before time T , it suffices to replace the loop “for i = 1 to Nc” by “for (i = 1, Ti < T ,
i++)”, in C language notation.

The recurrence equations obtained here are rather simple and easy to simulate via Al-
gorithm 1, because each station has a single server and the FIFO property. In case some
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stations have more than one server, with random service times, in general customers may
arrive at station j + 1 in a different order than at station j. Customer i + 1 may arrive
after customer i at a given station and leave this station earlier due to a shorter service
time, so the stations are not FIFO in general even if the customers are served by order of
arrival (FCFS). The recurrences then become much more complicated, since we have to find
the earliest departure event for each departure at each stage. These models are typically
simulated using discrete-event simulation, as explained in Section 1.9.

♣ This is implemented in TandemQueue.java and TandemQueue0.java (infinite capac-
ities). Could run simulations and display histograms. □

Example 1.11 Pricing a financial option. We consider a financial asset (for example,
one share of a stock of a company, or one barrel of oil, or one ounce of gold) whose market
price at time t is denoted by S(t). We assume that this price evolves as a stochastic process
{S(t), t ≥ 0} with known probability law (in practice this law can be estimated from data).
Suppose that the owner of a financial contract (called a financial derivative or option) receives
a net payoff of g(S(t1), . . . , S(td)) at time T , where g : Rd → R is a given function and
t1 . . . , td are predetermined observation times of S(t), which satisfy 0 ≤ t1 < · · · < td = T .
That is, the payoff depends only on the values of the asset at these observation times.

Suppose also that money left in the owner’s bank account yields interest at the contin-
uously compounded rate r (called the short rate). This means that one dollar placed in the
account at time 0 is worth ert dollars at time t. Equivalently, this means that the present
value of an amount to be received in t units of time is that amount multiplied by the dis-
count factor e−rt. Our aim here is to estimate the fair (present) value of the financial contract.
Financial institutions who offer these contracts do that on a daily basis.

Economists and financial engineers compute this value based on the assumption that the
financial market should always be in a form of equilibrium under which it is not possible to
make money with positive probability without taking risks. A financial market that satisfies
this “no free lunch” condition is called a no-arbitrage market. To explains what this means,
suppose that starting with a given amount of money at time 0, one would follow a strategy
that holds w(t) shares of the stock at time t for 0 < t ≤ T , where w(t) may be a function
of {S(ζ), 0 ≤ ζ ≤ t} and {w(ζ), 0 ≤ ζ < t} (the history so far) and can take arbitrary real
values (possibly negative). The rest of the money (also possibly negative) would be in the
bank account. Then, no arbitrage means that there is no way to design such a strategy whose
net return at time T is never smaller than if all the money was left in the bank account, and
is strictly larger with positive probability.

Under the setting of a no-arbitrage market, it turns out that the present value (or fair
price) of the financial contract at time 0, when S(0) = s0, can be written as

v(s0, T ) = E∗ [e−rTg(S(t1), . . . , S(td))
]
,

where E∗ denotes the mathematical expectation under a certain probability measure P∗ called
the risk-neutral measure. This measure P∗ generally differs from the true measure under which
the process {S(t), t ≥ 0} evolves in real life. Under it, the process {e−rtS(t), t ≥ 0} is a
martingale, which means that for any t ≥ 0 and 0 < δ ≤ T − t, E∗[e−rδS(t+ δ)] = S(t). For
further details on this (which are not essential here), see for example Duffie (1996). Note
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that a risk-neutral measure does not always exist, and is not always unique. Here, we assume
that it exists.

Except for a few simple models, there is no efficient way of computing v(s0, T ) exactly,
and Monte Carlo becomes the method of choice for its estimation, provided that we have an
efficient algorithm to generate a trajectory S(t1), . . . , S(td) from P∗ and to compute g. We
repeat this n times, independently. Let Xi be the outcome of e−rTg(S(t1), . . . , S(td)) for the
ith replication. The final estimator is the average X̄n = (X1 + · · ·+Xn)/n.

In the popular model of Black and Scholes (1973), S(t) is assumed to evolve as a geometric
Brownian motion (GBM), which means that its logarithm is a Brownian motion. This implies
that under P∗, one must have

S(t) = S(0)e(r−σ2/2)t+σB(t) (1.8)

where r is the short rate, σ is a constant called the volatility, and B(·) is a standard Brownian
motion (see Section 2.14.1 for the details). The latter means that B(0) = 0 and for any
fixed t2 > t1 ≥ 0, B(t2)−B(t1) is a normal random variable with mean 0 and variance t2−t1,
independent of the behavior of B(·) outside the interval [t1, t2]. It is then easy to simulate
the values of B(t) at successive times 0 < t1 < t2 < t3 < · · · by simulating independent
standard normal random variables, and then compute the value of S(t) at those times via
(1.8). We do this in Algorithm 2.

An European call option is a simple financial contract that gives the owner the right
to buy one unit of the asset at price K (the strike price) at time T (the expiration date).
For example, the owner may have an option to buy 12,000 barrels of crude oil for K = 1.1
million dollars on July 1 of next year. If we assume that the asset provides no dividend,
the net payoff at time T is g(S(T )) = max[0, S(T )−K]. In other words, if S(T ) > K, the
owner exercises the option by buying at price K and may resell the asset immediately at the
market price S(T ), thus making a profit S(T )−K. If S(T ) ≤ K, the owner will not exercice
the option, so the payoff is zero and the option is worthless. In this case, if the asset price
obeys (1.8), it can be derived (see, e.g., Taylor and Karlin 1998 or Duffie 1996) that

v(s0, T ) = s0Φ(z0 + σ
√
T )−Ke−rTΦ(z0), (1.9)

where

z0 =
ln(s0/K) + (r − σ2/2)T

σ
√
T

and Φ is the standard normal cdf. Eq. (1.9) is the celebrated Black-Scholes formula.
When g is more complicated, there is often no analytic formula for v(s0, T ). For instance,

the payoff at time T of a discretely-monitored Asian call option is

g(S(t1), . . . , S(td)) = max

(
0,

1

d

d∑
j=1

S(tj)−K

)
, (1.10)

and no simple closed-form formula is available for the expectation of this payoff under the
GBM setup. Algorithm 2 estimates v(s0, T ) by Monte Carlo for a general payoff function g,
under the GBM model (1.8) for the asset price. The algorithm generates d independent and
identically distributed (i.i.d.) standard normal random variables Z1, . . . , Zd and computes
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the payoff as a function of their outcomes. Note that B(tj) − B(tj−1) =
√
tj − tj−1Zj is a

normal random variate with mean 0 and standard deviation
√
tj − tj−1 (variance tj − tj−1).

More efficient estimators for this model are discussed in Chapter 6.

Algorithm 2 : Option pricing under a GBM model by Monte Carlo

for i = 1 to n do
let t0 = 0 and B(t0) = 0;
for j = 1 to d do

generate Zj ∼ N(0, 1);
let B(tj) = B(tj−1) +

√
tj − tj−1Zj;

let S(tj) = s0 exp [(r − σ2/2)tj + σB(tj)];
compute Xi = e−rTg(S(t1), . . . , S(td));

plot a histogram of the Xi’s if desired;
return the average X̄n = (X1 + · · ·+Xn)/n as an estimator of v(s0, T ).
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Fig. 1.6. A histogram of the 465,332 positive discounted payoffs among n = 106 realizations under
the risk-neutral measure, in Example 1.11.

For a numerical illustration, suppose that time is measured in years and let d = 12,
T = 1, tj = j/12 for j = 0, . . . , 12, K = 100, s0 = 100, r = 0.05, σ = 0.5, and the payoff at
time T is given by (1.10). We performed n = 106 (one million) independent simulation runs
of this model. Figure 1.6 gives a histogram of the n realizations of the discounted payoff,
X1, . . . , Xn. Only the positive values are shown on the histogram. In 53.47% of the cases,
the average in (1.10) was less than K so the payoff was zero. The average discounted payoff
over the one million runs was X̄n = 13.1. It provides an estimate of the fair value of the
option. There is, however, a significant variability in the observed payoffs: They range from
0 to 390.8. We recall that these simulations are under the risk-neutral measure P∗, so this
empirical distribution of the payoffs does not reflect the true distribution of the payoff in the
real life.
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It is important to recognize that despite its widespread adoption by financial institutions,
the GBM model is not necessarily very realistic. Several more refined models in which the
volatility changes randomly with time, the process S(·) can have jumps, etc., have been
proposed in the mathematical finance literature. Other types of stochastic processes can also
be used to model the evolution of the interest rate, the exchange rate between two currencies,
or the market price of a commodity such as oil, for example. Often, the payoff of a financial
derivative is based on many different assets, whose price evolutions are not independent. This
is more difficult to model. There are also cases where the payoff depends on the entire sample
path {S(t), t ≥ 0}. Moreover, one is frequently interested in estimating not only the expected
discounted payoff (the option price), but also its derivative (or sensitivity) with respect
certain model parameters such as the initial value S(0), the strike price K, or the volatility
σ. These derivatives are collectively known as the Greeks, because many have standard names
given by Greek letters. For example, the sensitivities of v(s0, T ) with respect to s0, σ, T ,
and r, are called the delta, the vega, the theta, and the rho of the option, respectively. These
sensitivities can be more difficult to compute than the option price itself. Often (but not
always), they can be written as expectations, which can themselves be estimated by Monte
Carlo as usual.

All of this gives rise to a large variety of situations where simulation is a handy tool.
Monte Carlo methods in finance are surveyed by Boyle, Broadie, and Glasserman (1997a),
Glasserman (2004), Jäckel (2002), and Staum (2009), for example. □

Example 1.12 Estimating a quantile. In the examples seen so far, the quantities we
wanted to estimate were expressed as mathematical expectations. One exception was the
99% quantile of the distribution of T in Example 1.4. In general, for 0 < p < 1 and p fixed,
the p-quantile of a random variable X (or of its distribution) is defined as

ξp = inf{x : P[X ≤ x] ≥ p}. (1.11)

See Figure 1.7. Quantiles are used as performance or risk measures in several area. For
example, the performance of certain emergency systems such as ambulances is often measured
by a p-quantile of the response time distribution, say for p = 0.90 or p = 0.95. In Example 1.4,
we looked at an estimate of the 0.99 quantile of T , which is defined as the project duration
ξ0.99 that has exactly 1% chance of being exceeded.

ξp ξq
0

p
q1

F (x) = P[X ≤ x]

0

1

x

Fig. 1.7. Illustration of ξp and ξq for p and q close to 1.

In finance, if X is the net profit for an investor over a given time period, the value-at-risk
at level α ∈ (0, 1) for X, denoted VaRα(X), is the (1−α)-quantile of the distribution of the
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net loss L = −X (Artzner et al. 1999). It is also often called the (1 − α)-value-at-risk or
(1− α)-VaR for L instead (Glasserman 2004, Hong, Hu, and Liu 2014). Portfolio managers
often have a constraint on their VaRα(X) for a given α. If VaR0.01(X) for the profit (or
equivalently the 99%-VaR for the loss) over the next day is two million dollars, it means
that the chance of losing more than two million dollars over the next day does not exceed
1%. See Hong, Hu, and Liu (2014) for an overview of VaR and its estimation in simulation
settings. In actuarial science, VaRα(X) is defined as the α-quantile of X instead, where X
represents the loss (Asmussen and Glynn 2007).

For many models, the distribution of X is too complicated for the desired quantile ξp to
be computable exactly, but an independent random sample X1, . . . , Xn from the distribution
of X can be generated by simulation. More generally, X1, . . . , Xn can just be a data set from
an unknown distribution. One simple estimator of ξp, in this case, is

ξ̂p,n = inf

{
x ∈ R :

1

n

n∑
i=1

I[Xi ≤ x] ≥ p

}
= X(⌈np⌉),

where X(1), . . . , X(n) are the observations X1, . . . , Xn sorted in increasing order, also called

the order statistics. This estimator ξ̂p,n is simply the smallest observation whose rank is at
least np. This is the p-quantile of the empirical distribution of X1, . . . , Xn, It is biased for
finite n, but strongly consistent. For the experiment reported in Example 1.4, the empirical
quantile for p = 0.99 was ξ̂0.99,n = 131.8. Thus, there is approximately one percent chance
that T exceeds 131.8. More refined quantile estimators used in popular software are given in
Hyndman and Fan (1996). Quantile estimation is further discussed in Section 5.7. □

♣ Perhaps an example in radiotherapy or nuclear physics.

Examples of discrete-event dynamic simulation models and programs will be given in
Section 1.9.

1.3 Introduction to Random Number Generation

1.3.1 The concept of a random number generator

Stochastic models are built over the notions of random variable and stochastic process, which
are well-defined in the abstract mathematical framework of probability theory, but cannot
be implemented concretely and exactly on a conventional computer. In simulation, the so-
called random number generators are in fact deterministic algorithms that produce periodic
sequences of numbers. This seems to have little to do with the idea of random variables.
However, well-designed algorithms simulate sequences of independent random variables well
enough for most practical purposes. They also have several advantages over physical devices
that produce genuinely random sequences of numbers (e.g., using noise diodes or drawing
balls from a container), as we shall see later on.

In this book, a random number generator (RNG, for short) is a small computer program
(or algorithm) that can produce deterministic sequences of numbers that behave very much
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like realizations of independent random numbers from the uniform distribution. The classical
constructions are recurrence-based RNGs (L’Ecuyer 1990a, L’Ecuyer 1994b). This type of
algorithmic RNG has a finite set of states, and goes from state to state according to a
deterministic transition function f . At each step, the next state is a function of the current
state only. There is also an output function g which assigns to each state a real number
between 0 and 1. From any given starting state, the generator always produce exactly the
same output sequence. This is illustrated in following diagram, where the state at step n is
sn and the output random number at step n is un.

s0
f−−−→ s1

f−−−→ · · · f−−−→ sn
f−−−→ sn+1

f−−−→ · · ·
g

y g

y g

y g

y
u0 u1 · · · un un+1 · · ·

Since the number of states is finite, the output sequence is periodic, with a period length
that cannot exceed the total number of states. That is, as soon as a state is visited for a
second time, the output sequence from the time of this second visit is exactly the same as
the output sequence from the time of the first visit. In practice, good RNGs are constructed
so that their period is long enough (e.g., 2200 or more) to make sure that it will never be
exhausted. Moreover, a certain amount of randomness can be introduced by selecting the
initial state, called the seed, at random. The RNG can then be viewed as an extensor of
randomness, transforming a short random seed into a long “random” output sequence. The
latter sequence is sometimes called pseudorandom.

The aim of the RNG is to imitate a sequence of independent random variables U0, U1, U2, . . .
uniformly distributed over the real interval (0, 1) (i.i.d. U(0, 1), for short). Note that in the-
ory, we could as well take the uniform distribution over the closed interval [0, 1], because the
endpoints 0 and 1 would have probability zero anyway. However, an RNG with a finite state
set can only produce a finite set of numbers, and we must make sure that 0 and 1 do not
belong to that set, because these values will cause trouble when fed to certain non-uniform
variate generators. For example, the standard method to generate an exponential computes
− ln(1−u) for the uniform variate u returned by the RNG; for u = 1, this quantity is infinite.

In a simulation, the successive numbers in the output sequence of the RNG, loosely called
the random numbers, are assumed to be the realizations of i.i.d. U(0, 1) random variables.
They are transformed as needed to simulate random variables from other distributions such
as the normal, exponential, geometric, Poisson, etc., or to simulate random vectors with more
complicated distributions. Formally, we know that this assumption is false, but we hope that
the output of our simulation program will behave as if the assumption was true. Fortunately,
well-designed RNGs do fulfill this hope, at least for practical purposes.

Example 1.13 A linear congruential generator. A simple and well-known type of RNG,
perhaps too simplistic but historically important, is the linear congruential generator (LCG)
(Lehmer 1951, Knuth 1981). The state at step n is an integer xn and the transition function
is defined by the recurrence

xn = (axn−1 + c) mod m, (1.12)

where m > 0, a > 0, and c are integers called the modulus, the multiplier, and the additive
constant, respectively, and “mod m” means taking the remainder of the division by m. The
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state xn always belongs to the finite set {0, . . . ,m−1}. The output function is usually defined
by

un = xn/m, (1.13)

which is always strictly between 0 and 1 provided that we never have xn = 0. It is customary
to take c = 0, in which case we have a multiplicative LCG, whose period length cannot
exceed m− 1, because when hitting state 0 we never leave it again, so we must remove this
absorbing state from the set {0, . . . ,m−1}. The period length can actually be equal to m−1
if m is a prime number and a is properly chosen (see Chapter 3). Then, xn is always strictly
positive.

For a concrete illustration of how an LCG behaves, let m = 101 (a prime number),
a = 12, and c = 0. If x0 = 10, then we can compute

x0 = 10 u0 = 10/101 ≈ 0.09901,
x1 = 12× 10 mod 101 = 19, u1 = 19/101 ≈ 0.18812,
x2 = 12× 19 mod 101 = 26, u2 = 26/101 ≈ 0.25742,
x3 = 12× 26 mod 101 = 9, u3 = 9/101 ≈ 0.08911,

and so on. The output sequence is periodic with period length 100: we have x100 = x0 = 10
and x0, . . . , x99 are all distinct; they are the numbers {1, . . . , 100} permuted in a different
order. Then, x100+n = xn for all n > 0. Moreover, over each subsequence of 100 steps,
the state visits each number from 1 to 100 exactly once, so the output takes each value in
{1/101, 2/101, · · · , 100/101} exactly once. This is a very good approximation of uniformity
given that we only have 100 possible values.

Of course, this mini-LCG is not to be taken seriously for simulation use. It is only to
illustrate the basic ideas. An acceptable LCG would need to use a very largem, saym > 2200,
in which case computing the product modulo m must be done via decomposition methods
on standard computers, and the generator may then be too slow, unless the parameters are
selected in a way that a clever fast implementation is possible. LCGs with modulim = 231−1,
m = 232, and m = 248 have been popular in the past and are still used in some software
libraries and products, but they are too small for the requirements of today’s simulations.
These LCGs should be discarded and replaced by more robust generators such as those
recommended in Chapter 3. □

1.3.2 Quality criteria

In probability theory, the requirement that {Un, n ≥ 0} is a sequence of i.i.d. U(0, 1) random
variables can be recast into the following uniformity property: For each integer s > 0 and
each n ≥ 0, the random vector Un,s = (Un, . . . , Un+s−1) of s successive random variables has
the uniform distribution over the s-dimensional unit hypercube

(0, 1)s = {(u0, . . . , us−1) : 0 < uj < 1 for each j}.

If this holds for n = 0 and all s > 0, then this also holds for all n > 0. This property captures
both uniformity and independence. It means that for every integer s > 0 and any n ≥ 0,
whenever 0 ≤ aj < bj ≤ 1 for all j, we must have
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P[aj ≤ Un+j ≤ bj for j = 0, . . . , s− 1] = (b0 − a0) · · · (bs−1 − as−1).

That is, the probability that the point Un,s falls in some rectangular box in the unit cube
should be equal to the volume of that box. For s = 1, this means that whenever 0 ≤ a < b ≤ 1,
we have P[a ≤ Un ≤ b] = b− a:

0 1a b

The following picture illustrates the case s = 2: The probability that the point falls in
the blue box should be equal to the surface of that box.

0 1

1

Un+1

Una1 b1

a2

b2

Now, suppose we replace the random vector Un,s by the vector un,s = (un, . . . , un+s−1)
of s output values produced by the RNG starting at step n, and assume that the seed is
random and uniformly distributed over the state space. To approximate the above uniformity
property we will require that the (finite) set Ψs of all s-dimensional vectors un,s of successive
output values produced by the generator, from all possible initial states, is uniformly spread
over (0, 1)s. Here we interpret Ψs as a multiset, which means that the vectors are counted as
many times as they appear, and the cardinality of Ψs is exactly equal to that of the state
space. For our LCG example with m = 101 and a = 12, this cardinality is |Ψs| = 101 for all
s, and we have for example

Ψ3 = {(0, 0, 0), (1/101, 12/101, 43/101), (2/101, 24/101, 38/101), . . . , (100/101, 89/101, 58/101)}.

The set Ψs can be viewed in a way as a sample space from which the s-dimensional output
vectors are drawn at random, by selecting a random seed for the RNG. Since we want to
approximate the uniform distribution over (0, 1)s, it makes sense to construct the RNG so
that Ψs is huge and very evenly spread over this unit hypercube. The cardinality of Ψs should
be several orders of magnitude larger than the maximum number of points that we are likely
to draw from it in any simulation, firstly because with more points we can cover the unit
hypercube more uniformly, and secondly because if |Ψs| is too small, we may draw nearly
all the points of Ψs, and then these points will look more uniform than independent random
points (they will be too uniform).

The sets Ψs are comprised of vectors of successive output values. We may also want
to look at the uniformity of the sets of vectors of non-successive output values, of the
following form. Let 0 ≤ i1 < · · · < is be s distinct integers and consider the set
Ψ{i1,...,is} of all the vectors (ui1 , . . . , uis) that can be produced by the generator, from all
possible initial states. We would also like each of these sets to be evenly spread over
the s-dimensional unit hypercube. For example, Ψ{0,2} is the set of all vectors (un, un+2),
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i.e., formed by values that are two steps apart, whereas Ψ{0,3,6,9} is the set of all vec-
tors of the form (un, un+3, un+6, un+9), i.e., formed by 4 values that are 3 steps apart,
for all possible seeds of the generator. For our small LCG example, we have for example
Ψ{0,2} = {(0, 0), (1/101, 43/101), (2/101, 38/101), . . . , (100/101, 58/101)}.

To implement these ideas, we need: (1) a precise definition of “evenly spread”, in the
sense of computable measures of (non-)uniformity of the point sets Ψs and Ψ{i1,...,is} over the
unit hypercube, (2) efficient ways of computing these measures without generating all the
points (because there are much too many), at least for the classes of RNGs in which we have
interest, even when the state space is huge, and (3) practical methods for finding RNGs with
very long periods, for which fast and relatively simple implementations are available, and
with good s-dimensional uniformity at least for s up to a certain dimension s1 and for a
certain class of sets {i1, . . . , is} deemed important. Obviously, the s-dimensional uniformity
cannot be checked for all s up to infinity and for all subsets {i1, . . . , is}. Such quality criteria,
together with a few additional requirements such as portability and jumping ahead facilities,
and empirical statistical testing of RNGs, are discussed in Chapter 3. In that chapter, we
also provide concrete implementations of RNGs that we recommend.

0 1

1

un+1

un
0 1

1

un+1

un

Fig. 1.8. The set Ψ2 of all pairs (un, un+1) for the LCG with m = 101 and a = 12 (left) and a = 51
(right).

Example 1.14 RNGs based on linear recurrences are highly structured. This can be seen
as a weakness because too much structure means less random-looking, but on the other hand
it permits one to study and measure their uniformity. As an illustration, Figure 1.8 (left)
shows the set Ψ2 of all pairs of successive output values produced by the LCG with modulus
m = 101 and multiplier a = 12, over its entire period length of 100, plus the zero vector
which corresponds to the case where the initial state is 0. These 101 points turns out to have
a regular lattice structure. They do not look like random points, but they are quite evenly
distributed in the unit square, which is what we are looking for. Of course, in practice, the
cardinality of Ψs should be much larger than 101. We recommend at least 2200 or more. For
an LCG with carefully selected a and prime m > 2200, so that Ψ2 covers the unit square very
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evenly, selecting a point at random from Ψ2 is almost the same as generating it at random
from the uniform distribution over the unit square (0, 1)2.

Figure 1.8 (right) shows all the points of Ψ2 for an LCG with the same modulus m = 101,
but this time with a = 51. In this case, all the points are contained in only two lines, with
large empty spaces between the lines. The uniformity is much worse than with a = 12. This
represents a bad choice of the parameter a. □

Example 1.15 We now give an example of a recommendable RNG for simulation, proposed
by L’Ecuyer (1999a) and used in several software products. It is named MRG32k3a. The
algorithm works as follows. The initial state (the seed) consists of six integer:

x−2, x−1, x0 ∈ {0, 1, . . . , 4294967086}, not all 0, and
y−2, y−1, y0 ∈ {0, 1, . . . , 4294944442}, not all 0.

The recurrence is

xn = (1403580xn−2 − 810728xn−3) mod 4294967087,

yn = (527612yn−1 − 1370589yn−3) mod 4294944443,

un = [(xn − yn) mod 4294967087]/4294967087.

The state at step n is sn = (xn−2, xn−1, xn, yn−2, yn−1, yn). It turns out that the vector
(xn−2, xn−1, xn) visits each of the 42949670873 − 1 possible nonzero values that it can take
exactly once before restarting the same sequence again, and similarly (yn−2, yn−1, yn) visits
each of the 42949444433−1 possible nonzero values that it can take exactly once before cycling
again. The sequence u0, u1, u2, . . . is periodic, with 2 cycles of period near 2191 ≈ 3.1× 1057.
This combined RNG turns out to be equivalent (approximately) to a linear generator with
a large modulus. The uniformity of the point set Ψs for the combined generator has been
analyzed (and found to be excellent) in up to 45 dimensions. □

Example 1.16 One form of subtract-with-borrow (SWB) generator with parameters (b, r, k)
is defined by the recurrence

xn = (xn−r − xn−k − cn−1) mod b,

cn = I[xn−r − xn−k − cn−1 < 0], and

un = xn/b,

where k > r > 0, xn ∈ {0, . . . , b − 1}, and cn ∈ {0, 1} for each n. The state at step n is
sn = (xn−k+1, · · · , xn, cn) ∈ {0, . . . , b − 1}k × {0, 1}. This type of generator was proposed
by Marsaglia and Zaman (1991) and has been widely used in several software libraries.
For example, in Mathematica, version 5.2 and earlier, the default RNG used two steps of
the recurrence of a SWB generator with parameters (b, r, k) = (231, 8, 48) to produce each
uniform random number in (0,1), via un = x2n/2

62 + x2n+1/2
31. This generator is very

fast, and its period is approximately 21479, which is extremely long. However, a long period
is not sufficient for good quality. Tezuka, L’Ecuyer, and Couture (1993) have shown that
the output values un produced by the SWB generator defined above are almost the same
(the values differ by less than 1/b = 2−31) as those produced by an LCG with modulus
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m = bk − br + 1 and multiplier a that satisfies ab mod m = 1. Moreover, Couture and
L’Ecuyer (1994) have shown that all the nonzero points of Ψ{0,k−r,k} for this LCG, i.e., the
set of all three-dimensional points of the form (un, un+k−r, un+k) produced by this LCG from
a nonzero state, is contained in only two parallel planes in the unit cube [0, 1)3. Those two
planes are defined by un+k − un+k−r + un = q for q = 0 and 1, Thus, the SWB generator has
extremely bad uniformity for this particular three-dimensional projection. This important
defect may have a huge impact on simulation results, as observed empirically by Ferrenberg,
Landau, and Wong (1992) for applications in computational physics. See also Exercise 1.4.

□

Other examples of widely-used poor generators are unveiled in L’Ecuyer and Simard
(2007) and in Chapter 3.

1.3.3 Multiple streams and substreams

In modern simulation software, RNGs are often seen as objects that can be created at will, in
practically unlimited number, and can be viewed as independent sources of random numbers
(L’Ecuyer et al. 2002, L’Ecuyer and Buist 2005, L’Ecuyer 2010, L’Ecuyer et al. 2017). This
is typically implemented by partitioning the cycle of a large-period backbone RNG into long
disjoint segments of a given length ν, and using a function that can jump ahead quickly
by ν steps in the RNG sequence to be able to jump from the beginning of a segment to
the beginning of the next one. The starting points of several successive segments can then
be computed sequentially. Each RNG object is mapped internally to one of these segments,
often called a stream of random numbers, and provides a virtual RNG. In some popular
implementations, the streams are also partitioned into multiple substreams, and each stream
object has methods to generate the next number, to rewind to the beginning of the stream,
or to the beginning of the current substream, or to the beginning of the next substream.
The streams and subtreams must be long enough to make sure that they would not overlap,
at least in reasonable time. These multiple streams and substreams are extremely useful
for the correct implementation of common random numbers for comparing systems and for
sensitivity analysis, for example. We give concrete examples of that in Section 1.7 and in
Chapter 6. They are also useful for simulations running on parallel processors, where each
processor can produce its own streams of random numbers without having to care about
what the other processors are doing.

1.3.4 Counter-based generators

The classical recurrence-based RNGs have been designed to operate in a sequential fashion:
the random numbers in each stream are generated sequentially by using a transition function
and the streams are created sequentially by a jump-ahead function. This sequential design
is not ideal for massively-parallel computers. Counter-based generators provide a way to do
all of this in parallel (Salmon et al. 2011, L’Ecuyer et al. 2021). The idea is to make the
transition function f extremely simple and leave all the complicated transformations (most
of the work) to the output function g. In counter-based RNGs, the state at step n is simply
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n, and the transition function just increases the counter n by 1. The output function g is
also parameterized by another integer k called the key, so it is a function of the pair (k, n),
which can be viewed as a two-dimensional counter. The function g is usually taken as a
cryptographic hashing function, often simplified to increase the speed, and selected in a way
that for each k, the set of values of g(k, n) for all admissible n covers the interval (0, 1) very
uniformly. Multiple streams can be obtained simply by assigning one stream to each value
k of the key, with its counter starting at 0. Then both the creation of multiple streams and
the generation of arrays of random numbers can be done easily in parallel. The counter and
the key may be 128-bit integers, for example, in which case there are 2128 different keys and
2128 admissible values of n for each key.

1.3.5 The inversion method for non-uniform random variate generation

Random variables from non-uniform distributions are generated by applying certain trans-
formations to the output values of a uniform RNG. This is easily achieved for certain distri-
butions, but not for all.

Recall that a random variable X has cdf F if F (x) = P[X ≤ x] for all x ∈ R. The
simplest way of generating X with cdf F is to apply the inverse of F to a U(0, 1) random
variable U , as in Figure 1.9:

X = F−1(U)
def
= min{x | F (x) ≥ U}. (1.14)

With this definition of X, we have

P[X ≤ x] = P[F−1(U) ≤ x] = P[U ≤ F (x)] = F (x),

so X has distribution F , exactly. This inversion method requires the availability of F−1, or
a good approximation of it.

X

U
F (x)

x

Fig. 1.9. Generating X by inversion from U .

Example 1.17 A random variable X has the Weibull distribution with parameters α > 0
and λ > 0 if F has the form F (x) = 1−exp[−(λx)α] for x > 0 and F (x) = 0 for x ≤ 0. In this
case, one has (Exercise 1.6) X = F−1(U) = [− ln(1− U)]1/α/λ, so X is easy to generate by
inversion. As a special case, if α = 1, X has the exponential distribution with mean 1/λ. An
exponential random variable can thus be generated by taking X = F−1(U) = − ln(1−U)/λ.

□
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Example 1.18 Suppose that P[X = i] = pi where p0 = 1/2, p2 = 3/8, p4 = 1/8, and pi = 0
elsewhere. The corresponding cdf F is a piecewise-constant right-continuous function having
a jump of size pi at x = i for i = 0, 2, 4. The inversion method here will return 0 if U < 1/2,
2 if 1/2 ≤ U < 7/8, and 4 if U ≥ 7/8. In Figure 1.10, we have U = 0.6 and this gives X = 2.

□

0 2 4
0

1/2

U

7/8
1

F (x)

x

Fig. 1.10. Inversion for a discrete random variable with three possible outcomes.

For a general discrete distribution, suppose P[X = xi] = pi for i = 0, 1, . . . . We have
F (xi) = p0 + · · · + pi, and the inversion method returns X = xi if and only if F (xi) ≥ U >
F (xi−1), where F (x−1) = 0 by convention. See Figure 1.11. To generate X, we first generate
U , then we must find the smallest i for which F (xi) ≥ U . A simple way to find this i is to
check the condition for i = 0, 1, 2, . . . sequentially until it is satisfied. But when this i is very
large, this sequential search method is too inefficient. This will happen for example if X has
a binomial or Poisson distribution with a large mean. More efficient search methods for this
situation are discussed in Section 4.1.1. A direct inversion formula is available for certain
distributions, as shown in Example 1.19.

Example 1.19 A random variable X has the geometric distribution with parameter p,
0 < p < 1, if P[X = x] = p(1 − p)x for x = 0, 1, 2, . . . . This is a discrete distribution and
it represents the number of failures before the first success in a sequence of Bernoulli trials

xi−1 xi
0

F (xi−1)
U

F (xi)
1

F (x)

x

U

x

Fig. 1.11. Inversion for a general discrete random variable.
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(see Chapter 2). The cdf of X is given by F (x) = 1 − (1 − p)⌊x+1⌋ for x ≥ 0 and F (x) = 0
for x < 0. When x is a non-negative integer, we have F (x) = 1− (1− p)x+1. Here, inversion
should return X = x if and only if F (x) ≥ U > F (x− 1), which can be rewritten as

1− (1− p)x+1 ≥ U > 1− (1− p)x, i.e.,
−(x+ 1) ln(1− p) ≥ − ln(1− U) > − x ln(1− p), i.e.,

(x+ 1) ≥ ln(1− U)/ ln(1− p) > x, (since − ln(1− p) > 0)

which gives x = ⌈ln(1−U)/ ln(1− p)⌉− 1. With probability 1, this is the same as returning
X = ⌊ln(1− U)/ ln(1− p)⌋. □

For some distributions (e.g., the normal, Student, chi-square, etc.), F−1 cannot be writ-
ten in close form but reasonably good numerical approximations are often available. For
most simulations, inversion should be the method of choice when it is applicable, because
it transforms U into X monotonously, which makes it compatible with quasi-Monte Carlo
methods (Section 1.5.3) and with variance-reduction techniques such as common random
numbers and antithetic variates (Chapter 6). In situations where speed is a real issue and
monotonicity is no real concern, non-inversion methods are sometimes more appropriate. See
Chapter 4 for further details.

We think that modern software for random number generation should be built with
the following types of components (or objects): random streams, which provide sequences
of independent uniform random numbers, probability distributions, which specify the target
distributions, and (non-uniform) random variate generators, which generate random variates
from a given distribution, using a given random stream. Thus, a generator can be constructed
by putting together a distribution, a stream, and in some cases a generating method as
well. Any stream can be used for any distribution and any generating method. Eventually, a
random stream can also be replaced by a sequence of quasi-random points (see Section 6.10).
This type of organization has been adopted in SSJ (L’Ecuyer and Buist 2005, L’Ecuyer 2023),
for example. In older software, sometimes there is a single random stream for everything and
the user has little control over it, and some non-uniform generators have a hidden uniform
RNG embedded in them. We think this is bad design. Later in this book (e.g., in Section 1.7),
we elaborate on the need for multiple streams of random numbers and provide illustrations.

1.4 Monte Carlo Integration

1.4.1 Estimating an integral by Monte Carlo

Stochastic simulation is frequently used to estimate an unknown mathematical expectation,
formally defined as an integral with respect to a probability measure. Monte Carlo integra-
tion, in its simplest (crude) form, draws an independent random sample of size n from this
measure and estimates the integral by averaging the n values taken by this integrand over
this sample.

A random variable X defined over a probability space (Ω,F ,P) can be seen as a mea-
surable function X : Ω → R and its mathematical expectation (or mean) can be written as
the integral (see Section A.5 of the Appendix)
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µ = E[X] =

∫
Ω

X(ω)P(dω). (1.15)

In this section, we assume that our purpose is to estimate µ. Section 1.2 gave examples of
that.

In general, the probability space can be defined in many different ways for the same µ. In
the context of simulation it is often convenient to interpret ω as a sequence of s independent
U(0, 1) random variables U1, . . . , Us. Then P represents the uniform distribution over the
unit hypercube (0, 1)s and X = X(ω) can be written as X = f(U1, . . . , Us), where f is
the function computed by the computer program that simulates realizations of X. This
interpretation of ω is natural because this is how randomness is actually generated in virtually
all stochastic simulations. We will also use this setting to define quasi-Monte Carlo methods
(see Section 1.5.3). The function f depends on how the simulation is implemented; there are
many possibilities for any given model. Note that s can be huge and in some cases random
and unbounded. To cover this unbounded case, one can allow s to be infinite, with the
understanding that only a finite (perhaps random) number of the uniforms in the sequence
is actually used by the simulation. With this interpretation, one can rewrite

µ = E[X] =

∫ 1

0

· · ·
∫ 1

0

f(u1, . . . , us)du1 · · · dus =
∫
(0,1)s

f(u)du = E[f(U)], (1.16)

so X = f(U) is an unbiased estimator of µ, where u = (u1, . . . , us) represents a point in
(0, 1)s, and U ∼ U(0, 1)s is a random point uniformly distributed over the unit hypercube.
We take this unit hypercube open to account for the fact that the function f sometimes
becomes infinite when a coordinate uj equals 0 or 1.

For small s, say up to 3 or 4, and appropriate smoothness conditions on f , there are
efficient classical deterministic numerical integration techniques to approximate µ by some
µ̃, and deterministic bounds on the approximation error |µ̃ − µ| can be obtained in terms
of measures of smoothness of f , such as a bound on its derivative of a given order; see
Section 1.5.3. However, the convergence rate (and effectiveness) of these methods degrades
rapidly with s. For large s, they are typically useless and Monte Carlo is often the best (or
only) alternative.

Example 1.20 In the stochastic activity network considered in Example 1.4, there are 13
independent random variables to generate for simulating the network, so µ can be writ-
ten as an integral over the 13-dimensional unit hypercube (0, 1)13, as follows. To each
point ω = U = (U1, . . . , U13) ∈ (0, 1)13 there corresponds a vector Y = (Y1, . . . , Y13) =
(F−1

1 (U1), . . . , F
−1
13 (U13)) of activity durations, and to each such vector Y there corresponds

a length T of the longest path in the network. Thus, we can write T = f1(U) for some
function f1 : (0, 1)→ [0,∞) which is computed by the simulation program. If the goal is to
estimate µ = E[T ], then X = T and the function f in (1.16) can be taken as f = f1.
If the goal is to estimate µ = P[T > x] = E[I(T > x)] instead, then we can define
X = f(U) = I(T > x) = I(f1(U) > x), which is 1 if T > x and 0 otherwise. In both
cases, µ is written as in (1.16) and computing µ amounts to computing a 13-dimensional
integral, which is difficult, but we can easily use simulation to estimate µ. Note that if we
generate one or more of the Yj’s by another method than inversion, this changes the function
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f but not µ. One can also interpret ω as Y instead of U , and redefine P accordingly, as the
product of the densities of Y1, . . . , Y13. □

Example 1.21 We return to the Asian option valuation problem introduced in Exam-
ple 1.11, under the GBM model, with payoff given in (1.10). To simulate the payoff of that
option, each Zj can be generated by inversion, i.e., Zj = Φ−1(Uj) where the Uj’s are i.i.d.
U(0, 1). The option price can be written as an integral over the s-dimensional unit hypercube
as in (1.16), with s = d:

µ = v(s0, T ) =

∫
(0,1)s

f(u)du

= e−rT

∫
(0,1)s

max

(
0,

1

s

s∑
i=1

s0 exp

[
(r − σ2/2)ti

+ σ

i∑
j=1

√
tj − tj−1Φ

−1(uj)

−K

 du1 . . . dus (1.17)

where f(u) is the expression inside the integral multiplied by the discount factor e−rT . This
integral can also be written with respect to the density ϕ of the standard normal distribution
instead:

v(s0, T ) = e−rT

∫
Rs

max

(
0,

1

s

s∑
i=1

s0 exp

[
(r − σ2/2)ti

+ σ

i∑
j=1

√
tj − tj−1zj

−K

ϕ(z1) · · ·ϕ(zs)dz1 · · · dzs. (1.18)

This corresponds to the fact that the integral can be estimated by generating independent
standard normals Z1, . . . , Zs by any method, and computing the discounted payoff as in the
algorithm of Example 1.11. Eq. (1.17) can be obtained from Eq. (1.18) via the change of
variable uj = Φ(zj), which gives duj = ϕ(zj)dzj, for j = 1, . . . , s. This highlights the fact
that using the inversion method corresponds exactly to making this change of variable. This
interpretation applies whenever a continuous random variable is generated by inversion. □

The simulation approach outlined in Examples 1.4 and 1.11 is equivalent to estimating
these integrals by the Monte Carlo method that we now describe.

1.4.2 Crude Monte Carlo

The (crude) Monte Carlo (MC) estimator of the integral µ in (1.15) is

µ̂n = X̄n =
1

n

n∑
i=1

Xi (1.19)

where n is the sample size (a fixed constant) and X1, . . . , Xn are independent realizations of
X = X(ω) where ω is generated from the probability measure P. One has
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E[µ̂n] = E[Xi] = µ

and

Var[µ̂n] =
1

n

[
E[X2

i ]− µ2
]
=
σ2

n

where

σ2 def
= E[X2

i ]− µ2 = Var[Xi].

The estimator µ̂n is unbiased for µ, with variance σ2/n = O(n−1).
In the setting where X = f(U) where U ∼ U(0, 1)s, we have Xi = f(Ui) for each i

where U1, . . . ,Un are independent with Ui ∼ U(0, 1)s, and

σ2 def
=

∫
(0,1)s

f 2(u)du− µ2.

Then the variance depends on the shape of f through
∫
(0,1)s

f 2(u)du. It is finite if and only

if f is square-integrable over the unit hypercube. When f is bounded, f 2 is also bounded
and the variance is always finite. If f is a constant, the variance is zero.

Example 1.22 For an example of an infinite-variance estimator, let s = 1 and f(u) = u−1/2.

Then µ = 2 and
∫
(0,1)s

f 2(x)dx =
∫ 1

0
x−1dx =∞, so Var[µ̂n] = Var[Xi] =∞. □

Example 1.23 We now give a simple example to illustrate the fact that the same integral
can often be formulated in different ways, with different probability measures P. Let Z be a
standard normal random variable and suppose we want to estimate

µ =

∫ 2

0

ϕ(z)dz = P[0 ≤ Z ≤ 2] = E[I[0 ≤ Z ≤ 2]]

by MC, where ϕ is the standard normal density. Of course, this integral can be approximated
more accurately by numerical quadrature methods than by MC; we just use this simple
example to illustrate MC ideas.

A direct MC method proceeds as follows. For i = 1, . . . , n, generate a standard normal
Zi by inversion via Zi = Φ−1(Ui), where Ui ∼ U(0, 1), and compute Xi = I[0 ≤ Zi ≤ 2].
Then compute µ̂n as in (1.19). This is the proportion of Zi values that fall into the interval
[0, 2].

For an alternative MC estimator of the same integral, we can make the change of variable
z = 2u and define f(u) = 2ϕ(2u) for all u, we obtain

µ =

∫ 2

0

ϕ(z)dz =

∫ 1

0

2ϕ(2u)du =

∫ 1

0

f(u)du.

Thus, to estimate µ, we can generate U1, . . . , Un i.i.d. U(0, 1), compute Xi = 2ϕ(2Ui) for
i = 1, . . . , n, and compute the estimator µ̂n as in Eq. (1.19).

These two estimators have the same expectation (both are unbiased), but not the same
variance. □
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1.4.3 Convergence

The strong law of large numbers and the central limit theorem (CLT), stated in Section A.12
of the Appendix and restated below, are two fundamental results on the convergence of
µ̂n = X̄n to µ. The CLT implies that for large n, asymptotically, the error X̄n − µ divided
by σ/

√
n has an invariant distribution. This means that the size of the error is O(σ/

√
n) in

a probabilistic sense.

Theorem 1.1 Assume that σ2 <∞.
(i) (Strong law of large numbers.) One has limn→∞ X̄n = µ with probability 1.
(ii) (Central limit theorem.) √

n(X̄n − µ)
σ

⇒ N(0, 1) (1.20)

(convergence in distribution to the standard normal) as n→∞. This can be rewritten as

lim
n→∞

P
[√

n(X̄n − µ)
σ

≤ x

]
= Φ(x)

def
= P[Z ≤ x] (1.21)

for all x ∈ R, where Z is a N(0, 1) random variable.

The CLT permits one to construct a confidence interval for µ, based on the normal
distribution, and valid asymptotically as n → ∞. The variance σ2 in the CLT (1.20) is
usually unknown, but the theorem still holds if σ2 is replaced by its unbiased estimator (the
empirical variance)

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)
2 =

1

n− 1

(
n∑

i=1

X2
i − n(X̄n)

2

)
, (1.22)

because limn→∞ S2
n = σ2 with probability 1. For 0 < α < 1, a confidence interval at confi-

dence level 1− α (also called a 100(1− α)% confidence interval) on µ is then given by

(X̄n ± z1−α/2Sn/
√
n),

where zq denotes the q-quantile of the standard normal distribution: zq = Φ−1(q). In other
words, α/2 is the probability that a standard normal random variable exceeds z1−α/2. For
example, to compute a 95% confidence interval, we take α = 0.05 and we have z1−α/2 ≈ 1.96
and zα/2 = −z1−α/2 ≈ −1.96, as illustrated here:

−3 −1.96 −1 0 1 1.96 3

α/2 α/21− α

zα/2 ≈ −1.96 z1−α/2 ≈ 1.96

When n is large, Sn ≈ σ, so the width of the confidence interval is approximately
proportional to σ/

√
n. When n is small, invoking the CLT is not justified, but if we assume

that the Xi are normally distributed, then
√
n(X̄n − µ)/Sn has the Student distribution
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with n − 1 degrees of freedom (see Section A.13). In this case, a valid confidence interval
can be computed using the Student distribution instead of the normal. On the other hand,
confidence intervals based on either the normal or Student distribution become invalid when
the distribution of Xi is highly skewed, or is concentrated on just a few discrete values.
Chapter 5 covers these issues in further detail and discusses alternative methods for these
situations.

Example 1.24 For the stochastic activity network in Examples 1.4 and 1.20, we already
gave 95% confidence intervals for µ = E[T ] and for px = P[T > x] = E[I[T > x]] for a
given x, based on a sample size of n = 105. When estimating px, we have Xi = I[Ti > x],
X̄n = Y (x)/n, and S2

n = Y (x)(1−Y (x)/n)/(n−1). These Xi’s are Bernoulli (binary) random
variables, so they are far from being normally distributed, but if px is not too close to 0 or
1, then it is reasonable to assume that X̄n is approximately normal, because n is large. □

Example 1.25 For another example, if we perform n = 1000 independent runs of the
simulation for a given x and we observe Y (x) = 882, then X̄n = 882/1000 = 0.882, S2

n ≈
0.1042, and the normal approximation makes sense. It gives the 95% confidence interval
(X̄n±1.96Sn/

√
n) ≈ (0.882±0.020) = (0.862, 0.902). This says (roughly) that our estimator

of px has only two meaningful decimal digits: µ ≈ 0.88. The “2” in 0.882 is not significant.
When reporting results of simulation or statistical experiments, it is customary to report only
significant digits. Reporting several meaningless digits is bad style and can be misleading.
For example, if we measure X̄n = 31.376324384 and Sn/

√
n = 0.2, then we should report

something like X̄n = 31.4± 0.4.

Suppose now that we observe Y (x) = 998 instead. Then, X̄n = 0.998 and S2
n ≈ 0.002,

which would give the 95% confidence interval (0.998 ± 0.0028) for px if we use the normal
approximation. However, if px is near 0.998, then most of the probability mass of Y (x) is
concentrated on a few integer values, say from 995 to 1000, and therefore the distribution of
X̄n is clearly far from normal in this case, so we should not use the normal approximation
to compute a confidence interval. One way to handle this when px is close to 1 is use the
fact that n − Y (x) has a Binomial(n, q) distribution where q = 1 − px is very small. This
distribution is well approximated by a Poisson distribution with mean nq, so the problem
becomes that of computing a confidence interval for the mean of a Poisson distribution when
this mean is small. Section 5.2.3 show how to do it. Example 1.29 is related to the present
example. □

Example 1.26 Confidence interval for the price of the Asian option. For the numerical
illustration at the end of Example 1.11, the estimator Xi is clearly far from normally dis-
tributed. It has a probability mass of approximately 0.535 at 0, and a density that resembles
the histogram of Figure 1.6 over the positive real axis. This density is highly skewed. Thus,
computing a confidence interval for the option price based on the normal distribution is
reasonable only if n is large (we can then invoke the CLT). □

MC integration has the following important advantages over the classical deterministic
numerical integration methods such as trapezoidal and Simpson rules (Section 1.5.3). These
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advantages also stand to some extent when MC is compared with deterministic quasi-Monte
Carlo methods (Section 1.5.3).

1. MC requires only a very weak condition on the integrand f , namely square integrability.
The classical numerical methods give better convergence rates in small dimensions, but
only under smoothness assumptions that are stronger than square integrability.

2. The convergence rate of the error does not depend on the dimension s (the convergence
speed depends on s only indirectly via σ2). With the classical methods, the convergence
rate deteriorates quickly when s increases.

3. In most cases, one can easily estimate the error, in a probabilistic sense, and compute
confidence intervals. The classical methods give deterministic error bounds, but these
bounds are typically much too hard to compute explicitly or too loose to be useful.

4. When the integral represents the expectation of a random variable X, MC provides
more information than just a point estimate of the expectation. It can also provide an
estimate of the entire distribution of X.

One the other hand, the convergence rate of O(σ/
√
n) is very slow. For each additional

decimal digit of accuracy in the estimator, i.e., to divide the width of a confidence interval
by 10, the sample size n (and the work) must be multiplied by 100. Thus, computing high-
precision MC estimators becomes rapidly very costly. But in many cases, when s is large,
there is just no alternative to MC. In Chapter 6, we will study efficiency improvement
methods whose aim is mostly to reduce the constant σ2, although some of the methods can
also improve the convergence rate.

Our discussion of convergence and confidence intervals for MC estimators so far assumes
that the model is exact, in the sense that the input probability distributions used in the
simulation are perfectly known. We only account for the sampling (or statistical) error. But
in real-life applications, the input distributions and their parameters are typically unknown;
they are selected (or “learned”) based on available data. This brings a second source of
error, called the modeling error. Ideally, confidence intervals should account for both types
of errors, otherwise they can give an overly optimistic confidence. This is further discussed

in Chapter 5. 3

1.4.4 Efficiency of simulation estimators

It is useful to have a notion of efficiency for simulation (or MC) estimators that takes into
account both the work and the noise. Suppose that an estimator X is available to estimate
some unknown quantity µ. The bias β, variance σ2, mean square error (MSE), root mean
square error (RMSE), and relative error (RE) of X are defined by

3From Pierre: To do...
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β = E[X]− µ;
σ2 = Var(X) = E[(X − E[X])2];

MSE[X] = E[(X − µ)2] = β2 + σ2;

RMSE[X] =
√

MSE[X];

RE[X] = RMSE[X]/|µ|, for µ ̸= 0.

RMSE[X] is also called the absolute error; it is an absolute measure of statistical accuracy
of the estimator X, whereas RE[X] is a measure of that accuracy relative to the size of the
mean µ, which is typically more relevant than the absolute value when µ is very small (see
Example 1.29).

We assume that the size of the computational effort required to compute X (e.g., in
terms of CPU time) is a random variable (typically correlated with X) and we denote its
mathematical expectation by C(X). We call the product C(X)·MSE(X) the work-normalized
MSE of X and we define the efficiency of X by its inverse:

Eff(X) =
1

C(X) ·MSE(X)
. (1.23)

An estimator Y is said to be more efficient than another estimator X if Eff(Y ) > Eff(X).
Efficiency improvement means finding a more efficient estimator Y than the currently used
estimator X in the above sense. The ratio Eff(Y )/Eff(X) is the efficiency improvement
factor. Often, both estimators are unbiased and are assumed to have roughly the same
computational costs; then, improving the efficiency is equivalent to reducing the variance.
For this reason, one often speaks of a variance reduction technique (VRT). However, efficiency
can sometimes be improved by increasing the variance slightly while reducing the computing
cost more significantly.

If the computing cost is not taken into account, which makes sense when the two es-
timators X and Y under consideration require about the same computing effort, we call
Var[X]/Var[Y ] the variance reduction factor (VRF) of Y with respect to X. It represents
the factor by which the variance is reduced when using Y instead of X. In what follows, we
give a few simple examples of variance reduction. Much more is given in Chapter 6.

♣ Example based on Example 1.23?

♣ Static reliability example?

Example 1.27 A control variate. 4 For the Asian call option model based on a geometric

Brownian motion in Example 1.11, if we replace the arithmetic average S̄ = (1/d)
∑d

j=1 S(tj)

in the payoff by the geometric average Y =
∏d

j=1 S(tj)
1/d, then there is an explicit formula

for E[e−rT max (0, Y −K)], which is the exact value of the option. (Since Y has a lognor-
mal distribution, one can easily adapt the Black-Scholes formula; see Example 6.17 for the
details.) Therefore, it suffices to estimate the difference between the values of the options
based on the arithmetic and geometric averages, and add the exact (precomputed) value of
the option based on the geometric average. An unbiased estimator of this difference is

4From Pierre: Move this to the CRN section.
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e−rT
[
max

(
0, S̄ −K

)
−max (0, Y −K)

]
.

Here, the two averages S̄ and Y can be obtained either from two independent sample paths
S(t1), . . . , S(td), or by using the same sample path for both. The variance is typically much
smaller when using the same sample path, i.e., computing both S̄ and Y from the same
values of S(t1), . . . , S(td). In realistic applications, the variance of this modified estimator
can be up to a thousand times and sometimes up to a million times smaller than the variance
of the standard MC estimator e−rT max

(
0, S̄ −K

)
used in example Example 1.11, and it is

not much more expensive to compute. Thus, this alternative estimator provides a significant
efficiency improvement in this case. It is a special case of a control variate estimator (see
Example 6.17), with the control variate coefficient equal to 1. □

Example 1.28 Conditional Monte Carlo. 5 Returning to the numerical illustration at the
end of the reliability Example 1.5, here we give a simple way of building a better estimator
for r. Suppose that in our simulation, we generate only Y3, . . . , Y13, but not Y1 and Y2. From
the values of Y3, . . . , Y13, we can compute the indicator random variables I1 and I2, where
Ij is 1 if node j is connected to node 8, and 0 otherwise. Given I1 and I2, the probability
that nodes 0 and 8 are connected via node 1 is I1r1, while the probability that they are
not connected via node 1 but connected via node 2 is (1 − I1r1)I2r2. These two events are
disjoint. Therefore, the probability that these nodes are connected conditional on (I1, I2) is
their sum

Xe = P[Φ(Y ) = 1 | I1, I2] = I1r1 + (1− I1r1)I2r2.

We have

E[Xe] = E[E[Φ(Y ) | I1, I2]] = E[Φ(Y )] = r,

so Xe is an unbiased estimator of r. It is a conditional Monte Carlo (CMC) estimator. We
will see in Section 6.6 that the variance of the CMC estimator is guaranteed to be smaller
than that of the crude MC estimator X = I[Φ(Y ) = 1].

To test this empirically, we simulated n = 108 independent replicates of 1 − X and of
1−Xe with r1 = r2 = 0.95 and rj = 0.999 for j > 2, to compare the variances. Our estimates
were 1−r ≈ 2.5969×10−3, Var[X] = Var[1−X] ≈ 2.59×10−3, and Var[Xe] = Var[1−Xe] ≈
6.45×10−6. Thus, using CMC reduces the variance by a factor of about 400. This reduces the
width of confidence intervals (for the same n) by a factor of about

√
400 = 20. We computed

95% confidence intervals on 1− r based on a normal approximation with different values of
n, for both estimators. Here are some of the intervals (multiplied by 103) that we obtained:

n 103 × (1− X̄n) 103 × (1− X̄e,n)
103 (1.205, 10.79) (2.504, 2.876)
106 (2.519, 2.719) (2.593, 2.605)
108 (2.592, 2.612) (2.596, 2.597)

The CMC confidence intervals on the right are much narrower than the MC ones on the left.
The CMC estimator 1 − X̄e,n is clearly more accurate than 1 − X̄n. The gain is significant
here mostly because Y1 and Y2 are the two variables that contribute most to the variance

5From Pierre: Move this to separate intro-CMC section?
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(they have a more important influence on the outcome), and we remove this variance contri-
bution by computing explicitly the probability with respect to these two variables instead of
generating them. If we choose two other variables instead, the gain would be more modest.

□

The efficiency criterion (1.23) is not the only possibility, but it is widely agreed upon.
Under the assumption that X is an unbiased estimator of µ, it is standard and was already
proposed by Hammersley and Handscomb (1964). The following gives some justification for
the definition (1.23).

Let X1, . . . , Xn be an i.i.d. sample of size n, and let

X̄n =
1

n

n∑
i=1

Xi.

One has Var[X̄n] = Var[Xi]/n, so the variance of X̄n can be cut in half by doubling the
sample size n, for example. Assuming that C(X̄n) is proportional to n, doubling n also
doubles C(X̄n), so it does not change Eff(X̄n) if there is no bias. In general, if the sample
size n is multiplied by some constant a, the variance is divided by the same constant a and the
efficiency remains unchanged. Thus, for unbiased estimators, the efficiency measure (1.23) is
invariant with respect to the number n of replications, which is a convenient property and
suggests that this definition makes sense.

More generally, in case there might be a bias β = E[Xi] − µ, suppose that κ is the
expected cost for computing each Xi in (1.19), so C(X̄n) = κn, and that Var[Xi] = σ2. Then
we have

Eff[X̄n] =
1

κn(β2 + σ2/n)
=

1

κ(nβ2 + σ2)
. (1.24)

If β ̸= 0, then Eff(X̄n) decreases as a function of n. The definition (1.23) is based on the idea
that variance can be traded off for squared bias, and vice-versa, without essentially altering
the statistical accuracy of the estimator. The fact that Eff[X̄n] depends on the sample size
in the biased case is somewhat annoying. This difficulty can be addressed by considering the
asymptotic behavior of the efficiency when comparing estimators, as we do in Chapter 6.
♣ To be done in Chapter 6...

In practice, estimator efficiencies are typically unknown, because σ2 and β (when ̸= 0) are
unknown. When significant bias is present, it can usually not be estimated precisely, because
otherwise it would have been removed by simple subtraction from the estimator. The variance
σ2 can be estimated by the sample variance S2

n defined in (1.22) if X1, . . . , Xn are i.i.d. copies
of the estimatorX. One must be careful, however; the variance of S2

n itself sometimes happens
to be huge. The following pathological example may look exaggerated, but similar situations
do happen, for example in the context of rare important events (Chapter 6). The example
indicates that the cost, variance, and bias of an estimator do not tell the whole story; other
properties such as skewness, higher moments, etc., may also be important (see Exercise 1.17).
The definition of efficiency in (1.23), adopted here, is a compromise.

Example 1.29 Suppose we want to estimate p = P{A}, the probability of occurrence of
some rare event A for a complex model. The event A may correspond to having A = {T > x}
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for some large x in Example 1.4, or a non-operational system in Example 1.5, or a loss of
information due to buffer overflow in a communication switch, or an investor losing more
than a certain (large) amount of money on a given day, etc. Let X = I[A], where I[A] = 1 if
the event A occurs during the simulation, I[A] = 0 otherwise. The binary random variable
X is a straightforward estimator of p, with E[X] = p and MSE[X] = Var[X] = p(1 − p).
If p is very small, MSE[X] ≈ p is also very small. But obtaining an MSE smaller than p
is trivial here. For example, just by taking Y = 0 as an estimator, we get Var[Y ] = 0 and
MSE[Y ] = p2, so a more useful estimator must have its MSE at least smaller than p2. The
reader can verify that X̄n satisfies this condition if and only if n > (1−p)/p. More generally,
to have a square relative error smaller than ϵ, we need n > (1− p)/(pϵ).

For small p (and more generally when E[X] is near zero), instead of the MSE, it is more
meaningful to consider the relative MSE, defined as MSE[X]/(E[X])2 = MSE[X]/p2, or the
relative error RE[X] =

√
MSE[X]/p. The idea is that the estimation error on p (or the width

of a meaningful confidence interval on p) should not be larger than p, i.e., the square error
should not be larger than p2, and this square error can be measured roughly by MSE[X]. For
the current example, RE[X] =

√
(1− p)/p, which increases to infinity as p approaches zero.

This relative error could of course be divided by
√
n by making n independent replications

of the simulation, but keeping it under control when p is very small can be too costly.
For instance, if p ≈ 10−10, we need n ≈ 1012 for a 10% relative error. Unless the average
computing cost per run is extremely small, an alternative estimator, more efficient than X,
is required.

The large relative error is only one facet of the problem here. Suppose that the average
X̄n of n i.i.d. copies of X is taken as an estimator of p and that a confidence interval for
p is computed by assuming that X̄n follows approximately the normal distribution, as is
often done (see Section 1.4.3 and Chapter 5). If np is small, there is a large probability that
X1 = · · · = Xn = 0, in which case both the sample mean X̄n and the sample variance S2

n

are 0, as we saw in Example 1.5 for rj = 0.999, and the confidence interval has zero width.
That probability is

P[X̄n = S2
n = 0] = (1− p)n ≈ 1− np

if np is small and n is large. Thus, confidence intervals based (näıvely) on normality are very
unreliable in this context.

In fact, here, nX̄n has the binomial distribution with parameters (n, p). This is well
approximated by the normal distribution when both n and np are large. But if n is large
and np is small, nX̄n follows approximately the Poisson distribution with mean np, which
is far from the normal. One can use this Poisson approximation to compute a confidence
interval; see Section 5.2.3. The two main approaches for dealing with rare-event problems
are importance sampling and splitting; the first is introduced in Section 1.6 and both are
discussed in Chapter 6. □

Fortunately, for the great majority of simulation models, useful confidence intervals are
not so difficult to obtain.



50 1. Introduction

1.4.5 The hit-or-miss estimator

Suppose that f : (0, 1)s → [0, K] for some constant K > 0. Note that µ =
∫
(0,1)s

f(u)du is

the volume of the region S = {(u, v) ∈ R : v ≤ f(u)} whereR is the (s+1)-dimensional rect-
angle R = (0, 1)s× [0, K]. We can therefore estimate µ using the volume estimation method
of Example 1.7 with this pair (R,S). For each i, we generate a point (Ui, Vi) uniformly in
(0, 1)s+1, then Yi = (Ui, K Vi) is uniform over R, and we put

Bi = I[Yi ∈ S] = I[ViK ≤ f(Ui)] =

{
1 if ViK ≤ f(Ui);

0 otherwise.

The estimator

µ̃n = K B̄n =
K

n

n∑
i=1

Bi (1.25)

is called a hit-or-miss estimator for µ (Hammersley and Handscomb 1964).
We can compare this estimator with the standard MC estimator µ̂n in (1.19) with Xi =

f(Ui), whose variance is Var[µ̂n] = (E[f 2(U)] − µ2)/n. Since 0 ≤ f(u) ≤ K, one has
E[f 2(U)] =

∫
(0,1)s

f 2(u)du ≤
∫
(0,1)s

Kf(u)du = Kµ, and therefore

Var[µ̂n] ≤ Var[µ̃n].

Furthermore, if 0 < f(u) < K on a set A ⊆ (0, 1)s of strictly positive size, then
∫
A
f 2(u)du <

K
∫
A
f(u)du and the variance of µ̂n is strictly smaller than that of µ̃n. However, the expected

cost to compute Bi may be less than the expected cost to compute f(Ui), for instance if
easily computed bounds are available for f and if the condition ViK ≤ f(Ui) can be verified
indirectly at a cheaper cost than that of computing f(Ui) explicitly. For example, if f is a
square root, then computing Bi is equivalent to checking whether V 2

i K
2 ≤ f 2(Ui), which

bypasses the (costly) computation of the square root. (In this expression, the square should
be computed by a multiplication, not by a more costly power function.) Thus, it is not always
true that µ̂n is more efficient than µ̃n.

Example 1.30 When estimating π in Example 1.7, what we were doing was in fact using
the hit-or-miss method to estimate the area µ of the yellow surface S shown there, using the
unit square for R and K = 1. This area is also the integral µ =

∫ 1

0

√
1− u21du1 = E[f(U)]

where f(U) =
√
1− U2, so it can be estimated by MC via (1.19) with X =

√
1− U2 where

U ∼ U(0, 1). We have just shown that the latter estimator has smaller variance than the
hit-or-miss estimator. However, its computation involves a square root, so it is unclear if it
is more efficient. This may depend on both the hardware and software that is used. □

1.5 Numerical Integration and Quasi-Monte Carlo

1.5.1 Deterministic integration rules

In this section, we assume that the goal is to estimate the integral of a function f over
(0, 1)s as in (1.16). The MC method evaluates f at n independent random points U1, . . . ,Un
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uniformly distributed in (0, 1)s, and takes the average. But choosing the evaluation points
completely at random is not necessarily the most intelligent way of sampling the space.
There are better ways, at least in small dimensions. One general approach replaces the
random points by a set of more carefully selected deterministic points Pn = {u0, . . . ,un−1},
where ui ∈ [0, 1]s for each i, and approximates µ in (1.16) by

µ̄n =
n−1∑
i=0

wif(ui), (1.26)

where the wi are real-valued weights that sum to 1. In this section, the points are indexed
from 0 to n− 1 instead of from 1 to n, and their coordinates are allowed to take the values 0
and (sometimes) 1: this is for compatibility with standard notation for QMC integration and
popular quadrature rules such as those in (1.28) and (1.29). For QMC methods, the weights
wi are all equal to 1/n, and the coordinates take their values in [0, 1). The integration error
is En = µ̄n − µ. Here, both µ̄n and En are deterministic, not random variables.

1.5.2 One-dimensional numerical integration

To start with a simple case, suppose f : [0, 1] → R is a one-dimensional bounded and n is
fixed, so we just want to cover the unit interval [0, 1] evenly with n points. A simple solution
takes ui = i/n. This gives

Pn = Zn/n
def
= {0, 1/n, . . . , (n− 1)/n} (1.27)

and the corresponding approximation is

µ̄n =
1

n

n−1∑
i=0

f(i/n).

The integration points of Pn are illustrated here in blue for n = 8. The true function is in
red.

0 10.5

Suppose f is differentiable and has a bounded derivative |f ′(u)| ≤ K for [0, 1]. A first-order
Taylor expansion of f(u) for u ∈ [i/n, (i+ 1)/n] gives

f(u) = f(ui) + f ′(ξ)(u− ui)

for some ξ ∈ [i/n, u], and therefore |f(u) − f(ui)| ≤ K(u − ui). By integrating both sides,

we get
∫ (i+1)/n

i/n
|f(u)−f(ui)|du ≤ K(1/n)2/2 = K/(2n2), and by summing over all i, we find

|En| ≤ K/(2n) = O(1/n). This convergence rate for the worst-case error is better than the
probabilistic convergence rate of O(n−1/2) provided by standard MC.

A better strategy is to shift the points by 1/(2n) so there is a point ui = (2i + 1)/n in
the middle of each interval [i/n, (i+ 1)/n]:
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0 10.5

This gives the midpoint rule, with integration points

P ′
n

def
= {1/(2n), 3/(2n), . . . , (2n− 1)/(2n)}.

If f is twice differentiable and has a bounded second derivative |f ′′(u)| ≤ K for u ∈ [0, 1],
then a second-order Taylor expansion of f around ui gives

f(u) = f(ui) + f ′(ui)(u− ui) + f ′′(ξ)(u− ui)2/2

for some ξ between u and ui. By integrating with respect to u over [i/n, (i+1)/n] and noting

that
∫ (i+1)/n

i/n
f ′(ui)(u− ui)du = 0 and

∫ (i+1)/n

i/n
(u− ui)2/2 ≤ 1/(24n3), we have∫ (i+1)/n

i/n

|f(u)− f(ui)|du ≤
K

2

∫ (i+1)/n

i/n

(u− ui)2du =
K

24n3
.

Summing over i = 0, . . . , n− 1 gives |En| ≤ K/(24n2) = O(n−2). Thus, centering the points
gives a better convergence rate.

If we allow different weights on the f(ui), then we may use the well-known trapezoidal
rule, defined as

µ̄n =
1

n

n∑
i=1

f(i/n) + f((i− 1)/n)

2
=

1

n

[
f(0) + f(1)

2
+

n−1∑
i=1

f(i/n)

]
, (1.28)

based on the n+1 points P ′′
n+1 = {0, 1/n, . . . , 1} with weights w0 = wn = 1/(2n) and wi = 1/n

for 1 ≤ i ≤ n − 1. This rule evaluates f at the n + 1 points, takes a linear interpolation
over each interval [i/n, (i + 1)/n], for i = 0, . . . , n − 1, and integrates this piecewise linear
function. This is illustrated below for n = 8; the piecewise-linear approximation is in blue.

0 10.5

With a Taylor expansion, one can show that this method has |En| ≤ K/(12n2) = O(n−2) if
|f ′′(u)| is bounded by a constant K. This is the same rate as for the midpoint rule, but the
error bound is twice larger.

The midpoint and trapezoidal rules remove (integrate exactly) the linear terms in the
Taylor expansion of En. Higher-order methods integrate exactly some higher-order terms.
For example, Simpson’s rule integrates exactly both the linear and quadratic terms, by using
P ′′
n+1 = {0, 1/n, . . . , 1} as before, taking a quadratic interpolation at the three evaluation

points over each interval [2i/n, 2(i+1)/n], i = 0, . . . , n/2− 1 (assuming that n is even), and
integrating the piecewise quadratic interpolation. In the end, it just corresponds to using a
different choice of weights than the trapezoidal rule. It is defined as

µ̄n =
f(0) + 4f(1/n) + 2f(2/n) + · · ·+ 2f((n− 2)/n) + 4f((n− 1)/n) + f(1)

3n

=
1

3n

f(0) + f(1) + 2

n/2−1∑
i=1

f(2i/n) + 4

n/2∑
i=1

f((2i− 1)/n)

 . (1.29)
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By using again a Taylor expansion, one can show that this gives |En| ≤ K/(180n4) = O(n−4)
if the fourth derivative of f is bounded in absolute value by K (Davis and Rabinowitz 1984,
Press et al. 1992).

The trapezoidal and Simpson rules are special cases of a general class of methods known
as composite, closed, Newton-Cotes quadrature rules, which approximate the integral by a
weighted average of function evaluations at equally spaced points. The weights are deter-
mined in a way that Lagrange polynomials up to a given order, say α, are integrated with
zero error (Press et al. 1992). This is achieved by interpolating the α + 1 evaluations of f
over each interval [αi/n, α(i + 1)/n], i = 0, . . . , n/α − 1 (assuming that α divides n), and
integrating this piecewise polynomial interpolation. For example, Simpson’s rule and Boole’s
rule provide convergence rates of O(n−4) and O(n−6) for α = 3 and α = 4, respectively,
when f has bounded derivatives of order α. Error bounds can be obtained in general by
doing a Taylor expansion of f , with an error term that involves the derivative of order α,
over each subinterval of the form [αi/n, α(i+ 1)/n].

Gaussian rules and Clenshaw-Curtis rules use unequally spaced points instead, with a
higher density of points near the extremities of the interval. They can provide a convergence
rate of O(n−2α) when f has bounded derivatives of order 2α. They are generally more stable
and accurate than the Newton-Cotes rules, but also more complicated to implement, and
not always convenient, because of the unequal spacing. For all these quadrature rules, the
actual error is typically very difficult to estimate, and the error bounds are often too hard
to compute.
♣ Other methods: adaptive rules, etc.

0 1

1

ui,2

ui,1 0 1

1

ui,2

ui,1

Fig. 1.12. A rectangular grid in s = 2 dimensions with d1 = d2 = 8, raw on the left and centered
on the right.

The above discussion is for one-dimensional functions only. For functions f in s > 1
dimensions, a straightforward extension of Pn = Zn/n is a rectangular grid of cardinality
n = d1 · · · ds defined by

Pn = {(i1/d1, . . . , is/ds) such that 0 ≤ ij < dj for each j},



54 1. Introduction

for some positive integers d1, . . . , ds (see the left panel of Figure 1.12 for s = 2 and d1 = d2 =
8). This grid can be centered by adding (1/(2d1), . . . , 1/(2ds)) to all the points, to produce
an s-dimensional midpoint rule, as shown in the right panel of Figure 1.12. For this rule, we
have the following error bound:

Proposition 1.2 Suppose that f : [0, 1)s → R satisfies

sup
u∈[0,1]

∣∣∣∣∂2f(u)∂u2j

∣∣∣∣ ≤ Kj <∞

for j = 1, . . . , s. Then the integration error for this f with the s-dimensional midpoint rule
satisfies

|En| ≤
s∑

j=1

Kj

24d2j
. (1.30)

If we take dj = d for all j, so n = ds, and put K = K1 + · · ·+Ks, this gives

|En| ≤ K/(24d2) = Kn−2/s/24 = O(n−2/s). (1.31)

Proof. To prove (1.30), first note that the n points partition [0, 1)s into n subrectangles of
dimensions d−1

1 × · · · × d−1
s , with one point at the center of each subrectangle. Let Ri be one

of these subrectangles, with center ui = (ui,1, . . . , ui,s). We want to bound |f(u)− f(ui)| for
all u = (u1, . . . , us) ∈ Ri. We can write

|f(u)− f(ui)| ≤ |f(u)− f(ui,1, u2, . . . , us)|
+ |f(ui,1, u2, . . . , us)− f(ui,1, ui,2, . . . , us)| + · · ·
+ |f(ui,1, . . . , ui,s−1, us)− f(ui,1, . . . , ui,s−1, ui,s)|.

We can bound the jth term on the right of this expression by noting that only coordinate
j changes in this term, so from the bound for the one-dimensional midpoint rule over the
interval of length 1/dj, the integral of this term with respect to uj in the box Ri is bounded
by Kj/(24d

3
j). Integrating this bound over Ri with respect to the other coordinates and

summing up then gives ∫
Ri

|f(u)− f(ui)|du ≤
s∑

j=1

Kj

24d2jn
.

Since we have n such rectangles, we multiply by n and obtain (1.30).

In s = 4 dimensions, this rate is the same as for MC. In s < 4 dimensions, it is better,
while in s > 4 dimensions it is worse.

One can define a trapezoidal s-dimensional rule with n = ds points in a similar way,
and the error bound also converges as O(n−2/s). But those rectangular grids are obviously
impractical for large s. If s = 100, for example, even with dj = 2 for all j (the smallest non-
trivial value for the midpoint rule) we already have n = 2100 points. No current computer
can enumerate that number of points even with millions of years of CPU time. Another
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drawback of rectangular grids is that when the points are projected to a single coordinate
or to a small subset of the s coordinates, many points are projected onto each other. This

usually translates into a loss of efficiency, as show in the next example. 6

Example 1.31 Consider a function f : [0, 1)s → R of the form

f(u1, . . . , us) =
s∑

j=1

fj(uj) + other terms that all depend on more than one coordinate.

This is a sum of s univariate functions, plus other terms. The integration error for this
function is the sum of the error for the s univariate terms, plus the error for the other terms.
With the s-dimensional midpoint rule, the terms of the first sum are evaluated only at the
d distinct values {0, 1/d, . . . , (d− 1)/d} (the projections of the points over one coordinate),
so the error for these terms will be O(d−2) = O(n−2/s) instead of the O(n−2) that we would
get with the one-dimensional midpoint rule. And if we use the unshifted points as in the left
panel of Figure 1.12, the error with the s-dimensional rule is O(d−1) = O(n−1/s), compared
with O(n−1) for the one-dimensional rule. Therefore, we clearly want to avoid losing points
in the projections. □

1.5.3 Quasi-Monte Carlo

Quasi-Monte Carlo (QMC) methods are high-dimensional quadrature rules that avoid the
superposition of points in the projections. These methods normally use equal weights wi =
1/n and a carefully selected deterministic point set Pn = {u0, . . . ,un−1} in [0, 1)s that cover
the unit hypercube (0, 1)s very uniformly without the gaps and clusters that occur with
random points. They approximate µ in (1.16) by

µ̄n =
1

n

n−1∑
i=0

f(ui). (1.32)

The points of Pn are known as quasi-random points. This name may be misleading, because
no attempt is made to imitate randomness, but it has become a de facto standard term in
the literature. In this book, we restrict ourselves to QMC methods with equal weights as in
(1.32).

A necessary and sufficient condition for not losing points in the projections is that
all one-dimensional projections contain n distinct points. One simple way to achieve this
is to construct the points so that each one-dimensional projection is the set Zn/n =
{0, 1/n, 2/n, . . . , (n− 1)/n}. Of course, these values must be enumerated in a different order
for the different coordinates, otherwise all the points will be on the main diagonal of the unit
hypercube (all coordinates of each point will be the same). Thus, one must have a different
permutation of Zn/n for each of the s coordinates. The goal is to select these permutations
in a way that the resulting point set Pn also has high uniformity over [0, 1)s. We will look
at two types of constructions that can achieve this: lattice rules and digital nets.

6From Pierre: We could give a numerical example with a comparison with MC, either here or in Sec-
tion 1.5.3.
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0 1
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ui,2

ui,1 0 1

1

ui,2

ui,1

Fig. 1.13. Lattice points set in s = 2 dimensions with n = 101 (left) and n = 1021 (right).

1.5.4 Lattice Rules

Example 1.32 We start with a simple example in two dimensions. Suppose we want to
integrate f over the unit square (0, 1)2. A simple idea is to take Pn as the set of n = m =
101 points displayed in Figure 1.8 (left), which cover the unit square quite evenly. We see
those points again in the left panel of Figure 1.13. These 101 points are all the pairs of
two successive values produced by the LCG of Example 1.13, from all 101 possible initial
states (including 0). Recall that when the LCG is in state x, the next state is ax mod m =
12x mod 101, and the corresponding pair in Figures 1.8 and 1.13 is (x/m, (ax mod m)/m) =
(x/m, (ax/m) mod 1). This means that Pn can be written as follows (here we use i and n in
place of x and m to follow the QMC notation):

Pn = {ui = (ui,1, ui,2) = (i/m, (ai/m) mod 1) : i = 0, . . . , n− 1}
= {ui = (i/101, (12i/101) mod 1) : i = 0, . . . , 100}
= {(0, 0), (1/101, 12/101), (2/101, 24/101), . . . , (100/101, 89/101)}.

These points are the intersection of a integration lattice with the unit square [0, 1)2 (the lattice
itself extends the same pattern of points to infinity in all directions). We may approximate
the integral µ by the average (1.32) using this Pn. This type of integration rule is called a
lattice rule. If f is bounded and smooth over the unit square [0, 1)2, this is likely to give a
more accurate estimate of µ than an average over n = 101 independent random points.

The point (0, 0) may cause a problem in some situations. For example, for the Asian
option in Example 1.11 with d = 2 observation times, if we evaluate the estimator at
(u1, u2) = (0, 0), we obtain (z1, z2) = (Φ−1(u1), Φ

−1(u2)) = (−∞,−∞) for the pair of normal
random variates, and the simulation program may not execute correctly to completion when
encountering such values (even though the payoff is zero at that point). A simple solution is
to remove the point (0, 0) from Pn and use only the n = m− 1 = 100 other points.
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A larger two-dimensional lattice point set Pn is illustrated on the right panel of Fig-
ure 1.13. This one also comes from a LCG, but now with n = m = 1021 and a = 90. It
covers the unit square very nicely. Here one has

Pn = {ui = (i/1021, (90i/1021) mod 1) : i = 0, . . . , 1020}.

Note that for both point sets, if we project the points on a single coordinate, either
the first or the second, we get the one-dimensional point set Zn/n as in (1.27). There is
no superposition of points. One can also think of “centering” the lattice points by adding
(1/(2n), 1/(2n)) to all of them. Each one-dimensional projection then gives a midpoint rule
in one dimension. Another advantage of this centering is there is no point at (0, 0) anymore,
so no need to remove a point. □

Lattice rules can also be defined in s > 2 dimensions. One can select an integer n > 0
and a s-dimensional vector a = (a1, . . . , as) with coordinates in {2, . . . , n− 1}, and define

Pn = {ui = (ia mod n)/n = iv mod 1 : i = 0, . . . , n− 1}, (1.33)

where v = a/n. This is called a lattice rule of rank-1 (all the points are multiples of the
same vector, modulo 1). As a special case, one can take aj = aj mod n for j = 1, . . . , s. This
gives what is called a Korobov lattice rule. For this special case, the point set Pn is the same
as the set Ψs of all vectors of s successive values that can be produced by an LCG with
modulus m = n and multiplier a, from all possible initial states (including 0), as defined in
Section 1.3.

For the lattice point set Pn in (1.33), the jth coordinate of ui takes each value in Zn/n
exactly once when i goes from 0 to n − 1 if and only if gcd(aj, n) = 1, i.e., aj and n have
no common factor. For a Korobov rule, this holds for all j ≥ 1 if gcd(a, n) = 1. This was
the case for our two examples in Figure 1.13. To prove that this holds in general, suppose
the points number i and i′ have the same coordinate j, where 0 ≤ i ≤ i′ < n − 1. That
is, 0 = (iaj − i′aj) mod n = (i − i′)aj mod n. Since aj has no common factor with n, i − i′
must be a multiple of n, which implies that i = i′. In other words, each coordinate visits the
same set of numbers as in (1.27), but these numbers may be visited in a different order by
the different coordinates. If this holds and we add 1/(2n) to each coordinate of each point,
then each coordinate visits each number in the set P ′

n used for the midpoint rule instead of
Pn = Zn/n. With the random shift modulo 1 that we will add in Section 1.5.6, these two
sets will become equivalent. Lattice rules are examined further in Section 6.10.9.

Example 1.33 Here we try lattice rules on the Asian option example given at the end of
Example 1.11. We use the same parameter values as in the numerical example given there,
but we first try a two-dimensional version with d = 2, t1 = 1/2, and t2 = T = 1, before
looking at the original example in d = 12 dimensions.

For d = 2, the exact value (computed via extensive simulations) is µ ≈ 17.0958, and the
MC estimator of µ has variance Var[Xi] ≈ 934.0 (per simulation run). Using QMC with the
n = 100 nonzero lattice points in the left panel of Figure 1.13, we obtain µ̄100 = 17.6302,
so the squared error is MSE[µ̄100] = (17.6302 − 17.0958)2 = 0.2856. With MC, if we use
the same number of independent simulation runs, we obtain MSE[µ̂100] = Var[µ̂100] ≈ 9.34.
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Equivalently, we can multiply the MSE of the QMC estimator by 100, for a fair comparison
with Var[Xi]: 28.56 vs 934. The CPU times for computing µ̄100 and µ̂100 are approximately
the same (the QMC estimator is actually a bit faster to compute). Therefore, QMC improves
the efficiency by a factor of 934/28.56 ≈ 32.

Encouraged by this success, we tried a Korobov rule with a larger n. With n = 65521 and
a = 944, whose corresponding two-dimensional lattice also has good uniformity, we obtain
µ̄65520 = 17.0963. This gives a MSE of 2.5 × 10−7. If we assume again that the computing
times per run are about the same, the efficiency is improved by a factor of approximately
934.0/(65520× 2.5× 10−7) ≈ 5.7× 104. We are 57 thousand times more efficient!

For the case where d = 12, the exact value is µ ≈ 13.122 and the MC estimator Xi

has variance Var[Xi] = 516.3. For the Korobov lattice points with n = 101 and a = 12, we
obtain µ̄100 = 12.4116, whereas with m = 65521 and a = 944, we have µ̄65520 = 13.1193.
The corresponding square errors, multiplied by the numbers of evaluation points (for a
fair comparison) are 100MSE[µ̄100] ≈ 50.5 and 65520MSE[µ̄65520] ≈ 0.477, respectively.
Although less spectacular than for d = 2, we still have significant reductions of the MSE
compared to MC, by factors of about 10 and 1000, respectively. □

1.5.5 Digital Nets

Digital nets offer another way to construct Pn so that each coordinate visits each value in
Zn/n exactly once when we enumerate the points, and the visiting order is different for the
different coordinates. Digital nets can be defined in any prime base b ≥ 2, although b = 2 is
by far the most popular value because the computer implementation is particularly fast in
that base. In this section, we assume b = 2.

To define a digital net in base 2, we choose two integers w ≥ k > 0 and s generating
matrices C1, · · · ,Cs, which are binary matrices having w rows and k columns, and whose
first k rows are linearly independent. The matrix Cj is used to define coordinate j of all the
points ui = (ui,1, . . . , ui,s), as follows. For point i, let ai = (ai,0, . . . , ai,k−1)

t be the vector
that contains the k bits of i written in base 2, starting with the least significant one. That
is,

i = ai,0 + ai,12 + · · ·+ ai,k−12
k−1.

The bits ui,j,ℓ of the binary expansion of ui,j are obtained by multiplying ai by Cj:

ui,j =
w∑

ℓ=1

ui,j,ℓ2
−ℓ

where

(ui,j,1 . . . ui,j,w)
t = Cjai mod 2.

This defines the point set Pn = {u0, . . . ,un−1} for n = 2k.
Suppose for now that w = k. Since the first k rows are linearly independent, Cj is an

invertible matrix, and therefore it defines an invertible linear mapping (a bijection) from Zn

to Zn. Such a bijection corresponds to a permutation of the elements of Zn, or equivalently
a permutation of Zn/n. In other words, the role of Cj is to determine the order in which the
jth coordinate ui,j will visit all the values of Zn/n when i goes from 0 to n− 1.
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If w > k, the first k bits of ui,j will be the same as for w = k, but there will be
w− k additional bits, whose effect is to add a non-negative number smaller than 2−k = 1/n
to this coordinate. Regardless of w, we will always have one value of ui,j in each interval
[i/n, (i + 1)/n), for i = 0, . . . , n − 1. This holds for each j. Note also that since a0 = 0,
we always have Cja0 = 0, so u0,j = 0 for all j, and therefore u0 = 0 for any choice of
the generating matrices. This summarizes the uniformity behavior of the one-dimensional
projections.

The uniformity in more than one dimension will depend on how the Cj’s interact with
each other. We want different matrices Cj because we want a different order for the different
coordinates j, and we want to select them in a way that the points ui cover [0, 1)

s as evenly
as possible. In s dimensions, the intervals [i/n, (i+1)/n) are replaced s-dimensional intervals,
which are rectangular boxes. We can partition the hypercube [0, 1)s in n rectangular boxes
of the same size, and try to have exactly one point ui in each box. We can do that only for
partitions of a specific type, for which the size of the box in each dimension is a negative
power of 2.

In two dimensions, in particular, if k = k1 + k2 for k1, k2 ≥ 0, and if we partition the
first axis in 2k1 equal intervals and the second axis in 2k2 equal intervals, we obtain n = 2k

rectangles of the same size, 2−k1 × 2−k2 . The first k1 bits of ui,1 and the first k2 bits of ui,2
determine in which box the point ui will fall. There will be exactly one point in each box if
and only if the vector formed by those k1 + k2 = k bits takes each of the 2k possible values
when i goes from 0 to n− 1. This holds if and only if the matrix formed by the first k1 rows
of C1 and the first k2 rows of C2 is invertible. To obtain this property for all choices of k1, it
suffices to choose an arbitrary invertible k × k matrix C1, and reverse the order of its rows
to obtain C2. Then the matrix formed by the first k1 rows of C1 and the first k2 = k − k1
rows of C2 will have the same rows as C1, and will therefore be invertible.

Example 1.34 Hammersley points. For a simple illustration, let s = 2, C1 be the reflected
identity matrix, and C2 the identity:

C1 =


0 · · · 0 1
0 · · · 1 0
...

... 0 0
1 · · · 0 0

 , C2 =


1 0 · · · 0
0 1 · · · 0
...

. . . 0
0 0 · · · 1

 .

C2 has the same rows as C1, but in reverse order. The resulting Pn is called the Hammersley
point set in base 2. For k = 8, the n = 28 = 256 points ui = (ui,1, ui,2) are given in
Figure 1.14, in binary. Here, ui,1 = i/n whereas u0,2, u1,2, . . . , u255,2 are the first 256 terms of
the van der Corput sequence en base 2. The first n numbers in this (infinite) sequence fill the
interval [0, 1) quite evenly for any integer n large enough. Observe that the binary expansion
of ui,2 is the mirror image of that of ui,1 (the bits are in reverse order). The 256 values are
Zn/n in both cases; they are enumerated in increasing order for ui,1 and in a different order
for ui,2.

7 The corresponding point set is illustrated in the upper half of Figure 1.15. On the left,
the unit square is partitioned into 256 rectangles of size 1/8 by 1/32 obtained by dividing the

7From Pierre: It might be better to take only 64 or 128 points here, to improve visibility.
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i ui,1 ui,2
0 .00000000 .0
1 .00000001 .1
2 .00000010 .01
3 .00000011 .11
4 .00000100 .001
5 .00000101 .101
6 .00000110 .011
...

...
...

254 .11111110 .01111111
255 .11111111 .11111111

Fig. 1.14. The Hammersley point set in base 2 with n = 28 = 256.

two axes into 8 and 32 equal intervals, respectively, and we see that each of these rectangles
contains exactly one point. For this particular point set, the same is true if we partition the
unit square into rectangles of size 2−k1 by 2−k2 where k1 and k2 are non-negative integers
that sum to 8 (so we have 28 = 256 rectangles). On the left side of the figure, we have k1 = 3
and k2 = 5. On the right side, we have k1 = 6 and k2 = 2. □

In s dimensions, if k1 + · · ·+ ks = k − t for t ≥ 0 and if we partition the jth axis in 2kj

intervals of equal sizes for j = 1, . . . , s, we obtain 2k−t rectangular boxes of equal sizes. We
have exactly 2t points in each box if and only if the matrix formed by the first kj rows of
Cj for each j has full rank (i.e., its k − t rows are linearly independent). When this holds,
we say that the points are (k1, . . . , ks)-equidistributed in base 2. If this holds for t = 0,
we have exactly one point per box. When this holds for all choices of k1, . . . , ks for which
k1+ · · ·+ks = k− t, we say that the point set is a digital (t, k, s)-net in base 2. The smallest
t for which this property holds is called the t-value of the net. We want it to be as small
as possible. However, digital (0, k, s)-nets in base 2 do not exist in more than 3 dimensions.
The smallest possible value of t increases with the dimension (Schmid and Schürer 2005).
The projection of a digital net over a subset of the coordinates is also a digital net having
its own t-value, which can be smaller than the t value of the whole net. One can therefore
measure the quality by looking also at the t-values of several low-dimensional projections
like pairs of coordinates, triples, etc.

Sobol’ (1967) proposed a specific method to construct an infinite sequence of upper-
triangular binary matrices C∞

1 ,C
∞
2 ,C

∞
3 , . . . each with an infinite number of rows and

columns, and ones everywhere on the diagonal. For each j ≥ 1 and any k ≥ 1, the first
k rows and k columns of C∞

j form an invertible matrix. The bits above the diagonal in the
first few columns of each Cj are parameters that can be selected (their choice has an impact
on the quality of the nets), and the other columns are determined by a recurrence, using
a different recurrence for each j. These matrices can be used to construct a digital net in
base 2 with n = 2k points for any k, in arbitrary dimension s. This construction effectively
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Fig. 1.15. The two-dimensional Hammersley point set in base 2, with cardinality n = 28 = 256
(upper panels) and the same point set after a random digital shift (bottom panels).

provides an infinite sequence of points and we can take the first n = 2k points for any k.
When we increase k by 1, we double n by adding new points while keeping the previous
ones. A popular choice for the parameters are those provided by Joe and Kuo (2008), who
computed a table of parameter values for up to s = 21, 201 dimensions, based on the t-values
of the two-dimensional projections of the points. Section 6.10.5 gives more details on Sobol’
sequences.

There are also other ways to construct digital nets and other ways to measure their
quality, based on bounds on the integration error or on the variance for certain classes of
functions f . See Section 6.10.

1.5.6 Randomized Quasi-Monte Carlo

The QMC approximation (1.32) is purely deterministic. The variance is zero, the integration
error En = µ̄n − µ can be seen as a bias, and the MSE is simply the square error E2

n
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(the square bias). But this error or bias is generally very hard to estimate. In the previous
examples, we were able to compute the bias because we knew the answer, but this is not the
case in practice. With the MC method, on the other hand, the error can be estimated (in a
probabilistic sense) by computing a confidence interval.

A standard way of addressing this error estimation problem for QMC is to randomize
the QMC point set Pn in a way that

(a) it retains its high uniformity over (0, 1)s when taken as a set and
(b) each point Ui of the randomized point set has the uniform distribution over

(0, 1)s when taken individually.

This approach is known as randomized QMC (RQMC). We call a point set Pn that satisfies
the conditions (a) and (b) an RQMC point set. Condition (b) ensures that E[f(Ui)] = µ for
each i, by definition of µ. This implies that the RQMC estimator

µ̂n,rqmc =
1

n

n−1∑
i=0

f(Ui)

is an unbiased estimator of µ. If the randomization also preserves the high uniformity of
Pn, then µ̂n,rqmc should also have smaller variance than the standard MC estimator µ̂n.
RQMC can then be viewed as a variance reduction method. Under certain conditions on f ,
it can be proved that the variance converges at a faster rate than the MC rate of O(1/n),
as a function of n. The preferred randomization method depends on the type of point set.
Most randomizations are designed to be compatible mainly with a specific class of point set
constructions.

With a RQMC rule, the Ui are not independent, and therefore we cannot estimate
Var[µ̂n,rqmc] by using the empirical variance S2

n of the Xi = f(Ui) defined in (1.22) and
dividing it by n, as we did for MC. To estimate this variance and eventually compute a
confidence interval on µ, we can randomize the same point set r times independently, and
compute the sample mean X̄r and the sample variance S2

r of the r corresponding (indepen-
dent) realizations of µ̂n,rqmc. Then, E[X̄r] = µ and E[S2

r ] = Var[µ̂n,rqmc] = rVar[X̄r] (Owen
1998, L’Ecuyer and Lemieux 2000). If r is large enough, we may assume that X̄r is approxi-
mately normally distributed, but not if r is small, even if n is very large (L’Ecuyer, Munger,
and Tuffin 2010). The computation of confidence intervals in this situation is discussed in
Section 6.11.

Random shift modulo 1. One simple randomization method is a random shift modulo
1, proposed by Cranley and Patterson (1976) for lattice points: Generate a single point U
uniformly distributed over (0, 1)s and add it to each point of Pn, coordinate-wise, modulo
1. All points of Pn are shifted by the same amount. Moreover, for any fixed point ui, the
randomized point (ui + U) mod 1 has the uniform distribution over (0, 1)s. This implies
that for any type of point set Pn, Condition (b) holds, and therefore the RQMC estimator
µ̂n,rqmc is unbiased. When Pn corresponds to a lattice rule, the random shift preserves much
of the structure and uniformity: it just shifts the lattice. The resulting integration rule is
then called a randomly-shifted lattice rule. With a random shift, there is no need to discard
the point (0, 0) from Pn.
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Fig. 1.16. Applying a shift modulo 1 to the point set Pn of Figure 1.8 (left).

Example 1.35 Figure 1.16 shows the point set Pn of Example 1.32, to which we have
applied a shift of U = (0.40, 0.08), modulo 1. The points that fall outside the unit square
after the shift, on the left panel of the figure, are brought back into the square by the modulo
1 operation, as seen on the right panel. □

Example 1.36 We applied a randomly-shifted lattice rule to the two-dimensional Exam-
ple 1.32, with the same point sets, and r = 1000 independent randomizations in each case.
Here, we keep the point (0, 0), so we have n = m points. The sample mean X̄r and sample
variance per run nS2

r were 17.076 and 77.9 for n = 101, and 17.095 and 4.03 for n = 65521.
Compared with the MC variance of 934.0, the variance (and the MSE) is reduced by the
factors 12.0 and 232, respectively. These factors are more modest than for the deterministic
rule in Example 1.32. On the other hand, it is important to observe that they are estimated
without knowing the exact mean. In general, the MSE is not always smaller with QMC; it
depends on the interaction between the deterministic points and the function f .

We made the same experiment for the case of d = 12, examined in Example 1.33. Here,
the sample mean and the sample variance per run are 13.089 and 94.9 for n = 101, and
13.122 and 23.0 for n = 65521. Compared with the MC variance of 516.3, the variance is
reduced by the factors 5.4 and 22.4, respectively. □

Random digital shift. If we apply a random shift modulo 1 to a digital net like that of
Figure 1.15, for which each box of a given partition contains exactly the same number of
points (i.e., equidistribution holds for this partition), the random shift will generally destroy
the equidistribution property. But if Pn is a digital net in base 2, and if the partition is defined
by dividing each axis j into 2j intervals for some integers j, then a slightly different type of
randomization, called a random digital shift in base 2, preserves the equidistribution property.
This randomization generates a single random point U in (0, 1)s and adds it to every other
point as in the random shift modulo 1, but this time the addition modulo 1 is replaced by
a bitwise addition modulo 2 (i.e., a bitwise exclusive-or), coordinate by coordinate. As an
illustration in s = 2 dimensions, the randomized version of ui below is ui ⊕U :
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ui = (0.01100100..., 0.10011000...)2

U = (0.00100000..., 0.01010001...)2

ui ⊕U = (0.01000100..., 0.11001001...)2.

If we assume that U is uniform over (0, 1)s, which means that each coordinate of U has
an infinite number of random bits, then for any fixed ui, ui⊕U is also uniform over (0, 1)s.
That is, each point has the uniform distribution after a random digital shift. In software
implementations, the number of bits for each coordinate of U is restricted by machine preci-
sion; e.g., 53 bits, which is usually sufficient for practical purposes. We now explain why for
a digital net in base 2, this randomization also preserves equidistribution. Saying that each
box contains the same number of points in the upper left panel of Figure 1.15 is equivalent
to saying that if we concatenate the first 3 bits of the first coordinate and the first 5 bits
of the second coordinate of ui, then each of the 256 possibilities for this 8-bit string occurs
exactly once when i runs through {0, 1, . . . , 255}. This is because these 8 bits determine the
box in which the point falls. Now, when we perform a bitwise exclusive-or of each point ui

with the same U , whenever a given bit of U is 1, we flip the corresponding bit of all the ui’s
(represented by a red ∗ below), whereas if this bit is 0, the corresponding bit of all the ui’s
remains unchanged.

ui = (0.***, 0.*****)

U = (0.001, 0.01010)2

ui ⊕U = (0.***, 0.*****)

But since a given bit is changed in the same way for all the points, each of the 256 possibilities
for the 8-bit string that determines the box number will still appear exactly once, and so
we will still have exactly one point per box, regardless of what U turns out to be. This
also holds more generally if the partition is in 2k−t boxes that contain 2t points each. In
essence, each time we flip one bit in one coordinate for all the points, we just exchange
two sets of rectangular boxes in the partition. Flipping the first bit of the first coordinate
exchanges the left half of the unit hypercube with the right half. Flipping the second bit
exchanges the first quarter with the second quarter and the third quarter with the fourth
quarter. And so on. This holds for each coordinate. If the boxes have width 2−kj along axis
j and we flip bit ℓ of coordinate j where ℓ > kj, this flipping will only move the points
inside their own boxes and not across different boxes. Therefore, if the digital net already
has (k1, . . . , ks)-equidistribution for given values of k1, . . . , ks, the digital shift will always
preserve this equidistribution.

The bottom panels of Figure 1.15 show the same point set as on the upper panels, but
after a digital shift by

U = (0.1270111220, 0.3185275653)

= (0.00100000100000111100, 0.01010001100010110000)2,

where the latter is the representation in base 2. This shift flips the bits number 3, 9, 15, 16,
17, 18 in the first coordinate, and bits number 2, 4, 8, 9, 13, 15, 16 in the second coordinate,
for all the points
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Applying a digital random shift to a digital net is sufficient to provide an unbiased
estimator while preserving all the equidistribution properties that already exist for the net.
But often, the equidistribution properties can be further improved by changing the generating
matrices themselves. For instance, for the Sobol’ points, certain low-dimensional projections
over coordinates of higher indices are known to have poor uniformity. One approach to
improve this behavior is to just randomize the Sobol’ generating matrices in a way that their
upper k × k parts remain invertible, and perhaps adding more rows at the same occasion.
Matoušek (1999) proposed to do this via a left matrix scramble (LMS) as follows. Suppose
the initial generating matrices are k × k and select w ≥ k. Then for each j, generate a
random w× k binary matrix Lj whose upper k× k part is lower triangular with ones on the
diagonal. This upper part of Lj is invertible, and therefore the upper k × k part of LjCj is
also invertible. The matrices C̃j = LjCj are the new “scrambled” generating matrices. This
method is commonly implemented with w = 31 or 32, so each column of Lj and C̃j can
be represented as a 32-bit integer. It tends to do significantly better than using the Sobol’
points directly. Note that LMS alone does not give an RQMC estimator, since each point
does not have the uniform distribution over [0, 1)s after the scramble. The point 0 remains
0, for instance. LMS must be followed by a random digital shift to provide an unbiased
estimator. Other scrambling methods are discussed in Owen (2003).

Example 1.37 We made the same experiment as in Example 1.36, but now with Pn taken
as the Hammersley point set in base 2, randomized by a LMS followed by a random digital
shift in base 2. We tried n = 210 = 1024 and n = 216 = 65536. The sample mean and sample
variance per run were 17.096 and 1.815 for n = 1024, and 17.096 and 0.034 for n = 65536.
The variance reduction factors with respect to MC are 515 and 27,120, respectively. This
beats the randomly-shifted lattice rules.

For d = 12, we tried a Sobol’ net in 12 dimensions, constructed by taking i/n as the
first coordinate and the first n points of a Sobol’ sequence in 11 dimensions for the next
coordinates, with the same randomization and same values of n as in the previous example.
The sample mean and sample variance per run were 13.122 and 6.2 for n = 1024, and 13.122
and 1.7 for n = 65536. Compared with MC, the variance is reduced by the factors 84 and
304, respectively. □

We will examine RQMC more extensively in Section 6.11. We will see in particular that
for any given integer α > 0, for the class of functions f whose partial derivative of order α
with respect to any subset of coordinates is square integrable over [0, 1)s, it is proved that
one can construct RQMC point sets of various sizes n for which Var[µ̂n,rqmc] = O(n−2α+δ)
for any δ > 0. We will also point out software that can construct such point sets.

Note that for the Asian option example, the integrand f is not differentiable at points
where the two terms inside the max are equal. For this reason, the proof of the faster
rates mentioned earlier does not apply to this example. Nevertheless, in further experiments
reported in Section 6.11 for this example with certain RQMC point sets and schemes, we will
find (empirically) that the RQMC variance Var[µ̂n,rqmc] converges approximately as O(n−2),
at least for the range of n that we can observe. That is, we observe a VRF of RQMC vs MS



66 1. Introduction

that increases linearly with n, for this example. L’Ecuyer (2018) gives a short tutorial on

RQMC. 8 9

1.6 Choice of Sampling Distribution

At first sight, it may appear essential that when we simulate a stochastic model, the basic
random variates must be generated from the “correct” distributions specified in the model.
For example, it seems natural that each Yj in the stochastic activity network of Example 1.4
must be generated from its distribution Fj, and that the Zj in the Asian option example
must be generated necessarily from the N(0, 1) distribution. The purpose of this section is
to explain that this is not the case. In fact, we often have a lot of freedom in selecting the
density or probability mass from which we sample a random variable. We are allowed to
change the distributions, provided that we also modify the estimator in the appropriate way
to avoid introducing bias. In certain situations, changing the distributions may improve the
efficiency by huge factors. To explain the principle, we start with very simple illustrations,
for which we know the answer in advance.

1.6.1 Examples and heuristics

Example 1.38 Let Y be an exponential random variable with rate parameter λ, whose
density is π(y) = λe−λy for y > 0, and suppose we want to estimate p = P[Y ≥ y0], where
y0 > 0 is a constant. In this example, we know already that p = e−λy0 , so this is purely
an academic illustration, but its simplicity makes it perfect to understand the key ideas.
Applying the MC method naively, we can generate Y from density π and estimate p by the
indicator X = I[Y ≥ y0]. Normally, we would average n independent copies of X as usual
to divide the variance by n, but let us focus on just a single realization of X. This X is a
Bernoulli random variable with parameter p, whose variance is Var[X] = p(1− p).

At first we consider changing only the parameter λ of the exponential distribution. For an
arbitrary λ0 > 0 (to be selected later), let π0(y) = λ0e

−λ0y for y > 0. This is the exponential
density with rate λ0. We will sample from density π0 instead of π. We can write

p =

∫ ∞

0

I[y ≥ y0]π(y)dy =

∫ ∞

0

I[y ≥ y0]
π(y)

π0(y)
π0(y)dy = E[Xis], (1.34)

where

Xis = I[Y0 ≥ y0]
π(Y0)

π0(Y0)
= I[Y0 ≥ y0]

λ

λ0
exp[−(λ− λ0)Y0]

and Y0 is an exponential random variable with rate λ0. In the second integral of Eq. (1.34), we
have just multiplied and divided by π0(y). Then we interpret this integral as an expectation
with respect to the density π0 and this gives E[Xis]. That is, Xis is an unbiased estimator
of p, regardless of how we choose λ0 > 0. The ratio of densities π(Y0)/π0(Y0) by which we

8From Pierre: Add a few lines (short preview) about Koksma-Hlawka inequalities.
9From Pierre: Add a discussion and a simple example showing that more variation (e.g., oscillation)

degrades the RQMC efficiency, but not MC efficiency. Perhaps in Chapter 6.
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multiply the original estimator (the indicator) to recover an unbiased estimator is called the
likelihood ratio.

This new estimator has variance

Var[Xis] = E[X2
is]− p2

=

∫ ∞

y0

π2(y)

π2
0(y)

π0(y)dy − p2

=

∫ ∞

y0

π2(y)

π0(y)
dy − p2

=

∫ ∞

y0

λ2

λ0
exp[−(2λ− λ0)y]dy − p2

=


λ2

λ0(2λ− λ0)
exp[−(2λ− λ0)y0]− p2 if 0 < λ0 < 2λ,

∞ otherwise.

For λ0 = λ (no change in the sampling distribution), the variance remains equal to p(1 −
p), where p = e−λy0 . For λ0 slightly smaller than λ, we get a smaller variance. When λ0
approaches 0 or 2λ, on the other hand, the variance increases to infinity. Thus, a good
choice of λ0 can reduce the variance, but a bad choice may increase it by an arbitrarily large
factor. In Exercise 1.30 the reader is asked to show that the variance is minimized by taking
λ0 = λ + 1/y0 − (λ2 + 1/y20)

1/2 < λ, and to find the range of values of λ0 that reduce the
variance.

For a numerical illustration, let λ = 1 and y0 = 4. Figure 1.17 shows the variance ratio
Var[Xis]/Var[X] as a function λ0. Here, the variance is minimized with λ0 ≈ 0.2192 and
Var[Xis]/Var[X] ≈ 0.0962 for that λ0. That is, to estimate p = P[Y > 4], we change the
mean of Y to the value 1/λ0 ≈ 1/.2192 ≈ 4.56, which is not far from 4, which is the threshold
for the probability that we want to estimate. □

λ0
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Fig. 1.17. Variance ratio Var[Xis]/Var[X] as a function λ0 for Example 1.38, with λ = 1 and y0 = 4.
The dotted line is at λ0 = λ.

Example 1.39 As an alternative sampling density for Example 1.38, consider the expo-
nential with rate λ (unchanged), but truncated to the interval [y0,∞). This density is
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g(y) =
λ exp[−λy]∫∞

y0
λ exp[−λy]dy

=
λ exp[−λy]
exp[−λy0]

= λ exp[−λ(y − y0)] for y ≥ y0,

and g(y) = 0 elsewhere. Sampling from this density is equivalent to taking Y0 = Y +y0 where
Y has density π; i.e., a right shift of the density π. With this density, we avoid sampling in
the area where the estimator is zero. We can write

p =

∫ ∞

y0

λ exp[−λy]dy =

∫ ∞

y0

λ exp[−λy]
g(y)

g(y)dy =

∫ ∞

y0

exp[−λy0]g(y)dy = E[Xis]

with
Xis = I[Y0 ≥ y0] exp[−λy0]

where Y0 has density g. Since Y0 cannot be smaller than y0, we always haveXis = exp[−λy0] =
p. Thus, this Xis is an unbiased estimator with zero variance! In other words, we have man-
aged to cleverly change the sampling distribution so that the estimator becomes a constant,
always equal to p. We will see later that such “magical” zero-variance sampling schemes do
exist for most simulation models encountered in practice. Unfortunately, the corresponding
sampling distributions are typically much too difficult to find and to sample from. On the
other hand, they can be approximates and their approximation can often provide sampling
schemes with much smaller variance than crude MC (L’Ecuyer and Tuffin 2008). □

Example 1.40 In Example 1.38, suppose we want to estimate p = P[Y ≤ y0] instead,
where y0 ≪ 1/λ. The crude MC estimator is X = I[Y ≤ y0]. As in Example 1.38, we apply
IS by sampling Y0 from an exponential density with rate λ0 and the estimator is

Xis = I[Y0 ≤ y0]
λ

λ0
exp[−(λ− λ0)Y0].

This estimator has variance

Var[Xis] = E[X2
is]− p2

=

∫ y0

0

λ2

λ20
exp[−2(λ− λ0)y]λ0 exp[−λ0y]dy − p2

=

∫ y0

0

λ2

λ0
exp[−(2λ− λ0)y]dy − p2

=
λ2

λ0(2λ− λ0)
(1− exp[−(2λ− λ0)y0])− p2.

Note that this expression remains finite and positive for all λ0 > 0, including at λ0 = 2λ (by
taking the limit). Figure 1.18 shows the ratio Var[Xis]/Var[X] as a function λ0, for λ = 1
and y0 = 0.15. The variance is minimized with λ0 ≈ 11.0, and this minimal variance is about
13 times smaller than Var[X]. If λ0 is increased beyond about 36.5, then Var[Xis] becomes
larger than Var[X]. This happens because if λ0 is very large, the likelihood ratio takes huge
values when Y0 is just below y0.

One can verify that the “magical” zero-variance IS here consists in sampling Y0 from the
exponential density with rate λ, but truncated to the interval [0, y0]; i.e., from the density
g(y) = λe−λy/(1− e−λy0) for 0 ≤ y ≤ y0. □
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Fig. 1.18. Variance ratio Var[Xis]/Var[X] as a function λ0 for Example 1.40, with λ = 1 and
y0 = 0.15.

Example 1.41 Let Y1 and Y2 be two independent random variables with densities π1 and
π2, and cdfs F1 and F2, respectively, over R. Suppose that we receive a payoff

X =

{
Y1 + Y2 −K if Y1 ≤ a and Y1 + Y2 ≥ b,

0 otherwise,

where K > 0, and a and b are fixed constants. We want to estimate µ = E[X]. This is
a simplified version of a type of model that occurs when pricing barrier options in finance
(Glasserman 2004, Hull 2000). With standard MC, we generate Y1 and Y2 from their original
normal distributions and compute X. We repeat this n times and take the average and the
empirical variance of the n independent realizations of X to compute a confidence interval
on µ.

Inspired by the previous examples and based on the observation that it is worthless to
sample in the areas where the payoff X is zero, the following approach seems reasonable:
Generate Y1 from its density conditional on Y1 ≤ a, then generate Y2 from its density
conditional on Y1 + Y2 ≥ b, i.e., truncated to the interval [b− Y1,∞). The new density of Y1
is

g1(y) =
π1(y)

P[Y1 ≤ a]
=
π1(y)

F1(a)

for y ≤ a and 0 elsewhere, and the new density of Y2 conditional on Y1 = y1 is

g2(y | y1) =
π2(y)

P[Y2 ≥ b− y1]
=

π2(y)

1− F2(b− y1)

for y ≥ b− y1 and 0 elsewhere. We have

µ =

∫ ∞

−∞

∫ ∞

−∞
X π2(y2)π1(y1)dy2dy1

=

∫ a

−∞

∫ ∞

b−y1

X
π2(y2)π1(y1)

g2(y2 | y1)g1(y1)
g2(y2 | y1)g1(y1)dy2dy1

=

∫ a

−∞

∫ ∞

b−y1

X F1(a) (1− F2(b− y1))g2(y2 | y1)g1(y1)dy2dy1

= E0[Xis],
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where
Xis = X F1(a) (1− F2(b− Y1))

and the expectation E0 is under the densities g1 and g2. This is a case of dynamic impor-
tance sampling, where the sampling distribution of each random variable may depend on the
realizations of the previous ones. This can be done whenever a sequence of random variables
is generated in the model and permits one to design adaptive IS strategies.

For concreteness, suppose that both π1 and π2 are the normal density with mean 1 and
variance 1. In that case, F1(a) = P[Y1 < a] = P[Y1−1 < a−1] = Φ(a−1). To generate Y1 from
the conditional (truncated) distribution, it suffices to generate U1 ∼ Uniform(0, Φ(a−1)) and
put Y1 = 1+Φ−1(U1) (see Exercise 2.16). Then, we want to generate Y2 conditional on Y2−1 ≥
b−Y1−1. We will have 1−F2(b−Y1) = P[Y2 > b−Y1] = P[Y2−1 > b−1−Y1] = 1−Φ(b−1−Y1).
To generate Y2 from its conditional density, generate U2 ∼ Uniform(Φ(b − 1 − Y1), 1)) and
put Y2 = 1 + Φ−1(U2). To generate U1 and U2, it suffices to generate V1 ∼ Uniform(0, 1) and
V2 ∼ Uniform(0, 1), and define U1 = Φ(a−1)V1 and U2 = Φ(b−1−Y1)+(1−Φ(b−1−Y1))V2.
The new estimator is Xis = XΦ(a− 1)(1−Φ(b− 1− Y1)). This is illustrated in Figure 1.19.
We can interpret this strategy either as a change of densities on the uniforms that drive the
simulation, or as a change of the normal densities to truncated ones. The estimator is the
same in both cases.

Y1 − 1 a− 1
0

U1

Φ(a− 1)

1

Φ(y)

y

0 b1 − 1− Y1 Y2 − 1
0

Φ(b1 − 1− Y1)

U2 1

Φ(y)

y

Fig. 1.19. Sampling from conditional densities in Example 1.41. First, U1 is sampled uniformly
over the thick blue line of the upper figure to produce Y1, then U2 is sampled uniformly over the
tick blue line in the lower figure to produce Y2. The red curve is the standard normal cdf.

For a numerical illustration, let K = 1, b = 2, and a = 1/2. We applied the MC method
and the modified sampling strategy just described, with n = 105 in both cases. Table 1.3
reports the empirical mean and variance, and a 95% confidence interval for the mean, for
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the two methods. The empirical variance S2
n is about 43 times smaller with the estimator

Xis than with the crude MC estimator X. This means that with X, we need about 43 times
more runs than with Xis to reach the same accuracy.

Table 1.3. Empirical results for Example 1.41 with n = 105, for X and Xis.

Estimator µ̂n S2
n 95% confidence interval

X 0.0733 0.1188 (0.071, 0.075)
Xis 0.0742 0.0027 (0.074, 0.075)

□

Example 1.42 Suppose we want to estimate the integral of a function f over an unbounded
region instead of over the unit hypercube (0, 1)s. One approach is to make a change of
variables to transform the integral into an integral over the unit hypercube, as we have seen
earlier. But this is not always convenient. We illustrate an alternative approach. Suppose we
want to estimate

µ =

∫ ∞

−∞
f(x)dx <∞,

where f : R→ [0,∞). Let g be the density of some random variable Y that can be generated
efficiently, and such that g(x) > 0 whenever f(x) > 0. We can write

µ =

∫ ∞

−∞
[f(y)/g(y)]g(y)dy = Eg[f(Y )/g(Y )]

where Eg denotes the expectation with respect to the density g. This means that to obtain
an unbiased estimator of µ, we can generate n independent copies of Y from density g, say
Y1, . . . , Yn, and take the average

µ̂n =
1

n

n∑
i=1

f(Yi)/g(Yi).

If f(x) > 0 for all x ∈ R, then g could conceivably be a normal density, for example. We
have Var[µ̂n] = Var[f(Yi)/g(Yi)]/n, where

Var

[
f(Yi)

g(Yi)

]
= Eg

[
f 2(Y )

g2(Y )

]
− µ2 =

∫ ∞

−∞

f 2(y)

g2(y)
g(y)dy − µ2 =

∫ ∞

−∞

f 2(y)

g(y)
dy − µ2.

This expression highlights the fact that if g(y)≪ f(y) on some interval, or if f 2(y)/g(y) does
not decrease quickly enough when y → ±∞, then the variance will be very large, perhaps
even infinite. This means that the choice of g has a crucial importance for this method to
be effective. This applies in general when we change a sampling density. □
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1.6.2 Outline of the importance sampling methodology

In general, the random variable f(U ) in (1.16) is naturally expressed as h(Y ) = h(τ(U)) =
f(U) for some functions h and τ , where Y = τ(U) is a random vector having a non-uniform
distribution. This Y represents the basic input random variables whose distributions are
specified in the model. In the stochastic activity network of Example 1.20, for instance, we
would take Y = (Y1, . . . , Y13) and h(Y ) = h(Y1, . . . , Y13) = T if we want to estimate E[T ],
or h(Y ) = h(Y1, . . . , Y13) = I[T > x] if we want to estimate P[T > x], where T is the length
of the longest path. The MC estimator f(U) would normally be generated by generating Y
from its distribution and then computing h(Y ).

There are generally many ways of decomposing f(U ) as h(Y ) = h(τ(U)), giving different
distributions for Y . For any given selection, one may change the distribution Y as we saw
in the previous examples. When used as a variance reduction tool, this technique based on
a change of distribution is known as importance sampling (IS).

We now explain the principle of IS in a setting where µ = E[h(Y )] for a function
h : Rd → R, and Y is a continuous random vector with density π(y) over the d-dimensional
real space Rd, for some integer d > 0. Let g be another density, such that g(y) > 0 whenever
h(y)π(y) ̸= 0 (this assumption is to make sure that we never divide by zero). We can write

µ = Eπ[h(Y )] =

∫
Rd

h(y)π(y)dy =

∫
Rd

[h(y)π(y)/g(y)]g(y)dy

= Eg[h(Y )π(Y )/g(Y )] (1.35)

where Eπ denotes the mathematical expectation when Y has a distribution with density π,
and Eg denotes the expectation when the density of Y is g. Eq. (1.35) tells us that if Y is
generated from density g,

Xis = h(Y )π(Y )/g(Y ) (1.36)

is an unbiased estimator of µ. In other words, to account for the fact that the density has
been changed from π to g, the old estimator X = h(Y ) must be multiplied by the likelihood
ratio L(Y ) = π(Y )/g(Y ), i.e., the ratio of the likelihoods (or densities) π(Y ) and g(Y )
of the observed value of Y under the original and modified distributions, respectively. For
g ≡ π, we get the standard MC estimator and the likelihood ratio is one.

The application of IS for discrete random variables is similar; just replace the densities
by probabilities (mass functions) and the integrals by sums.

Why would we want to select a g different than π? There are two main motivations:

(1) it may be too difficult or too costly to sample directly from π and an “easier” density
g is available;

(2) if g is selected properly, sampling from the alternative density may provide an estimator
with much smaller variance than the original one.

1.6.3 The zero-variance simulation and its approximation

Suppose the function h is never negative and we take g(y) proportional to h(y)π(y), i.e.,
g(y) = h(y)π(y)/K for some constant K. Since g must be a probability density, its integral
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must be equal to 1. For that, we must have K =
∫
Rd h(y)π(y) = µ. Then, the IS estimator

is always equal to h(y)π(y)/g(y) = K = µ, so it has zero variance! We already saw this
“magic” in Example 1.39. This looks too good to be true and there is indeed a catch: To
sample from this zero-variance density in practice, we need to know µ, which is the quantity
we want to estimate in the first place. But even if the zero-variance IS estimator cannot be
implemented exactly in practice, it can sometimes be approximated. At a minimum, it gives
a rough guideline on how to modify the density π to obtain a good g: we want to inflate
π where h(y) is large and deflate it where h(y) is small, by a factor roughly proportional
to h(y). Moreover, we know that the optimal sampling density is proportional to h(y)π(y),
and there are method that permit one to do this approximately even when the normalizing
constant K is unknown.

Example 1.43 In Example 1.29, we wanted to estimate p = P{A}, the probability of an
event A, where p was assumed to be small. Suppose the indicator of A can be written as
a function h of a continuous random vector Y with density π. That is, I[A] = h(Y ). The
optimal IS density for Y is then

g(y) =
h(y)π(y)

p
=

{
π(y)/p when h(y) = 1,

0 elsewhere.

This is the conditional density of Y given that the event A has occurred:

π(y | A) = π(y)I[A]
P[A]

=
h(y)π(y)

p
= g(y).

This density reduces the variance to 0, but can be computed explicitly only in very simple
situations. For example, if Y is a one-dimensional random variable with density π(y) over
the real line and A is the interval [y0,∞) for some constant y0, then g should be the density
π truncated to the interval [y0,∞) and rescaled: g(y) = π(y)/P[Y ≥ y0] for y ≥ y0, and
zero elsewhere. This is what we had in Example 1.39. In more complex simulation models,
sampling exactly from the conditional density π(y | A) is usually impractical, because it is
too complicated and unknown. But the knowledge of its general shape provides a guideline
for selecting g. □

We saw that replacing the density π by another density g is not always profitable. The
method is often extremely sensitive to the choice of g. With a bad choice, the variance can
increase substantially, and even become infinite in some cases, as shown in Example 1.38. To
a certain extent, applying IS is like performing a critical medical operation: It is important to
understand what one is doing. There are situations, however, mostly in models that involve
rare important events, where a crude MC estimator is practically useless, and for which IS
or a similar technique is essential. The next example illustrates this. A more extensive study
of IS is done in Section 6.12.

Example 1.44 Ruin probability of an insurance firm. A (simplified) insurance company
receives premiums at constant rate c > 0 (i.e., the money arrives continuously at that rate),
and receives claims (sums of money that they must pay) according to a Poisson process
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{N(t), t ≥ 0} with rate λ > 0. The claim sizes Cj, j ≥ 1, are i.i.d. with density f . The
reserve (amount of money in hand) at time t is then

R(t) = R(0) + ct−
N(t)∑
j=1

Cj,

where R(0) is the initial reserve. We want to estimate the ruin probability, i.e., the probability
µ that R(t) eventually becomes negative during the time interval [0,∞). Typically (hopefully
for the firm and its customers) this probability is very small.

The first time when R(t) becomes negative, if it ever does, must be at the occurrence of
a claim. If Rj denotes the reserve just after claim j, then

Rj = Rj−1 + Ajc− Cj

for j ≥ 1, where R0 = R(0) and Aj is the time between claims j − 1 and j. The process
{Rj, j ≥ 1} is a random walk on the one-dimensional real line and we have µ = P[T < ∞]
where T = inf{j ≥ 1 : Rj < 0}.

The standard way of estimating µ would be to generate n independent copies of T , say
T1, . . . , Tn, compute the indicator Xi = I[Ti < ∞] for each, and take the average X̄n as
an estimator. However, generating values of T by straightforward simulation is problematic,
because T = ∞ with very high probability, and we cannot be 100% sure that T = ∞ for a
given sample path unless we simulate the system for an infinite amount of time! And even
if we could easily generate values of T , estimating a very small probability µ (e.g., 10−9 or
less) with small relative error would require an enormous value of n.

IS provides a convenient trick to get around both of these difficulties at the same time:
Change the probability distributions of Aj and Cj so that the ruin occurs with probability
1, and multiply the estimator by the appropriate likelihood ratio to recover an unbiased
estimator of µ. We will see in Example 6.66 that a suitable change in this case is to replace
the density f(x) of Cj by

fθ(x) = f(x)eθx/Mf (θ)

and to increase the rate of the Poisson process to

λθ = λ+ θc,

for some θ > 0, where Mf (θ) =
∫∞
−∞ f(x)eθxdx is the normalizing constant required to make

fθ a probability density, and that a good choice of θ is the largest solution to the equation
Mf (θ) = (λ + θc)/λ. We assume that Mf (θ) < ∞ for θ in some neighborhood of 0. Then,
under the new probability distributions, it turns out that T < ∞ with probability 1, so
an unbiased estimator of µ is simply the likelihood ratio that corresponds to the change of
probability distributions. Here, the vector of input random variables that are generated for
the simulation is Y = (A1, C1, A2, C2, . . . , AT , CT ) and the corresponding likelihood ratio
(the IS estimator) is
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L(Y ) = L(A1, C1, A2, C2, . . . , AT , CT )

=
T∏

j=1

f(Cj)λe
−λAj

fθ(Cj)λθe−λθAj

=
T∏

j=1

Mf (θ)e
−θCjλe−λAj

(λ+ θc)λθe−(λ+θcAj

=
T∏

j=1

(λ+ θc)λ exp [−θCj − λAj + (λ+ θc)Aj]

=
T∏

j=1

(λ+ θc)λ exp

[
θ

T∑
j=1

(cAj − Cj)

]
= eθ(RT−R0).

The random vector Y has random dimension 2T , but this is not a problem and the IS
estimator is unbiased. Since RT < 0, this estimator never takes a value larger than e−θR0 , so
its variance E[L2(Y )]− µ2 does not exceed e−2θR0 − µ2.

As a special case, if the claim sizes Cj are exponential with rate parameter β, then their
density is f(x) = βe−βx for x > 0, we have Mf (θ) = β/(β − θ), and the modified density
is fθ(x) = βe−(β−θ)x/Mf (θ) = (β − θ)e−(β−θ)x for x > 0. This is an exponential with rate
βθ = β − θ. In this case, the equation Mf (θ) = (λ + θc)/λ becomes βλ = (β − θ)(λ + θc),
or equivalently θ(cθ + λ − βc) = 0, whose only positive solution is θ = β − λ/c. With this
choice of θ, the Cj are exponential with mean 1/(β − θ) = c/λ. This means that if λ was
left unchanged, we would have E[Rk − R0] = kE[Ajc − Cj] = 0 under IS. But since λ is
also increased under IS, E[Aj] is decreased and we have E[Ajc−Cj] < 0, which implies that
Rk → −∞ as k →∞, so T <∞ with probability 1.

For a numerical illustration with this special case, let λ = 1, β = 1/2, and R(0) = 200.
Table 1.4 gives the values of θ, λθ, βθ, the estimated value µ̂n of the mean µ, and the estimated
value S2

n of the variance σ2, from n = 215 = 32768 simulation runs with IS, for c = 3, 5, and
10. The relative error on these estimators is less than 1% in all three cases.

With straightforward simulation (without the IS), the variance σ2 is approximately equal
to the mean µ (see Example 1.29), so the variance reduction factor provided by IS compared
with MC is approximately equal to the ratio of values of µ̂n and S2

n in the table. For c = 10,
for example, IS reduces the variance by the (huge) factor 3.6×10−36/2.3×10−71 ≈ 1.5×1035.
Our variance estimates tell us that to get a relative error below 10%, we need a sample size
of approximately n = 183 with IS and n = 2.8× 1037 without IS. In other words, computing
a meaningful estimator of µ would be impractical with standard MC (without IS) in this
case, because µ is too small. □

1.7 Common Random Numbers for Comparing Systems

Simulation is often employed to compare the performance measures of two or more similar
systems, or of slightly different parameter values for the same system. This typically occurs



76 1. Introduction

Table 1.4. Importance sampling distributions, estimated ruin probability, variance estimate with
IS, and variance reduction factor (VRF) by using IS, for Example 1.44.

c θ λθ βθ µ̂n S2
n VRF

3 0.1667 1.5 0.3333 2.2× 10−15 6.3× 10−31 3.5× 1015

5 0.3000 2.5 0.2000 3.5× 10−27 6.9× 10−54 5.1× 1026

10 0.4000 5.0 0.1000 3.6× 10−36 2.3× 10−71 1.5× 1035

in optimization settings (Section 1.15) or for estimating the sensitivity of a model to some
of its parameters (Section 1.8). The common random numbers (CRNs) methodology is a
key tool for improving the efficiency in this context. It will be studied more extensively in
Section 6.4, but we introduce it here to highlight its importance and give a flavor of how
effective a simple (but clever) variance reduction method can be.

Suppose we want to estimate the difference µ2 − µ1 by X2 − X1, where X1 and X2

are estimators such that µ1 = E[X1] and µ2 = E[X2]. If X1 and X2 are the simulated
performances of two similar systems, then one can simulate these two systems using the
same underlying sequence of uniform random numbers for both systems, and use them at
the same place as much as possible. This is a simulation experiment with CRNs. Doing that
does not change the individual distributions of X1 and X2, which implies that E[X2 − X1]
is unchanged, but it is likely to induce a positive covariance between them. The variance of
the difference X2 −X1 can be written as

Var[X2 −X1] = Var[X2] + Var[X1]− 2Cov[X1, X2].

If the two systems are simulated with independent random numbers (IRNs), the covariance
term is zero. A positive covariance term, on the other hand, reduces the variance of X2−X1.

Example 1.45 In the stochastic activity network of Example 1.4, suppose we would like
to examine the impact of changing the mean durations of activities 2 and 4 from 7.0 and
16.5 to 10.0 and 18.5, respectively. It could be because we consider reducing the resources
allocated to those activities to save money. Suppose want to estimate µ2 − µ1 = E[X2 −X1]
where the random variable X1 represents the project duration with the original parameters
for the Yj’s, and X2 is the project duration with the new parameters.

To generate X1 we simulate the system as usual by generating 13 independent uniform
random numbers U1, . . . , U13, put Yj = F−1

j (Uj) for each j, and compute the length X1 of
the longest path. To generate X2 with IRNs, we do the same using 13 independent uniform
random numbers Ũ1, . . . , Ũ13 also independent of the previous ones, compute Ỹj = F̃−1

j (Ũj)

for each j, and compute the length X2 of the longest path when the arc lengths are those Ỹj.
In this case, X1 and X2 are independent random variables. For the CRN implementation, we
simply reuse Uj in place of Ũj, for each j, to generate X2. That is, the same random number
used to generate Yj in the first configuration is used again to generate Yj in the second
configuration, for each j. This still gives E[X2] = µ2, but now X1 and X2 are correlated. For
any of these two methods, we would simulate n independent replicates of ∆ = X2−X1, and
perhaps use them to compute a confidence interval on µ2 − µ1.
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Fig. 1.20. Histograms of the n = 100, 000 realizations of ∆ with IRNs (above) and the 32,120
nonzero realizations of ∆ with CRNs (below).

We did this with n = 100, 000. Figure 1.20 shows histograms of the n realizations of ∆
with IRNs (above) and of the nonzero realizations of ∆ with CRNs (below). With CRNs,
for 67,880 realizations, we had ∆ = 0 because the two modified Yj did not belong to the
longest path even after their increase. All other 32,120 realizations of ∆ were positive and
the histogram shows only these positive realizations (otherwise the rectangle at 0 would be
much too high). The fact that ∆ is never negative with CRNs is easy to explain: Each Yj
whose mean is changed is an exponential with mean θj and is generated by inversion via
Yj = −θj ln(1 − Uj) where Uj ∼ U(0, 1). When we increase θj and keep the same Uj, Yj
can only increase, because − ln(1− Uj) > 0. Then the longest path can only increase. With
IRNs, on the other hand, we resample all the Uj’s, so all the Yj’s are modified and they can
either decrease or increase.

With IRNs, the realizations of ∆ range from −223.22 to 280.92, with an average of 1.326,
and a variance of 967. A 95% confidence interval on µ2−µ1 is (1.133, 1.519). With CRNs, ∆
ranges from 0 to 49.88, with an average of 1.528, a variance of 9.1, and the 95% confidence
interval on µ2 − µ1 is (1.510, 1.547). The variance is reduced by a factor of about 106. □

Example 1.46 A simple inventory model. This example is taken from L’Ecuyer (2008) and
L’Ecuyer (2015). We consider a simple inventory model for a single product, for which the
demand on any given day is a Poisson random variables with mean λ > 0, and the demands
on different days are assumed to be independent. On day j, let Xj be the stock level in the
morning and Dj the demand during that day. Then on that day there are min(Dj, Xj) sales,
max(0, Dj − Xj) lost sales, and the stock at the end of the day is Yj = max(0, Xj − Dj).
We make a revenue c for each sale and pay a storage cost h for each unsold item at the end



78 1. Introduction

of the day. The inventory is controlled using a (s, S) policy, defined as follows: If Yj < s,
order S − Yj items, otherwise do not order. The threshold s and S are control parameters
that we have to select. When an order is made in the evening, with probability p it arrives
during the night and can be used for the next day, and with probability 1−p it never arrives
(in which case a new order will have to be made the next evening). If the order arrives,
we pay a fixed cost K plus a marginal cost of k per item, and we put Oj = 1, otherwise
Oj = 0. With all these ingredients, we can write the net profit for day j (including the sales,
storage cost for the night, and cost of the arriving order for the next morning, if any) as
c min(Dj, Xj) − hYj − (K + (S − Yj)k)Oj. The stock at the beginning of the first day is
X0 = S.

We want to compare several policies (s, S) in terms of expected net profit per day for the
first m days, by simulating this system with common random numbers across the policies,
with all the other model parameters fixed to specific values. For each policy, we will replicate
the simulation n times independently. Figure 1.21 shows the main parts of a Java code that
does that. It uses the SSJ library (L’Ecuyer 2023). The method simulateOneRun simulates
the model for m days with a given policy (s, S) and returns the average profit per day.

We use two streams of uniform random numbers to simulate the model: one named
streamDemand to generate the demand Dj on successive days and one named streamOrder

to decide if the order will arrive or not when an order is made. To generate the demands,
we construct a Poisson distribution object with mean λ (this construction precomputes a
set of tables used for fast inversion) and a generator genDemand which samples the Dj’s by
applying inversion to the random numbers produced by streamDemand.

For each replication, we use a different substream from these two streams. The CRN
implementation uses exactly the same streams and substreams for all policies (s, S). For
each policy, after each m-day simulation run, the two streams are reset to the beginning of
their next substreams. After the last run, they are reset to their first substreams, so exactly
the same random numbers are re-used for the next policy, for each run.

Why do this and use two different streams? We want to make sure that the same random
numbers are used for the same purpose (e.g., each Dj should be the same) when (s, S) is
changed, even if it changes the decisions of when and how to order. If we use a single
stream for everything, a random number used to generate a demand for a given pair (s, S)
could be used to decide if an order has arrived for another pair (s, S). When simulating
larger systems, we may need thousands of distinct streams to simulate different parts of the
system, to maintain appropriate synchronization of the random numbers across policies. One
may think of an inventory system with thousands of different products, for example.

□

For a numerical illustration, we made an experiment with λ = 40, c = 2, h = 0.1,
K = 30, k = 1, p = 0.95, m = 50, n = 1000, and a grid of 121 pairs (s, S) defined by taking
s = 22, 23, . . . , 32 and S = 158, 159, . . . , 168. We estimated the expected profit per day for
each of those 121 policies, first using CRNs as in Figure 1.21, and then with IRNs. For
the latter, we just removed the resetStartStream and resetNextSubstream statements,
so different random numbers were used for the different policies. The results are displayed in
Figure 1.22. We see that CRNs produce a much smoother sample function than IRNs. This
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RandomStream streamDemand = new MRG32k3a();
RandomStream streamOrder = new MRG32k3a();
RandomVariateGenInt genDemand

= new PoissonGen (streamDemand, new PoissonDist (lambda));

public double simulateOneRun (int m, int s, int S) {
// Simulates inventory model for m days, with the (s,S) policy.
int Xj = S, Yj; // Stock in morning and in evening.
double profit = 0.0; // Cumulated profit.
for (int j = 0; j < m; j++) {

Yj = Xj - genDemand.nextInt(); // Subtract demand for the day.
if (Yj < 0) Yj = 0; // Lost demand.
profit += c * (Xj - Yj) - h * Yj;
if ((Yj < s) && (streamOrder.nextDouble() < p)) {

// We have a successful order.
profit -= K + k * (S - Yj);
Xj = S;

} else
Xj = Yj;

}
return profit / m; // Average profit per day.

}

public void simulatePoliciesCRN (int n, int m, int nump, int[] s, int[] S {
Tally statProfits = new Tally();
for (int j = 0; j < nump; j++) {

statProfits.init();
// Perform n runs for Policy j.
for (int i = 0; i < n; i++) {
statProfits.add (simulateOneRun (m, s[j], S[j]));
streamDemand.resetNextSubstream();
streamOrder.resetNextSubstream();

}
System.out.println(s[j] + ", " + S[j] + ", " + statProfits.average());
streamDemand.resetStartStream();
streamOrder.resetStartStream();

}
}

Fig. 1.21. Simulating n replications of the inventory model for m days, for nump policies, with
CRNs.
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Fig. 1.22. Estimated profit as a function of (s, S) with CRNs (above) and IRNs (below).
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sample function with CRNs reaches its maximum at (s, S) = (28, 164), with an average cost
of 26.5135.

The previous examples illustrate how CRNs can reduce the variance when estimating
the difference between two (related) expectations, by inducing a positive covariance between
the two corresponding estimators. More examples of this are given in the next subsection.
The CRN idea applies more generally to improve efficiency when estimating a function of
several expectations (for example a ratio between two expectations, etc.). We will return to
this in Chapter 6.

1.8 Sensitivity Analysis and Derivative Estimation

In Section 1.7, we saw a simple way to improve efficiency when estimating the change of an
expectation when the values of certain model parameters are modified by a fixed amount.
In the case of continuous parameters, we are often interested in fact in the derivative of the
expectation with respect to some of the parameters, i.e., the impact of infinitesimal changes
to parameter values.

Consider a model that depends on a real-valued parameter θ, let µ(θ) be the expectation
of interest (the performance measure) as a function of θ, and suppose we want to estimate
the derivative

µ′(θ) =
dµ(θ)

dθ

at θ = θ1. To do this for several parameters (for a vector θ of parameters), we can consider
one parameter at a time. The vector of partial derivatives with respect to the coordinates
of θ is the gradient of µ(θ) with respect to the vector θ. Estimating such a derivative or
gradient is useful in the following situations, among others:

(a) We want to estimate the sensitivity to see which parameters are more impor-
tant and how they affect the performance. It could be because we want to fit
a regression model to approximate the performance measure as a function of
the parameters, or preferably as a function of a small subset of them (this is
called a metamodel), or for another reason.

(b) We are uncertain about the true values of certain parameters in the system of
interest, and we want to estimate how errors in their values would affect the
response. For example, it could be the parameters of some probability laws
in the model, estimated from data. Such gradient estimators are needed to
compute confidence intervals that take into account (simultaneously) the un-
certainty coming from simulation noise and the uncertainty in the parameter
values. These intervals can be computed via the delta theorem (Section 5.4.1),
or bootstrap, or another technique.

(c) The parameters in θ are decision parameters and we want to know the effect
of changing their values. For example, it could be the speed of a conveyor in
a warehouse, of the strike price of a financial option.

(d) We need a gradient estimator in an optimization algorithm whose aim is
to minimize µ(θ) as a function of θ. Efficient optimization algorithms for
continuous parameters often require gradient estimators.
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(e) In finance, implementing hedging strategies require the availability of deriva-
tive estimates with respect to certain models parameters. These derivatives
are known as the Greeks (see Example 1.11 and Exercise 1.11, for example).

A simple way of estimating a derivative µ′(θ) is via finite differences. We can define
a (one-sided) finite-difference derivative estimator as follows. We select a small constant
δ > 0, simulate the model with θ = θ1 to obtain an estimator X1 = X(θ1) of µ(θ1), then at

θ2 = θ1 + δ to obtain an estimator X2 = X(θ2) of µ(θ2),
10 and estimate the derivative

µ′(θ1) by

∆ = (X2 −X1)/δ.

This estimator is biased for any fixed δ > 0, but the bias converges to zero when δ → 0,
provided that µ′(θ) exists at θ1. On the other hand,

Var[∆] =
Var[X1] + Var[X2]− 2Cov[X1, X2]

δ2
≈ 2Var[X1]− 2Cov[X1, X2]

δ2

if δ is very small and if Var[X(θ)] is continuous in θ. If X1 and X2 are simulated with IRNs,
then Cov[X1, X2] = 0 and Var[∆] increases to infinity as O(1/δ2) when δ → 0, because of
the δ2 in the denominator.

Simulating X1 and X2 with CRNs often improves efficiency tremendously, especially
when δ is very small, because then Cov[X1, X2] can be large. Note that this scheme requires
two separate simulations, one at θ1 and another one at θ2. If we want to estimate the
derivative with respect to a vector θ of d parameters, the finite-difference estimator requires
d + 1 simulations. There are practical situations where d is in the hundreds or even in the
thousands.

Under certain conditions, one can compute the limit of (X2 − X1)/δ as δ → 0 with
the underlying uniform random numbers fixed, and use this limit as a unbiased derivative
estimator from a single simulation. More specifically, suppose our unbiases estimator of µ(θ)
can be written as X(θ) = f(θ,U) where U is the vector of uniform random numbers that
drive the simulation, and suppose that

f ′(θ,U ) =
∂f(θ,U)

∂θ
= lim

δ→0

f(θ + δ,U )− f(θ,U)

δ

exists w.p.1 at θ1. Then we may simply take this stochastic derivative (or sample derivative)
f ′(θ1,U ) as an estimator of µ′(θ1).

Does it make sense? Is it an unbiased estimator? The answer is yes under certain con-
ditions, but not always. We have unbiasedness if and only if the middle equality holds in

E[f ′(θ,U)]
def
= E[∂f(θ,U)/∂θ]

?
= ∂E[f(θ,U)]/∂θ

def
= µ′(θ,U), (1.37)

i.e., if we can interchange the expectation with the partial derivative. Section A.2 of the
appendix provides conditions under which this interchange is valid. In particular, the dom-
inated convergence theorem (Theorem A.2) implies that if there is a δ1 > 0 and a random
variable Y such that

10From Pierre: Conflict of notation here: X1 and X2 are used earlier with a different meaning.
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sup
δ∈(0,δ1]

|f(θ + δ,U )− f(θ,U)|
δ

≤ Y

and E[Y ] <∞, then the interchange in (1.37) is valid.
If we want to estimate a gradient, i.e., a vector of derivatives with respect to several pa-

rameters, we can compute the stochastic derivative with respect to each of those parameters
from a single simulation run, regardless of how many parameters there are. The vector of
those stochastic derivatives is the stochastic gradient.

Example 1.47 In the stochastic activity network of Example 1.4, suppose we want to
estimate the derivative of E[T ] with respect to each θj. We will consider each θj separately,
assuming that the other parameters are fixed. We can write T as a function of θj as T =
fj(θj,U), where U = (U1, . . . , U13) is the vector of 13 independent U(0, 1) random variables
that drive the simulation,

Here we have f ′
j(θj,U) = Y ′

j (θj) if link j belongs to the longest path, and f ′
j(θj,U) = 0

otherwise, because an infinitesimal change in Yj = Yj(θj) changes T by the same amount
if Yj contributes to the longest path, and does not affect T otherwise. If j is the index of
an exponential random variable with mean θj, we have Yj = Yj(θj) = −θj ln(1 − Uj) and
Y ′
j (θj) = − ln(1− Uj). We also have

0 ≤ fj(θj + δ,U)− fj(θj,U)

δ
≤ −δ ln(1− Uj)

δ
= − ln(1− Uj) = Ỹj,

where Ỹj is an exponential random variable with mean 1. Thus, the dominated convergence
theorem applies and the stochastic derivative provides an unbiased estimator. A similar
analysis can be made for the case where Yj has a normal distribution: We have Yj = Yj(θj) =
θj+(θj/4)Φ

−1(Uj) and Y
′
j (θj) = 1+Φ−1(Uj)/4. Thus, for this example, the stochastic gradient

is an unbiased estimator of the gradient with respect to the vector θ = (θ1, . . . , θ13).

♣ Numerical illustration: estimate the 13-dimensional gradient, with n = 100, 000.
Compare stochastic gradient with finite differences. □

Example 1.48 In Example 1.47, suppose we want to estimate the derivative of P[T > x]
instead of the derivative of E[T ], and that our basic estimator of P[T > x] as a function of
θj is the indicator fj(θj,U) = I[T > x], as in Example 1.4. This estimator can only take
two values: 0 and 1. Thus, its derivative f ′

j(θj,U) is either undefined (when the function
has a jump exactly at θj, which happens with probability 0) or is 0. That is, f ′

j(θj,U) = 0
w.p.1, and therefore it cannot be an unbiased estimator of µ′(θj) = ∂P[T > x]/∂θj. Here
we cannot apply the dominated convergence theorem to justify the interchange of derivative
and expectation because [fj(θj + δ,U) − fj(θj,U)]/δ can be 1/δ for any δ > 0, which is
unbounded when δ → 0. The problem is that fj is discontinuous at a random point as a
function of θj, and the finite difference is unbounded at the discontinuity. The stochastic
derivative is a useless estimator in this case.

In Example 6.21, we will introduce a different estimator of P[T > x], with smaller variance
than the indicator I[T > x], based on conditional Monte Carlo. It will also be continuous
everywhere in each θj and its sample derivative will provide an unbiased estimator of µ′(θj).

□
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For a discrete-event model that involves thousands or millions of events and where the
performance measure f(θ,U) depends on θ in a very complicated way (for example, a large
queueing or supply chain model), special techniques have been developed to track down all
the changes in the sample path caused by an infinitesimal change in θ, in order to compute
f ′(θ,U). This is known as infinitesimal perturbation analysis (IPA) (Fu 2006, Glasserman
1991, L’Ecuyer 1990b). These techniques are often coupled with various ways of changing
the definition of f(θ,U) when it is originally discontinuous in θ, to make it smoother and
continuous so that IPA provides an unbiased estimator. Derivative estimation is studied
further in Chapter 6.

♣ Add exercises: Greeks in financial options
More references: Asmussen and Glynn (2007), Fu (2006), Glasserman (1991), Glasserman

(2004), Glynn (1990), L’Ecuyer (1990b), L’Ecuyer (1991), L’Ecuyer (1992), L’Ecuyer (1993).

1.9 Discrete-Event Models and Simulation

1.9.1 Evolution of a discrete-event model

A discrete-event model is one whose evolution can be described by a (discrete) sequence of
events e0, e1, e2, . . . which occur at respective times (or epochs) 0 = t0 ≤ t1 ≤ t2 ≤ · · · .
We denote by Si the state of the model at time ti, immediately after event ei has occurred
but before the occurrence of event ei+1 (see Figure 1.23). The possibility of several events
occurring “simultaneously” (i.e., ti = ti+1 = · · · ti+k) is not ruled out, but these events must
occur in a well-defined order. It is important to understand that the epochs ti are with
respect to the model clock and do not correspond to the time on the computer clock, or to
the elapsed CPU time at the occurrence of event ei, when the simulation program is run on a
computer. The current time on the model clock during a simulation is called the simulation
time.

t0 t1 t2 t3 t4 t5 t6

state

time

st
at
e
S i

Fig. 1.23. Evolution of a discrete-event model

The event e0 can be viewed as the one that determines the initial state S0. In practice,
S0 is often fixed a priori and e0 is just a dummy event. The sequence of states {Si, i ≥ 0}
evolves in a state space which is typically multidimensional and uncountable. We assume
that Si contains enough information for the process {(ti,Si), i ≥ 0} to be a Markov chain.
From a practical point of view, this means that (ti,Si) contains (at least) all the information
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that must be memorized by the computer program at the simulation time ti to pursue its
evolution. This is not a limiting requirement, because one can always add enough information
to the state to make the process Markovian. This is discussed a little further in Section 2.12.1.

1.9.2 Example: a single-server queue

To illustrate how a discrete-event simulation operates, we take a very simple example, a
single-server queue, also called a GI/G/1 queue in the terminology of queuing theory (Sec-
tion A.19). It is defined as follows. Customers arrive randomly to the single server. They are
served one by one in first come, first served (FCFS) order. Let Si denote the service time of
the ith arriving customer and Ai be the time between the arrivals of customers i− 1 and i.
The Si’s and Ai’s are mutually independent random variables, with respective cdfs G and
F . At time 0, the system is empty. The first customer arrives at time A1, leaves at time
A1+S1, and so on. For the special case where the Ai’s are i.i.d. exponential and the Si’s are
also i.i.d. exponential, we have an M/M/1 queue. Let Wj be the waiting time of customer j.

This simplistic model is hardly to be taken seriously as representative of real-life systems
that need to be simulated. Its purpose is to give the flavor of how discrete-event simulation
works. For more concreteness, one can view the server as either a clerk, a machine, a com-
puter, or a dock, and the customers as people, parts, jobs, or boats. So, the system could be
boats coming to a dock to be loaded with, say, iron ore.

We saw earlier how to simulate the sequence of Wj’s with Lindley’s recurrence. Here we
will simulate the system with discrete events and a simulation clock. This approach applies
more generally: it would also work when there are many servers, various types of customers,
priority rules, etc.

time
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event:
↑ ↑ ↑ ↑ ↑↑ ↑ ↑ ↑
e1 e2 e3 e4 e5 e6 e7 e8 e9

Fig. 1.24. Occurrence of Events for the Single-Server Queue
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Figure 1.24 shows how this simple queuing system typically evolves in time, represented
by the horizontal axis. In the upper part of the figure, the arrows above the time axis
represent the customer arrivals, while those below the axis represent the departures. In the
middle part, each horizontal band represents one customer; the green part of the band is the
service time and the light part is the waiting time of the customer in the queue. The lower
part of the figure shows how the number of customers in the system evolves with time. The
height of the fuchsia area represents the number of customers in service (always zero or one)
and the height of the light green one is the number of customers waiting in the queue. The
time scale is the same for all three parts of the figure.

For the particular sample path realization illustrated in that figure, the second customer
arrives before the first one completes its service (A2 < S1). Then, customers number 3 and
4 arrive while customer 2 is being served, so a queue builds up. Customers 3 and 4 then
complete their service before customer 5 arrives, so the system empties out when customer
4 departs. In this model, all things of interest happen when either (a) a customer arrives
or (b) a customer leaves the system or (c) the simulation ends. These are the events. The
arrows at the bottom of Figure 1.24 point to the event epochs t1, t2, . . . . Each of these events
is either an arrival or a departure. The two events e1 and e9 mark the beginning of new busy
cycles for the queue: They correspond to a customer arriving in an empty system.

To simulate such a system, one needs to generate the random variates A1, A2, . . . and
S1, S2, . . . (not necessarily in that order) and, from that, to retrace the sequence of events ei
together with their epochs ti. In typical discrete-event simulations, this is implemented using
a list of event notices, also called the event list. Each event notice indicates an event that
is already scheduled to occur in the future, and gives its scheduled time of occurrence, with
possibly some additional parameters. Event notices appear in the list by increasing order of
scheduled occurrence. During the execution of the simulation, event notices are added to the
list dynamically (event scheduling) and the simulation program repeatedly removes the first
event notice from the list, sets the simulation clock to the epoch of the corresponding event,
and executes that event, until either a particular event stops the simulation or the event list
gets empty. In some cases, event notices may also be removed before ever reaching the head
of the event list (event cancellation).

Events are typically classified into several event types, and each event type corresponds
to a piece of code to be executed by the program. The role of this code is to update the
state of the system appropriately, given that an event of that type occurs. This may include,
in particular, generating other random variables, collecting some statistics, and scheduling
other (future) events.

Suppose we want to simulate the single-server queue for T units of simulated time, where
T is fixed. We consider three types of events here: Arrival, Departure, and EndOfSimulation.
An event of the latter type occurs only once, when time T is reached. The corresponding
procedure stops the simulation and may print a report on whatever statistics we are interested
in. Now, suppose that each customer is represented by an instance of a special data type
called customer in our program, which memorizes the arrival time and service time of the
customer. The program maintains a list of the customers waiting in the queue (called the
waiting list), as well as a list of the customers being served (called the server’s list). The
latter list may seem unnecessary because it will never contain more than one customer, but
this data structure will also work if the queuing model has more than one server, and in
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other more general situations. The Arrival and Departure events can be implemented by
procedures which we outline as follows. Indentation delimits the scope of the If and else
statements. Depending on the programming language, these can be programmed as methods,
functions, subroutines, etc.

Event Arrival;
Generate a random variable A from distribution F ;
Schedule a new (the next) arrival to occur in A time units;
Create a new customer (the one who is arriving now);
Generate its service time S from distribution G;
If the server’s list is not empty then

Insert this new customer at the end of the waiting list;
else

Insert this new customer in the server’s list;
Schedule a departure (for this new customer) to occur in S time units;

Update the statistics as needed;

Event Departure;
Remove the departing customer from the server’s list;
If the waiting list is not empty then

Remove the first customer from the waiting list;
Insert it in the server’s list;
Recover its service time S;
Schedule its departure in S time units;

Update the statistics as needed;

Event EndOfSimulation;
Stop the simulation executive;

At the beginning of the simulation, one must initialize the lists and the appropriate
statistical accumulators, schedule the end-of-simulation event at time T , generate A1 from
distribution F , schedule an arrival at time A1, and start the simulation executive, which will
repeatedly remove the first event in the event list and execute it.

The question of which statistics should be collected depends on what we want to estimate.
For example, suppose we are interested in (a) the average waiting time in the queue per
customer for those customers who have started their service, (b) the average number of
customers in the queue (excluding those in service) as a function of time. Then, we need
statistical accumulators for the following: (i) number of customers who have started their
service, to date, (ii) total waiting time for those customers, (iii) the integral, from time zero
to the current simulation time, of the size of the waiting list as a function of time.

LetWi denote the waiting time in the queue for customer i, Q(t) the number of customers
waiting in the queue at time t, Nc(t) the number of customers who started their service
during the time interval [0, t], and let Nc = Nc(T ), where T is the time horizon. Here, T is
deterministic and Nc is a random variable. The statistics in (a) and (b) above are precisely

W̄Nc =
1

Nc

Nc∑
i=1

Wi
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and

Q̄T =
1

T

∫ T

0

Q(t)dt.

Those customers who arrive while the server is idle will have their Wi equal to zero, but
are nevertheless counted in the average. In particular, if the system starts empty, one has
W1 = 0. Note that the first average is computed over a (random) integer number of customers
Nc. The second average is with respect to time and involves the integral of Q(t). Those are
two very different types of averages. Since Q(t) is piecewise-constant, the integral for Q̄T

is easy to compute: It is a sum of rectangular areas, and corresponds to the surface of the
lightly-shaded green area, from 0 to T , in the bottom part of Figure 1.24.

1.9.3 Event list management

– To do.

1.10 Software for Simulation Programming

11

1.10.1 Overview of stochastic simulation software

Programming simulation models to run them on computers requires functions to generate
the uniform random numbers and non-uniform random variates from various distributions,
manage the event list and the simulation executive, collect the appropriate statistics, compute
confidence intervals, produce plots, etc. Rewriting code to do this for every model would be
time-consuming and error-prone. Fortunately, specialized software tools have been developed
to ease simulation modeling and programming. These tools belong to the following categories:

(a) Extensions/libraries for general-purpose programming languages;

(b) Special-purpose simulation programming languages;

(c) Graphical modeling/programming environments for general simulation;

(d) Specialized modeling environments for specific classes of applications.

Almost every programming language or environment offers simple functions to generate
uniform random numbers and random variates from a few distributions, and this can be
sufficient to simulate simple static models such as those given in Section 1.2. Functions to
generate random numbers were already deemed important and made available in the first
digital computers in the 1940’s (L’Ecuyer 2017). Functions to compute quasi-random points
from lattice rules or digital nets in base 2 are also available in several software libraries.

11From Pierre: To be updated. Here we should have a section on “stochastic simulation programming”
with a subsection that gives an overview of SSJ.
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Statistical data coming out from simulations can be analyzed using R, SAS, Python libraries,
and other similar software tools which offer rich collections of statistical and visualization
procedures.

Programming large discrete-event simulation models, on the other hand, requires more
advanced structures and tools.

Early days: – manufacturing systems, communication systems, queues, ... This gave rise
to specialized languages and libraries even from the early days of computer programming.

This section is currently in reconstruction...

When I started teaching simulation in 1983, discrete-event simulation programs were
often written in specialized simulation languages. The leading ones were GPSS and SIM-
SCRIPT, and SIMAN was coming out. I picked SIMSCRIPT 2.5 for my class the first year,
mainly because it was free. It was a very wordy language, almost like writing English sen-
tences, the instructions were often interpreted differently than we expected, and the compiler
was not very efficient. For the second year, I wrote my own (small) library in Pascal. Then
we built a more extensive library in Modula-2 (L’Ecuyer and Giroux 1987, L’Ecuyer 1988),
and finally SSJ (L’Ecuyer, Meliani, and Vaucher 2002, L’Ecuyer and Buist 2005), described
in Section 1.10.

The special-purpose simulation programming languages had drawbacks and have mostly
disappeared. Having to learn a new language only for simulation programming is not conve-
nient, and such a specialized language cannot benefit from the same type of support as the
most popular general-purpose languages (e.g., the availability of efficient compilers, libraries,
and integrated development environments on several platforms). Ideally, simulation program-
ming should be done in a well-designed and widely used language that offers the primitives
required to support nice and clean simulation extensions, and allows fast execution.

Libraries for simulation programming are available for general-purpose languages such
as C, C++, Java, Python, etc., usually in the public domain. Tools for simulation are also
available for computing environments such as MATLAB, R, SAS, Excel, etc. One can consult
the annual Proceedings of the Winter Simulation Conference for references; see https://

informs-sim.org/. Some libraries provide only a small set of tools, others provide more.

Simulation programming environments with graphical interfaces have replaced the spe-
cialized languages. They are commercial products that can be purchased from simulation
software vendors. Popular ones nowadays include AnyLogic, Arena, Automod, ExtendSim,
FlexSim, Simio, and Simul8, Witness, for example. Certain environments are for discrete-
event simulation in general, others are tailored to narrow classes of applications such as man-
ufacturing, scheduling, business process re-engineering, and communication systems (Banks
1998, Chap. 25). Typically, the more specialized tools are easier to use than the general-
purpose ones when the application fits, but they also tend to be less flexible. These graphical
environments are often advertised as tools to do “simulation without programming”. This
means that models can be built simply by “point-and-click” operations, with the mouse.
More often than not, however, the templates provided by the graphical interface do not cover
certain aspects of a model, so one must go down to lower-level programming, either in the
base language or in a general-purpose language. See also Law (2014), Chapter 3 and https:

//en.wikipedia.org/wiki/List\_of\_discrete\_event\_simulation\_software.

These four categories do not determine a clean-cut partition: Several products cover
more than one category. For example, Arena, from Rockwell Software, belongs to (c), but
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is built over the simulation language SIMAN and permits one to write part of the code in
general-purpose languages such as VisualBasic and C.

♣ Add an outline of the basic facilities in a good simulation library: rng, probdist,
randvar, rqmc, event-scheduling, stat collection, etc.

1.10.2 The SSJ library

We do not intend here to teach simulation programming in a specific language. However, to
illustrate how simulation models can be programmed, we exhibit small examples of programs
written in Java using the SSJ library (L’Ecuyer and Buist 2005, L’Ecuyer 2023). With the
given explanations, even those not familiar with Java should be able to understand what goes
on in the examples. Some familiarity with object-oriented programming would nevertheless
make things easier. In our program examples, the import statements (for SSJ and standard
Java packages) have been left out to save space; the running Java code for these examples is
available with the SSJ distribution.

Give an overview of SSJ, with some examples.

1.11 Example: simulation of a single-server queue

♣ This example could be replaced by a queue with multiple servers.

1.11.1 Discrete-event simulation of the single-server queue

The program given in Figure 1.25 simulates the single-server queue of Section 1.9.2 for
a fixed time horizon T , using the event-oriented approach outlined in Section 1.11 and the
SSJ library. The simulation is repeated for numRep independent replications, and a short
report is printed for each replication. The simulation program is implemented as a Java class
called QueueEv, instantiated by the main method via the statement “new QueueEv()”. This
statement calls the constructor QueueEv, which creates an object queue of class QueueEv.
Here we have anM/M/1 queue and the two parameters of the constructor are the arrival rate
λ and the service rate µ. Each simulation run (or replication) is performed by the method
simulate. This method first makes sure that the lists are empty and initializes the statistical
collectors (this is needed to clean up the information from previous runs). It then initializes
and starts the simulation. When the simulation is over, the main method prints a statistical
report.

Each event type is implemented as a subclass of the predefined class Event, whose
method actions is invoked whenever this event occurs. These event types are: arrival of
a customer (Arrival), departure of a customer (Departure), and end of the simulation
(EndOfSimulation). The simulation clock and the event list are managed behind the scenes
by the class Sim of SSJ. Each event instance is inserted into the event list with a scheduled
time of occurrence by the schedule method, and is executed when the simulation clock
reaches this time.
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public class QueueEv {
RandomVariateGen genArr, genServ;
LinkedList<Customer> waitList = new LinkedList<Customer> ();
LinkedList<Customer> servList = new LinkedList<Customer> ();
Tally custWaits = new Tally ("Waiting times");
Accumulate totWait = new Accumulate ("Size of queue");

class Customer { double arrivTime, servTime; }

public QueueEv (double lambda, double mu) {
genArr = new RandomVariateGen (new MRG32k3a(),

new ExponentialDist(lambda));
genServ = new RandomVariateGen (new MRG32k3a(),

new ExponentialDist (mu));
}

public void simulate (double timeHorizon) {
Sim.init();
waitList.clear(); servList.clear();
custWaits.init(); totWait.init();
new EndOfSimulation().schedule (timeHorizon);
new Arrival().schedule (genArr.nextDouble());
Sim.start();

}

class Arrival extends Event {
public void actions() {

new Arrival().schedule (genArr.nextDouble()); // Next arrival.
Customer cust = new Customer(); // Customer that just arrived.
cust.arrivTime = Sim.time();
cust.servTime = genServ.nextDouble();
if (servList.size() > 0) { // Must join the queue.

waitList.addLast (cust);
totWait.update (waitList.size());

} else { // Starts its service.
custWaits.add (0.0);
servList.addLast (cust);
new Departure().schedule (cust.servTime);

}
}

}

class Departure extends Event {
public void actions() {

servList.removeFirst(); // Remove from service.
if (waitList.size() > 0) {

// Start service for next one in queue.
Customer cust = (Customer)waitList.removeFirst();
totWait.update (waitList.size());
custWaits.add (Sim.time() - cust.arrivTime);
servList.addLast (cust);
new Departure().schedule (cust.servTime);

}
}

}

Fig. 1.25. Event-oriented simulation of a single-server queue.
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class EndOfSimulation extends Event {
public void actions() {

Sim.stop();
}

}

public static void main (String[] args) {
double lambda = 1.0/10.0; // Arrival rate.
double mu = 1.0/9.0; // Service rate.
double T = 1000.0; // Time horizon.
int n = 8; // Number of simulation replications.
QueueEv queue = new QueueEv (lambda, mu);
for (int rep = 0; rep < n; rep++) {

queue.simulate (T);
System.out.println (queue.custWaits.report());
System.out.println (queue.totWait.report());

}
}

}

Fig. 1.25. Event-oriented simulation of a single-server queue (continuation).

The five statements at the beginning of class QueueEv declare two random variate gener-
ators, then create two lists and two statistical collectors. When the class QueueEv is instan-
tiated by the main method, the latter four objects are first created, then the two random
variate generators are created by the constructor, each with an attached random number
stream and an exponential distribution. We now explain what these objects are.

Objects of the class MRG32k3a in SSJ are random number streams as introduced at the end
of Section 1.3. They return sequences of numbers that can be taken as independent uniform
random variables over (0, 1). These sequences of numbers are in fact disjoint segments of the
sequence produced by a single generator with a huge period length. We will see in Chapter 3
how this is implemented, and in Section 1.7 why it is useful to have several streams. Each
ExponentialDist object represents an exponential distribution whose rate is given by its
parameter (its mean is the inverse of the rate). These streams and distributions are attached
to the random variate generators genArr and genServ which are used to generate the times
between successive arrivals and the service times, respectively. Each call to the method
nextDouble for one of these generators returns an exponential variate generated by inversion
from the attached distribution and using the attached random number stream. Why not just
use the same stream to generate both the inter-arrival and service times? For this particular
(very simple) simulation there is no special reason, but this is good practice in general and
we will see why later on in the book.

The class LinkedList, provided by the standard java.util package, implements lists
of objects (of any type). Two lists are created here: waitList is the list of waiting cus-
tomers and servList is the list of customers in service. Methods are provided to ma-
nipulate those lists, insert and remove objects in/from them, and so on. For example,
waitList.addLast (cust) inserts the customer cust at the tail of the list of waiting cus-
tomers, while waitList.removeFirst removes and returns the first customer in the queue.

The Tally and Accumulate objects are statistical collectors, or probes. They correspond
to the two different flavors of probes typically available in simulation packages. The Tally
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type (e.g., custWaits) is appropriate when the statistical data of interest consist of a se-
quence of observationsX1, X2, . . . of which we might want to compute the sample mean, vari-
ance, and so on. One can bring a new observation Xi to a Tally probe by calling its method
add. In the program of Figure 1.25, new observations are added to the probe custWaits by
calling custWaits.add(x) every time a customer starts it service (this is when we know its
waiting time), where the observation x is the waiting time Wi of that customer (the current
time minus its arrival time). At the end of the simulation, the total number of observations
Wi given to the probe will be Nc = Nc(T ).

The Accumulate type of probe (e.g., totWait), on the other hand, is used to integrate
(or compute the time-average) of the value of a continuous-time stochastic process with
piecewise-constant trajectory. Whenever the process value changes in time (this may occur
only at event times), the method update should be called to give the new value. The system
then updates the current value of the integral by adding to it the previous value of the process
multiplied by the time elapsed since the last update. In our program, the probe totWait is
updated every time the size of the waiting list changes. An accumulator hidden in that probe
is equal, after each update, to the total waiting time in the queue, for all the customers (i.e.,
the integral of Q(t)), since the beginning of the simulation.

Each customer is an object of the class Customer, with two fields: arrivTime memorizes
this customer’s arrival time to the system, and servTime memorizes its service time. This
object is created, and its fields are initialized, when the customer arrives.

The method simulate, invoked by the main program, first calls Sim.init() to initialize
the clock and the event list. It then schedules two events: The end of the simulation (an
EndOfSimulation event) at time T =timeHorizon and the arrival of the first customer.
The time until this first arrival is an exponential random variable with mean 1/λ, generated
using the random stream genArr. Finally, calling Sim.start() starts the simulation by
advancing the clock to the time of the first event in the event list, removing this event from
the list, and executing it. This is repeated until either Sim.stop() is called or the event list
becomes empty. Sim.time() returns the current time on the simulation clock.

The method actions of the class Arrival describes what happens when an arrival
occurs. Arrivals are scheduled by a domino effect: The first action of each arrival event is to
schedule the next one in A time units, where A is an exponential with mean 1/λ. Then, the
newly arrived customer is created, its arrival time is set to the current simulation time, and
its service time is generated from the exponential distribution with mean 1/µ. If someone is
already in service, the customer is inserted in the waiting list (the queue) and the statistical
probe totWait that keeps track of the size of that list is updated. Otherwise, the customer
is inserted in the server’s list, its departure is scheduled in S time units where S is the
customer’s service time, and its waiting time, equal to 0 in this case, is given as a new
observation to the statistical probe for the waiting times.

When a Departure event occurs, the customer in service is removed from the list and
disappears. If someone is waiting, then the first in the queue is removed and inserted in the
server’s list, and its departure is scheduled. The waiting time of that customer (the current
time minus its arrival time) is computed and given as an observation to the probe custWaits.
The probe totWaits that keeps track of the size of the waiting list is also updated.

The event EndOfSimulation stops the simulation.
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The program assumes that the interarrival and service time distributions are exponential
with means 10 and 9 (or rates 1/10 and 1/9), respectively, that the time horizon is T = 1000,
and that we make 8 simulation runs. These parameter values are fixed in the main program
to simplify the code. Note that the units of time are never specified: they can be seconds,
minutes, hours, or someting else. It does not matter, as long as we always use the same units.
After each simulation run, the main method prints statistical reports for the two probes. In a
serious simulation experiment, we would also compute confidence intervals from these runs,
perhaps build a histogram of the waiting times, etc., but our goal here is just to illustrate
how to program the simulation logic.

It is important to understand that to obtain n independent simulation runs, one cannot
just put n = 1 in the program and run it n times on the computer. By doing that, one
would obtain exactly the same results (the results for the first run) n times, because the
RNGs streams will restart from their same default seeds for each run. By making a loop
in a single program, the RNGs keep moving ahead across the runs. Another option would
be to change the RNG seeds explicitly between the runs, but this is more cumbersome and
not recommended. Keeping the same default seeds (as opposed to using truly random seeds)
makes the simulation experiments reproducible, and this has enormous advantages, as we
shall see along the book.

REPORT on Tally stat. collector: Waiting times
num. obs. min max average variance standard dev.

97 0.000 113.721 49.554 498.883 22.336

REPORT on Accumulate stat. collector: Size of queue
from time to time min max average

0.00 1000.00 0.000 12.000 4.850

Fig. 1.26. Reports from the program QueueEv for the first simulation run.

Figure 1.26 shows the output of the program QueueEv for the first simulation run (only).
By time T = 1000, 97 customers have completed their waiting (Nc = 97). The peak and
time-average queue sizes have been 12 and 4.85, respectively. The waiting times are spread
out from 0 to 113.72, with an average of 49.55. The report also gives the empirical variance
and standard deviation of the waiting times. This is typical of simulation software which
often provides some irrelevant information: here the empirical variance is not really useful
because the 97 waiting times are not independent observations; they are (strongly) positively
correlated. It would therefore be grossly wrong to use the average and standard deviation
of these 97 waiting times to compute a confidence interval on the expected average waiting
time

wT = E[W̄Nc ] (1.38)

via the standard approach with the normal distribution. This standard procedure assumes
i.i.d.observations, so it would underestimate the true variance and therefore produce and
overly optimistic interval; that is, with a much lower coverage than specified (the coverage
is the probability that the interval includes the exact value of the expectation).

To compute a confidence interval for wT = E[W̄Nc ], one may replicate the simulation n
times with independent random numbers, then use the standard procedure of Section 1.4.3
with these n replicates of W̄Nc as independent observations. To give an idea of how these
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Table 1.5. Results for n = 8 simulation runs with QueueEv, with T = 1000.

Run Nc W̄Nc Q̄T

1 97 49.55 4.85
2 96 15.64 1.58
3 78 79.26 6.88
4 93 78.28 8.69
5 103 57.22 6.85
6 100 13.15 1.44
7 93 45.61 4.24
8 93 98.04 9.31

observations would look like, Table 1.5 shows the results for n = 8 independent simulation
runs. We observe large variations of the averages W̄Nc and Q̄T between runs. For example,
they are about 98 and 9.3 for run 8, compared to about 13 and 1.4 for run 6. Interestingly,
run 6 had more customers than run 8, 100 vs 93. This means that the larger waiting times
for run 8 were not due to more customers than usual, but probably from clustered arrivals at
some point during the time period. We see that even if W̄Nc is an average over approximately
a hundred customers, it cannot be trusted very much as an estimator of wT . Moreover, even if
they were known with great precision, wT and qT would only tell a small part of the story; it
is also important to be aware of the high variability of the waiting times and of the averages
W̄Nc and Q̄T .

A confidence interval on wT is also unlikely to be what we want, for another reason. We
may be interested in the expected waiting time of an “average” customer, i.e., a customer
picked at random among all the customers who arrive to this system over an infinite (or very
large) number of “days” of length T . But this expected waiting time is not wT , because in
wT , the customer waits are not all weighted equally. When computing W̄Nc , each waiting
time is divided by the number NC of the current run, so the waiting time of a customer
who is in a run with a larger NC than the average will be divided by a larger number and
therefore will count less in the global average, and the opposite when NC is smaller than
the average. To estimate the expected waiting time of an average customer in the above
sense, we should rather sum the waiting times of all the customers over all runs and divide
by the total number of customers over all runs. A confidence interval can be computed as
explained in Section 5.4.2. A histogram of all the individual nonzero waiting times would
also be informative in this case.

Alternatively, instead of considering an average customer over a large number of runs
of fixed length T , one may be interested in an average customer over a single very long
simulation run (i.e., when T →∞). We will examine this in Section 1.11.5.

1.11.2 A process-oriented program

Certain simulation languages offer higher-level constructs than those used in the program
of Figure 1.25. This is illustrated by our second implementation of the single-server queue
model, in Figure 1.27, based on a paradigm called the process-oriented or process interaction
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public class QueueProc {

Resource server = new Resource (1, "Server");
RandomVariateGen genArr;
RandomVariateGen genServ;

public QueueProc (double lambda, double mu) {
genArr = new RandomVariateGen (new MRG32k3a(),

new ExponentialDist(lambda));
genServ = new RandomVariateGen (new MRG32k3a(),

new ExponentialDist (mu));
}

public void simulate (double timeHorizon) {
SimProcess.init();
server.setStatCollecting (true);
new EndOfSimulation().schedule (timeHorizon);
new Customer().schedule (genArr.nextDouble());
Sim.start();

}

class Customer extends SimProcess {
public void actions() {

new Customer().schedule (genArr.nextDouble());
server.request (1);
delay (genServ.nextDouble());
server.release (1);

}
}

class EndOfSimulation extends Event {
public void actions() {

Sim.stop();
}

}

public static void main (String[] args) {
QueueProc queue = new QueueProc (1.0/10.0, 1.0/9.0);
queue.simulate (1000.0);
System.out.println (queue.server.report());

}
}

Fig. 1.27. Process-oriented simulation of a single-server queue
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approach, initiated in the early sixties by the GPSS and Simula languages (Schriber 1974,
Nygaard and Dahl 1978, Birtwistle et al. 1979). The program of Figure 1.27 gives a good
sense of how process interaction works. It is taken from an early version of SSJ, as described
in L’Ecuyer, Meliani, and Vaucher (2002), in which processes were implemented using “green
thread” facilities that are no longer available in Java. For this reason, the processes are not
supported in the current version of SSJ, but they could be eventually re-introduced by using
a lightweight coroutine library for Java. The SimPy simulation library in Python (SimPy
2020) is one example of a recent simulation library based on process interaction.

In the event-oriented implementation, each customer is a passive object that just stores
two real numbers and performs no action by itself. In the process-oriented implementation
of Figure 1.27, each customer (instance of the class Customer) is a process whose behavior
is described by its method actions. The server is an object of class Resource, created when
QueueProc is instantiated by main. A Resource can be viewed as a service facility, with
an arbitrary number of servers, and a specific service discipline. It is a passive object, in
the sense that it executes no code. Active resources, when needed, can be implemented as
processes. Here, the number of servers is 1 (specified when server is created) and the service
discipline is FCFS (the default value).

When it starts executing its actions, a customer first schedules the arrival of the next cus-
tomer, as in the event-oriented case. Processes are scheduled in the same way as events. Here,
customers generate each other sequentially as in the event-view implementation. Behind the
scenes, the schedule statement simply inserts in the event list an event notice which, when
executed, will create and activate a new Customer instance. Several distinct Customer in-
stances can co-exist in the simulation at any given point in time, and be at different steps in
their actions method. After scheduling the next one, the customer requests the server by
invoking server.request(1). The parameter 1 indicates that one server is requested. If the
server is free, the customer gets it and can continue its execution immediately. Otherwise,
the customer is automatically (behind the scenes) placed in the server’s queue, is suspended,
and resumes its execution only when it obtains the server. When its service can start, the
customer invokes delay to freeze itself for a duration equal to its service time, generated
from the exponential distribution by the generator genServ. Invoking delay(d) schedules
an event (behind the scenes) that will resume the execution of the process in d units of time.
After this delay has elapsed, the customer releases the server and dies.

We point out that here, the service time is generated only when the customer starts its
service, whereas in the event-oriented program (Figure 1.25), it was generated at customer’s
arrival. This difference in the implementation turns out to have no effect on the results
for this particular model, because the customers are served in a FIFO order and because
one random number stream is dedicated to the generation of service times. However, it may
have considerable impact in other situations, when comparing systems with common random
numbers; we will see examples in Chapter 6.

The simulate method initializes the simulation, invokes setStatCollecting to specify
that detailed statistical collection must be performed automatically for the resource server,
schedules an event EndOfSimulation at time T = timeHorizon, schedules the first cus-
tomer’s arrival, and starts the simulation. When the simulation is over, the main program
prints a detailed statistical report on the resource server. This illustrates how events and
processes can be mixed in a simulation program. Behind the scenes, a single event list takes
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care of synchronizing the execution of all the process instances (customers) and events. Pro-
cesses are created, suspended, reactivated, and so on, by hidden events.

The process-oriented program of Figure 1.27 is more compact and more elegant than
its event-oriented counterpart of Figure 1.25. This tends to be true in general: Process-
oriented programming often gives less cumbersome and better looking programs. On the
other hand, process-oriented implementations usually execute more slowly, because managing
the pseudo-concurrent processes (hidden in the simulation package) involves overhead. When
the execution time is an important issue, it is often better to stick with an event-view
implementation, even if it involves a little more programming. Moreover, using processes
instead of events does not always simplify the simulation program.

1.11.3 Streamlining the program using Lindley equations

The single-queue model that we just used to illustrate the notions of events and processes
is in fact a special case of the tandem-queue model examined in Example 1.10, so it can be
simulated more simply just by using the recurrence equations given there. The waiting times
obey the Lindley recurrence (1.7): W1 = 0 and

Wi = max(0, Wi−1 + Si−1 − Ai) (1.39)

for i ≥ 2. The program of Figure 1.28 simulates this recurrence and computes the average
waiting time of the first 100 customers. The statistics computed here are different than in the
two preceding programs, because here we fixedNc instead of T . The program also illustrates a
different way of generating the exponential random variates in SSJ, without creating random
variate generator and distribution objects. We create only the random number streams and
invoke a static method that computes the inverse cdf of the exponential for each uniform
random number.

For this simple model, it is also possible to compute the entire distribution of each Wi

numerically, without simulation, via the following recurrence: For t ≥ 0, P[W1 > t] = 0 and

P[Wi+1 > t] = P[Wi + Si − Ai+1 > t] =

∫ ∞

0

∫ ∞

0

P[Wi > t− s+ a]dF (a)dG(s)

for i ≥ 1, while for t < 0, P[Wi > t] = 1 for all i ≥ 1. In the case where the inter-arrival
and service times have densities, say f and g respectively, one can write dF (a)dG(s) as
f(a)g(s) da ds. For i = 1, 2, . . . , an approximation of P[Wi+1 > t] as a function of t can
be obtained after computing it at several values of t by a numerical integration method,
using the previously computed approximation of P[Wi > x] as a function of x, and using for
example a spline approximation. Then, E[Wi+1] can be computed by numerical integration
as well. This approach can be more efficient than simulation if high accuracy is desired, but
it is also more complicated to implement. Since these types of numerical methods are outside
the scope of this book, we won’t pursue their study any further.

1.11.4 Reformulating as a MC integration problem

The program of Figure 1.28 actually computes a function f defined over the 198-dimensional
unit hypercube. There are indeed 99 turns into the “for” loop and two uniform random
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public class QueueLindley {

RandomStream streamArr = new MRG32k3a();
RandomStream streamServ = new MRG32k3a();

public double simulate (int numCust, double lambda, double mu) {
double Wi = 0.0;
double sumWi = 0.0;
for (int i = 2; i <= numCust; i++) {

Wi += ExponentialDist.inverseF (mu, streamServ.nextDouble()) -
ExponentialDist.inverseF (lambda, streamArr.nextDouble());

if (Wi < 0.0) Wi = 0.0;
sumWi += Wi;

}
return sumWi / numCust;

}

public static void main (String[] args) {
System.out.println ("Average waiting time: " +

(new QueueLindley()).simulate (100, 1.0/10.0, 1.0/9.0));
}

}

Fig. 1.28. Programming Lindley’s recurrence

variates are generated at each turn. The average waiting time computed by the program is a
function f of these 198 uniforms. It is an unbiased estimator of the expected average waiting
time that we want to estimate.

If U1, U2, . . . is the sequence of all i.i.d. U(0, 1) random variables used to generate the
inter-arrival times Ai and service times Si, then the program computes Si = −9 ln(1 −
U2i−1) and Ai+1 = −10 ln(1 − U2i), for i = 1, 2, . . . . Then, W1, . . . ,W100 are computed
using S1, A2, S2, A3, . . . , S99, A100 together with Eq. (1.39). Therefore, W̄100 is a function
f of U1, . . . , U198, and E[W̄100] is the expectation of f(U1, . . . , U198), which can be written
as the integral of f(u1, . . . , u198) with respect to u1, . . . , u198 over the 198-dimensional unit
hypercube.

Suppose now that we are interested in the expected average waiting time for the Nc

customers who start their service before time 1000. The number of uniforms Ui that are
required to compute the estimator W̄Nc is a random variable. The dimension s in (1.16)
is really infinite because there is no deterministic upper bound on Nc. A priori, we need
an infinite sequence of Ui’s, although only a finite (but random) number of those Ui’s are
actually used in the simulation.

1.11.5 Steady-state estimation

Suppose that we want to estimate

w = lim
T→∞

wT and q = lim
T→∞

qT ,

the average waiting time and average queue length in the long run, i.e., over an infinite
time horizon. Under our exponential assumptions, i.e., in the case of an M/M/1 queue,
these values can be readily computed via standard analytical formulæ from queuing theory
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Table 1.6. Eight runs of QueueProc with T = 10000.

Run Nc W̄Nc Q̄T

1 1033 124.52 12.87
2 981 50.46 4.95
3 983 35.58 3.51
4 959 53.75 5.17
5 1012 78.76 7.97
6 1001 88.28 8.85
7 989 65.82 6.51
8 1027 171.81 17.64

(Section A.19), so simulation is not needed. But playing with a simple example where the
exact values are know is instructive because we can see how good (or bad) our simulation
results are. For an M/M/1 queue with arrival rate λ and service rate µ (i.e., exponential
inter-arrival times with mean 1/λ and exponential service times with mean 1/µ), the infinite-
horizon (steady-state) average waiting time and average queue length are w = ρ/((1− ρ)µ)
and q = λw = ρ2/(1−ρ), respectively, where ρ = λ/µ is the traffic intensity. In our example,
we had λ = 1/10 and µ = 1/9, so ρ = 0.9, w = 81, and q = 8.1.

The results of our simulations in Table 1.5 are systematically much lower than these
theoretical values. What’s wrong? The explanation is that since we started the system empty
(W1 = 0), the early customers have a smaller expected waiting time than w, so W̄Nc turns
out to be a negatively biased estimator of w. If we perform n simulation runs, as n → ∞,
W̄Nc will converge to a different value than w. If T → ∞, the bias goes to zero and the
estimator is consistent (in fact, it converges to w with probability 1 when T → ∞ for any
fixed n, even for n = 1), but the simulation results indicate that T = 1000 is not enough
here for the bias to be negligible.

Table 1.6 gives the results of 8 new independent runs, performed with a time horizon
of T = 10000. The sample averages now have lower variance and are getting closer to the
theoretical values, but there is still some bias. The horizon T can be increased further, and
as T → ∞, both the bias and the variance of W̄Nc converge to zero, and similarly for Q̄T .
In fact, the bias and variance turn out to decrease linearly in T in both cases. However, the
simulation cost also increases linearly in T . In terms of practical considerations and common
sense, one should wonder if steady-state behavior is an appropriate criterion in real life for
a model like this, considering the slow decrease of the bias. This aspect will be discussed
further in Chapter 2. For this particular M/M/1 queue example, the bias and the variance
are smaller when the traffic intensity ρ is closer to 0 and larger when ρ is closer to 1 (they
increase to infinity as ρ→ 1).

One way to reduce the bias is to discard the early customers from the statistics: Fix
a constant T0 < T , simulate over the horizon T , but take the average only over the time
interval (T0, T ]. The estimators W̄Nc and Q̄T are then replaced by
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1

Nc(T )−Nc(T0)

Nc(T )∑
i=Nc(T0)+1

Wi and
1

T − T0

∫ T

T0

Q(t)dt,

respectively. How do we choose T0? If it is too small, too much bias remains. If it is too large,
we lose too much information and, as a result, the variance is increased. So, what should we
try to minimize when choosing T0, and how do we do it in practice? This difficult question will
be addressed (but not completely resolved) in Chapter 5. To reduce the variance, one can also
perform a larger number of simulation runs and average over these runs, or perhaps change
the estimators, e.g., using appropriate variance reduction techniques (see Chapter 6). One
should not forget, however, that an estimator with slightly less variance is no improvement
if it takes a lot more time to compute, or if it has much more bias. Estimators should be
compared in terms of their efficiencies.

1.12 Example: One Day in a Telephone Call Center

Example 1.49 Customer relationships in modern businesses and public services are made
via contact centers, where agents handle customer orders for products and services, provide
support, register complaints, perform direct marketing campaigns, handle emergency calls,
etc. These centers rely on telephone and the Internet as primary communication channels
(Gans, Koole, and Mandelbaum 2003, Koole 2013).

We consider here a simplified model of a telephone contact center (or call center) where
agents answer incoming calls. Each day, the center operates for m hours. The number of
agents answering calls and the arrival rate of calls vary during the day; we shall assume
that they are constant within each hour of operation but depend on the hour. Let nj be the
number of agents in the center during hour j, for j = 0, . . . ,m−1. For example, if the center
operates from 8 am to 9 pm, then m = 13 and hour j starts at (j + 8) o’clock. All agents
are assumed to be identical. When the number of occupied agents at the end of hour j is
larger than nj+1, ongoing calls are all completed but new calls are answered only when there
are less than nj+1 agents busy. After the center closes, ongoing calls are completed and calls
already in the queue are answered, but no additional incoming call is taken.

The calls arrive according to a Poisson process with piecewise constant rate, equal toRj =
Bλj during hour j, where the λj are constants and B is a random variable having the gamma
distribution with parameters (α0, α0) (with mean 1 and variance 1/α0; see Section 2.8.12).
It represents the busyness factor of the day; it is more busy than usual when B > 1 and less
busy when B < 1. The Poisson process assumption means that conditional on B, the number
of incoming calls during any subinterval (t1, t2] of hour j is a Poisson random variable with
mean (t2 − t1)Rj and that the arrival counts in any disjoint time intervals are independent
random variables (see Section 2.13). This arrival process model is motivated and studied in
Whitt (1999) and Avramidis, Deslauriers, and L’Ecuyer (2004).

Incoming calls form a FIFO queue for the agents. A call is lost (abandons the queue)
when its waiting time exceeds its patience time. The patience times of calls are assumed to
be i.i.d. random variables with the following distribution: with probability p the patience
time is 0 (so the person hangs up unless there is an agent available immediately), and with
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probability 1−p it is exponential with mean 1/ν. The service times are i.i.d. gamma random
variables with parameters (α, β), with mean α/β and variance α/β2.

We want to estimate the following quantities in the long run (i.e., over an infinite number
of days): (a) w, the average waiting time per call, (b) g(s), the fraction of calls whose waiting
time is less than s seconds for a given threshold s, and (c) ℓ, the fraction of calls lost due to
abandonment. Suppose we simulate the model for n days. For each day i, let Ai be the number
of arrivals,Wi the total waiting time of all calls (including those who have abandoned), Gi(s)
the number of calls who waited less than s seconds (including those who abandoned before
s seconds), and Li the number of abandonments. For this model, the expected number of
incoming calls in a day is a = E[Ai] =

∑m−1
j=0 λj. We can write

w
w.p.1
= lim

n→∞

W1 + · · ·+Wn

A1 + · · ·+ An

= lim
n→∞

(W1 + · · ·+Wn)/n

(A1 + · · ·+ An)/n

w.p.1
=

E[Wi]

E[Ai]
=

E[Wi]

a
,

so that Wi/a is an unbiased estimator of w. Similarly, one can see that Gi(s)/a and Li/a are
unbiased estimators of g(s), and ℓ, respectively. Moreover, if n is large, the n i.i.d. replicates
W1/a, . . . ,Wn/a can be used to compute a confidence interval on w in the standard way, and
similarly for g(s), and ℓ.

Figure 1.29 gives an event-oriented simulation program for this call center model. When
the CallCenter class is instantiated by the main method, the random streams, list, and
statistical probes are created, and the model parameters are read from a file by the method
readData (whose uninteresting code is not show here). The main program then simulates
n = 1000 operating days and prints the value of a, as well as 90% confidence intervals on
a, w, g(s), and ℓ, based on their estimators Ān, W̄n/a, Ḡn(s)/a, and L̄n/a, assuming that
these estimators have approximately the Student distribution. This is justified by the fact
that Ai, Wi, Gi(s), and Li are themselves “averages” over several observations, so we may
expect their distribution to be not far from a normal. The n observations of these quantities
are collected by four statistical collectors at the end of simulateOneDay. These collectors
are placed in the array allTal. The last instruction of the main produces a short report for
each of them.

To generate the service times, we use a gamma random variate generator called genServ,
created in the constructor after the parameters (α, β) of the service time distribution have
been read from the data file. For the other random variables in the model, we simply create
random streams of i.i.d. uniforms (in the preamble) and apply inversion explicitly to generate
the random variates. The latter approach is more convenient, e.g., for patience times because
their distribution is not standard, and for the inter-arrival times because their mean changes
every period. For the gamma service time distribution, on the other hand, the parameters
always remain the same and inversion is rather slow, so we decided to create a generator
that uses a special (faster) method.

The method simulateOneDay simulates one day of operation. It initializes the simulation
clock, event list, and counters, schedules the center’s opening and the first arrival, and starts
the simulation. When the day is over, it updates the statistical collectors. Note that there
are two versions of this method; one that generates the random variate B and the other that
takes its value as an input parameter. This is convenient in case one wishes to simulate the
center with a fixed value of B.
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public class CallCenter {

static final double HOUR = 3600.0; // Time is in seconds.

// Data
// Arrival rates are per hour, service and patience times are in seconds.
double openingTime; // Opening time of the center (in hours).
int numPeriods; // Number of working periods (hours) in the day.
int[] numAgents; // Number of agents for each period.
double[] lambda; // Base arrival rate lambda_j for each j.
double alpha0; // Parameter of gamma distribution for B.
double p; // Probability that patience time is 0.
double nu; // Parameter of exponential for patience time.
double alpha, beta; // Parameters of gamma service time distribution.
double s; // Want stats on waiting times smaller than s.

// Variables
double busyness; // Current value of B.
double arrRate = 0.0; // Current arrival rate.
int nAgents; // Number of agents in current period.
int nBusy; // Number of agents occupied.
int nArrivals; // Number of arrivals today.
int nAbandon; // Number of abandonments during the day.
int nGoodQoS; // Number of waiting times less than s today.
double nCallsExpected; // Expected number of calls per day.

Event nextArrival = new Arrival(); // The next Arrival event.
LinkedList<Call> waitList = new LinkedList<Call> ();

RandomStream streamB = new MRG32k3a(); // For B.
RandomStream streamArr = new MRG32k3a(); // For arrivals.
RandomStream streamPatience = new MRG32k3a(); // For patience times.
GammaGen genServ; // For service times; created in readData().

Tally[] allTal = new Tally [4];
Tally statArrivals = allTal[0] = new Tally ("Daily arrivals");
Tally statWaits = allTal[1] = new Tally ("Daily waits");
Tally statGoodQoS = allTal[2] = new Tally ("Proportion of waits < s");
Tally statAbandon = allTal[3] = new Tally ("Proportion of abandons");
Tally statWaitsDay = new Tally ("Waiting times within a day");

public CallCenter (String fileName) throws IOException {
readData (fileName);
// genServ can be created only after its parameters are read.
// The acceptance/rejection method is much faster than inversion.
genServ = new GammaAcceptanceRejectionGen (new MRG32k3a(), alpha, beta);

}

// Reads data and construct arrays.
public void readData (String fileName) throws IOException {

...
}

Fig. 1.29. Event-view simulation of the call center.
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// A phone call object.
class Call {

double arrivalTime, serviceTime, patienceTime;

public Call() {
serviceTime = genServ.nextDouble(); // Generate service time.
if (nBusy < nAgents) { // Start service immediately.

nBusy++;
nGoodQoS++;
statWaitsDay.add (0.0);
new CallCompletion().schedule (serviceTime);

} else { // Join the queue.
patienceTime = generPatience();
arrivalTime = Sim.time();
waitList.addLast (this);

}
}

public void endWait() {
double wait = Sim.time() - arrivalTime;
if (patienceTime < wait) { // Caller has abandoned.

nAbandon++;
wait = patienceTime; // Effective waiting time.

}
else {

nBusy++;
new CallCompletion().schedule (serviceTime);

}
if (wait < s) nGoodQoS++;
statWaitsDay.add (wait);

}
}

// Event: A call arrives.
class Arrival extends Event {

public void actions() {
nextArrival.schedule

(ExponentialDist.inverseF (arrRate, streamArr.nextDouble()));
nArrivals++;
new Call(); // Call just arrived.

}
}

// Event: A call is completed.
class CallCompletion extends Event {

public void actions() { nBusy--; checkQueue(); }
}

Fig. 1.29. Event-view simulation of the call center (continuation).
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// Event: A new period begins.
class NextPeriod extends Event {

int j; // Number of the new period.
public NextPeriod (int period) { j = period; }
public void actions() {

if (j < numPeriods) {
nAgents = numAgents[j];
arrRate = busyness * lambda[j] / HOUR;
if (j == 0)

nextArrival.schedule (ExponentialDist.inverseF
(arrRate, streamArr.nextDouble()));

else {
checkQueue();
nextArrival.reschedule ((nextArrival.time() - Sim.time())

* lambda[j-1] / lambda[j]);
}
new NextPeriod(j+1).schedule (1.0 * HOUR);

}
else

nextArrival.cancel(); // End of the day.
}

}

// Start answering new calls if agents are free and queue not empty.
public void checkQueue() {

while ((waitList.size() > 0) && (nBusy < nAgents))
((Call)waitList.removeFirst()).endWait();

}

// Generates the patience time for a call.
public double generPatience() {

double u = streamPatience.nextDouble();
if (u <= p)

return 0.0;
else

return ExponentialDist.inverseF (nu, (1.0-u) / (1.0-p));
}

public void simulateOneDay (double busyness) {
Sim.init(); statWaitsDay.init();
nArrivals = 0; nAbandon = 0;
nGoodQoS = 0; nBusy = 0;
this.busyness = busyness;

new NextPeriod(0).schedule (openingTime * HOUR);
Sim.start();
// Here the simulation is running...

statArrivals.add ((double)nArrivals);
statWaits.add (statWaitsDay.sum() / nCallsExpected);
statGoodQoS.add ((double)nGoodQoS / nCallsExpected);
statAbandon.add ((double)nAbandon / nCallsExpected);

}

Fig. 1.29. Event-view simulation of the call center (continuation).
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public void simulateOneDay () {
simulateOneDay (GammaDist.inverseF (alpha0, alpha0, 8,

streamB.nextDouble()));
}

static public void main (String[] args) throws IOException {
CallCenter cc = new CallCenter ("CallCenter.dat");
for (int i=1; i <= 1000; i++) cc.simulateOneDay();
System.out.println ("\nNumber of calls expected per day = "

+ cc.nCallsExpected +"\n");
for (int i = 0; i < cc.allTal.length; i++) {

cc.allTal[i].setConfidenceIntervalStudent();
cc.allTal[i].setConfidenceLevel (0.90);

}
System.out.println (Tally.report ("CallCenter:", cc.allTal));

}
}

Fig. 1.29. Event-view simulation of the call center (continuation).

An event NextPeriod(j) marks the beginning of each period j. The first of these events
(for j = 0) is scheduled by simulateOneDay; then the following ones schedule each other
successively, until the end of the day. This type of event updates the number of agents in the
center and the arrival rate for the next period. If the number of agents has just increased
and the queue is not empty, some calls in the queue can now be answered. The method
checkQueue verifies this and starts service for the appropriate number of calls. The time
until the next planned arrival is readjusted to take into account the change of arrival rate,
as follows. The inter-arrival times are i.i.d. exponential with mean 1/Rj−1 when the arrival
rate is fixed at Rj−1. But when the arrival rate changes from Rj−1 to Rj, the residual time
until the next arrival should be modified from an exponential with mean 1/Rj−1 (already
generated) to an exponential with mean 1/Rj. Multiplying the residual time by λj−1/λj is
an easy way to achieve this (see Section 2.13 for further details on non-stationary Poisson
processes). We give the specific name nextArrival to the next arrival event to be able to
reschedule it to a different time. Note that there is a single arrival event which is scheduled
over and over again during the entire simulation. This is more efficient than creating a new
arrival event for each call, and can be done here because there is never more than one arrival
event at a time in the event list. At the end of the day, simply canceling the next arrival
makes sure that no more calls will arrive.

Each arrival event first schedules the next one. Then it increments the arrivals counter
and creates the new call that just arrived. The call’s constructor generates its service time
and decides where the incoming call should go. If an agent is available, the call is answered
immediately (its waiting time is zero), and an event is scheduled for the completion of the
call. Otherwise, the call must join the queue; its patience time is generated by generPatience
and memorized, together with its arrival time, for future reference.

Upon completion of a call, the number of busy agents is decremented and one must
verify if a waiting call can now be answered. The method checkQueue verifies that and if
the answer is yes, it removes the first call from the queue and activates its endWait method.
This method first compares the call’s waiting time with its patience time, to see if this call is
still waiting or has been lost (by abandonment). If the call was lost, we consider its waiting
time as being equal to its patience time (i.e., the time that the caller has really waited), for
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the statistics. If the call is still there, the number of busy agents is incremented and an event
is scheduled for the call completion.

We ran the program with the following input parameters, with the time measured in
seconds: α0 = 10, p = 0.1, ν = 0.001, α = 1.0, β = 0.01 (so the service time has mean 100
and variance 10,000), and s = 20. The center starts empty and operates for 13 one-hour
periods. The number of agents and the arrival rate for the first configuration are given in
Table 1.7. With these values, the expected number of arrivals per day is a = E[Ai] = 1660.
We simulated n = 1000 independent days. Table 1.8 shows part of the results; it gives
estimates of a, w, g(s), and ℓ, together with 90% confidence intervals.

We see that the number Ai of arrivals in a day varies a lot, mainly because of the random
busyness factor Bi. Its variance is about 2.6 × 105, whereas if each Bi was fixed at 1, then
Ai would be a Poisson random variable with both mean and variance equal to 1660. The
(overall) average waiting time is around 11.8, about 85.3% of the calls are answered within
20 seconds, and we have about 3.4% abandonment. The averages within a day vary a lot
from day to day. For example the average waiting time was near 0 seconds on one day and
570.7 seconds on another day. This large variation is due mainly to the variation of Bi. Note
also that the proportion estimate Gi(s)/a was 1.155 (larger than 1) on one occasion, which
may look strange since a proportion cannot be larger than 1, but Gi(s)/a is not really an
empirical proportion. Clearly, the number of arrivals on that particular day was larger than
a.

Call center managers usually want to see those types of statistics for each time period as
well (e.g., each hour) to better understand when longer waits occur and perhaps adjust the
staffing accordingly. Adding those detailed reports in our program wuld be easy. We could
also easily produce histograms of the nonzero waiting times, globally and per period.

Table 1.7. Number of agents nj and arrival rate λj (per hour) for 13 one-hour periods in the call
center.

j 0 1 2 3 4 5 6 7 8 9 10 11 12
nj 4 6 8 8 8 7 8 8 6 6 4 4 4
λj 100 150 150 180 200 150 150 150 120 100 80 70 60

This model is certainly an oversimplification of actual call centers. It can be embellished
and made more realistic by considering refined arrival processes, different types of agents,
different types of calls, call assignment strategies, agent-dependent service times, redials and

Table 1.8. Results from n = 1000 days of simulation of the call center.

Min Max average variance std dev 90% conf. int.

Arrivals Ai 460 4206 1639.5 2.634E5 513.2 (1612.8, 1666.2)
Waits Wi/a 0.000 570.7 11.83 1161.3 34.07 (10.06, 13.61)
GoodQoS Gi(s)/a 0.277 1.155 0.853 0.028 0.169 (0.844, 0.862)
Abandon Li/a 0.000 0.844 0.034 3.7E-3 0.061 (0.031, 0.037)



108 1. Introduction

returns, agents taking breaks for lunch, coffee, or going to the restroom, agents making
outbound calls to reach customers (e.g., for marketing purpose or for returning calls), and so
on. See Akşin, Armony, and Mehrotra (2007), Chan, Koole, and L’Ecuyer (2014), Ibrahim
et al. (2016), Oreshkin, Régnard, and L’Ecuyer (2016).

One could also model the revenue generated by calls and the operating costs for running
the center, and use the simulation model to compare alternative operating strategies in terms
of the expected net revenue, for example.

A simulator of large, complex, call centers would normally not be written as a single
program (in a single class) as in Figure 1.29, but rather as well-organized collection of
classes that take care of different aspects of the model or the simulation experiment, and
are used as building blocks to construct specific simulation programs. A library of this type,
for call center simulation, is described by Buist and L’Ecuyer (2005) and is available at
http://www-etud.iro.umontreal.ca/~buisteri/contactcenters/.

Call center managers in the real world often go the opposite way and use oversimplified
models, simpler than our above model (Gans, Koole, and Mandelbaum 2003, Avramidis
and L’Ecuyer 2005). The most popular one is the Erlang-C formula, which holds under the
assumptions that there is a single call type, s identical servers, the calls arrive according
to a Poisson process with fixed arrival rate, the service times are i.i.d. and exponentially
distributed, there are no abandons, and the system is in steady-state. The formula gives
the entire cdf of W , i.e., P[W ≤ x] for any x ≥ 0, where W is the waiting time of a
customer selected at random. More details and other formulas are given in Section A.19.
This formula is often used to determine the minimal number of agents required to satisfy
certain constraints on the quality of service. It is typically applied to each time period (e.g., of
30 or 60 minutes) by assuming that the model is in steady-state during that period, perhaps
with a different arrival rate for each period. These models make assumptions that are far
from realistic, so they may provide very unreliable answers, and they are limited to a single
call type. Simulation models can cover a much wider range of situations and can be much
more accurate. □

1.13 Common Random Numbers for the Call Center

Example 1.50 For the call center example of Section 1.12, suppose now that we want to
compare two configurations of the system with slightly different numbers of agents. The first
configuration is the same as in Section 1.12. For the second configuration, we simply increase
the number of agents by 1 in periods 5 and 6.

The program of Figure 1.30 defines an extension of class CallCenter. It simulates the
two configuration for n = 1000 days with and without CRNs, and prints a confidence interval
on the expected difference in QoS in each case, as well as on the expected QoS for the first
configuration. The results are shown in Figure 1.31. Empirically, the variance of the difference
is approximately 223 times smaller with CRNs than without. Compare the two confidence
intervals: with IRNs, the difference between the two configurations is not significant since
the interval contains 0, whereas the interval obtained with CRNs is much more useful.
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public class CallCenterCRN extends CallCenter {
Tally statDiffIndep = new Tally ("stats on difference with IRNs");
Tally statDiffCRN = new Tally ("stats on difference with CRNs");
int[] numAgents1, numAgents2;

public CallCenterCRN (String fileName) throws IOException {
super (fileName);
numAgents1 = new int[numPeriods];
numAgents2 = new int[numPeriods];
for (int j=0; j < numPeriods; j++)

numAgents1[j] = numAgents2[j] = numAgents[j];
}
// Set the number of agents in each period j to the values in num.
public void setNumAgents (int[] num) {

for (int j=0; j < numPeriods; j++) numAgents[j] = num[j];
}
public void simulateDiffCRN (int n) {

double value1, value2;
statDiffIndep.init(); statDiffCRN.init();
for (int i=0; i<n; i++) {

setNumAgents (numAgents1);
streamB.resetNextSubstream();
streamArr.resetNextSubstream();
streamPatience.resetNextSubstream();
(genServ.getStream()).resetNextSubstream();
simulateOneDay(); // Simulate first config.
value1 = (double)nGoodQoS / nCallsExpected;
setNumAgents (numAgents2);
streamB.resetStartSubstream();
streamArr.resetStartSubstream();
streamPatience.resetStartSubstream();
(genServ.getStream()).resetStartSubstream();
simulateOneDay(); // Simulate second config. with CRNs
value2 = (double)nGoodQoS / nCallsExpected;
statDiffCRN.add (value2 - value1);
simulateOneDay(); // Simulate second config. with IRNs
value2 = (double)nGoodQoS / nCallsExpected;
statDiffIndep.add (value2 - value1);

}
}
static public void main (String[] args) throws IOException {

int n = 1000; // Number of replications.
CallCenterCRN cc = new CallCenterCRN ("CallCenter.dat");
cc.numAgents2[5]++; cc.numAgents2[6]++;
cc.simulateDiffCRN (n);
System.out.println (

cc.statDiffIndep.report (0.9, 5) + cc.statDiffCRN.report (0.9, 5));
double varianceIndep = cc.statDiffIndep.variance();
double varianceCRN = cc.statDiffCRN.variance();
System.out.println ("Variance ratio: " +

PrintfFormat.format (10, 1, 3, varianceIndep / varianceCRN));
}

}

Fig. 1.30. Comparing two configurations of the call center: program
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REPORT on Tally stat. collector ==> stats on difference with IRNs
num. obs. min max average variance standard dev.

1000 -0.76325 0.77530 9.873E-3 0.05485 0.23420
90.0% conf. interval for the mean (Student approx.): (-2.321E-3, 0.02207 )

REPORT on Tally stat. collector ==> stats on difference with CRNs
num. obs. min max average variance standard dev.

1000 -0.01325 0.10060 9.920E-3 2.452E-4 0.01566
90.0% conf. interval for the mean (Student approx.): (0.00910, 0.01074 )

Variance ratio: 223.7

Fig. 1.31. Comparing two configurations of the call center: results.

The implementation exploits the concept of random number streams and substreams,
described at the end of Section 1.3, and available in SSJ and other modern simulation
software. Our simulation program uses four different random number streams, one for each
type of random variable in the model. This separation is to make sure that each random
number is used for the same purpose in both configurations. This guarantees that no random
number can be used to simulate a service time in one configuration and a patience time in
the other configuration, for example.

For each simulation run (one day), the four random number streams are reset to a new
substream (ResetNextSubstream) before simulating one day with the first configuration.
After this simulation, the four streams are reset to the beginning of their current substreams
(ResetStartSubstream), to make sure that the simulation with the second configuration
uses exactly the same sequence of uniform random numbers as the first one. Since the
parameters of the probability distributions are the same for both configurations, this implies
that the value of B for the day and the sequences of customer’s arrival times, patience times,
and service times will be exactly the same for both configurations. The difference in QoS
will be due only to the (slightly) different number of agents in the two configurations. In
fact, all customers have exactly the same service times in both configurations, including
the customers who abandon in one configuration and not in the other one, because the
service time is generated when the customer arrives. The patience time, on the other hand,
is generated only for the customers who wait, which are not necessarily the same customers
in the two configurations.

After each pair of runs with CRNs, the method simulateDiffCRN simulates another day
with the second configuration, without resetting the streams, so that this second run will use
random numbers “independent” from those of the first run. This is done for comparing the
variance with and without CRNs. The variance ratio printed by the program is the variance
with independent random numbers across configurations divided by the variance with com-
mon random numbers. It corresponds roughly to the efficiency improvement factor obtained
by using CRNs instead of independent random numbers. Here, to obtain an estimator of
a given accuracy, the simulation with CRNs requires a computing time approximately 223
times smaller than without CRNs. We also tried generating the patience time for all cus-
tomers on their arrival, so each customer had the same patience in both configurations, and
the (empirical) variance ratio improved slightly, from 223 to 256. □
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1.14 Continuous Simulation

♣ To do: Short introduction to “system dynamics” and to simulation models based on
deterministic and stochastic differential equations.

1.15 Simulation-based optimization

The end goal of a majority of simulation projects is to optimize decision parameters or oper-
ating rules for the system of interest. For stochastic systems, the objective function that we
want to optimize is often a mathematical expectation that needs to be estimated by simula-
tion, and there may be constraints on quantities that also need to be estimated by simulation.
Here we start with simple examples, followed by an overview of important simulation-based
optimization methods, then more examples. Chapter 7 gives a more elaborate coverage.

1.15.1 Introductory examples

Example 1.51 In the SAN of Example 1.4, one may have to pay a cost c(T ) that increases
as a function of the project duration T , and it may be possible to improve the distribution
of the durations of activities at some cost, for example by allocating more resources to these
activities. As a simple illustration, suppose that the mean duration θj of activity j can be
changed but a cost cj(θj) must be paid, where each cj is a decreasing function. The total
cost is c(T ) +

∑13
j=1 cj(θj). The vector of decision variables is θ = (θ1, . . . , θ13) ∈ Θ where

Θ ⊆ [0,∞)13 is a set of feasible (allowed) decisions. Since c(T ) is random, we cannot really
minimize the total cost as given, but we may want to minimize its expectation:

min
θ∈Θ

(
α(θ)

def
= Eθ[c(T )] +

13∑
j=1

cj(θj)

)
,

where Eθ is the expectation when the decision variables are fixed to θ.
The set Θ can be continuous or discrete. If it is a small finite set, say of no more than

about 20 possibilities, then one can simulate each one to estimate its cost and pick the
best one. If it is discrete with a very large number of possibilities, then the optimization
problem can be very hard to solve so one would have to settle with a heuristic. For the
case where Θ is continuous and α(θ) is a unimodal and smooth function, there are effective
stochastic optimization algorithms that provably converge to the optimal solution when the
number of simulation runs increases to infinity. A prominent one is the iterative stochastic
approximation (gradient descent) algorithm, which at each step estimates the gradient of
α(θ) with respect to θ at the current value of θ, and moves θ by a small amount in the
opposite direction of this gradient estimate. Recall that efficient gradient estimation for this
particular example was discussed in Example 1.47.

Another possible problem formulation could be that we want to minimize only
∑13

j=1 cj(θj)
but under the constraint that Pθ[T > x] ≤ p for given values of x and p. For example, one
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may impose that Pθ[T > 120] ≤ 0.02. This is a difficult problem, because for any choice
of θ, Pθ[T > 120] cannot be computed exactly; it can only be estimated by simulation,
with some error. One appropriate solution approach for this case could be sample average
approximation, to be discussed later. □

Example 1.52 Similar optimization problems occur with the reliability models of Exam-
ple 1.5. Often, one can increase the reliability of certain components j at a cost, say by
paying cj(rj) where cj is an increasing function. We may have a large cost to pay when the
system fails and we want to minimize the total expected cost, or we may have a constraint
on the probability 1− r of system failure, for example 1− r ≤ 10−4, and want to minimize∑m

j=1 cj(rj) under that constraint. In either case, the probability 1−r of system failure must
be estimated by simulation for each choice of the component reliabilities. □

Example 1.53 In the single-server queue example of Section 1.11, the server may be
a machine whose speed can be increased at a cost. Another part of the cost could be a
function of the average waiting time per customer. L’Ecuyer and Glynn (1994) consider the
simple optimization problem:

min
θ∈Θ

(
α(θ)

def
= c(θ) + w(θ)

)
(1.40)

where Θ = [θmin, θmax] is a range of admissible values for the server speed θ, c(θ) is the cost
of that server speed, and w(θ) is the average waiting time of customers for this speed. They
use this example to show how convergence to the optimum can be proved for the stochastic
approximation algorithm, under certain conditions. □

Example 1.54 In machine learning, the parameters of neural networks are learned using
stochastic optimization methods that typically combine Monte Carlo gradient estimation
with gradient-descent algorithms. These methods are variants of the stochastic approxima-
tion algorithm. A neural network can in fact be viewed as a complicated function with
a large number of real-valued parameters. Training the network for a specific application
means trying to optimize the values of these parameters for the network to have the best
possible success rate in performing its task. This is often achieved by simulation-based iter-
ative methods where, at each step, the gradient of the performance measure of the network
with respect to its parameters is estimated, and the parameters are changed slightly in the
opposite direction of the gradient. □

Example 1.55 In the call center example of Section 1.12, we may want to optimize the
number of agents working in the center during each hour. The objective function can be the
expected operating cost per day, under constraints on the mathematical expectations w, g(s),
and ℓ. An example of such a constraint is g(20) ≥ 0.80, i.e., that at least 80% of the calls be
answered within 20 seconds in the long run. Constraints on the admissible staffing decisions
also come from the fact that the working hours of the individual agents must satisfy certain
rules often determined by union agreements. For example, it may be that each agent must
have an eight-hour shift, including a one-hour lunch break after three, four, or five hours
of work. A scheduling solution for the center determines how many agents are available on
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a given day, when their shifts start, and when they have their lunch break. Most of the
cost of a scheduling solution is typically the sum of costs of all agents, where the cost of an
agent may depend on his work schedule and perhaps on other factors. Optimal scheduling
is an optimization problem with integer decision variables and stochastic constraints, in
the sense that the quantities such as w, g(s), and ℓ that appear in the constraints are
unknown. These quantities can be estimated by simulation for any given schedule, together
with the value of the objective function, but they depend on the schedule. Moreover, the
simulation-based estimators will not offer a 100% guarantee that the constraints are satisfied,
or that the schedule with the smallest average cost in the simulation really has the smallest
expected operating cost, because these estimators are noisy. Typically, we will only ask
for the constraint to be satisfied with a certain probability, in the same spirit as when we
compute confidence intervals. For the degree of optimality, our target may be, for example,
that with probability at least 95%, the expected cost for the selected schedule does not exceed
the expected cost of the (unknown) optimal schedule by more than 2%. Large scheduling
problems are already hard to solve in a deterministic framework. Their stochastic versions
are even harder. But this is what real-life decision making is about. □

1.15.2 A general formulation of the optimization problem

Simulation-based optimization has many different facets (Banks 1998, Fu 2002, Shapiro 2003,
Andradóttir 2006, Shapiro, Dentcheva, and Ruszczyński 2014, Fu and Henderson 2017). The
following general problem formulation covers many practical situations:

min
θ∈Θ

(
α(θ)

def
= Eθ[h(θ,Y )]

)
subject to β(θ)

def
= Eθ[g(θ,Y )] ≥ 0, (1.41)

where θ is a vector of decision variables that must belong to the set Θ, Y is a random vector
whose distribution may depend on θ (hence the notation Eθ), h is a real-valued cost function,
and g is a vector of functions used to define stochastic constraints in terms of their unknown
mathematical expectations β(θ). Constraints that are purely deterministic may be included
as well (the components of β(θ) for these constraints will be known) or can be incorporated
into the definition of Θ. Sometimes, there are no stochastic constraints. Sometimes, the
objective function α(θ) is deterministic and only the constraints are stochastic. A value of
θ is called a configuration of the system (or a solution). The ultimate goal would be to
find: (a) an optimal solution, which a configuration θ∗ that minimizes the cost function α
while satisfying the constraints in (1.41) and (b) the optimal value of the objective function,
v∗ = α(θ∗). The optimal solution (or configuration) is not necessarily unique. In case there
is a set S∗ of optimal configurations θ∗, it suffices to find one of them.

An optimization method will return an estimator θ̂ of an optimal configuration θ∗, often
together with estimators of α(θ̂) and β(θ̂). The error is sometimes defined as the distance
between θ̂ and θ∗ (or between θ̂ and S∗ if θ∗ is not unique), but a more appropriate measure
is the optimality gap α(θ̂)−v∗, which is the expected additional cost for using θ̂ instead of a
truly optimal configuration. When there are stochastic constraints, the expectations β(θ) are
also estimated with some error, so the retained solution may not satisfy all the constraints
even if the estimated constraints are satisfied. One must be aware of this possibility and
perhaps impose constraints on the probability that this happens.
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In a deterministic setting, α(θ) and the constraints can be evaluated exactly for any θ,
whereas in the stochastic setting considered here, only noisy observations are available. This
makes the optimization more difficult.

Robustness to the modeling error is an important issue that brings additional difficulties
in stochastic optimization. The input distributions are usually uncertain and one wishes
a solution estimate θ̂ that is distributionally robust in the sense that it would perform well
uniformly for all distributions that are not too far from the ones selected in the model. There
are many ways of formalizing and solving this problem. The usual approach is to define a
convex set D of probability distributions for the model instead of just a single selection, then
replace α(θ) by its worst-case (maximum) value over this set D of distributions and β(θ) by
its minimum value over the set D. Taking a larger D improves the robustness of the solution,
but degrades the optimal value α(θ∗) because we take the worst-case over a larger set of
distributions, so a compromise must be made when selecting D. One important question is
how to measure the distance between distributions when defining D; see Gao and Kleywegt
(2022).

Another type of robustness is robustness to bad realizations. That is, even if there is no
modeling error, considering only the expected cost in the objective function, and also only
expectations in the constraints, does not prevent some very bad realizations of (θ,Y ) to
occur occasionally. Those bad realizations can be very far from satisfying the constraints,
for example. One simple way to address this problem is to add large penalties to the cost
h(θ,Y ) for the bad realizations that we want to avoid. A more drastic solution would be
to add constraints to ensure that these bad realizations cannot occur, but this may be too
demanding and lead to solutions that are not very good on average. Chance constraints offer
a flexible compromise. They impose a bound on the probability that a bad realization occurs.
A chance constraint has the form

Pθ[g(θ,Y ) ≥ 0] ≥ p

for some selected probability p, where g can be a vector. The function g would be selected in
a way that the inequality g(θ,Y ) ≥ 0 would not hold for the bad realizations that we want
to avoid. There may be several of these constraints for the same optimization problem. The
probabilities in these chance constraints will have to be estimated by simulation. In fact,
these probabilities are also expectations, so these constraints still fit our original problem
formulation of (1.41). These probabilities are often very close to 1, in which case they can be
difficult to estimate accurately. For example, with a estimate of 0.999 when the true value
is 0.997, we would think that the bad event has no more than 0.1% chance or occurring
while in reality it has 0.3% chance, which is three times larger. Such situations may benefit
from techniques for rare-event simulation. The concept of chance constraint is very closely
related to the scenario approach in stochastic optimization, in which a set of n scenarios are
obtained either directly from real data or by simulation, and a given set of constraints must
be satisfied for at least a given proportion of the scenarios (Calafiore and Campi 2005).

1.15.3 Ranking and selection

Suppose that there are no constraints, so the problem simplifies to
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min
θ∈Θ

(
α(θ)

def
= Eθ[h(θ,Y )]

)
, (1.42)

and that Θ is a finite set with small cardinality (e.g., no more than 50 configurations). A
straightforward approach in this case would be to make a very large number of simulation
runs for each configuration θ, i.e., estimate α(θ) for each θ by the average of n i.i.d. copies of
h(θ,Y ) for n large enough to make the error negligible, and then select the value of θ with
the smallest average. But efficiency can be improved substantially by eliminating at an early
stage the configurations that are quickly found to be non-competitive. Ranking and selection
methods (Bechhofer, Santner, and Goldsman 1995, Goldsman and Nelson 1998, Kim and
Nelson 2006) are statistical tools for comparing a fixed and finite set of alternatives in a
stochastic context. Given a value δ of the acceptable optimality gap and a confidence level
1 − α, the aim of these methods is to determine adaptively how many simulation runs to
perform with each configuration, and to return a configuration θ̂ for which

P[α(θ̂)− α(θ∗) ≤ δ] ≥ 1− α. (1.43)

Procedures are also offered to screen out rapidly the bad configurations (after a small number
of runs) when the number of alternatives is large (but still finite).

Returning a (random) θ̂ that satisfies (1.43) is frequently much easier than estimating
α(θ) with precision δ for all θ ∈ Θ, and sometimes even easier than estimating α(θ) at a
single θ (Ho et al. 2000, Fu 2002). This goes with the intuition that, for example, if two
persons are in front of us and their sizes differ by at least 2 cm, finding which one is tallest
is generally easier than telling the size of each within 2 cm of precision.

1.15.4 Infinite or very large feasible region

WhenΘ is infinite or too large, it becomes impossible to test all alternatives. Better strategies
for searching the space of feasible decisions (or configurations) are needed. The appropriate
optimization methods depend on whether θ is discrete or continuous, and on whether the
function α is nicely behaved (e.g., is differentiable and convex or unimodal) or not (e.g., is
discontinuous or has millions of local optima). Most methods are adaptations of methods
used in the deterministic context. However, their convergence is typically much slower in the
stochastic case, because the error is dominated by the stochastic noise.

Stochastic approximation. Suppose again that there are no stochastic constraint, as in
(1.42). For the case where θ is continuous and α is differentiable, the best known and most
widely-studied method is the stochastic approximation (SA) algorithm (Robbins and Monro
1951, Kushner and Yin 2003), which actually searches for a solution (a root) to the equation
∇α(θ) = 0, where ∇α denotes the gradient of α (the vector of partial derivatives). The
SA algorithm moves iteratively with small steps in the space Θ as follows. We start from
some initial feasible solution θ0 ∈ Θ. Then at each step n, we compute a simulation-based
estimator Dn of ∇α(θn), the gradient of α at the current solution θn, and we move to the
next solution which is

θn+1 = ΠΘ(θn − anDn),
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where ΠΘ is an operator that projects the vector θ back into the feasible region Θ when
it goes outside (otherwise it does nothing), and {an, n ≥ 0} is a predefined deterministic
sequence of positive real numbers such that

∑∞
n=1 an = ∞ and

∑∞
n=1 a

2
n < ∞. Informally,

the first of these two conditions is to make sure that the total displacement
∑∞

n=1 anDn can
be unbounded, so the optimal solution can be reached even if we start far away from it,
and the second condition (the finite sum of squares) is for an to decrease fast enough for
the algorithm to converge. A popular choice that satisfies these conditions is an = a/n for
some constant a > 0. Under certain conditions on α, Θ, and Dn, there is a unique optimal
configuration θ∗ and one can prove that θn → θ∗ with probability 1 when n → ∞. This
holds for example if α is strictly convex in Θ, the optimum is in the interior of Θ (not on the
boundary), and Dn is an unbiased gradient estimator whose covariance matrix is bounded
uniformly over Θ. There are also weaker sets of sufficient conditions for convergence (e.g.,
“strictly convex” can be relaxed to something weaker).

SA has many variants, depending on how we estimate the gradient, how we select an,
how we project, and which final solution we retain. Some adaptive variants replace an by a
random variable or a random matrix; they try to improve the convergence by “learning” the
shape of the function near the optimum θ∗ and optimizing an accordingly. If α is strictly
convex and the gradient estimator is unbiased, the optimal an (to optimize the asymptotic
convergence rate when n→∞) turns out to be an = H/n where H (a matrix) is the inverse
of the Hessian matrix of α at θ∗ (Chung 1954). The adaptive methods try to learn the matrix
H along the way. When using this optimal sequence,

√
n(θn − θ∗) converges to a N(0,Σ)

distribution for some covariance matrix Σ, so we have a CLT (Fabian 1968). L’Ecuyer and
Yin (1998) provide convergence rates and CLTs for more general situations in which the
gradient estimators Dn may have bias and variance that depend on n (which is frequent),
and the computational effort also depends on n. Their resulting CLTs are then expressed in
terms of the total computational effort T rather than in terms in n, and the rates are often
slower than O(T−1/2).

One important and effective variant of SA estimates θ∗ by the average

θ̃n0,n =
1

n− n0

n∑
n=n0+1

θn

for n > n0, for a fixed n0 ≥ 0, instead of by θn only (Ruppert 1988, Polyak and Juditsky
1992, Kushner and Yin 2003). This averaging approach permits one to decrease an more
slowly and is more robust than the basic SA algorithm with respect to a mis-specification
of H . One can take in particular an = an−γ for 1/2 < γ < 1. The slower convergence of
an means that θn keeps moving a lot more than with an = a/n, so it can get close to the
optimum faster, and the resulting increased noise on θn is alleviated by taking the average.

A key ingredient for making the SA algorithm efficient is the availability of a high-quality
gradient estimator. This has motivated a great deal of research on gradient estimation in re-
cent decades (L’Ecuyer 1990b, L’Ecuyer 1991, Glasserman 1991, Rubinstein and Shapiro
1993, Fu and Hu 1997, Fu 2006). These gradient estimators are useful not only for optimiza-
tion, but also for estimating the sensitivity of the performance measure α(θ) with respect to
parameters of the system estimated from data, for example. There are many applications for
which all available gradient estimators are biased (e.g., when they must be based on finite
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differences) but SA can still converge to the optimum if the bias converges to 0 when n→∞
(L’Ecuyer 1992, L’Ecuyer and Yin 1998).

Example 1.56 For Example 1.53, L’Ecuyer and Glynn (1994) gave sufficient conditions
under which they proved that the SA algorithm converges to the optimum, for a variety of
gradient estimation methods, including finite differences, IPA, and LR. L’Ecuyer, Giroux, and
Glynn (1994) reported extensive numerical experiments with several derivative estimation
methods and choices of parameters in the algorithm, for the same example.
♣ Add numerical illustrations here. □

One limitation of SA is that it can hardly handle stochastic constraints, especially when
the optimum lies on one of these constraints. It can also have problems when the optimum
is on (or near) the boundary of the set Θ. The method was originally designed for optimiza-
tion problems with smooth and unimodal objective functions and without constraints. The
following method is usually more appropriate when there are stochastic constraints.

Sample-average approximation. The sample-average approximation (SAA) approach,
sometimes called sample-path optimization, provides a class of techniques which, instead of
considering only local information at each step as does SA, estimate the objective function α
and the constraints β in the entire region Θ all at once (conceptually) by sample averages α̂n

and β̂n which are functions of θ, typically obtained from the outputs of n simulation runs,
and then optimize this SAA problem by an appropriate deterministic (linear or nonlinear)
optimization algorithm. The SAA problem has the form:

min
θ∈Θ

(
α̂n(θ)

def
=

1

n

n∑
i=1

h(θ,Yi)

)
subject to β̂n(θ)

def
=

1

n

n∑
i=1

g(θ,Yi) ≥ 0. (1.44)

This formulation assumes that Y does not depend on θ. Let S∗
n denote the set of optimal

configurations θ∗
n for this SAA problem, and v∗n the corresponding optimal value. The SAA

problem cannot always be solved exactly in practice. Sometimes, it is much too large, and
we have to settle with a suboptimal solution θ̂∗

n with value v̂∗n < v∗n. So there are two sources
of error: (1) we are solving the SAA instead of the exact problem and (2) we are sometimes
solving the SAA only approximately. The second source of error depends very much on the
type of problem and on the solution approach, and we will not discuss it further for now.
A large body of theory has been developed for the first source of error, i.e., to study the
convergence of S∗

n to S∗ and of v∗n to v
∗. Several sets of sufficient convergence conditions which

depend on the specific form of the problem, can be found in Rubinstein and Shapiro (1993),
L’Ecuyer (1993), Robinson (1996), Ruszczyński and Shapiro (2003), Shapiro, Dentcheva,
and Ruszczyński (2014), Kim, Pasupathy, and Henderson (2015), for example. There are
conditions for almost sure convergence of v∗n to the optimal value, for the convergence of the
distance between S∗

n and S∗ to zero, results on convergence rates, and central limit theorems.
As a simple illustration, if there are no constraints, α is continuous and bounded over Θ,

there is a single optimal solution θ∗, and supθ∈Θ |α̂n(θ) − α(θ)|
w.p.1→ 0 when n → ∞, then

v∗n
w.p.1→ v∗ and θ∗

n

w.p.1→ θ∗. When Θ is a finite set, one can also show that with probability 1,
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there is a random but finite N0 such that S∗
n = S∗ for all n ≥ N0. That is, for n ≥ N0, any

optimal solution of the SAA is an optimal solution of the true problem.
An important question is how we can estimate the functions α and β in the entire region

Θ all at once and obtain estimators that are smooth enough functions so that the SAA
problem is sufficient well-behaved to be solved effectively by a deterministic optimization
algorithm. In real applications, we do not compute these function estimates explicitly for
all θ ∈ Θ, but only at the values of θ required by the selected deterministic optimization
algorithm. A key ingredient for the function estimators to be well-behaved is the proper use
of common random numbers to simulate the system at different values of θ. That is, we
want the SAA function estimates to look like the upper panel of Figure 1.22 and not like the
lower panel. Picking the best value of (s, S) from this figure (upper panel) is an example of
applying SAA. Most of the SAA theory was developed in a setting where the distribution
of Y does not depend on θ and the SAA estimator is defined by using the same Y for all
θ’s, for each of the n realizations. If Y is interpreted as the sequence of underlying uniform
random numbers, this corresponds to using common random numbers.

Stochastic constraints, when they are present, are often approximated by sets of linear
constraints, in which case the SAA becomes an optimization problem with linear constraints.
If the objective function is also linear, then the SAA is a linear programming problem (which
can be very large). One special case in which everything is already linear in the first place is
a two-stage linear stochastic programming problem (Birge and Louveaux 2011), with general
form

min
x∈Rd

(
α(x)

def
= ctx+ E[Q(x, ω)]

)
subject to Ax = b, x ≥ 0, (1.45)

where x is a vector of decision variables that must be fixed in the first stage, Ax = b is a
set of linear constraints, Q(x, ω) is the optimal value of the second-stage linear program

Q(x, ω) = min
y∈Rs

q(ω)ty subject to B(ω)x+C(ω)y = d(ω), y ≥ 0, (1.46)

which contains a second set of linear constraints, and ω represents some uncertainty that is
revealed only in the second stage. That is, all the quantities that depend on ω can be observed
only after x has been selected, but before selecting the values of the second-stage decision
variables y. Note that x and ω here correspond to θ and Y in our general formulation (1.41).

A version of SAA for the case whereΘ is discrete was proposed and studied by Kleywegt,
Shapiro, and Homem-de Mello (2002). SAA with chance constraints is studied in Ahmed and
Shapiro (2008). The response surface methodology (Kleijnen 1998, Myers and Montgomery
2002) and metamodel-based optimization (Barton and Meckesheimer 2006) are also closely
related to SAA.

The optimization problem (1.41) and its corresponding SAA can be very difficult to solve
when α is not smooth or has many local optima. Several types of random searchmethods have
been designed for these situations (Yakowitz, L’Ecuyer, and Vázquez-Abad 2000, Glover,
Kelly, and Laguna 1999, de Mello 2003, Andradóttir 2006, Ólafsson 2006). Some of them come
with convergence proofs. Others are metaheuristics (based, e.g., on neighborhood search ideas
such as tabu search, or on evolutionary algorithms) adapted from the world of deterministic
combinatorial optimization. Often, they offer no convergence proof or error estimate of the
form (1.43), but seem to provide “acceptable” solutions in reasonable time for many difficult
problems. Several methods currently available in commercial simulation software belong to
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this last category. These methods tend to be easier to implement in general form than
gradient-based or SAA methods, whose implementation depends on the problem structure.

Example 1.57 Here is an example of a large stochastic optimization problem typically
encountered in practice, and for which reliable solutions can only be found by using simu-
lation. The problem and the solution approach, which uses SAA, are taken from Cez̧ik and
L’Ecuyer (2008). Consider a telephone call center receiving K types of calls. There are I
types of agents (called skill groups). Each agent type can handle a specific subset of the call
types. The day is partitioned into P time periods. There are Q admissible types of work
schedules (also called shifts), each one being defined by the subset of the time periods that
are covered by that shift, i.e., during which an agent having that shift will work.

The cost vector is c = (c1,1, . . . , c1,Q, . . . , cI,1, . . . , cI,Q)
t, where ci,q is the cost of an agent of

type i having shift q. The vector of decision variables is x = (x1,1, . . . , x1,Q, . . . , xI,1, . . . , xI,Q)
t,

where xi,q is the number of agents of type i having shift q. Our problem formulation uses the
vector of auxiliary variables y = (y1,1, . . . , y1,P , . . . , yI,1, . . . , yI,P )

t where yi,p is the number
of agents of type i in period p. This staffing vector y satisfies y = Ax where A is a block
diagonal matrix with I blocks and the element (p, q) of each block is 1 if shift q covers period
p, and 0 otherwise. The service level for call type k and period p is defined by

gk,p(y) =
E[Gk,p(sk,p)]

E[Ak,p]

for some constant sk,p, where Ak,p is the number of calls of type k arriving in period p and
Gk,p(sk,p) is the number of those that are answered within sk,p seconds. The aggregate service
level over call type k is the expected total number of calls of type k answered within some
time limit sk over the day, divided by the expected total number of calls of type k received
over the day. We define similar aggregations for each period p (across the call types) and
overall (for all call types and all periods). We denote by gp(y), gk(y) and g(y) the aggregate
service levels for period p, call type k, and overall, respectively. The corresponding time
limits are sp, sk, and s, and the corresponding minimal service levels are lp, lk and l. The
scheduling problem can then be formulated as:

minimize ctx =
∑I

i=1

∑Q
q=1 ci,qxi,q

subject to Ax = y,
gk,p(y) ≥ lk,p for all k, p,
gp(y) ≥ lp for all p,
gk(y) ≥ lk for all k,
g(y) ≥ l,
x ≥ 0, and integer.

This is a deterministic nonlinear optimization problem with integer decision variables.
However, to solve this problem, we need a method that provides good estimates or approx-
imations of the functions g• in the constraints, for any given solution x. Simulation seems
to be the only viable approach to obtain reliable estimates of these service levels in realistic
call centers. The function gk,p(y) usually depends on the values of yi,j for all i and j ≤ p,
in a complicated way, and similarly for the other functions g•. The number of agents of
each type changes from period to period, the arrival process is generally non-stationary, the
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service times may have arbitrary distributions, there could be abandonments, routing rules
that decide which agent type handles each call could be complex, etc.

Atlason, Epelman, and Henderson (2004) and Cez̧ik and L’Ecuyer (2006) have proposed
simulation-based heuristic methods to solve special cases of this problem, based on SAA.
The idea is to simulate n days of operation of the call center and replace the unknown
functions g• by the sample averages ĝ•,n obtained from the simulation, expressed as functions
of the staffing vector y when the random numbers in the simulation are fixed. Often, the
expectation E[Ak,p] in the denominator of the definition of g• can be computed exactly, as
in Example 1.49, and we use a sample average only for the numerator. Otherwise, we can
use a ratio of sample averages, even if it no longer exactly fits the formulation in (1.41). For
example, gk,p(y) would be replaced in the SAA by

ĝk,p,n(y) =
1

nE[Ak,p]

n∑
i=1

Gk,p,i(sk,p)

where Gk,p,i(sk,p) is the value of Gk,p(sk,p) observed for the ith simulated day with staffing
y, and similarly for the other functions. When E[Ak,p] is unknown, it is replaced by the
sample average of the values of Ak,p observed over the n days. The (sample) problem then
becomes deterministic, and it is solved using deterministic integer programming technology
combined with some heuristics. In a nutshell, the constraints are relaxed first by ignoring
waiting times and abandons and putting constraints that just ensure that the staffing gives
enough capacity to handle the calls, in each period. Then the model is simulated with this
staffing to evaluate all the SAA averages at the current solution and identify the constraints
of the original problem that are violated. Based on that, new constraints are added, the
SAA is solved again to obtain a new solution, we simulate again at this new solution, and
so on, iteratively, until all the constraints are satisfied. See the paper for more details. To
evaluate these sample averages at different values of y for the same random numbers, we
resimulate the model for each staffing vector y of interest, with well-synchronized common
random numbers. This is expensive in CPU time, but it can at least provide good solutions in
reasonable time, and it seems to be the best approach available so far. Avramidis et al. (2010)
use a similar approach to jointly optimize both the staffing and the daily work schedules of
the agents. □

Example 1.58 Likelihood estimation and optimization in a mixed logit model. 12 Discrete
choice models provide a representation of how individuals make a selection in face of a finite
number of alternatives. In a popular form ofmultinomial mixed logitmodel (see Section 2.11),
the utility of alternative j for individual q has the form

Uq,j = βt
qxq,j + ϵq,j =

d∑
ℓ=1

βq,ℓxq,j,ℓ + ϵq,j

where βq = (βq,1, . . . , βq,d)
t is an unobserved random vector of taste parameters (or coeffi-

cients) for each individual q, xq,j = (xq,j,1, . . . , xq,j,d)
t gives the observed attributes for choice

12From Pierre: This example is too much of a special case. We should first discuss max likelihood in
general.
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j and individual q, and the ϵq,j are independent random variables that represent unobserved
random noise. Each component of xq,j may represent an attribute of individual q (such as his
range of income, age, habits, etc.), or an attribute of choice j (for example, the price and the
number of stopovers in the case of a flight ticket), or a combination of the two. The ϵq,j are as-
sumed to have a Gumbel distribution with mean 0 and scale parameter β = 1 (Section 2.8.9);
this implies that the location parameter δ is the Euler constant γ = 0.57721556 . . ..

It is assumed that if q is an individual selected randomly from the entire population,
then its associated (random) vector βq of taste coefficients has a multivariate density fθ that
depends on some parameter (vector) θ. This randomness accounts for the fact that different
individuals may have different tastes. A popular choice for fθ is the (multivariate) normal
density. Individual q always selects the alternative j having the largest utility Uq,j.

Conditional on a given (fixed) βq, we have an ordinary logit model, and one can show in
that case (see Section 2.11) that the individual selects alternative j with probability

Lq(j,βq) =
exp[βt

qxq,j]∑
a∈A(q) exp[β

t
qxq,a]

, (1.47)

independently of other individuals, where A(q) is the set of his alternatives. The uncondi-
tional probability that a random individual selects alternative j is then

pq(j,θ) = E[Lq(j,βq)] =

∫
Lq(j,β)fθ(β)dβ. (1.48)

Suppose we have a data set of one observation per individual for m individuals, in which
we observe that individual q was given the vector of attributes xq,j for each alternative j and
made the choice yq, for q = 1, . . . ,m. We want to estimate θ from this data. The standard
estimator in this case uses the maximum likelihood method: We estimate the true θ by the
value that maximizes the joint probability L(θ) (the likelihood) of the observed sample, as a
function of θ, or the logarithm of this probability, which is equivalent and computationally
simpler. That is, we want to maximize the log-likelihood

lnL(θ) = ln
m∏
q=1

pq(yq,θ) =
m∑
q=1

ln pq(yq,θ). (1.49)

Except for simple special cases, no explicit formula is available for pq(j,θ), and Monte
Carlo is often the most practical way of evaluating the integral in (1.48) for each q. To do
that, for any given θ and each q, we generate n independent realizations of β from the
density fθ, say β

(1)
q (θ), . . . ,β

(n)
q (θ), and we estimate lnL(θ) by

ln(L̂(θ)) =
m∑
q=1

ln

(
1

n

n∑
i=1

Lq(yq,β
(i)
q (θ))

)
, (1.50)

where each Lq(yq,β
(i)
q (θ)) can be computed via (1.47).

Then the next task is to maximize ln(L̂(θ)) in (1.50) as a function of θ. This is generally
difficult, because this function is usually non-convex and its evaluation at any given θ is
expensive. See Bastin, Cirillo, and Toint (2006) and Train (2003) for further details. Here,
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the vector θ̂ that maximizes (1.50) is an estimator of the maximizer of a function. This
is another example of a situation where what we want to estimate is not expressed as a
mathematical expectation.

□

1.15.5 Monte Carlo for optimization in sequential decision processes

♣ To do: Discuss dynamic programming combined with simulation. See for example Chang
et al. (2007), Dion and L’Ecuyer (2010) and references given there. Connections with rein-
forcement learning; see Sutton and Barto (2018).

Example 1.59 Pricing a Bermudan-Amerasian option. We return to the Asian option
valuation problem of Example 1.11, under the GBM model, with payoff given in (1.10), but
with the following modification: At any observation time tj, for m∗ ≤ j < d, where m∗ is a
fixed positive integer, the holder can either exercise the option and receive the payoff

g(S̄j) = max
(
0, S̄j −K

)
(1.51)

where S̄j = (1/j)
∑j

ℓ=1 S(tℓ), or wait for the next observation time tj+1. At time td, if the op-
tion has not yet been exercised, the holder receives the payoff max

(
0, S̄t −K

)
. The decision

to exercise or not at time tj would depend in general on the pair (S(tj), S̄j), which can be
viewed as the current state of the decision process at step j. A decision policy is a function
φ : {m∗, . . . , t} × [0,∞)2 → {0, 1}, which assign a decision to each possible state, at each
step. The holder exercises the option at step j if and only if φ(j, S(tj), S̄j) = 1. An optimal
decision policy is one that maximizes the expected payoff, and this maximal expected payoff
is the initial value of the option. For the model considered in Example 1.11 and here, a good
approximation of an optimal policy can be computed by dynamic programming (Ben Ameur,
Breton, and L’Ecuyer 2002). But in real-life applications, the payoff often depends on the
prices of several correlated assets, or on the evolution of more complicated processes. Then,
a decision policy must be defined over a high-dimensional state and dynamic programming
becomes more difficult to implement (it hits the so-called curse of dimensionality). In that
case, one possible approach is to estimate an optimal decision policy via simulation at the
same time as one estimates the option value. One general class of methods for doing that is
least-squares Monte Carlo (Glasserman 2004, Chapter 8, and Dion and L’Ecuyer 2010). It
approximates the value function (the option price as a function of the state) at each time step
by a linear combination of a fixed set of basis functions, where the coefficients are estimated
by least-squares regression from a set of (noisy) evaluation points obtained by simulation.
There are different variants of this approach; a popular one is that proposed by Longstaff
and Schwartz (2001). This is discussed further in Chapter 7. □

Sensitivity analysis and optimization are covered more extensively in Chapter 7 of this
book.
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1.16 Exercises

Many exercises in this chapter are training camp problems, in the sense that they require
little or no prior knowledge of simulation. Their aim is to gain insight and intuition for the
remainder of the book.

1.1 Suppose that a uniform random number generator is used in some way to shuffle a deck
of 52 playing cards, and that the period length of the generator equals its number of states.

(a) What is the number of ways of choosing the first t cards, for t ≤ 52, taking order
into account?

(b) What is the minimal period length of the generator, and the minimal number of bits
needed to represent its state, to make sure that every possibility can happen for the first t
cards? Give expressions that are functions of t.

(c) What is that minimal number of bits for t = 52? (Give a numerical value.)

(d) If the period length is 231 − 2 (many widely-used classical LCGs have that value),
what is the maximal value of t for which we can have all the possibilities?

1.2 Suppose we want to generate n i.i.d. random variates X1, . . . , Xn with cdf F . Let
X(1), . . . , X(n) be their values sorted by increasing order. These are the order statistics. A
simple way of generating these order statistic is to first generate X1, . . . , Xn independently,
and then sort them. The best sorting algorithms can do that in O(n log n) time. The purpose
of this exercise is to figure out a way of generating the order statistics in O(n) time instead.
The method generates the order statistics of n i.i.d. U(0, 1) random variables, U(1), . . . , U(n),
and applies inversion to the U(i)’s to get the X(i)’s.

(a) Explain how to generate U(n) directly by inversion from a single uniform. Hint: prove
that (U(n))

n ∼ U(0, 1) by writing its cdf.

(b) After U(n), . . . , U(k+1) have been generated, for 1 ≤ k < n, explain how to generate
U(k) directly by inversion from a single uniform, and prove that your method works.

Hint: You can show by backward induction on k that the joint density of (U(1), . . . , U(k))
conditional on U(k+1) = u is constant over the simplex defined by {0 ≤ U(1) ≤ · · · ≤ U(k) ≤
u}, and is the same as the joint density of the order statistics of k i.i.d. uniform random
variables over the interval [0, U(k+1)]. From this, you can show that [U(k)/U(k+1)]

k ∼ U(0, 1).
To start the induction, show that the vector (U(1), . . . , U(n)) has density n! over this simplex
for k = n.

(c) By putting these ingredients together, give an algorithm that generates X(1), . . . , X(n)

in O(n) time (and explain why it works).

(d) Implement your algorithm, try it for the case where the Xi are exponential with
mean 1, and compare its speed with an algorithm that generates the Xi’s independently and
sort them using a quicksort algorithm, for n = 102, 104, and 106. Discuss your results.

1.3 (a) An array contains n objects that we want to permute randomly. (This can be
used, for example, to shuffle a deck of n cards in a computerized gaming machine.) Give an
algorithm that does that in O(n) time, without using another array, and prove that your
algorithm returns any of the n! permutations with equal probability.
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Hint: suppose that you select the first object in the permutation at random among all
n objects, then you select the second one at random among the n − 1 that remains, then
the third among the n − 2 that remain, and so on. Show by induction on k that after the
objects 0, . . . , k − 1, of the permutation have been selected, each possible ordered choice of
k objects among n (there are n!/(n− k)! such choices) has the same chance of having been
chosen, for 1 ≤ k ≤ n− 1.

(b) Implement your algorithm, in a way that you can stop after selecting the first k
objects of the permutation, for any k ≤ n. Use it to generate 60000 permutations with k = 3
and n = 5, count how many times each of the n!/(n − k)! = 60 possibilities appears, and
perform a chi-square test (see Section A.15) on these counts to test your implementation.

1.4 Implement the SWB generator of Example 1.16, whose parameters are (b, r, k) =
(231, 8, 48), and real-valued output defined by un = x2n/2

62 + x2n+1/2
31. Partition the unit

cube into k = 106 subcubes by partitioning each axis into 100 equal intervals. Number these
subcubes from 0 to k − 1 (in any way).

(a) Use the SWB generator defined above to generate three-dimensional points in [0, 1)3,
defined by ui = (u3i, u3i+1, u3i+2), for i = 0, . . . ,m − 1, for m = 104. For each point ui,
find the number of the subcube in which it falls, and count the number C of collisions as
in Example 1.8. Repeat this 10 times, to obtain 10 “independent” realizations of C, and
compare their distribution with the Poisson approximation given in Example 1.8. You can
do the latter comparison informally; there is no need to perform a formal statistical test that
it is really a Poisson distribution, but you can compute a confidence interval for the mean.

(b) Do the same with the three-dimensional points ui = (u25i, u25i+20, u25i+24) for i =
0, . . . ,m− 1. Discuss and explain what you observe.

(c) Redo the same experiment, but this time using a better generator, such as MRG32k3a
in SSJ, for example. Discuss your results.

1.5 (a) Prove that if X1 and X2 are two random variables taking their values in [0,∞),
then E[max(X1, X2)] ≥ max(E[X1],E[X2]) and E[min(X1, X2)] ≤ min(E[X1],E[X2]). Hint:
Think of Jensen’s inequality.

(b) In Figure 1.3, we see that when we replace each Yj by its mean, we obtain a value
smaller than E[T ], where T is the length of the longest path. Prove that this is always true,
for any network. And what happens if T is the length of a shortest path instead? Prove it.

1.6 Show that if U is a U(0, 1) random variable, then the random variable X = [− ln(1 −
U)]1/α/λ has the Weibull distribution with parameters α and λ, assuming that α > 0 and
λ > 0.

1.7 Give an algorithm to generate a Gumbel random variable with parameters δ ∈ R and
β ̸= 0 (see Section 2.8.9) by inversion.

1.8 We want to generate a vector (Y1, Y2) of correlated standard normal random vari-
ables, with linear correlation coefficient ρ. Prove that the following instructions do that:

Generate two independent standard normals, Z1 and Z2;
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Return Y1 ← Z1 and Y2 ← ρZ1 +
√

1− ρ2Z2.

You can use the fact that linear combinations of normal random variables are again normal
random variables, so it only remains to check the mean, variance, and correlation.

1.9 (Approximate counting by Monte Carlo) Consider a graph G = (N ,A) where N is a
set of nodes (or vertices) and A a set of edges, where each edge connects two nodes. For a
given set of c different colors, a feasible coloring of the graph selects one color for each node,
in a way that no two neighbors (two nodes connected by an edge) have the same color. We
want to compute (or estimate) the total number of feasible colorings, say nf .

(a) The simplest way of doing that (conceivably) is to examine each of the ck possible
colorings, where k = |N | is the number of nodes, and check if it is feasible. Checking for
feasibility is easy: take each node and check if each of its neighbors has a different color. Is
this method practical if c = 10 and k = 100, for example? Why?

(b) A naive implementation of the Monte Carlo approach of Example 1.6 provides the
following unbiased estimator of nf . Generate n random colorings, independently and uni-
formly over all ck possibilities, and count the number Y of those colorings that are feasible.
Let p = nf/c

k. Show that Y is a Binomial(n, p) random variable and that n̂f = ckY/n is an
unbiased estimator of nf .

(c) Suppose that the graph G is connected (there is a path from each node to any other
node). In that case, show that one must have

p ≤ [(c− 1)/c]k−1.

For c = 10 and k = 100 (for example), what does this inequality imply for the relative error
of the estimator n̂f? Make the connection with Example 1.29. (Note: one should not conclude
that the Monte Carlo method is useless for this problem, but that we need to design a better
sampling scheme than just uniform sampling over all ck possibilities.)

1.10 In Example 1.21, explain in detail where the formula for v(s0, T ) comes from.

1.11 In Example 1.11, consider an European call option, with payoff g(S(T )) = max[0, S(T )−
K] at time T , under the Black-Scholes model. Note that the value of the option at time t,
conditional on S(t) = s, is

E∗[e−r(T−t)g(S(T )) | S(t) = s] = v(s, T − t),

and this can be computed explicitly by the Black-Scholes formula (1.9). For t = 0, this
gives v(s0, T ), the initial price of the option. Define v′(s, T − t) = ∂v(s, T − t)/∂s, which
is the delta of the option at time t (Hull 2006). An explicit expression for this v′ can be
obtained by taking the derivative in the Black-Scholes formula. Suppose that we start with
a sum of v(s0, T ) (the price of the option) at time 0. We could be the financial institution
that just sold this option, for instance. Suppose also that at time t, for 0 ≤ t ≤ T , we hold
w(t) = v′(S(t), T−t) shares of the asset, and leave the rest of our money, say y(t), in the bank
account. Thus, at time 0 we immediately buy w(0) shares, and then the number of shares
varies continuously with t. Then, it can be shown that at any time t, the current value p(t)
of the portfolio (the shares and the money in bank account), which is p(t) = w(t)S(t)+ y(t),
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is exactly equal to the expected discounted payoff of the option, v(S(t), T − t). In other
words, this continuously-varying portfolio always replicates exactly the payoff of the option,
regardless of the sample path of S. In general, a portfolio (or strategy) with this property is
said to hedge the option (against the risk). The hedging strategy used here is delta hedging
(Hull 2006).

One might argue that if the option payoff can be replicated in that manner, then there
is no need to create that option in the first place. However, hedging exactly in continuous
time is not really possible, and even it it was, one may prefer to avoid the trouble of doing it
and buy an option instead. On the other hand, the financial institution that sells the option
might want to use a discrete-time approximation of the exact delta hedging, to protect itself
against large losses. This discrete-time hedging does not reproduce the option exactly so
there is still some risk and the institution may end up losing money with the contract once
in a while, but at least the risk is reduced.

A portfolio that delta hedges the option at times 0 = t0 < t1 < · · · < td = T will
hold w(tj) asset units during the time interval [tj, tj+1), where w(tj) = v′(S(tj), T − tj), for
j = 0, . . . , d− 1. If y(tj) is the sum that remains in the bank account at time tj, then

y(tj+1) = er(tj+1−tj)y(tj)− [w(tj+1)− w(tj)]S(tj+1),

where the first term on the right is the money that was in the bank, with interest, and the
second term is the money taken from the bank account to buy new asset units at time tj+1.
Note that with discrete-time hedging, this amount may sometimes become negative.

Suppose that time is in years and that T = 1, d = 12, tj = j/d, S(0) = K = 100, r = 0.03,
and σ = 0.2. Simulate the process n = 1000 times and compute the pair (g(S(T )), p(T ))
for each replication. Make a scatter plot with these n points. If hedging is effective, these
points should be (approximately) aligned on a 45 degree line. Then make a histogram of
the n realizations of the observed difference p(T )− g(S(T )), which represents the net profit
made by the bank, to estimate the distribution of this net profit. Try also d = 52 (weekly
hedging) and d = 250 (daily hedging on working days), and compare. Discuss your results.

1.12 You will experiment with the Monte Carlo estimator (1.50) of the log-likelihood func-
tion in Example 1.58. In practice, the attribute vectors xq,j and the choices yq are given in
the dataset and we want to estimate θ from that. But here, instead of using real data, you
are asked to perform a two-stage artificial experiment, as follows (as in Sivakumar, Bhat,
and Ökten 2005).

(a) In the first stage, you will assume that the model and θ are known, and you will
generate an artificial data set from that model. Take d = 5 and A(q) = 4 alternatives for
each individual q. Assume that the coordinates xq,j,ℓ of the attribute vectors are independent
normal random variables with variance 1, and with mean 1 for alternatives j = 1, 2 and mean
0.5 for alternatives j = 3, 4. The coordinates βq,ℓ of βq are also assumed to be independent
N(1, 1) random variables. The ϵq,j are independent Gumbel random variables with mean 0
and scale parameter 1 (so their location parameter δ is the Euler constant γ). For each
individual q, you generate the relevant random variables from these distributions, and find
the alternative yq having the largest utility for this individual. Repeat this for m = 2000
individuals and store all the relevant information in a file.
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(b) In the second stage, you take the data set generated in the first stage, assume that
βq,ℓ ∼ N(µ, σ2) for each (q, ℓ), but pretend that you do not know the parameter vector θ =
(µ, σ2). Make n = 1000 simulation runs to estimate the log-likelihood function Example 1.58
by (1.50), for θ = (1, 1). Repeat this experiment three times, with independent random
numbers. Discuss your results.

(c) Perform the same estimation experiment as in (b) with θ = (0.8, 1), (1.2, 1), (1, 0.8),
(1, 1.2), all with independent random numbers. What can you conclude from this? Do you
think it easy in general to recover the original θ using Monte Carlo and some optimization
procedure? What would be the main sources of error in the final result?

(d) Is (1.50) an unbiased estimator of (1.49)? Why?

1.13 These questions apply to Example 1.24.
(a) Start from the definition of S2

n in Eq. (1.22) and show that S2
n = Y (1−Y/n)/(n−1).

(b) Explain why it is reasonable to assume that Y/n follows approximately the normal
distribution when n is large and µ is not too close to 0 or 1. What is the problem if µ is
close to 0 or 1?

(c) Suppose you observe Y = 2504 with n = 10000. Compute a 99% confidence interval
for µ.

1.14 Replace (0, 1)s in (1.16) by D, where D is a bounded domain in Rs, and replace the
estimator (1.19) by

µ̂n =
1

n

n∑
i=1

vol(D)f(ui)

where the ui are i.i.d. uniform random variables over D. Show that E[µ̂n] = µ and that

Var[µ̂n] =
1

n

[
vol2(D)

∫
D

f 2(u)du− µ2

]
.

1.15 Compare the variances of the two estimators in Example 1.23 by simulating n = 105

runs for each and comparing the empirical variances. Compare also their computing times.

1.16 This is a variant of Example 1.29. Suppose that for some simulation model, the outcome
(or cost) X is K with probability p and 0 with probability 1− p. The value of p is unknown.
We perform n independent simulation runs and take the average cost X̄n over these n runs
as an unbiased estimator of the expected cost µ = pK.

(a) What is the exact variance of X̄n?
(b) Suppose now that p = 1/K, so that µ = E[X] = 1. Show that the variance of X is

in O(1/p) = O(K) as p→ 0.
(c) The variance of X can be estimated by the sample variance S2

n. Write S2
n and Var[S2

n]
as functions of K, n, and the binomial random variable B = (X1 + · · ·+Xn)/K.

(d) The expressions found in (c) involve the first four moments of B. These moments are
easily found via the moment generating function of B: The rth moment E[Br] is the r-th
derivative of the moment generating function M(s) = [pes + (1 − p)]n evaluated at s = 0.
After some calculations, one obtains
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E[B] = np,

E[B2] = np(1 + (n− 1)p),

E[B3] = np(1 + (n− 1)p(3 + (n− 2)p)),

E[B4] = np(1 + (n− 1)p(7 + (n− 2)p(6 + (n− 3)p))).

Use these ingredients to obtain an explicit expression for Var[S2
n] as a function of K and

n only, and to show that this variance is O(1/(np3)) = O(K3/n) as p → 0. Compare its
rate of increase with that of Var[X̄n]. You are allowed to use a software system (such as
Mathematica) to do the algebraic simplifications.

1.17 In the previous exercise, the mean is fixed and the variance is a function of p. Here,
both the mean and variance are fixed, but the higher moments change with p. Suppose that
P[X = K] = p and P[X = −1/K] = 1− p, where 0 < p < 1, K > 0, and K2 = (1− p)/p.

(a) Show that E[X] = 0 and Var[X] = 1 regardless of p.

(b) Explain in words the shape of the probability mass function of X and how it changes
when p goes from, say, 0.5 to 0.001.

(c) If the average X̄n of a sample X1, . . . , Xn of i.i.d. copies of X is taken as an estimator
of µ = E[X] in this case, assuming that µ is unknown and that the total expected simulation
time is the same for all p, then the efficiency X̄n (with our definition) does not depend on p.
Does this really mean that the estimators for the different values of p are equally attractive?
To help answer this question, suppose that to estimate Var[X] we use the empirical variance
S2
n. How does Var[S2

n] behave as a function of p and n when n is large?

1.18 Suppose we want to estimate the area of a disk of radius 1 centered at the origin,
by the MC method. This is purely academic, of course, because we know that this area is
π. The purpose of this exercise is to understand what happens if we try to estimate π via
straightforward MC simulation. In fact, we can simplify the problem by estimating the area
of the disk lying in the positive quadrant, which is µ = π/4, and then multiply by 4. This µ

can be written as µ =
∫ 1

0

√
1− x2dx.

(a) In this context, what are the estimators µ̂n and µ̃n defined in (1.19) and (1.25), in
Section 1.4?

(b) Give explicit formulas for their variances.

(c) Assuming that the computing times of µ̂n and µ̃n are nκ1 and nκ2, respectively, give
expressions for their efficiencies. Why can we expect that κ2 < κ1? Under what conditions
on κ1 and κ2 is µ̂n more efficient than µ̃n?

(d) What is the required value of n to obtain π with approximately r decimals of accuracy
with the estimator µ̂n, in the sense that the error on π is less than 10−r with 95% confidence?
What is that n for r = 3? What about r = 20? Is this feasible?

1.19 We now generalize the previous exercise to s dimensions. There is no need to perform
simulations for this exercice; everything can be computed numerically. We want to estimate
the volume Vs of a s-dimensional unit sphere (i.e., of radius 1, centered at the origin). For
that, we estimate the volume p of the intersection of the sphere with the positive orthant,
i.e., with (0, 1)s, and observe that Vs = 2sp. This is purely an academic exercise, because we
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already have a formula for Vs. The goal is to understand the difficulty of estimating p by
Monte Carlo when s is large. This type of difficulty occurs very frequently.

(a) Explain what is the hit-and-miss estimator p̃n of p in this case, prove that it is
unbiased, and give exact formulas for the variance and relative error of p̃n and of µ̃n = 2sp̃n,
the estimator of Vs, as functions of s and n only.

(b) Suppose that we want the relative error to be bounded by a constant as a function
of s, say smaller than 0.01 for example. For this, at what speed should we increase n as
a function of s? Give a complexity expression of the form n = Θ(g(s)) for some explicit
function g of s only. Use the Stirling approximation to derive your expression. What does
this expression implies for large values of s? What n would we need for s = 10? For s = 20?

(c) Compute Vs, p, and the values of the variance and of n times the square relative error
of µ̃n for s = 2, 5, 10, and 20. (Give numerical values.)

Hint: The volume of a unit sphere is Vs = πs/2/Γ (1 + s/2), where Γ (·) is the gamma
function which satisfies Γ (1/2) =

√
π, Γ (1) = 1, and Γ (s+ 1) = sΓ (s) (see Section 2.8.12).

For large s, you can use the Stirling approximation, which gives

Γ (1 + s/2) ≈ ⌊s/2⌋! ≈ (πs)1/2(s/(2e))s/2.

1.20 The following type of model is used to represent the transformation process of grains of
powder by some chemical reaction. Consider a population of three-dimensional solids, called
grains, having the same shape but perhaps different sizes. The grain sizes are i.i.d. random
variables. At time 0, all grains are white (say). Spots of transformation, called nuclei, appear
on the surface of the grains according to a Poisson process with rate proportional to their
surface. The rate is λ(t)S at time t for a surface of size S and the birth locations of the nuclei
are independent and uniformly distributed over the surface. Each nucleus can be viewed as
the intersection of a sphere with the grain. The radius r(t) of the sphere is 0 at birth and
grows at time-dependent rate r′(t) (the same for all grains) thereafter. Thus, both the birth
and growth rates of the nuclei may depend on time (they can depend on the temperature,
pressure, etc.). For each grain, the part of its volume lying inside any of its nuclei becomes
red (say).

Denote by V and R(t) the total volume of a grain selected at random and the volume
that is red at time t, respectively. For n grains, the fraction of volume that is red at time t
converges with probability 1 to

p(t) = E[R(t)]/E[V ]

as n→∞, by the strong law of large numbers. The goal is to compute p(t) as a function of
t. Except for special cases, this is too hard to do analytically. The following straightforward
simulation (or MC) method can be used.

For each value of t of interest, repeat the following for i = 1, . . . , n, independently:

(1) generate Vi, the volume of grain i, from its appropriate distribution;

(2) generate the birth times of nuclei on the surface of that grain during the time interval
[0, t], from the appropriate Poisson process;

(3) generate the positions of these nuclei uniformly on the grain surface;

(4) compute the radius of each nucleus at time t;
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(5) generate mi independent points Xi,1, . . . , Xi,mi
, uniformly distributed in the grain;

(6) compute Yi, the number of these points that lie in one of the nuclei, and estimate the
red volume in grain i at time t by Ri(t) = ViYi/mi.

At time t, a point X lies inside a nucleus born at point W at time s if and only if the
Euclidean distance between X and W is less than r(s, t) =

∫ t

s
r′(u)du.

When E[V ] can be computed analytically, we can use the following consistent estimator
of p(t):

p̂n(t) =
R̄n(t)

E[V ]
=

1

nE[V ]

n∑
i=1

Ri(t).

(a) Implement this MC algorithm for estimating p(t) in the case of cubic grains with side
length C (volume V = C3 and surface S = 6C2), where C is a normal random variable with
mean µ = 1 and standard deviation σ = 0.1. Take λ(t) = 1 for t < 1, λ(t) = 4 for t ≥ 1, and
r′(t) = 0.1 for all t. Compute the estimator p̂n(t) of p(t), and an estimator of its variance,
for t = 1, 2, 5, 10, using n = 1000 and mi = 1 for all i.

(b) Do you obtain a more efficient estimator by increasing the value of mi (and keeping
it the same for all i)? Do you think mi should increase with n? Justify and experiment.

(c) What about varyingmi as a function of the grain size? For example, one could takemi

proportional to the volume. Does it make sense? Why? Are there other interesting choices?
Discuss and experiment.

(d) How would you apply QMC sampling to this problem?
(e) Can you think of an efficient way of estimating the function p(t) at all values of t

simultaneously? (See Exercise 1.39 for a somewhat related question.)

1.21 Consider a two-dimensional point set Pn for which each of the two coordinates takes
each value in Zn/n exactly once. We saw that to define this point set it suffices to define one
permutation of Zn/n for each coordinate. We also pointed out that if these two permutations
are the same, then Pn is far from being evenly distributed over [0, 1)2.

(a) Give two other examples of a pair of permutations for which the two-dimensional
uniformity of Pn is bad.

(b) Explain why one can always take the first permutation as the identity, so it suffices
to select one permutation (the second one).

(c) In s dimensions, how many permutations do we have to select? Why?

1.22 In one dimension, give a set Pn of n points such that D∗(Pn) = 1/(2n) and De(Pn) =
1/n. Give an example of a function f for which V (f) = 1 and for which the upper bound in
the Koksma-Hlawka inequality is attained. (For s = 1, V (f) is the total increase of f over
the intervals where f is increasing, plus the total decrease of f over the intervals where f is
decreasing, over (0, 1).)

1.23 Give an example of a function f : [0, 1)→ R for which the crude MC estimator f(U),
where U : U(0, 1), has finite variance, but for which the Koksma-Hlawka error bound is
infinite because V (f) =∞ (see the previous exercise for a definition of V (f)).

1.24 Consider a MC integration problem where the function f in (1.16) is quadratic:
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f(u) = f(u1, . . . , us) =
s∑

k=1

s∑
ℓ=1

qkℓukuℓ

where the qkℓ are constants.
(a) Show that with µ̂n defined as in (1.32), En = µ̂n − µ can be written as a sum of

functions of 2 variables.
(b) Use the Koksma-Hlawka inequality to bound this sum by a sum of expressions involv-

ing the total variation of simple functions of 2 variables and discrepancies of 2-dimensional
point sets. (You can consult Kuipers and Niederreiter 1974 for the definition of total variation
in the sense of Hardy and Krause.)

(c) Suppose we would like to construct a single s-dimensional point set Pn to be used
for QMC integration for this specific class of quadratic functions. The qkℓ’s are supposed
unknown, but we may assume that they are i.i.d. uniformly distributed over some positive
interval. What quantity should we then try to minimize when choosing Pn, to minimize the
error bound that you found?

1.25 For s = 8, 16, 32, and 64, find the smallest n0 > 0 such that n−1(lnn)s ≤ 1/
√
n

for all n ≥ n0. What are the implications of your results on the practical usefulness of the
Koksma-Hlawka error bounds and on the efficiency comparison of MC versus QMC based
on these bounds? (Note: Even if you conclude that the bounds are useless, this does not
necessarily imply that QMC itself is useless.)

1.26 Let Pn be an arbitrary (deterministic) set of n points in [0, 1)s. We randomize this point
set by applying independent random shifts, as suggested in Section 1.5.3. Let U1, . . . ,Ur be
independent random points uniformly distributed over (0, 1)s. For j = 1, . . . , r, define the

point set P
(j)
n = (Pn+Uj) mod 1, where the reduction modulo 1 is component by component,

for each component of each vector. In other words, each point ui ∈ Pn corresponds to a
point U

(j)
i = (ui+Uj) mod 1 in P

(j)
n . If you have difficulties having a good intuition of what

happens, it may be a good idea to draw yourself a picture of what happens in the case where
s = 1 and Pn = {0, 1/n, . . . , (n− 1)/n}.

Define

Xj = µ̂(j)
n =

1

n

n∑
i=1

f(U
(j)
i )

for each j, where f : (0, 1)s → [0,∞), and, as usual,

X̄r =
1

r

r∑
j=1

Xj.

(a) Prove that each U
(j)
i has the uniform distribution over (0, 1)s.

(b) For a fixed j, are the U
(j)
i ’s independent? And for a fixed i, are the U

(j)
i ’s indepen-

dent? If your answer is yes, prove it.
(c) Show that the Xj’s are pairwise uncorrelated and unbiased estimators of µ =∫

(0,1)s
f(u)du, regardless of Pn and f .

(d) Give an unbiased estimator of the variance of X̄r and prove that it is unbiased. How
would you compute a confidence interval for µ?
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This randomization scheme can be used to obtain an estimator for which the error can be
estimated in the case where Pn is a quasi-random point set. Since all the points are rotated
by the same amount, the low-discrepancy of Pn is preserved for each j. As a consequence, it
is possible with good choices of Pn to make the variance of Xj decrease at a faster rate than
O(1/n).

(e) Discuss the compromise to be made in the choice of r and n if the product b = rn (the
total number of function evaluations, which can be viewed as the computing budget) is fixed.
In this context, taking r = 1 (and n = b) should be the best choice to minimize the error.
Why? So, what is the interest of taking r > 1 in practice? Hint: You can assume that both
Pn and its randomized version are low-discrepancy point sets, and use the Koksma-Hlawka
inequality.

1.27 Let P∞ be a uniformly distributed sequence and consider the function f defined
by f(u) = I[u ∈ P∞]. Show that Weyl’s theorem cannot hold for such a function, and
therefore that this f cannot be Riemann integrable if P∞ is uniformly distributed. Explain
why, as a consequence, “Riemann-integrable” cannot be replaced by “Lebesgue-integrable”

in Theorem ??. 13

1.28 Perform a simulation experiment similar to that reported in Example 1.41, but with
K = 1 and a = 0, and with b = 2, 3, and 4. Discuss your results.

1.29 Show in detail that the last equality in Eq. (6.101) is true.

1.30 (a) Show that in Example 1.38, Var[Xis] is minimized by taking

λ0 = λ∗0 = λ+ 1/y0 − (λ2 + 1/y20)
1/2.

(b) If λ = 1 and y0 = 3, what is λ∗0 and by what factor is the variance reduced with this
λ∗0?

(c) In (b), what is the range of values of λ0 for which the variance is reduced compared
with λ0 = 1 (no IS)? If we choose λ0 ̸= λ∗0, does the variance reduction degrade faster, as a
function of |λ0 − λ∗0|, when λ0 < λ∗0 (too small) or when λ0 > λ∗0 (too large)?

1.31 Consider the hashing model in Example ?? (temporarily removed), with the parameters
given there. We want to estimate µ = P[C > x] for x = 50, 100, and 200. For each x, perform
n = 1000 simulation runs to estimate µ using the proposed method, first with λ0 = λm, and
then with λ0 =

√
2kx. For each case, compute the estimator of µ, estimate its variance, and

compute a 95% confidence interval on µ. Are these intervals reliable? Discuss your results.

1.32 In the single-server queue (Section 1.11), suppose we want to estimate q, the average
queue length in steady-state, by simulation. (This is only for the purpose of the exercise, of
course, because we know the exact value of q.) Our (biased) estimator of q is

X̄n =
1

n

n∑
i=1

Xi,

13From Pierre: To be defined!
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where X1, . . . , Xn are n i.i.d. copies of Q̄T . The expected computing cost of X̄n is approxi-
mately proportional to nT and it can be proved that both the variance and the (absolute)
bias of Q̄T are in O(1/T ). More specifically, we assume that for large enough T , we have
C(X̄n) ≈ κ0nT , Var[Q̄T ] ≈ κ1/T , and |β| = |E[Q̄T ]− q| ≈ κ2/T , for some constants κ0, κ1,
and κ2.

(a) Give an expression for the efficiency of X̄n.

(b) Suppose that our available computing budget is B. We want to choose n as a function
of B (and then take T = B/(κ0n)) to maximize the efficiency. What is the optimal value of
n (it must be a strictly positive integer, of course) as a function of B? If n is chosen in this
optimal way, what is the asymptotic efficiency as B → ∞? What is the problem with this
choice of n if we want to compute a confidence interval on q based on X1, . . . , Xn?

(c) Suppose now that we take n = T (assuming that B/κ0 is always a square, to simplify).
This is not optimal. What is the asymptotic efficiency when B →∞ in that case?

(d) Same question for the case where T is fixed (say, T = 10000), so that n is proportional
to B.

1.33 Suppose that in the programs QueueEv and QueueProc, in Figures 1.25 and 1.27, we
use a single random number stream instead of using separate streams for the inter-arrival
times and service times. Will the two programs give different results? Why? Try it.

1.34 Modify the simulation program based on Lindley’s recurrence, given in Figure 1.28, to
compute both the average waiting time W̄Nc(T ) and the average queue length Q̄T for a fixed
time horizon T , without using an event list. Hint: By keeping the sum of inter-arrival times
in an accumulator, you can track the current simulation time. To compute

∫ T

0
Q(t)dt, you

need to figure out, for each customer, its waiting time up to time T , and add these up.

1.35 In the call center example of Section 1.12, we estimate w, g(s), and ℓ by W̄n/a, Ḡn(s)/a,
and L̄n/a, respectively, and we compute confidence intervals via the Student distribution.

(a) When and why is it reasonable to use the Student distribution to compute these confi-
dence intervals? And the normal distribution? You can run experiments and plot histograms
to support your recommendations.

(b) Run the program with the parameters given in file CallCenter.dat that comes with
it, for n = 1000. Compare the performance measures obtained with the following values of
α0: 0.5, 1.0, 2.0, and ∞. (In the latter case, B just becomes the constant 1.) Discuss the
effect of increasing the variance of B (by decreasing α0) on the variance of the estimators
and on their theoretical averages, as a function of α0.

(c) In the case where the variance of the single random variable B has a significant impact
on the variance of the estimators, we may consider integrating numerically with respect to
the density of B, and generating only the other random variables. A simple way of doing
this is as follows: If n days are simulated, replace B by F−1((i− 1/2)/n) on day i, where F
is the cdf of B. All other computations are performed as usual.

The rationale of this is as follows. To simulate the center for one day, the simulation
program generates independent U(0, 1) random variates U0, U1, U2, . . . and transform them
to obtain the inter-arrival times, service times, etc., and ultimately all the performance
measures of interest for that day. Each performance measure for the day (e.g., Wi or Gi(s)
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or Li) can thus be written as a X = f(U0, U1, U2, . . . ) for some function f . Suppose that the
first uniform, U0, is used to generate B by inversion; that is, B = F−1(U0). If the n days are
simulated independently by standard MC, then the n copies of U0 are independent U(0, 1)
random variates and the n copies of X are also independent. Noticing that

E[X] =

∫ 1

0

∫ 1

0

∫ 1

0

· · · f(u0, u1, u2, . . . )du0du1du2 · · ·

=

∫ 1

0

∫ 1

0

· · ·
(∫ 1

0

f(u0, u1, u2, . . . )du0

)
du1du2 · · ·

=

∫ 1

0

E [f(u, U1, U2, . . . )] du

≈ 1

n

n∑
i=1

E [f((i− 1/2)/n), U1, U2, . . . )]

when n is large, the idea is to generate one copy of the random variable f((i−1/2)/n), U1, U2, . . . )
for each i and take the average. This corresponds to integrating numerically with respect to
u0 by a very simple integration rule.

Explain why we cannot compute confidence intervals by assuming that the random vari-
ables Wi, Gi(s), and Li are i.i.d. under this setting, and why W̄n/a, Ḡn(s)/a, and L̄n/a, are
(slightly) biased estimators of w, g(s), and ℓ, respectively, even if the n days are simulated
independently after fixing B.

(d) Implement the approach described in (c) and compare empirically the efficiencies
of the estimators W̄n/a, Ḡn(s)/a, and L̄n/a, as n increases, for this approach and for the
original method, when α0 = 0.5. Try several values of n of your choice and discuss. Note
that for large values of n, the bias can be neglected.

(e) Explain how we can replace the elementary integration rule in (c) by Simpson’s
rule given in Eq. (1.29), using n + 1 simulation runs. Try it and compare your results with
those obtained in (d). Is there a significant improvement? Can you explain why? What if
we increase n? Note: When you generate B = F−1(U0), you may have a problem when
U0 = 1. Discuss this difficulty and propose a heuristic solution if you can, for each of the
three performance measures.

1.36 Consider a queuing system with two servers and two classes (or types) of customers.
Inter-arrival times are i.i.d. exponential random variables with mean 1/2 (time units do
not matter). Each arrival is a customer of type A with probability 1/2 and of type B with
probability 1/2. Equivalently, customers of each class arrive according to a Poisson pro-
cess with rate 1 and these two processes are independent. Service times for both classes of
customers are exponential with mean 0.8, at each of the two servers. The customers may
represent calls in a call center, packets of information in a communication network, people
at an airline registration desk, jobs in a factory, etc.

(a) If one server is dedicated to each class of customers, what is the average waiting
time and the average queue length at each queue, over an infinite time horizon, according to
standard queueing formulas?

(b) Suppose now that customers of class A are much more important than those of
class B, and that server 1 can only serve customers of class A. We want to serve the class
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A customers as soon as possible, while still giving reasonable service to those of class B.
There is a FIFO queue for each class of customers. This type of queueing network is called
a N-system (Gans, Koole, and Mandelbaum 2003).

A simple policy would be to give full priority to class A customers: Whenever server 2
becomes free, he will serve a customer of class A if there is one in the queue, otherwise he
will serve a customer of class B if one is waiting, and remain idle if both queues are empty.
Server 1 serves only customers of class A. An arriving customer of class A will choose server
1 if both servers are free. All customers of class B go to server 2. Once a service is started
anywhere, it cannot be interrupted (no preemption is allowed).

Write a simulation program for this model and do the following experiment with the
proposed policy: Perform 30 independent simulation runs over a time horizon T = 1000 and
compute 95% confidence intervals for the average queue length for each queue, over that
time horizon. Repeat with T = 10000 and T = 100000. Discuss what happens with queue 2
and explain what is the source of the problem. (Note: the average waiting time w at a given
queue can be computed by the classical Little’s formula q = λw, where λ is the arrival rate
at that queue and q is the average queue length; see Section A.19.)

(c) To try getting around the problem found in (b), we modify the policy as follows:
When server 2 becomes available, it will start serving a customer of class A only if there are
at least least ℓ of them in the queue, for some fixed integer ℓ > 0. For ℓ = 1, we recover the
same policy as in (b). What about the average queue lengths in this case? Repeat the same
experiment as in (b) to see what happens with this policy, say for ℓ = 3 and ℓ = 10. Discuss
your results.

(d) A less aggressive policy for Server 2 would be to start serving a class-A customer only
if at least ℓ are in the queue and no customer of class B is waiting, i.e., to give priority to
class B customers. Repeat the same experiment as in (b) with this policy, for ℓ = 1. Discuss
your results.

(e) Suppose we are allowed to choose between any of the above policies, with any value
of ℓ, and want to find one that minimizes the expected waiting time of class A customers
under the constraint that the expected waiting time of class B customers does not exceed 5,
in the long run (i.e., when T →∞). What policy would you recommend and with what value
of ℓ? (For this exercise, it would be appropriate to use a ranking and selection procedure
such as those mentioned in Section 1.15.3, but you do not have to do that at this point; just
providing a reasonable answer based on long simulations will suffice.)

1.37 Consider the discretely-observed Asian option of Example 1.11 with the payoff given
in (1.10), but suppose that instead of estimating the price v(s0, T ), we want to estimate the
derivative of v(s0, T ) = v(s0, r, σ, T ) with respect to σ,

vσ(s0, r, σ, T ) =
∂v(s0, r, σ, T )

∂σ
,

which is known as the vega of the option. Here we added the parameters r and σ, which
were implicit in the notation in Example 1.11. One possible estimator of this derivative is
the finite difference:

X(δ) =
Y (s0, r, σ + δ, T )− Y (s0, r, σ, T )

δ
,
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where Y (s0, r, σ, T ) = e−rTg(S(t1), . . . , S(td)) is the sample discounted payoff and δ > 0 is a
small constant. We could simulate n independent realizations of X(δ), take the average as
our estimator of the vega, and compute a confidence interval.

(a) Explain why this is a biased estimator when δ > 0 is fixed. You can assume that
v(s0, r, σ, T ) is nonlinear in σ and has a nonzero second derivative with respect to σ. You
may use its Taylor expansion around σ. What happens to the bias when n → ∞ while δ is
fixed? And when δ → 0?

(b) To simulate X(δ), we must perform two simulations of the payoff, one at σ and
one at σ + δ. These two simulations can be performed with independent random numbers
(IRN) or with common random numbers (CRNs). Explain the difference. Explain how you
would implement the simulations with CRNs in this particular case. What happens with the
variance of X(δ) when δ → 0, in each case?

(c) Is it possible to obtain an unbiased estimator of the vega by using the stochastic
derivative in this case? If yes, explain how, derive the estimator mathematically, give its
explicit formula, and prove that it is unbiased by showing that the dominated convergence
theorem applies in this specific case.

1.38 (Bratley, Fox, and Schrage 1987, Problem 1.9.18.) This exercise is about what hap-
pens when random variables are replaced by their expectations in an optimization problem.
Suppose that the (random) operating cost of a system for one day, under policy π, is

C(π) = a(π) +
k∑

i=1

bi(π)[fi(π) + Ei] +
k∑

i=1

k∑
j=1

cij[fi(π) + Ei][fj(π) + Ej],

where k and the cij are constants, a(·), bi(·) and fi(·) are functions of π, and the Ei are
random variables independent of π.

(a) Show that to estimate E[C(π)], replacing the Ei’s by their expectations in the ex-
pression for C(π) introduces bias (in general). Give an expression for the bias and give a
necessary and sufficient condition under which such a replacement introduces no bias.

(b) Explain under what circumstances replacing the Ei’s by their expectations improves
the efficiency of the estimator of E[C(π)] despite introducing bias, and under what circum-
stances it also improves the mean square error.

(c) Suppose now that we are interested in estimating δ = E[C(π1)] − E[C(π2)] for two
different policies π1 and π2. Show that δ can be computed directly by replacing the Ei’s by
their expectations. To find the π that minimizes E[C(π)], can we replace the Ei’s by their
expectations without introducing bias on the choice of π?

1.39 (Functional estimation and optimization: A special case). (Adapted from Bratley, Fox,
and Schrage 1987, Problem 1.9.7.) Consider a graph with N nodes and M edges, the edges
connecting M distinct pairs of nodes (so that M ≤ N(N − 1)/2). Two nodes are said to be
connected if we can go from one to the other by following a sequence of edges. The minimal
number of edges so that all the nodes are connected is N − 1. A set of N − 1 edges that
connect the N nodes is called a spanning tree. If the edges have lengths (or costs), a minimal
spanning tree is a spanning tree whose total length (or cost) is minimal. Given M ≥ N − 1
edges, the following greedy algorithm constructs a minimal spanning tree in worst-case time
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O(M logM), provided that one exists (see, e.g., Deo 1974, pp. 277-280). The readers who
don’t know what is a priority queue can think of it as a special type of sorted list, which can
be updated efficiently on average when the first entry is removed or an arbitrary entry is
added. Priority queues and their properties are studied in all good books on data structures
or on algorithmic (e.g., Brassard and Bratley 1988).

Algorithm 3 : Minimal spanning tree

Sort the edges by increasing length, in a priority queue L;
Start with the N nodes and no selected edge; j ← 0;
repeat

Remove the shortest edge e from L;
if e does not form a loop with the other edges already selected then

add e to the graph (e is selected) and j ← j + 1
else

discard e;
until j = N − 1 or L is empty;
if j = N − 1 then

the selected edges form a minimal spanning tree
else

there exists no spanning tree

(a) Suppose that each of the M edges works with probability p, independently of the
other edges. Explain how to estimate µ(p), the probability that a spanning tree exists (i.e.,
that the graph is connected by working edges), by the MC method, for a fixed value of p.

(b) Suppose now that we want to minimize α(p) = C(p) − µ(p) with respect to p, by
simulation, where C(·) is a known (deterministic) increasing function. A naive way of doing
this is to estimate µ(p) over a grid of several values of p, by performing n simulations at each
value of p considered, independently. A better way is as follows. For each of the n simulation
runs, generate i.i.d. U(0, 1) random variables U1, . . . , UM , one for each edge, and construct a
minimal spanning tree by considering Uj as the length of edge j. For each p ∈ [0, 1], define the
Bernoulli random variable X(p) = I[L ≤ p], where L is the length of the last edge selected
by the algorithm in constructing the tree. Show that E[X(p)] = µ(p) for each p.

(c) Let the above scheme be repeated n times, independently. Let Xi(p) and Li be the
values of X(p) and L for replication i, and define

X̄n(p) =
1

n

n∑
i=1

Xi(p).

Note that X̄n(p) can be viewed as a function of p. Show that it is a non-decreasing step
function of p, with X̄n(p) = 0 for p < 0, X̄n(1) = 1, and with a step of size 1/n at each Li.

(d) The function α̂ defined by α̂(p) = C(p)− X̄n(p) is an estimator of the entire function
α(p), 0 ≤ p ≤ 1, and the value of p that minimizes α̂(p), say p̂, can be taken as an estimator
of p∗, the minimizer of α(p) with respect to p. Give an O(·) expression for the total time
to compute the entire function X̄n(·) in the worst case, including the time to generate the
random numbers, to compute the Li’s from them, and to sort the Li’s (assuming that the
latter can be done in time (n log n)).
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(e) To compute the exact value of p̂ from the function α̂(·), how many values of p must
be examined in the worst case? Which ones?

1.40 In Section 1.7, estimate the difference in performance for two slightly different distri-
butions for the Yj in the SAN example, using CRNs. You will perform a similar experiment
with the following two systems. For the first system, assume that all the Yj have an expo-
nential distribution with the same mean θj as in the given numerical example, Example 1.4.
For the second system, assume that they all have a normal distribution, again with the same
mean θj, and standard deviation θj/4. Let X1 be the length of the longest path for the first
system and X2 for the second system. We want to estimate E[X2−X1]. This can be done (a)
with IRNs; (b) with CRNs using inversion; (c) with CRNs using inversion for the normals,
but Yj = −θj ln(Uj) instead of Yj = −θj ln(1 − Uj) for the exponential random variables.
The latter is formally correct because 1−Uj has the same uniform distribution as Uj. Make
an experiment in which you compare the variances obtained with these three methods using
n = 104 simulation runs. Explain what you find.



2. Simulation Modeling

This chapter is about modeling for simulation. Various aspects are covered, including the
selection of probability laws that determine the model evolution at all levels, abstraction
and simplifying assumptions, validation, and different types of performance measures that
we might want to estimate by simulation.

The first three sections contain a general discussion of the main issues in modeling.
Guidelines and recommendations on the practice of modeling are provided in the first section.
Section 2.2 is on validation and verification. In Section 2.3, we discuss the importance of high-
quality data and the impact of simplifying assumptions. In the several sections that follow,
we compare different ways of specifying the input distributions and review several classes
of standard parametric and semi-empirical distributions. Much of this material (especially
the list of distributions) is primarily for reference and could be just browsed over quickly.
In Section 2.12, we recall some basic definitions and properties of stochastic processes. The
following three sections provide a quick coverage of Poisson processes, Brownian motion,
Lévy process, some other related processes, and time-series models. Techniques for fitting
distributions to data are briefly discussed in Section 2.18. In Section 2.19 we distinguish
models where the performance measure is over a finite and an infinite time horizon, and
models with discounting.

2.1 Principles of Simulation Modeling

Abstraction and simplification are the essence of modeling. The appropriate level of simplifi-
cation depends on what we want to use the model for. Building a valid model is often difficult,
especially for the complex dynamic stochastic systems that involve humans. Modeling is an
art that requires good judgment and common sense, and it is usually an iterative process.
We elaborate a little on these ideas. More extensive discussions on the general principles of
modeling for simulation can be found, e.g., in Shannon (1998) and Pritsker (1998).

2.1.1 Purpose of the model

A first important question when building a simulation model is: Why are we building it?
The purpose of the model and the goal of the project should be established before any
further development is engaged. This should be done together with the potential users. The
appropriate level of detail or aggregation, and the boundaries of the model, strongly depend
on this intended purpose. An ideal model includes no unnecessary detail, but just enough to
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provide a realistic representation of the important characteristics of the system, given the
purpose of the study. Models that are simpler and easy to understand tend to be more useful
because they give better insight into the important aspects of the system’s behavior.

2.1.2 System’s knowledge

Building a good model requires good knowledge of the system and of the model’s purpose.
This means getting information from people who know about the system from different
viewpoints (e.g., managers, operators, clerks, customers, etc.), examining the real system if
possible, and collecting pertinent and reliable data. To decide what to include in the model,
one must understand the structure of the system and its operating rules well enough to
figure out what simplifying assumptions are reasonable and what is likely to have an impact
on the results of interest. Constant interaction with the decision makers or future model
users, and with the people who know best about the system, should be maintained all along
the stages of the model development. This interaction is crucial for maintaining a high level
of confidence in the model and increases the chances that the model be credible, satisfies
their needs, and be used. For a successful simulation project, the client must be ready to
commit his time and resources for transferring the appropriate knowledge to the modeler
and participating in the modeling process.

A lot can be learned from the process of building a model even if that model is never
simulated. Understanding the logic and the interactions and organizing the information to-
gether in one place can be worthwhile activities by themselves. It is often said that a clearly
formulated problem is half-solved.

2.1.3 Iterative process and flexibility

Simulation model building is an iterative process in the sense that new information obtained
along the way, or from simulation runs, often leads to changing certain aspects of the model
(e.g., assumptions, level of detail, operating policies, input distributions, etc.). In this evo-
lutionary process, simulation provides insight into the system, and this new information can
be used for improving the model by successive refinements.

Since a simulation model is frequently modified, refined, extended, and adapted, it is
important that both the model and the simulation program be flexible and easy to change.
Flexibility means, for example, that input probability distributions can be easily changed or
replaced by historical data, that one can easily experiment with different decision making or
operating policies in the model, etc. Good practices that make the model easier to change
and maintain include building the model from small and relatively self-contained logical
components with simple interfaces (modularity), maintaining a clear documentation, and
separating the model definition from the statistical experiment specification (especially in
the program). Even the purpose of the model can change, either during the modeling activity,
or after the model has been in use for some time.
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2.1.4 No foolproof recipe

Modeling remains an art learned by experience. It requires good human judgment. Discrete-
event stochastic systems involved in human activities tend to contain non-trivial logic, non
stationary behavior with respect to time, stochastic dependencies that are hard to model,
complex operating procedures, etc. These systems have no simple laws such as those found
in elementary physics and chemistry, for example.

A typical mistake of inexperienced modelers is to incorporate an excessive amount of
detail into the model. One should “look at the forest before looking at the trees”; that is,
start with a simple model and add details only as needed while consulting with the system
experts, managers, and future users. One should also refrain from having too many model
parameters that must be estimated from system’s data. Time and money constraints, and
availability of data, often determine the level of detail that can be practically achieved. For
example, a model of a system that does not yet exist and for which no data is available
will be much less detailed that a model made to fine-tune a system already in operation. As
another example, when modeling the bottling operations of a large brewery, it is probably not
necessary to represent the individual bottles in the model. The process can be modeled as a
continuous flow (perhaps with interruptions) or by aggregating the bottles into batches and
considering these batches as the smallest representable unit. As a side benefit, the simulation
program will run faster.

2.1.5 Implementation

The ultimate success criterion for a simulation study is whether something has been learned
from the model and if this knowledge has been used. A model has more chance of being used
and trusted if its future users take part in all stages of its development, and feel to a certain
extent that this is also their model.

2.2 Model Validation and Program Verification

There is a large set of well-developed software engineering techniques for the design, imple-
mentation, and verification of computer software in general. These techniques do apply to
simulation programs. We refer the reader to standard textbooks on software engineering.
Detailed discussions of validation principles and techniques can be found in Balci (1998),
Kleijnen (1995), Sargent (2001), and in Chapter 5 of Law and Kelton (2000).

The validity of a model is not a “black or white” issue. It depends on the purpose of
the model and on the desired level of accuracy in the results. If a given model is to be
used to answer several different questions, the validity issue must be addressed separately
for each of these questions. One should not forget that validation can be expensive. The
more realistic we want the model to be, the more we have to pay for modeling, for data
collection, and for validation. In practice, a compromise must be made between modeling
and validation costs on the one hand, and the costs associated with the consequences of
using an insufficiently realistic model on the other hand. Spending a lot of time and money
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on modeling and validation is often necessary, but it is worthwhile only if the simulation can
provide knowledge worth that price.

The next section will discuss the issues of simplifying assumptions and approximations,
and the choice of input distributions. In the remainder of this section, we survey briefly
some validation techniques and ideas that are recommended in the simulation literature.
Balci (1998) describes a larger collection of verification, validation, and testing techniques.

2.2.1 Informal validation

Does the model behavior look reasonable to the people knowledgeable about the system?
This is the first level of model validation. It should be done during model building. It thus
requires regular interaction with the client and experts. Experience, intuition, and good tools
(e.g., for displaying descriptive statistics and performing graphical animation) can help.

In a Turing test, one shows system experts or managers two sets of output data, one
from the real system and the other from the model, and asks them to tell which is which.
If they succeed, they should explain how they were able to distinguish, and this information
can be profitable for improving the model.

A structured walkthrough of the model is a recommended procedure to be performed by
a team of key people including the developer(s), system experts, and client representative(s).
The participants examine documents that describe the model, list all the assumptions, and
mention the uncertainties that the modelers may still have in their mind. All aspects of
the model are studied during the walkthrough. The goal is to detect the modeling errors,
misconceptions, inconsistencies, etc. This should preferably be done before too much effort
has been engaged into programming, to avoid costly reprogramming in the case where major
modeling errors are found.

2.2.2 Statistical testing of hypotheses

In principle, goodness-of-fit test statistics (see Chapter 5) can be used for detecting significant
differences between the model and the real-life system of interest. The null hypothesis H0 for
the statistical test in this situation is that the model and the system are indistinguishable.
However, using a formal statistical testing procedure which rejects H0 when the test statistic
exceeds a fixed threshold (Section A.15) is not necessarily appropriate, because we know in
advance that there is a difference between the model and the system. In most cases, the
null hypothesis will eventually be rejected if we take the sample size large enough to make
the difference significant. What we really want to test is not that there is no difference,
but that the difference is within the acceptable limits of precision given the purpose of the
model. This must be kept in mind when applying goodness-of-fit tests for validation. Informal
examinations of statistical data and graphics often suffices in this context.

Example 2.1 In Example 1.8, for instance, a chi-square test of hypothesis would certainly
conclude that there is a significant difference between the three distributions in Table 1.1 or
1.2. The sample size is large enough to clearly see the difference. Nevertheless, the Poisson
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approximation would be good enough in many situations, for example to approximate the
expected number of collisions. □

Another frequently encountered limitation is the absence of sufficient data from the
system to apply a meaningful statistical test that compares the model with the system. For
example, we may have observed the real system only for a period of time that corresponds
to a single simulation run. Often, the system of interest does not even exist. In this case,
if a different but similar system does exist, building and validating a simulation model of
the existing system can bring a significant amount of knowledge, which can be profitable for
constructing a valid model of the system of interest.

Goodness-of-fit testing is nevertheless useful for validating the choices of input distribu-
tions in the model, and for testing certain assumptions such as time-stationarity, indepen-
dence, equality between two distributions, and so on.

When comparing an existing system and a model for validation, it is a good idea to run
the model with the historical input data of the system, and see if the outputs correspond
within acceptable limits to the historical output data. Using the historical inputs reduces
the noise in the differences between the outputs because both the model and the system
are then fed with exactly the same values of the input random variables. This approach is
similar to the CRN methodology used for comparing two similar systems (Section 1.7) To
test the validity of the models for the input distributions and processes, one can compare
the output data of the model fed with the historical input to that when the input model is
used.

2.2.3 Sensitivity Analysis and Robustness

Sensitivity analysis identifies which parameters, input variables, and assumptions of the
model have a significant effect on the performance measure of interest. This can be achieved
by varying the values of these parameters and input variables over some range and observ-
ing the corresponding changes in the output (the performance measure’s estimator). If the
model’s response is sensitive to certain input values (e.g., parameters of some input distribu-
tion) or to certain assumptions (e.g., independence of certain random variables, stationarity
of an arrival process, type of an input distribution), or to the level of detail or aggregation
in a given part of the model, then we may want to spend additional effort to make sure that
these input values are accurate enough, or that these assumptions are justified, or to keep
more detail in the model. For example, it may be important to look at what happens to the
average waiting time in a queue if the service time distribution changes slightly, or if the
interarrival times become slightly correlated. A model is said to be robust with respect to
certain parameters or assumptions if changing slightly these parameters or these assumptions
has little effect on the responses of interest.

Advanced techniques for sensitivity analysis are discussed in Section 1.8 and in Chap-
ter 7. Among these, the statistical experimental design techniques and the response surface
methodology are appropriate when performing sensitivity analysis with respect to several
factors at the same time. It is important in certain situations to consider not only the effect
of each factor individually, but also the effects due to the interaction between the factors.
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♣ Perhaps add an example here.
Sensitivity analysis often involves estimating the difference between the performance

measures of two (or more) very similar models. In this situation, the estimator of the dif-
ference is typically much less noisy when CRNs are employed across the two models rather
than simulating them independently (Sections 1.7 and 6.4). This means simulating the two
models with the same streams of random numbers, with proper synchronization to make
sure that the same random numbers are used for the same purpose for the two models, as
much as possible. In the case where the simulation uses historical data instead of generating
random variables, this mean feeding the two models with the same stream of historical data,
as mentioned previously. Sensitivity analysis with respect to marginal changes in continuous
(real-valued) parameters amounts to estimating the derivative or gradient of the performance
measure(s) with respect to these parameters (Section 1.8 and in Chapter 7).

A valid model is sometimes valid only over a given region for the values of its parameters.
One must make sure that this region covers the range of values of interest for the parameters,
i.e., the range in which the model is likely to be used. How fast does the invalidity grows
when we leave the validity region? How can we change the model to enlarge or move the
validity region? These questions also relate to some form of sensitivity analysis.

Example 2.2 In the call center example of Section 1.12, a model that neglects the abandon-
ments (i.e., in which assume that all customers have infinite patience) might be valid if very
few customers abandon (perhaps because long waits are rare), and if we want to estimate
a quantity that is not much affected by these rare abandonments. This is often the case in
emergency call centers for police, fires, and ambulances, for example. On the other hand, the
model could no longer be valid if there is more traffic and the waiting times get longer, or if
we want to estimate the abandonment ratio ℓ in the first place even if it is small. Similarly,
a model that does not account for variations in the busyness B (i.e., assumes B ≡ 1) might
be valid in times when B has low variance, but invalid when B varies more.

♣ Add numerical illustrations here. □

Example 2.3 An M/G/1 queue is a special case of the GI/G/1 single-server queuing
model where the service times are i.i.d. with an arbitrary distribution and the interarrival
times are i.i.d. exponential, say with parameter λ. A classical result of queuing theory is the
Pollaczek-Khintchine mean value formula (see Section A.19); it says that in steady-state (or
over an infinite time horizon), the average waiting time per customer and the average queue
length in an M/G/1 queue, w and q, depend only on the mean ν and variance σ2 of the
service time distribution:

w =
λ(σ2 + ν2)

2(1− ρ)
and q = λw, (2.1)

where ρ = λν is the utilization factor. These equations imply that if we pick the wrong
service time distribution but match the first two moments (mean and variance) correctly,
the average queue length and waiting time will still be correct. However, other quantities
(e.g., the variance of the waiting times, or the proportion of waiting times that exceed 20
seconds) may be affected. Moreover, for a general GI/G/1 queue (i.e., if the arrival process
is not a stationary Poisson process), Eq. (2.1) no longer holds.
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For exponential service times (i.e., an M/M/1 queue) we have σ2 = ν2 and Eq. (2.1)
simplifies to q = ρ2/[λ(1 − ρ)]. This means that if we wrongly assume exponential service
times in an M/G/1 model, the error on the average queue length and average waiting time
in our model will be large if and only if the coefficient of variation of the service times differs
significantly from 1. □

2.2.4 Operational validation

Calibrating a model means adjusting its parameters, level of detail, and sometimes its as-
sumptions, so that its output is close to a given target when it is fed with certain inputs. This
target is usually determined by some historical data. In other words, we want the model to
reproduce reasonably well what happened in the past. After its calibration, the model must
be validated with a data set that is independent from the data set used for calibration. As-
suming that enough data is available, one should use part of the data for developing and
calibrating the model, and reserve another (independent) part of the data for validating the
model.

After a model has been built and when the corresponding system has been in operation
for some time, additional data becomes available. One can use this fresh data every now and
then for model validation. This prospective validation usually suggests adjustments to the
model (updated calibration). Good agreement between the model’s prediction and the new
data improves confidence in the model, whereas disagreements may indicate how to improve
the model.

Validation can be performed separately for individual components or submodels that
comprise the model, then for larger groups of components together, hierarchically. It is
important to understand that validity of all the components does not necessarily imply
validity of the model as a whole, because the acceptable errors in the responses of the
submodels may accumulate to unacceptable errors in the output of the complete model, and
because there could be errors in modeling the interactions between the components.

Credibility of a model refers to its acceptance and trust by the managers or clients.
Credibility is an important ingredient for success, because it determines to a large extent
whether the model is going to be used or not. Sometimes, certain details in a model that can
be neglected from the validity viewpoint must be incorporated because of credibility issues.
This is relevant in particular for simulation models with graphical animation.

2.3 Data, Assumptions, and Robustness

Building a model requires information about the system. Building a detailed and reliable
model requires not only a lot of data, but relevant and correct data. This may seem like a
trivial statement, but situations abound where either too little data is available, or the data
on hand concerns only a related system. Data is needed not only to fit distributions, but also
to test (validate) the several assumptions that are made in the model, such as independence,
stationarity, etc. One might think that so much data is collected by computerized systems
nowadays that lack of relevant data should no longer be a problem. But in fact, it is still
often a problem.
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2.3.1 Quality of the Data

Too little data could mean:

1. A too small sample.

2. Aggregated data, i.e., only summary statistics such as the mean, maximum and mini-
mum, median, etc., or only totals over certain periods. For example, one may have the
number of failures of a machine each week, but not the failure times. For a telephone
call center, one may have the number of incoming call and the average service times
for each half-hour period, but not the arrival times and service times of the individual
calls.

3. Low accuracy. For example, suppose that the time for a machine to perform a certain
operation is almost always between 4 and 7 minutes and that we have the operation
times only in minutes (an integer).

4. Subjective information from interviews of people who are supposed to know the system.

The following are examples of situations where the data comes from a related but different
system.

1. Wrong period. We have data for up to 2 months ago, but the model is build to predict
what will happen next year.

2. Wrong place. We only have data on the demand for a product in the Toronto area and
we want to build a stochastic model for the demand in the Montreal area.

3. Censored distribution. We have data on the sales instead of the demand (no data
was kept on the sales lost because of stockouts). As another example, suppose i.i.d.
components have been replaced at failure time or at age T , whichever comes first. If
we have data on the replacement times, we know all the lifetimes that were less than
T , and we know how many were more than T but not their values. Similar censoring
occurs if we want to estimate the distribution of the time X until abandonment for
impatient customers in a queue (e.g., waiting phone calls in a customer service center).
In that case, we may be able to measure X for each lost customer, but for a customer
whose call was answered after waiting T units of time, we only know that X > T .
(Here, both X and T are random variables.)

2.3.2 Privacy Issues and Artificial Data

Data availability is often limited because of privacy issues. This occurs in particular for data
on specific individuals or on firms (e.g., medical records, census or financial records, etc.).
Typically, the information in this type of data must be reduced or modified so that one
cannot easily identify a specific individual or firm by making requests to the data base. It
has been shown that such privacy cannot be preserved while keeping the data intact; one
must incorporate some amount of noise to the data. The concept of differential privacy was
introduced by cryptologists and turned into a formal framework and methodology to address
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this issue (Dwork and Roth 2014, Dwork et al. 2017). The goal is to modify the data set in a
way that it retains its important statistical properties while giving no significant information
on whether or not a given individual was included in the data set before the modification.
Then, queries to the modified data should not compromise the privacy of anyone. It turns
out that the required amount of noise (or its variance) depends on the size of the database
and is larger when the number of individuals is smaller. Dwork et al. (2017) provide tools
to design and combine algorithms that can make a data set differentially private by adding
appropriate noise. They consider in particular adding noise from the Laplace distribution.
These types of tools are now used by large data collectors such as Google, Microsoft, and
the US Census Bureau.

Adding noise to data inevitably changes its distribution and dependence structure. In-
creasing the noise provides more privacy but reduces the utility of the data set by altering its
distribution even more. So in each case, a compromise must be made between better privacy
and better social utility.

Instead of just adding noise to the actual data, one may also build a model from which
an arbitrary amount of purely artificial data with all the relevant characteristic of the real
data set can be generated, while not representing any of the real individuals. Doing this while
capturing all the important dependencies is even more challenging than just adding noise
to the data. Since the artificial data will be produced via some type of model, this process
can in fact be viewed as a modeling step. It is discussed extensively in the literature under
the name of population synthesis (Müller and Axhausen 2011, Sun and Erath 2015, Le et al.
2016, Sun, Erath, and Cai 2018, Yin et al. 2018, Chapuis, Taillandier, and Drogoul 2022).

2.3.3 Simplifying Assumptions

Various types of approximations are made in modeling input distributions.

1. Simplified distributions. Complicated and unknown real-world probability distributions
are approximated by simpler and nicer ones, such as the exponential, the normal, and
the uniform. Often, random variables are replaced by constants (e.g., their expecta-
tions). This is frequent in optimization contexts. If an estimator X is a linear function
of a random variable Y , replacing Y by its expectation in the model does not change
E[X] and reduces its variance. This is no longer true if the relation is nonlinear, and
the difference can be quite significant, as we saw in Example 1.4. Exercise 1.38 gives
an exception.

2. Aggregation. This happens when several types of objects are considered as a single
class. For example, different classes of customers are aggregated into a single class and
are considered to have the same stochastic behavior (same service time distribution,
etc.). Or people of different sexes, ages, heights, habits, etc., are aggregated into a
small number of categories, and individuals from the same category are considered
stochastically identical. Another type is time aggregation; e.g., events occurring during
the same minute are assumed to have occurred at the same time.

3. Independence. Assuming that certain random variables in the model are independent
(in the statistical sense) is commonplace, despite the fact that this rarely holds in
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the real world. For example, successive service times at a given station in a queuing
system are often assumed independent because modeling the dependence appears too
complicated, or there is not enough data to do it. This can be an important source
of gross error. One of the main reasons for modelers to assume independence is that
commercial software products for building discrete-event simulation models provide
easy-to-use tools almost exclusively for the case of i.i.d. random variables. A more
serious reason is the difficulty of modeling the dependencies properly.

4. Stationarity. A stationary model is one whose logic, input distributions, and parame-
ters, do not change with time. Such a model is easier to handle than a non-stationary
one. Typically, this is reasonable if the system of interest is simulated over a relatively
short fraction of its lifetime. Most systems involving humans (social, economic, enter-
tainment, etc.) are highly non-stationary. Think for example of the arrival processes
to a restaurant, a subway station, or an airport. The arrival rates certainly depend on
time. Results of simulations based on stationary models in these types of situations
(and in most other situations, for that matter) must be interpreted with a healthy
dose of skepticism. Stationarity assumptions are usually needed to obtain analytical
formulas. This is an important reason for their popularity. For simulation, stationarity
is not needed. In fact, output analysis can be easier for finite-horizon non-stationary
models than for steady-state stationary models.

2.4 Classes of Approaches for Choosing the Probability Laws

The main classes of approaches for modeling the inputs in stochastic models are

A. Parametric. Select a parameterized family of theoretical distributions and estimate
the parameters from the data. For example, one can assume that the call durations
(service times) at a call center have the gamma distribution and then estimate the
two parameters of that distribution from the available data. Multivariate parametric
distributions can model random vectors with dependent components.

B. Semi-empirical or non-parametric. Construct a variant of the empirical cdf of the data
and use it to generate the random variates in the simulation. By variant, we mean
that the empirical distribution function is often smoothened in some way, and that
an infinite tail is often added so that arbitrarily large observations can be generated.
One can also directly construct a smooth estimate of the inverse cdf F−1, to facilitate
random variate generation. Another (often better) approach is to construct a density
estimate from the data (Section 2.9.4), instead of the cdf or its inverse, and use it to
generate the input random variates.

C. Trace-driven. In its pure form, this approach simply reuses the historical data of the
system of interest as input. For example, to compare a new inventory management
policy with the one that was in place at the time the data was collected, one replays the
history for the demands, but with the new policy, to see the difference. A simulation can
be partially trace-driven. For example, the arrival process of people at the emergency
room of an hospital can be modeled as a Poisson process, and whenever an arrival



2.4 Classes of Approaches for Choosing the Probability Laws 149

occurs, a patient’s record is picked randomly from historical files on actual visits.
Then, the detailed characteristics of the patients (and the complicated correlations
between those characteristics) do not have to be modeled. An important limitation
of this approach is that no patient record that differs from those in the historical
files will ever be generated. This may be acceptable in certain situations, e.g., if the
historical files are huge. Otherwise, to properly address this limitation, one must model
the detailed characteristics as random vectors with dependent components. This can
be hard. A compromise could be to add some noise to the historical records.

Some authors recommend A and argue that there is rarely enough data to adopt C (e.g.,
Law and Kelton 2000). Others prefer B to A (e.g., Bratley, Fox, and Schrage 1987). There are
frequent situations where C (at least partially) may be the most reasonable approach, because
of the difficulties of modeling complicated dependencies in a large number of dimensions.
Research on the modeling of data by high-dimensional distributions is very active, especially
in the fields of computational statistics and machine learning.

Example 2.4 Years ago, the author visited a large aircraft maintenance facility employing
nearly 20,000 people. A huge job shop in the facility contained a network of workstations
of several kinds. Parts arrived randomly to the shop (sometimes in batches) to be repaired
or rebuilt. There were thousands of different types of parts and each part arriving to the
shop had a list of operations to be performed on it, on specific machine types. This list and
the times of the operations depended not only on the part type but also (strongly) on the
damage that the part had, and were highly random. This involved complicated correlations,
that were very hard to model, between the durations of the successive operations performed
on a given part. The managers of the facility wanted to build a simulation model of the
shop to study how they could reduce the sojourn times of the parts in the shop. The average
sojourn time of the parts was more than 25 times the average total working time to perform
the operations on the parts. Parts were thus spending most of their time waiting or traveling
between the workstations across the shop. After unsuccessful attempts to build a valid model
that would generate the transitions of the parts between the workstations using probabilities,
and the operation times using probability distributions, it was decided to use partial trace-
driven simulation, similar to the emergency room example given in Item C above. That is,
instead of trying to model the dependencies between the times of successive operations (by
different machines) on a given part, records of part histories were drawn at random from the
database to feed the simulation. □

The following arguments support the parametric approach A with a theoretical distri-
bution.

1. This approach is appropriate if we have physical reasons to believe that a particular
distribution is natural and expected. For example, the normal distribution if the random
variable X of interest is the average of a large number of independent small effects, the
Poisson distribution if it counts independent rare events, etc.

2. Parametric distributions with a small number of parameters have the advantage of
being a compact way of representing data, without discarding too much information,
when they are appropriate.
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3. Procedures for generating random variables from standard theoretical distributions are
available in most simulation programming environments and just using them means
less programming than building quasi-empirical distribution or sampling records from
an historical database.

4. The values that can be generated are not limited to the span of the data sample.
With theoretical distributions that have infinite tails, it is possible to generate large
deviations, which is important for certain applications.

The following are arguments against A.

1. It is often very difficult, sometimes impossible, to know the right distribution family.
In some cases, none of the available distributions fits the data correctly.

2. When fitting a distribution with few parameters, information is lost or distorted, and
this is not always negligible. The estimation of the parameters is not always robust.

3. For certain types of distributions, random variate generation is difficult or slow (see
Chapter 4).

When fitting a distribution to data, one can always improve the fit by selecting a more
flexible class of distributions (e.g., by adding more parameters or adopting a semi-empirical
distribution). In fact, with the same number of parameters as the number of observations in
the data, the empirical distribution itself gives a perfect fit to the data! This is an extreme
example of overfitting, generally defined as an excessive adjustment to the noise in the data
set. A yet more extreme form of overfitting is getting the model inputs by replaying history,
as in trace-driven simulation. Overfitting is bad because it gives a distribution less likely
to reproduce the general behavior of additional data obtained from the (unknown) real-
life distribution that we are trying to model. That is, it tends to give more generalization
error. Two ways of avoiding overfitting are: (a) to be more parsimonious in the number of
parameters and (b) to impose more restrictive smoothness conditions on the cdf or on the
density.

2.5 Input Modeling With Little or No Data

The idea of selecting input distributions without objective data to support the choice may
sound like a joke, but there are frequent situations where a simulation model must be de-
veloped without any data from the system. This could be because the system does not yet
exist, or for other reasons. Input distributions can then be selected in a number of ways:

• Human opinion. Experts on the process of interest (or a similar process) can often
provide a reasonable subjective distribution. A popular approach is to ask the experts
for the most frequent value m, minimal value a, and maximal value b, and to fit a
triangular distribution with parameters (a, b,m) (Section 2.8.2). This approach can be
criticized in several ways (Law and Kelton 2000) but it is simple. Other approaches are
to fit a normal (ask for the mean and standard deviation, and perhaps truncate the
tails), fit a beta or Johnson distribution (Section 2.8.23), or fit a Bézier distribution
(Section 2.9.3).
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• Manufacturer specifications. Vendors normally provide performance specifications for
their products. These specifications can sometimes be used to build parts of the model.
For example, a machine can fill up so many beer cans per minute, or a communication
device can transmit so many bits per second, etc.

• Physical constraints. Due to certain physical limitations, there may be upper and lower
bounds on the values that a random variable can take.

One can argue that any results obtained from a simulation model built without objective data
should be taken with a large grain of salt. However, this is often better than nothing. In this
context of high uncertainty, sensitivity analysis with respect to the unreliable distributions
(both their types and their parameters) should be given special attention.

2.6 Parametric Distributions

The most extensive coverage of parametric distributions is the four-volume encyclopedia of
Johnson and Kotz (1972a), partially revised in Johnson, Kotz, and Balakrishnan (1995). A
limited coverage is given here for convenience. A distribution is called univariate if it is for
an integer or real-valued random variable and multivariate if it is for a random vector. Most
univariate distributions have from one to four parameters. The more parameters they have,
the more flexible they are (in general). But too many parameters is bad because it leads to
overfitting.

2.6.1 Types of parameters

Parameters are often classified in three types: location, scale, and shape. A location parameter
determines where is the origin on the horizontal axis. Changing it slides the distribution
(or the axis) horizontally without modifying the scale or the shape of the distribution. A
scale parameter changes the scale on the horizontal axis (by stretching or contracting the
axis) without changing the shape of the distribution. Usually, doubling the scale parameter
multiplies all values by two. Sometimes, the scale is specified by a rate parameter, which is
the multiplicative inverse of the scale parameter. A shape parameter has a more profound
effect: It changes the shape of the distribution in a non-trivial way. An affine transformation
of a random variable X, of the form Y = aX + b, changes the scale and location of the
distribution but not its shape. In this case, if Fx and Fy are the cdf’s of X and Y , we have
Fy(y) = Fx((y− b)/a). If we have a method to generate X, and Y has the same distribution
as X except for a change of scale and location, then we can easily generate Y via Y = aX+b.

Example 2.5 For the normal distribution, the mean µ is a location parameter and the
standard deviation σ is a scale parameter. The shape of the normal distribution is always
the same. For the exponential distribution, the mean is a scale parameter. The Weibull
distribution has three parameters, one of each type. Some distributions have multiple shape
parameters. □
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A univariate distribution for a random variable X can be described via standard char-
acteristics such as the mean µ = E[X] the variance σ2 = E[(X − µ)2] (or the standard
deviation σ), the coefficient of variation σ/µ, the skewness coefficient ν, and the kurtosis
coefficient κ (see Section A.5). Certain classes of distributions (e.g., the Johnson family, see
Section 2.8.23) have enough flexibility that any combination of values of µ, σ > 0, ν, and
κ > 0 can be obtained by an appropriate choice of parameters.

Additional properties can often be recovered from the moment generating function (mgf)
MX(θ) = E

[
eθX
]
for θ ∈ R, when it exists.

When a continuous random variable X models the lifetime of a system or component,
or the time until a given event, it is often convenient to think in terms of the hazard rate
(or failure rate) of X, defined as r(x) = f(x)/(1 − F (x)) where f and F are the density
and cdf of X (Section A.4). If X denotes the time of an arrival, then r(x) represents the
arrival rate after x time units have elapsed, if the arrival has not yet occurred. Distributions
with increasing [decreasing] failure rate are used to model lifetimes of components that be-
come more [less] failure-prone with age. The time until a first bug is found in a software
component, for example, typically has a decreasing failure rate. Many types of components
have bathtub-shaped failure rates: high and decreasing for new components (because of po-
tential manufacturing or installation defects), small for a while, then increasing because of
deterioration due to aging.

2.6.2 Choosing a distribution and estimating the parameters

With the parametric approach, one must first select an appropriate generic distribution for
the situation at hand. This can be based on a priori information and physical justifications.
When nothing seems to justify a particular distribution, it might be more appropriate to fit
a distribution from a flexible family such as the Johnson or Bézier, for example, or use a
quasi-empirical distribution or density estimation techniques.

When a distribution is chosen, one must estimate its parameters from the data. Sev-
eral general classes of approaches for constructing estimators are described in statistical
textbooks. The most prominent approach is the maximum likelihood method, described in
Section 2.18. Least-square and moment matching methods are more convenient in some
situations.

After the parameters have been estimated, one should measure the goodness of fit be-
tween the selected parametric distribution and the empirical distribution of the data. This
can be done by visual procedures and formal statistical tests of hypotheses (Section 2.18).

In the next two sections, we describe a number of standard discrete and continuous
univariate distributions, giving some of their main properties, their physical justification
or interpretation when there is one and, in some cases, specific methods to estimate their
parameters or to generate random variates. When we give the density or probability mass
for a range of values, it is implicitly assumed to be zero outside that range.

The next two sections are intended to be just looked over quickly and then used for
reference when needed.
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2.7 Some Discrete Distributions

2.7.1 Discrete uniform distribution

A random variable X has the discrete uniform distribution over the range [i, j], denoted
X ∼ DiscreteUniform[i, j], if

P[X = x] = 1/(j − i+ 1) for x = i, i+ 1, . . . , j.

The mean and variance are E[X] = (i+ j)/2 and Var[X] = [(j − i+ 1)2 − 1]/12.

2.7.2 Bernoulli distribution

A random variable X has the Bernoulli distribution with parameter p, for 0 < p < 1, if
X = 1 with probability p and X = 0 with probability 1 − p. We denote X ∼ Bernoulli(p).
The mean and variance of X are E[X] = p and Var[X] = p(1−p). Bernoulli random variables
often occur as indicators of events. That is, if X = I[A], the indicator function of an event A,
then X ∼ Bernoulli(p) where p is the probability that event A occurs. A Bernoulli(p) random
variable X can be interpreted as the outcome of a random experiment, called a Bernoulli
trial, in which X = 1 is interpreted as a “success” and X = 0 as a failure. The Bernoulli
distribution is a special case of the binomial distribution (for n = 1) and is also related to
the negative binomial and the geometric distributions.

2.7.3 Binomial distribution

A random variable X has the binomial distribution with parameters (n, p), denoted X ∼
Binomial(n, p), if it can be written as X = X1 + · · · + Xn, where X1, . . . , Xn are i.i.d.
Bernoulli(p) random variables. It counts the number of successes in n independent Bernoulli
trials. One must have 0 < p < 1 and n must be a positive integer. The probability mass
function of X is

P[X = x] =

(
n

x

)
px(1− p)n−x for x = 0, . . . , n. (2.2)

The mean and variance are E[X] = np and Var[X] = np(1 − p). The Bernoulli is a special
case of the binomial, with n = 1. A sum of independent binomials with the same p is also a
binomial (Exercise 2.8).

2.7.4 Geometric distribution

A random variable X has the geometric distribution with parameter p, denoted X ∼
Geometric(p), if X can be interpreted as the number of successive failures before the first
success in a sequence of independent Bernoulli trials with parameter p, for 0 < p < 1. That
is, X + 1 = min{i : Xi = 1}. The probability mass function is P[X = x] = p(1 − p)x for
x = 0, 1, . . . . The cdf is
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F (x) =

⌊x⌋∑
y=0

P[X = x] = 1− (1− p)1+⌊x⌋ for x ≥ 0.

The mean and variance are E[X] = (1 − p)/p and Var[X] = (1 − p)/p2. The geometric
distribution is a special case of the negative binomial (with n = 1) and is the discrete analog
of the exponential distribution. It is the only discrete distribution that has the memoryless
property: In a sequence of i.i.d. Bernoulli trials, if no success was obtained in the first y
trials, then the number of additional failures to be observed before the first success is still a
geometric random variable, whose distribution does not depend on y. That is, P[X = y+x |
X ≥ y] = P[X = x] (Exercise 2.9).

2.7.5 Negative binomial distribution

A random variable X has the negative binomial distribution with real-valued parameters
(n, p), where n > 0 and 0 < p < 1, if its probability mass function is

P[X = x] =
Γ (n+ x)

Γ (n)x!
pn(1− p)x for x = 0, 1, . . . ,

where the Γ function is defined in (5.35). We denote X ∼ NegativeBinomial(n, p). The mean
and variance are E[X] = n(1− p)/p and Var[X] = n(1− p)/p2.

When n is an integer, we have Γ (n + x) = (n + x − 1)!, and X can be interpreted as
the number of failures before obtaining n successes in a sequence of independent Bernoulli
trials with parameter p. That is, X + n = min{i :

∑i
j=1Xj = n}. One can also interpret X

as a sum of n i.i.d. Geometric(p) random variables. This distribution is sometimes called the
Pascal distribution for n integer and the Polyá distribution for general n.

2.7.6 Hypergeometric distribution

A random variable X has the hypergeometric distribution, with integer-valued parameters
(r, b, n) such that 0 < n ≤ b, if

P[X = x] =

(
r
x

)(
b−r
n−x

)(
b
n

) for x = max(0, n+ r − b), . . . ,min(n, r). (2.3)

This X represents the number of red balls selected if we draw n balls at random, without
replacement, from an urn that contains b balls, r of which are red. We have E[X] = np and
Var[X] = np(1− p)(b− n)/(b− 1), where p = r/b.

2.7.7 Poisson distribution

A random variable X has the Poisson distribution with real-valued parameter λ > 0, denoted
X ∼ Poisson(λ), if

P[X = x] =
λxe−λ

x!
for x = 0, 1, 2, . . . . (2.4)
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The mean and the variance are E[X] = Var[X] = λ. Sums of independent Poisson random
variables are Poisson: If X1, . . . , Xq are independent and Xi ∼ Poisson(λi), then X = X1 +
· · · + Xq ∼ Poisson(λ) where λ = λ1 + · · · + λq (Exercise 2.10). Links between the Poisson
and exponential distributions are explained in Section 2.13.

The Poisson distribution is very important and natural, because random variables that
count rare events, and sums of such random variables when they are independent, have ap-
proximately the Poisson distribution. It is well known that a Binomial(n, p) random variable
with small p and large n is approximately a Poisson random variable with parameter λ = np.
We state a more general and more precise result, whose proof can be found in Taylor and

Karlin (1998), Section V. 1

Theorem 2.1 Let X1, . . . , Xn be independent random variables, where Xj ∼ Bernoulli(pj).
Let X = X1 + · · ·+Xn and λ = p1 + · · ·+ pn. Then, for x = 0, 1, 2, . . . , one has∣∣∣∣P[X = x]− λxe−λ

x!

∣∣∣∣ ≤ n∑
j=1

p2j .

This theorem gives an explicit bound on the difference between the probability function
(or mass function) of X and that of the Poisson distribution (note that this difference differs
from the total variation distance). If the pj’s are all equal to p (say), then X ∼ Binomial(n, p)
and the bound becomes np2 = λ2/n, so the probability function ofX converges to the Poisson
probability function at the worst-case rate O(1/n) if λ = np is fixed while n→∞.

For example, X can be the number of defective items in a large batch, assuming that
item j is defective with probability pj and that the items are independent, or X can be the
number of people going to a given store on a given day, or the number of people buying a
certain item in the store on that day, assuming that the jth person (in the entire world) goes
to that store on that day with probability pj, independently of the others.

2.7.8 Zipf distribution

The Zipf distribution has probability mass function defined by P[X = x] = x−α/ζ(α) for
x = 1, 2, . . . , where α > 1 and the normalization constant ζ(α) =

∑∞
x=1 x

−α turns out to be
the Riemann zeta function evaluated at α. It provides a discrete distribution with a heavy
tail. For variate generation, see Hörmann and Derflinger (1996).

2.7.9 Multinomial distribution

Themultinomial distribution is a d-dimensional generalization of the binomial distribution. A
random vector (X1, . . . , Xd) has the multinomial distribution with parameters (n, p1, . . . , pd),
where n is a positive integer, pj > 0 for each j, and p1 + · · ·+ pd = 1, if

P[X1 = x1, . . . , Xd = xd] =
n!

x1! · · ·xd!
px1
1 · · · p

xd
d (2.5)

1From Pierre: A bound on the total variation distance might be more useful.
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for xj ∈ {0, . . . , n} for each j and x1+ · · ·+xd = n. It represents the result of an experiment
comprised of n independent trials, where the outcome of each trial is j with probability pj
for j = 1, . . . , d, and where Xj is the number of times the outcome j was observed. The
marginal distribution of each Xj is binomial with parameters (n, pj).

2.7.10 Negative multinomial distribution

The negative multinomial distribution is a d-dimensional generalization of the negative bi-
nomial. Its probability mass function is

P[X1 = x1, . . . , Xd = xd] =
Γ (n+ x1 + · · ·+ xd)

Γ (n)
pn0

d∏
j=1

p
xj

j

xj!
(2.6)

for (x1, . . . , xd) ∈ {0, 1, 2, . . . }d, where (n, p1, . . . , pd) are positive real numbers such that
p1 + · · ·+ pd < 1, and p0 = 1− p1 − · · · − pd.

When n is a positive integer, we can think of a sequence of independent trials, where the
outcome of each trial is j with probability pj, for j = 0, . . . , d. Then, each Xj represents the
number of occurrences of outcome j before n occurrences of outcome 0 have been observed.

2.8 Continuous Univariate Distributions

2.8.1 The uniform distribution

A random variable X has the uniform distribution over the real interval (a, b), denoted
X ∼ U(a, b) or X ∼ Uniform(a, b), if its density is f(x) = 1/(b − a) for a < x < b. The cdf
of X is

F (x) =


0 if x < a,
x− a
b− a

if a ≤ x ≤ b,

1 if x > b.

The mean and variance are E[X] = (b+a)/2 and Var[X] = (b−a)2/12. The mgf isMX(θ) =
(ebθ − eaθ)/((b− a)θ).

a b
0

1/(b− a) f(x)

x

Fig. 2.1. The uniform density
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2.8.2 The triangular distribution

A random variable X has the triangular distribution with parameters (a, b,m), where a <
m < b, if its density is (see Figure 2.2)

f(x) =


2(x− a)

(b− a)(m− a)
if a ≤ x ≤ m,

2(b− x)
(b− a)(b−m)

if m ≤ x ≤ b.

a m b
0

2/(b− a)
f(x)

x

Fig. 2.2. The triangular density

The corresponding cdf is

F (x) =



0 if x ≤ a,

(x− a)2

(b− a)(m− a)
if a ≤ x ≤ m,

1− (b− x)2

(b− a)(b−m)
if m ≤ x ≤ b,

1 if x ≥ b.

The mean and variance are E[X] = (a+b+m)/3 and Var[X] = (a2+b2+m2−ab−am−bm)/18.
The special cases where m = a or m = b can also be considered (the density and the
cdf simplify in these cases). The triangular distribution is sometimes used as an heuristic
approximation when little (or no) data is available. In that case, m, a, and b can be taken
as guesses of the most likely, smallest possible, and largest possible values.

2.8.3 The normal distribution

A random variable X has the normal (or Gaussian) distribution with mean µ and variance
σ2, denoted X ∼ N(µ, σ2) or X ∼ N(µ, σ2), if X has the density

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
for x ∈ R (see Figure 2.3). The mgf is MX(θ) = exp[µ θ + σ2θ2/2]. If X ∼ N(µ, σ2) and
Y = aX+b, then Y ∼ N(aµ+b, a2σ2). In particular, Y = (X−µ)/σ ∼ N(0, 1). The N(0, 1)
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distribution is called the standard normal. We denote by Φ(·) the cdf of the standard normal,
i.e.,

Φ(x) =
1√
2π

∫ x

−∞
e−s2/2ds.

−3σ −2σ −σ 0 σ 2σ 3σ

f(x)

x

Fig. 2.3. Density of the N(0, σ2) distribution

The normal distribution is often motivated by various versions of the CLT (Theo-
rem A.15), which states that the standardized average of n i.i.d. random variables X1, . . . , Xn

converges to a standard normal when n → ∞. There are more general versions of the CLT
which allow the Xi’s to have different distributions and a limited amount of dependence,
multivariate CLTs, functional CLTs, and so on. What these various CLTs tell us is that
we should expect a random variable X to have a nearly normal distribution if it can be
expressed as the average (or sum) of a large number of small effects, where no small subset
of these effects dominates the others. Some results such as the Berry-Esseen-type bounds
(Theorem A.16) provide explicit bounds on the difference between the distribution of the
standardized average and the standard normal distribution, in terms of a weighted sum of
the third absolute moments of order 3 of the Xi’s. They indicate that the convergence to the
normal distribution could be very slow if the Xi’s have a highly skewed distribution.

2.8.4 The lognormal distribution

Suppose that instead of having a sum of small effects, we have a product of small effects,
i.e., Yn = Z1 ·Z2 · · ·Zn. Then, Xn = Y

1/n
n is the geometric average of Z1, . . . , Zn. Taking the

logarithm, we get

lnXn = lnY 1/n
n =

lnYn
n

=
lnZ1 + · · ·+ lnZn

n
.

If the lnZj’s satisfy the conditions of the central limit theorem, we obtain that

lnXn − E[lnXn]

(Var[lnXn])1/2
⇒ N(0, 1) for n→∞

so lnXn is approximately normal for large n.

When lnX has the normal distribution, we say that X has the lognormal distribution.
If lnX ∼ N(µ, σ2), then X ∼ Lognormal(µ, σ2) has density



2.8 Continuous Univariate Distributions 159

f(x) =
1

σx
√
2π

exp

(
−(lnx− µ)2

2σ2

)
for x > 0. Its mean and variance are E[X] = eµ+σ2/2 and Var[X] = e2µ+σ2

(eσ
2 − 1). Observe

that E[lnX] = µ < µ+ σ2/2 = lnE[X]. The lognormal distribution appears in the study of
geometric Brownian motion and is widely used in economics and financial modeling.

Example 2.6 Someone places an initial amount I0 in mutual funds and leaves it there for
one year. Let us divide the year into n periods of equal length. The (random) growth rate
(per year) of the value during period j is Rj. The value after the n periods is thus

Xn = I0(1 +R1)
1/n(1 +R2)

1/n · · · (1 +Rn)
1/n.

If the Rj are i.i.d., or more generally if the average of the random variables ln(1 +
R1), . . . , ln(1 +Rn) satisfy a CLT, then

lnXn = ln I0 +
1

n

n∑
j=1

ln(1 +Rj)

is approximately normal when n is large. This means that Xn has approximately the lognor-
mal distribution. □

2.8.5 The inverse Gaussian distribution

The inverse Gaussian distribution (or Wald distribution) with location parameter µ > 0 and
shape parameter λ > 0 has density

f(x) =

(
λ

2πx3

)1/2

exp

[
−λ(x− µ)2

2µ2x

]
for x > 0,

and cdf
F (x) = Φ(y1) + e2λ/µΦ(−y2)

where y1 = (x/µ − 1)
√
λ/x and y2 = (x/µ + 1)

√
λ/x. We denote X ∼ InvGaussian(µ, λ)

when X has this distribution. It has mean µ, variance µ3/λ, and skewness 3
√
µ/λ. The mgf

is MX(θ) = exp
[
(λ/µ)(1− (1− 2θµ2/λ)1/2)

]
. See Chhikara and Folks (1989) and Seshadri

(1993) for more on this distribution. The parameters are easily estimated via maximum
likelihood (Exercise 2.46). If λ→∞ and µ3/λ→ σ2, then (X − µ)/σ2 ⇒ N(0, 1).

The first passage time at a given positive level, for a BM with positive drift, has an
inverse Gaussian distribution (Section 2.14.3).

A random variableX ∼ InvGaussian(µ, λ) can be generated as follows (Michael, Schuchany,
and Haas 1976):

Generating X ∼ InvGaussian(µ, λ);
generate Z ∼ N(0, 1) and let Y = Z2 (which is χ2(1));

let W = µ+ µ
2λ

(
µY −

√
4µλY + µ2Y 2

)
;

let P = µ/(µ+W );
generate U ∼ U(0, 1);
if U ≤ P return X = W else return X = µ2/W .
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This requires two random numbers, Z and U . This Z can be generated by inversion from
another uniform, or in another way.

To generate X by inversion, one would generate U ∼ Uniform(0, 1) and then approximate
numerically the root X of F (X) = U , as discussed in Section 4.1.2. This is generally slower
than the above method.

If X ∼ InvGaussian(µ, λ), then aX ∼ InvGaussian(aµ, aλ). If X1, . . . , Xk are indepen-
dent, Xi ∼ InvGaussian(µi, λi), and µ2

i /λi = µ2
0/λ0 for all i, then X = X1 + · · · + Xk ∼

InvGaussian(µ, λ) where µ = µ1 + · · ·+ µk and λ = λ0(µ/µ0)
2.

There is also a three-parameter generalized inverse Gaussian (GIG) distribution, which
includes the inverse Gaussian as a special case and a gamma distribution as a limiting case
(Jørgensen 1982).

2.8.6 The normal inverse Gaussian (NIG) distribution

If X ∼ N(µ+βY, Y ) where Y ∼ InvGaussian(δ, γ), then X has the normal inverse Gaussian
(NIG) distribution, denoted X ∼ NIG(α, β, µ, δ), where α2 = β2+γ2. This definition provides
an easy way to generate X, by first generating Y , then Z ∼ N(0, 1), and returning X =
µ+ βY + Z

√
Y . The density of X is

f(x) =
αδeδγ+β(x−µ)K1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

for x ∈ R,

where K1 is the modified Bessel function of the second kind, of order 1:

Kp(y) =
1

2

∫ ∞

0

zp−1e−(z+1/z)y/2dz.

It has mean µ+δβ/γ, variance δα2/γ3, skewness 3β/(α
√
δγ), and kurtosis 3(α2+4β2)/(δα2γ).

Thus, µ is a location parameter, δ > 0 a scale parameter, β a skewness parameter, and α > 0
a kurtosis parameter. The mgf is

MX(θ) = exp
[
δ
(
γ −

√
α2 − (β + θ)2

)
+ µθ

]
.

If Xj ∼ NIG(α, β, µj, δj) for j = 1, 2, and if X1, X2 are independent, then X1 + X2 ∼
NIG(α, β, µ1 + µ2, δ1 + δ2).

See Barndorff-Nielsen (1997) for further details. The NIG distribution is a special case
the a generalized hyperbolic distribution (Barndorff-Nielsen, Mikosch, and Resnick 2013).

2.8.7 The exponential distribution

A random variable X has the exponential distribution with rate parameter λ, denoted X ∼
Exponential(λ), if its cdf is

F (x) = 1− e−λx for x > 0. (2.7)
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The density is f(x) = λe−λx for x > 0. The mean and variance are E[X] = 1/λ and
Var[X] = 1/λ2, so the coefficient of variation is 1. (Beware: In simulation software, the
procedures dealing with exponential random variables often have the mean µ = 1/λ as a
parameter.) The mgf is MX(θ) = (1− θ/λ)−1.

The main characterization of the exponential distribution is its memoryless property: If
X is exponential, the conditional distribution of X − t given that X > t is the same as the
distribution of X. That is,

P[X > t+ x | X > t] =
P[X > t+ x]

P[X > t]
=
e−λ(t+x)

e−λt
= e−λx = P[X > x]. (2.8)

If X represents the lifetime of a component, or a service time, or any other activity
duration, the memoryless property means that at any moment, one can forget the duration
elapsed so far for the activity and consider the remaining duration as a new exponential ran-
dom variable with mean 1/λ, independent of the past. The exponential is the only continuous
distribution having this property (The geometric distribution has the corresponding property
among discrete distributions). The memoryless property greatly simplifies the mathematical
analysis and the simulation of certain systems. It explains the widespread popularity of the
exponential distribution.

0 1/λ 2/λ 3/λ

λ/2

λ

f(x)

x

Fig. 2.4. The exponential density with parameter λ

Example 2.7 In the program of Figure 1.29 (for the call center), a NextPeriod event occurs
at the beginning of each hour j. This event changes the number of agents in the center, and
changes the arrival rate from λj−1 to λj. If the next arrival was due to occur in X units of
time after the beginning of the hour, then the memoryless property implies that X has the
exponential distribution with parameter λj−1. To take into account the change in the arrival
rate, we must replace it by an exponential with parameter λj. This is easily achieved by
multiplying X by λj−1/λj, because if U ∼ U(0, 1), then − ln(1 − U)/λ is exponential with
rate λ, and vice-versa. The call to nextArrival.reschedule in the program does exactly
that. □

The exponential is a special case of the Weibull distribution. It has a constant failure
rate λ. This means that if a component has an exponential lifetime distribution, the chance
of an imminent failure does not depend on its age. If X1, . . . , Xk are independent and Xj

is exponential with rate λj for each j, then one can easily show that X = min(X1, . . . , Xk)
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is exponential with rate λ = λ1 + · · · + λk (Exercise 2.14). If the λj are equal, the sum
X1 + · · ·+Xk has the gamma distribution (see Section 2.8.12).

Example 2.8 Consider an M/M/1 queue, with arrival rate λ and service rate µ. This
means that the interarrival times and the service times are independent exponential random
variables with rates λ and µ, respectively. If the server is idle, the time to the next event
(the next arrival) is an exponential with rate λ. If the server is busy, the time to the next
event is the minimum between the time until the next arrival and the time until the next
end of service, which are two independent exponentials with rates λ and µ, so it is an
exponential with rate λ+µ (or mean 1/(λ+µ)). This next event is an arrival with probability
p = λ/(λ+µ), and a service completion with probability 1−p. This system can be simulated
without an event list. The state of the model is simply the number of customers in the
system. Given the state at any given time, one can generate the time until the next event
by generating an exponential. If the state is larger than 0, one also generates a U ∼ U(0, 1)
and decides that the next event is an arrival if U ≤ p, and a departure otherwise. This
scheme can be generalized to queuing networks with exponential interarrivals and service
times at all nodes (the state is the number of customers at each node), and to more general
continuous-time Markov chains (see Exercise 2.15 and Fox 1993). □

2.8.8 The Weibull distribution

The Weibull distribution has density

f(x) = αλα(x− δ)α−1 exp[−(λ(x− δ))α] for x > δ,

where δ ∈ R is the location parameter (often equal to 0), α > 0 is the shape parameter, and
λ > 0 is the rate parameter (the scale is 1/λ). We denote X ∼ Weibull(δ, α, λ) in general and
X ∼ Weibull(α, λ) when δ = 0. The mean and variance are E[X] = δ + Γ (1/α)/(αλ) and
Var[X] = [2Γ (2/α)− Γ 2(1/α)/α]/(αλ2). The cdf is

F (x) = 1− exp[−(λ(x− δ))α] for x > δ.

Figure 2.5 shows the shape of the density for selected values of α. We have X ∼ Weibull(α, λ)
if and only if (λX)α ∼ Exponential(1).

This distribution is often used to model lifetimes of deteriorating systems or parts. Let
δ = 0. If α = 1, this gives the exponential distribution with rate λ, with constant failure
rate and coefficient of variation 1. For α < 1, the failure rate is decreasing and the coefficient
of variation is larger than 1 (more relative variability than the exponential distribution),
whereas for α > 1 one has the opposite.

TheWeibull(2, λ) is also called the Rayleigh distribution with parameter β = 1/λ, denoted
Rayleigh(β). Its cdf is F (x) = 1 − exp[−x2/β] for x > 0. If the coordinates (X1, X2) of a
2-dimensional vector are independent N(0, σ2), its Euclidean length

√
X2

1 +X2
2 has the

Rayleigh(σ
√
2) distribution.

Why the Weibull distribution? Whereas the average of i.i.d. random variables tends to be
normally distributed, the minimum of random variables that have a fixed lower bound tends
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0 1/λ 2/λ
0
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f
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)

Fig. 2.5. The Weibull density with shape parameter α = 1/2, 1, 4, and 8, rate parameter λ, and
location parameter δ = 0.

to follow the Weibull distribution. The following theorem, taken from Galambos (1978), page
56, makes this statement precise.

Theorem 2.2 Let X1, . . . , Xn be i.i.d. random variables with a distribution function G for
which the theoretical minimum is finite, i.e., δ = inf{x | G(x) > 0} > −∞. Let Wn =
min(X1, X2, . . . , Xn). For each integer n > 0, define dn as the solution of G(δ + dn) = 1/n.
Suppose that there is a constant α > 0 such that

lim
t→∞

G(δ + 1/(tx))

G(δ + 1/t)
= x−α. (2.9)

Then

lim
n→∞

P[Wn − δ < dnx] =

{
1− exp[−xα] if x > 0,

0 if x ≤ 0.

That is, (Wn − δ)/dn converges to the Weibull(α, 1) distribution when n→∞.

The condition (2.9) implies that the shape parameter α depends on the form of the
distribution G at its starting point δ. Of course, the theorem can also be used to find the
distribution of the maximum (instead of the minimum) if the distribution G has a theoretical
has a maximum; it suffices to reverse the signs.

As an illustration, suppose that a system fails at the occurrence of the first event from
a large set of independent potential events whose dates of occurrence have a continuous
distribution. Then the theorem justifies a Weibull distribution for the time until the system
fails. In a different context, suppose that an optimization (minimization) problem has millions
of local minima, and that we perform local optimizations to find “good” solutions from each
of n independent random starting points in the solution space. Let Wn be the value of the
best solution found by this approach. Under appropriate conditions (to satisfy approximately
the assumptions of the theorem), for large n,Wn has approximately the Weibull distribution.
Here, δ represents the value of the global minimum.
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2.8.9 The Gumbel distribution

Theorem 2.2 does not apply when the cdf G has an infinite left tail, for example if G is
the normal distribution. In that case, the asymptotic distribution of the minimum (or of the
maximum, if there is an infinite right tail), properly scaled, is Gumbel. See Theorem 2.3. The
Gumbel (or type I extreme value) distribution with location parameter δ and scale parameter
β ̸= 0, denoted Gumbel(δ, β), has density

f(x) = (1/|β|) exp
[
−e(δ−x)/β + (δ − x)/β

]
and cdf

F (x) =

{
exp

[
−e(δ−x)/β

]
if β > 0,

1− exp
[
−e(δ−x)/β

]
if β < 0.

for x ∈ R. The “scale” is actually determined by |β|. We have X ∼ Gumbel(δ, β) if and
only if 2δ −X ∼ Gumbel(δ,−β), so it is possible to always work with β > 0. The mean and
variance are µ = δ + γβ and σ2 = (βπ)2/6, where γ = 0.5772156649... is Euler’s constant,
and the mgf isMX(θ) = Γ (1−β θ) eδ θ if β > 0. The standard Gumbel distribution has δ = 0
and β = 1.

If Y ∼ Weibull(α, λ) and 0 ̸= c ∈ R, then X = c lnY ∼ Gumbel(δ, β) with δ = (lnλ)/α
and β = −1/(cα). Thus, in analogy with the lognormal, the Weibull distribution can be
interpreted as a logGumbel (with negative β).

2.8.10 The Fréchet distribution

A random variable X has the Fréchet distribution with location parameter δ ∈ R, scale
parameter β > 0, and shape parameter α ∈ R, if its cdf is given by

F (x) = exp
[
−((x− δ)/β)−α

]
for x > δ. The mean is µ = δ + βΓ (1− 1/α) for α > 1 and the variance is β2[Γ (1− 2/α)−
Γ 2(1− 1/α)] for α > 2 (otherwise they are infinite).

2.8.11 Generalized extreme value distribution

A random variable X has the generalized extreme value (GEV) distribution with location
parameter δ ∈ R, scale parameter β > 0, and shape parameter ξ ∈ R, if its cdf is given by

F (x) =

{
exp

[
− [1 + ξ(x− δ)/β]−1/ξ

]
for x > δ − β/ξifξ ̸= 0,

exp [− exp[−(x− δ)/β]] for all x ∈ Rif ξ = 0.

The parameter ξ determines the shape of the tail. When ξ > 0, α = 1/ξ is called the tail
index. The Gumbel, Fréchet, and reverse Weibull (−X where X is Weibull) are all special
cases. For ξ = 0, we obtain a Gumbel distribution (Section 2.8.9). For ξ > 0, we have
a Fréchet distribution (Section 2.8.10). For ξ < 0, we have a reverse Weibull distribution
(Section 2.8.8). These three distributions are important because of the following theorem:
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Theorem 2.3 (Fisher-Tippet-Gnedenko theorem, or extreme value theorem.) If X1, X2, . . .
are i.i.d. random variables with cdf G, Mn = max{X1, . . . , Xn}, and if there are sequences
of real numbers {dn, n ≥ 1} and {cn, n ≥ 1} such that

Yn =
Mn − dn

cn
⇒ Y

when n→∞, where Y is not degenerate (a constant), then Y is a random variable with the
Gumbel, Fréchet or reverse Weibull distribution.

If G has a finite tail, i.e., G(x) = 1 for some x < ∞, then −Y has a Weibull dis-
tribution. If G has a right tail that decreases exponentially (as for the normal, gamma, or
exponential distribution, for example), then Y is Gumbel. If G has a right tail that decreases
as a polynomial (as for the Pareto, Student-t, and several mixture distributions), then Y is
Fréchet.

2.8.12 The gamma distribution

A random variable X has the gamma distribution with shape parameter α > 0 and rate
parameter λ > 0, denoted X ∼ Gamma(α, λ), if its density is

f(x) =
λαxα−1e−λx

Γ (α)
for x > 0,

where the gamma function Γ is defined by

Γ (y) =

∫ ∞

0

xy−1e−xdx for y > 0. (2.10)

In particular, one has Γ (1/2) =
√
π, Γ (1) = 1, and Γ (y + 1) = yΓ (y) for any y > 0. As a

consequence, if k is a positive integer, Γ (k+1) = k! and Γ (k+1/2) =
√
π(1/2) · · · (k−1/2).

The mean and variance are E[X] = α/λ and Var[X] = α/λ2. Figure 2.6 shows the density
for selected values of α.
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Fig. 2.6. The gamma density with shape parameter α = 1/2, 1, 4, and 8
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As special cases, the gamma distribution is the same as the exponential distribution when
α = 1 and the same as the chi-square distribution with k = 2α degrees of freedom when 2α
is an integer and λ = 1/2. If X ∼ Gamma(α, λ) then 1/X ∼ Pearson-5(α, λ) and vice-versa.
If X1 ∼ Gamma(α1, λ) and X2 ∼ Gamma(α2, λ) are independent, then X1/(X1 + X2) ∼
Beta(α1, α2).

If X1, . . . , Xk are independent random variables and Xi ∼ Gamma(αi, λ) for each i, then
X = X1 + · · ·+Xk ∼ Gamma(α, λ) where α = α1 + · · ·+ αk.

In particular, if X1, . . . , Xk are independent exponentials with the same parameter λ,
then X = X1 + · · ·+Xk is a Gamma(k, λ) random variable. In this case, i.e., when α = k is
an integer, the Gamma(k, λ) distribution is also called the Erlang(k, λ) distribution.

The gamma cdf does not have a closed-form expression in general, but ifX ∼ Erlang(k, λ),
then P[X ≤ x] = P[Y ≥ k] where Y ∼ Poisson(λx) (Exercise 2.12). Therefore, in that case,

F (x) = P[X ≤ x] = 1−
k−1∑
j=0

e−λx(λx)j

j!
(2.11)

for x > 0. This can be used to compute F (x) when k is small. Conversely, a good numerical
approximation of the gamma distribution function can be used to approximate the Poisson
distribution function via (2.11).

A good algorithm for generating Gamma(α, 1) random variates suffices for generating
gammas with arbitrary parameters, because λ only changes the scale.

2.8.13 The beta distribution

The beta distribution with shape parameters α > 0 and β > 0, over the interval (0, 1), has
density

f(x) =
Γ (α + β)

Γ (α)Γ (β)
xα−1(1− x)β−1 for 0 < x < 1.

It is sometimes used to model a random proportion. Its mean and variance are E[X] =
α/(α + β) and Var[X] = αβ/[(α + β)2(α + β + 1)]. Some beta densities are illustrated in
Figure 2.7 for the symmetric case (α = β) and Figure 2.8 for the asymmetric case. For the
symmetric case, all the density becomes concentrated at 1/2 (asymptotically) when α→∞
and split half and half between 0 and 1 when α→ 0.

One has X ∼ Beta(α, β) if and only if 1 − X ∼ Beta(β, α) if and only if X/(1 − X) ∼
Pearson-6(α, β, 1). The Beta(1, 1) and U(0, 1) distributions are the same. The Beta(1, 2) and
Beta(2, 1) are special cases of the triangular distribution. A beta random variable X over
(0, 1) can be transformed into a beta random variable Y with the same shape of distribution,
but over an arbitrary interval (a, b), via the linear transformation Y = a+ (b− a)X.

We have the following relationship between the binomial and beta cdf’s: If Y ∼
Binomial(n, p), then P[Y ≥ y] = P[X ≤ p] where X ∼ Beta(y, n − y + 1). This is some-
times used to approximate the binomial cdf.

2.8.14 The chi-square distribution

The chi-square distribution with n degrees of freedom, denoted χ2(k), has density
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Fig. 2.7. The symmetric beta density with parameters α = β = 1/16, 1/2, 1, and 3.
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Fig. 2.8. The beta density with parameters β = 2 and α = 0.3, 1, and 4.

f(x) =
x(k/2)−1e−x/2

2k/2Γ (k/2)
for x > 0.

It is illustrated in Figure 2.9. The mean and variance are E[X] = k and Var[X] = 2k. If
X1, . . . , Xk are i.i.d. N(0, 1), then X2

j ∼ χ2(1) for each j and X = X2
1 + · · · +X2

k ∼ χ2(k).

As a consequence of this and the central limit theorem, the distribution of (X − k)/
√
2k

converges to the N(0, 1) when k →∞.
The chi-square distribution is widely used in several contexts, including goodness-of-fit

and independence tests for discrete distributions, and computing a confidence interval for
the variance (Chapter 5). It is a special case of the gamma distribution with α = k/2.

2.8.15 The noncentral chi-square

The noncentral chi-square distribution generalizes the chi-square. If X1, . . . , Xk are indepen-
dent and Xj ∼ N(µj, σ

2
j ) for each j, then X =

∑k
j=1X

2
j /σ

2
j has the noncentral chi-square
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Fig. 2.9. The chi-square density with k = 4, 8, 32

distribution with k degrees of freedom and noncentrality parameter λ =
∑k

j=1 µ
2
j/σ

2. This
distribution is equivalent to a Poisson-weighted mixture of central chi-square distributions:
If N ∼ Poisson(λ/2) and X ∼ χ2(k+2N), then X is a noncentral chi-square with parameters
(k, λ). The mean and variance are E[X] = k + λ and Var[X] = 2(k + 2λ). With λ = 0, we
recover the usual chi-square distribution.

2.8.16 The Student-t distribution

The Student-t distribution with n degrees of freedom, denoted Student-t(n), has density

f(x) =
Γ ((n+ 1)/2)√

nπΓ (n/2)(1 + x2/n)(n+1)/2
for x ∈ R.
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Fig. 2.10. The Student-t density with n = 3 and 8, compared with the standard normal density.

This density resembles that of the N(0, 1), but is slightly flatter in the center and thicker
in the tails; see Figure 2.10. The Student-t(n) converges to the N(0, 1) distribution when
n → ∞. The mean is 0 and the variance is Var[X] = n/(n − 2) for n ≥ 3. If Z ∼ N(0, 1)
and Y ∼ χ2(n) are independent random variables, then X = Z/

√
Y/n ∼ Student-t(n).
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2.8.17 The F distribution of Fisher

The F (or Fisher) distribution with n1 and n2 degrees of freedom, denoted F(n1, n2), has
density

f(x) =
Γ ((n1 + n2)/2)(n1/n2)

n1/2x(n1/2)−1

Γ (n1/2)Γ (n2/2)(1 + n1x/n2)(n1+n2)/2
for x > 0.

Its mean and variance are E[X] = n2/(n2 − 1) for n2 ≥ 2 and Var[X] = n2
2(2n2 + 2n1 −

4)/[n1(n2−2)2(n2−4)] for n ≥ 5. If X ∼ F(n1, n2) then 1/X ∼ F(n2, n1). If X1 ∼ χ2(n1) and
X2 ∼ χ2(n2) are independent random variables, then X = (X1/n1)/(X2/n2) ∼ F(n1, n2).
This distribution is often used for analysis of variance (e.g., in linear regression) under
normality assumptions.

2.8.18 Pearson distribution of type 5

If Y ∼ Gamma(α, λ) then X = 1/Y has the Pearson type 5 (or inverted gamma) distribution,
denoted X ∼ Pearson-5(α, λ). Its density and cdf are

f(x) =
x−(α+1)e−λ/x

λ−αΓ (α)

and

F (x) = 1− Fγ(1/x)

for x > 0, where Fγ is the Gamma(α, λ) cdf. The mean and variance are E[X] = λ/(α − 1)
for α > 1, Var[X] = λ2/[(α− 1)2(α− 2)] for α > 2, and are infinite otherwise.

Fitting a Pearson type 5 distribution to a set of observations X1, . . . , Xn is equivalent
to transforming these observations into Y1 = 1/X1, . . . , Yn = 1/Xn and fitting a gamma
distribution to the Yi’s.

2.8.19 Pearson distribution of type 6

If X1 ∼ Gamma(α1, λ) and X2 ∼ Gamma(α2, 1), then X = X1/X2 has the Pearson type 6 (or
ratio of gammas) distribution with parameters (α1, α2, λ), denoted X ∼ Pearson-6(α1, α2, λ).
Its density and cdf are

f(x) =
Γ (α1 + α2)λ(λx)

α1−1

Γ (α1)Γ (α2)(1 + λx)α1+α2

and

F (x) = 1− Fβ(λx/(1 + λx))

for x > 0, where Fβ is the Beta(α1, α2) cdf. The mean and variance are E[X] = α1/[λ(α2−1)]
for α2 > 1, Var[X] = α1(α1+α2−1)/[λ2(α2−1)2(α2−2)] for α2 > 2, and are infinite otherwise.

We have that Y = X/(1 + X) ∼ Beta(α1, α2) if and only if X = Y/(1 − Y ) ∼
Pearson-6(α1, α2, 1).
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2.8.20 The Pareto distribution

There are several types of Pareto distributions; see Arnold (1983) for an extensive coverage.
Their common property is that the tail of the density decreases at a slower rate than an
exponential. Here, we denote by Pareto(α, β) a distribution with two parameters α > 0 and
β > 0, and density

f(x) = αβαx−(α+1) for x > β.

Figure 2.11 illustrates the case where α = β = 1 (for which both the mean and variance are
infinite). Its cdf is F (x) = 1−(β/x)α for x ≥ β. The mean and variance are E[X] = αβ/(α−1)
for α > 1, Var[X] = αβ2/[(α − 2)(α − 1)2] for α > 2, and are infinite otherwise. This
distribution is used, e.g., for modeling insurance claim sizes (Asmussen 2000) and burst
lengths in communication networks.
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Fig. 2.11. The Pareto density with shape parameters α = β = 1, compared to the exponential
density with λ = 1, shifted to the right by 1, labeled Expon(1). The tail converges to zero much
more slowly for the Pareto than for the exponential.

2.8.21 The logistic distribution

The logistic distribution with parameters α and λ > 0, denoted Logistic(α, λ), has density

f(x) =
λe−λ(x−α)

(1 + e−λ(x−α))2

and cdf

F (x) =
1

1 + e−λ(x−α)

for x ∈ R. If lnX has the logistic distribution, X is said to have the loglogistic distribution.

2.8.22 The Cauchy distribution

The Cauchy distribution with parameters α and β > 0, denoted Cauchy(α, β), has density
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f(x) =
β

π[(x− α)2 + β2]

and cdf

F (x) =
1

2
+

1

π
arctan((x− α)/β).

for x ∈ R. Its mean is undefined and its variance is infinite.

2.8.23 The Johnson Family of Distributions

Johnson (1949) proposed a flexible family of distributions, whose densities can take a rich
variety of shapes. The general form of cdf is

F (x) = Φ[γ + δg((x− ξ)/λ)], for x ∈ R, (2.12)

where Φ is the standard normal cdf, γ and δ > 0 are shape parameters, ξ is a location
parameter, λ > 0 is a scale parameter, and g is one of the following four transformations:

g(y) =


ln y for the lognormal family,

sinh−1(y) = ln(y +
√
y2 + 1) for the unbounded family,

ln(y/(1− y)) for the bounded family,
y for the normal family.

(2.13)

In each case, Z = γ + δg((X − ξ)/λ) has the N(0, 1) distribution, and one can write X =
ξ + λg−1((Z − γ)/δ) where

g−1(z) =


ez for the lognormal family,
(ez − e−z)/2 for the unbounded family,
1/(1 + e−z) for the bounded family,
z for the normal family.

(2.14)

We assume, without loss of generality, that λ = 1 for the normal and lognormal families,
and that ξ = 0 for the normal family. Members of the normal and lognormal families are the
same as the normal and lognormal distributions, except that the lognormal is shifted to the
right by ξ.

The density is

f(x) =
δ

λ
√
2π
g′(x− ξ)/λ) exp

[
−(γ + δg((x− ξ)/λ))2/2

]
for x ∈ H,

where g′ is the derivative of g and the support H of the distribution is (−∞,∞) for the
unbounded and normal families, [ξ, ξ+λ] for the bounded family, and [ξ,∞) for the lognormal
family. This density function is perfectly smooth: It is infinitely differentiable all over R.

Figures 2.12 and 2.13 show examples of Johnson densities with location parameter ξ
fixed to 0 and scale parameter λ fixed to 1. The densities are symmetric about their mean
when γ = 0 and skewed to the left [resp., to the right] when γ < 0 [resp., γ > 0]. For fixed
γ, the density becomes more sharply peaked when δ increases. For the unbounded family,
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Fig. 2.12. The density for the Johnson unbounded family with parameters ξ = 0, λ = 1, δ = 2 and
γ = −1,−2,−3.
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Fig. 2.13. The density for the Johnson bounded family with parameters ξ = 0, λ = 1 and different
pairs (γ, δ).

the density is always unimodal, whereas for the bounded family, it can be either unimodal
or bimodal.

DeBrota et al. (1989b) argue that the bounded family should be appropriate for a wide
range of practical situations, because it can closely imitate other popular distributions such
as the beta, normal, triangular, uniform, etc., and because in the real-world, measurements
are always bounded anyway and the extreme values, near the endpoints of the support,
are typically unlikely. Swain, Venkatraman, and Wilson (1988) developed a public-domain
software package called FITTR1 for estimating the parameters of all types of Johnson dis-
tributions based on sample data, via weighted least squares. DeBrota et al. (1989a, 1989b)
describe a visual interactive software, called VISIFIT, for fitting bounded Johnson distribu-
tions subjectively. The user provides the lower and upper bounds of the distribution, ξ and
ξ + λ, plus two additional quantities such as the mean and standard deviation, or the mode
and the width of the central 95% of the distribution, etc. The user may change the shape in
a variety of ways until satisfied with the fitting.
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2.8.24 Stable distributions

A stable (or α-stable) distribution is usually specified by its characteristic function φX , be-
cause there is no explicit expression for the density or the cdf. It has a location parameter
µ ∈ R, a scale parameter σ > 0, a skewness parameter β ∈ [−1, 1], and a “tail-heavyness”
parameter α ∈ (0, 2]. We have X ∼ Sα(σ, β, µ) (we say that X has an α-stable distribution)
if

φX(t) = E[e
√
−1tX ] = exp

[
−|σt|α

(
1−
√
−1β sign(t)Ψα(t)

)
+
√
−1µt

]
,

where Ψα(t) = (2/π) ln |t| if α = 1, and Ψα(t) = tan(απ/2) otherwise. For α = 2, this gives
the normal distribution with variance 2σ2. For α < 2, X has infinite variance (and higher
moments) and has Pareto-type tails:

lim
x→∞

xαP[X > x] = lim
x→∞

xαP[X < −x] = Γ (α) sin(απ/2)

π
(1 + β)σα.

This convergence is faster for smaller values of α. For α ≤ 1, the mean does not exist.
Stable laws arise as the limiting distributions of centered and properly standardized

sums of i.i.d. random variables X1, X2, . . . ; they are in fact the only distributions with this
property. When these random variables have finite variance, this is the usual CLT. Otherwise,
if there is a sequence {Dn, n ≥ 2} and a constant α > 0 such that n−1/α(X1 + · · · + Xn −
Dn) ⇒ X, then X must have an α-stable law. In fact, X ∼ Sα(σ, β, µ) if and only if one
can write X = n−1/α(X1+ · · ·+Xn−Dn) where the Xj’s are i.i.d. with the same distribution
as X. We then say that X is infinitely divisible. If X1 and X2 are independent with the same
stable distribution, then any linear combination X = aX1 + bX2 + c has a stable law with
the same parameters α and β.

Stable distributions thus appear as a natural choice to model a process defined by a sum of
a large number of small effects, when these effects have a heavy-tailed (and infinite variance)
distribution. Such processes are commonplace in finance, where stable distributions often
provide a better fit than the normal or lognormal to stock returns, commodity price returns,
and exchange rates, for example. On the other hand, they typically overestimate the tickness
of the tails, leading to overestimation of the risk (Weron 2004). Tempered stable distributions
often provide a better fit; they are modified stable distributions with exponentially decreasing
(light) tails (Rosiński 2007).

For further details on stable laws, including parameter estimation, random variate gen-
eration, and applications, see Borak, Härdle, and Weron (2005), Samorodnitsky and Taqqu
(1994), and Asmussen and Glynn (2007), page 332.

2.8.25 Exponential mixtures and phase-type distributions

The exponential distribution is convenient but not always realistic. Other distributions can
often be well approximated by a sum or mixture of (a possibly random number of) expo-
nentials.

We start with a simple case, the Erlang. If X1, . . . , Xk are i.i.d. exponential with mean
1/λ, thenX = X1+· · ·+Xk has the Erlang(k, λ) distribution, a special case of the gamma dis-
tribution (Section 2.8.12). The Erlang distribution has less variability than the exponential,
its coefficient of variation is 1/

√
k.
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By summing k exponentials with different rates, λ1, . . . , λk, one gets more flexibility
than with the Erlang. The distribution of the sum is called hypoexponential with rates
λ1, . . . , λk. Conceptually, an activity has an hypoexponential duration if it can be decom-
posed into k shorter activities executed sequentially, and whose durations are independent
and exponential. An hypoexponential random variable X with rates λ1, . . . , λk has mean
E[X] =

∑k
j=1(1/λj) and variance Var[X] =

∑k
j=1(1/λ

2
j). Its coefficient of variation is always

less than 1.

To obtain more variability than for the exponential, i.e., a coefficient of variation larger
than 1, one can connect exponentials in parallel instead of in series. That is, suppose we
generate a random integer J in the set {1, . . . , k}, with probabilities pj = P[J = j] for 1 ≤
j ≤ k, and then generate X from the exponential distribution with rate λJ , where λ1, . . . , λk
are given. Then X has the hyperexponential distribution with parameters p1, λ1, . . . , pk, λk.
Its mean and variance are E[X] =

∑k
j=1 pj/λj and Var[X] = 2

∑k
j=1 pj/λ

2
j − (E[X])2. The

coefficient of variation generally increases with k. The hyperexponential is a special case
of what is called a mixture distribution, where X has the distribution function Fj with
probability pj for 1 ≤ j ≤ k. The CPU time consumed by a computer program has been
found to follow an hyperexponential distribution in certain settings.

A very powerful tool for combining exponentials is the concept of phase-type distribution
(see, e.g., Wolff 1989, pages 269 and 299, and Asmussen 1987). A random variable X has
an exponential phase-type distribution if X can be expressed as X = X1 + · · ·XR, where
X1, . . . , Xk are independent exponentials with rates λ1, . . . , λk, and R is a random variable
independent of the Xj’s and taking its values in {1, . . . , k} as follows: For some real numbers
p1, . . . , pk−1, where 0 < pj ≤ 1, one has

P[R = r] =


1− p1 if r = 1,

p1 · · · pr−1(1− pr) if 2 ≤ r ≤ k − 1,

p1 · · · pk−1 if r = k.

This can be interpreted as follows (see Figure 2.14). To construct X, first generate X1 and
exit with X = X1 with probability 1− p1. With probability p1, go to phase 2: Generate X2,
exit with X = X1 +X2 with probability 1− p2 and continue to phase 3 with probability p2.
In phase 3, generate X3, exit with X = X1 +X2 +X3 with probability 1− p3, and so on. In
phase k, the probability of exit is 1.

−−−→ X1
p1−−−→ +X2

p2−−−→ +X3
p3−−−→ · · · pk−1−−−→ +Xk

1−p1

y 1−p2

y 1−p3

y 1

y
Fig. 2.14. Transition probabilities for a phase-type distribution

The following theorem motivates this class of phase-type distributions. It says that any
distribution of a nonnegative random variable can be approximated arbitrarily closely by an
exponential phase-type distribution.
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Theorem 2.4 (Wolff 1989, page 270.) If F is a cdf over [0,∞), then for any ϵ1, ϵ2 > 0, there
is an exponential phase-type distribution H and a set A ⊂ [0,∞) such that |H(t)−F (t)| < ϵ1
for all t ̸∈ A, and where A is a countable union of small intervals with total length less than
ϵ2.

The set A in the theorem is needed when F has jumps. It is the union of intervals which
are neighborhoods of the points of discontinuity of F . If F is a continuous distribution, then
A can be taken as the empty set.

Example 2.9 One can generalize Example 2.8 as follows. A system for which all the
events are scheduled with delays that are random variables with exponential or phase-type
distributions is in fact a continuous-time Markov chain. Such a system can be simulated
without an event list, as follows. In any given state, one can generate the time until the
next transition (an exponential) and then determine the next state using the right transition
probabilities (which depend on the current state). This type of implementation may run
faster than with an event list and this could motivate the use of phase-type distributions in
a simulation model (Fox 1993 and Exercise 2.15). If the state space is not too large, one can
also avoid simulation altogether and compute the relevant performance measures by using
matrix-theoretic methods to compute the steady-state probabilities of the corresponding
continuous-time Markov chain. □

Phase-type distributions are studied in several books but are not much used in practice,
perhaps because of a lack of support in simulation and distribution-fitting software.

2.8.26 Truncated Distributions

If a distribution has a positive density in an area larger than what we want, we may truncate
it, i.e., set the density equal to 0 in the areas that we do not want, and rescale in the other
areas so that the new density integrates to 1.

As an illustration, suppose the duration of an activity has a distribution close to the
normal distribution. However, negative durations must be ruled out because they make no
sense. More generally, suppose we want to use a density f(x) but do not want values outside
some interval (a, b) (where a or b can be infinite). We can use the truncated density

f̃(x) =

{
f(x)/K for a < x < b,

0 elsewhere,
(2.15)

where K =
∫ b

a
f(u)du is the normalization constant required to recover a density. The same

technique can also be applied to truncate other subsets of the real line instead of just the
tails.

A simple way of generating random variates from the density f̃ above, if the cdf F
corresponding to f is easy to invert, is to generate U ∼ Uniform(F (a), F (b)) and return
X = F−1(U) (Exercise 2.16).
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2.8.27 Shifted Distributions

Several distributions are defined over the interval [0,∞) (e.g., the exponential, lognormal,
gamma, etc.). There are situations where it might be more appropriate to shift the distribu-
tion so that it starts from a point a ̸= 0. If X0 has a distribution F0 defined over the interval
[0,∞), then X = X0 + a has a distribution F over [a,∞) which is a shifted version of F0.
That is, F (x) = P[X ≤ x] = P[X0 ≤ x− a] = F0(x− a).

In Example 1.38, for instance, the optimal IS density turns out to be an exponential
with parameter λ, shifted by y0.

When a is fixed, estimating the parameters of the distribution F from a set of data is
no harder for a ̸= 0 than for a = 0. On the other hand, estimating the value of a together
with those parameters is much more difficult for certain distributions (e.g., the Weibull).

2.8.28 Mixture Distributions

A continuous random variable X whose density can be decomposed as

f(x) =
∞∑
j=1

wjfj(x), (2.16)

where each fj is a density and the weights wj sum to one, is said to have a mixture distri-
bution. Usually, the weights are non-negative and only a finite number of them are nonzero.
The hyperexponential distribution discussed in Section 2.8.25 is a special case of a mixture
distribution.

Mixture distributions are appropriate for modeling a population where a subset of the
population has one distribution, another subset has another distribution, etc. In the call
center example, for instance, there could be different types of calls, each type having its
own distribution for the call duration. If these distributions differ significantly, a mixture
distribution might be appropriate to model the duration of a random call. For example, one
type might be the calls having reached a wrong number (usually short calls), a second type
might be calls to buy a standard product offered by the company (longer calls), and a third
type might be from customers who want to negotiate a non-standard service (long calls with
more variable durations).

Densities can also be defined by uncountable mixtures, of the form

f(x) =

∫
Θ

fθ(x)w(θ)dθ, (2.17)

where the parameter set Θ is a subregion of the real space, each fθ is a density over R, and
w is a density over Θ. To generate X from the density f , one can first generate Y from the
density w over Θ, then generate X from the density fY .

Mixtures are defined similarly for discrete distributions; the densities f , fj, and fθ are
simply replaced by probability mass functions.
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2.9 Empirical and Quasi-Empirical Distributions

2.9.1 Variants of the empirical distribution

Let x1, . . . , xn be a sample of n real-valued observations and let x(1), . . . , x(n) be the values
x1, . . . , xn sorted by increasing order (these are called the order statistics). The empirical
distribution associated with this sample is a discrete distribution that assigns a probability
1/n to each of these n observations. The empirical cdf of x1, . . . , xn is the cdf of this empirical
distribution; it is defined as

F̂n(x) =
1

n

n∑
i=1

I[xi ≤ x]. (2.18)

This is a step function increasing from 0 to 1, with a step of size 1/n at each observation
xi, as shown in Figure 2.15. (A step of size k/n occurs whenever k observations are equal.)
Generating data from the empirical distribution is equivalent to selecting i.i.d. observations
from the discrete uniform distribution over {x1, . . . , xn}, i.e., sampling randomly from this
set, with replacement.

x(1) x(2) x(3) x(4)x(5) x(6) x(7) x(8)
0

0.5

1
F (x)

x
x

F̂
n
(x
)

Fig. 2.15. An empirical cdf with n = 8

When the xi are independent realizations of a random variable X with unknown cdf F ,
this empirical cdf F̂n (viewed as a random function) is a natural estimator of F . In this case,
for any fixed x ∈ R, F̂n(x) is the average of n independent Bernoulli random variables with

parameter (mean) p = F (x), so from Theorem 1.1 F̂n(x)
w.p.1→ F (x) and

√
n|F̂n(x)− F (x)|
F (x)(1− F (x))

⇒ N(0, 1) when n→∞.

This proves that we have pointwise convergence, for any fixed x. The following stronger
result shows that the convergence is in fact uniform in x.

For any given fixed cdf F , the L∞-distance (or Kolmogorov-Smirnov distance) between
F̂n and F is defined as

Dn = Dn(F ) = sup
−∞<x<∞

|F̂n(x)− F (x)|. (2.19)

This Dn is also known as the Kolmogorov-Smirnov test statistic. When the Xi are generated
from cdf F , Dn can be used to measure the estimation error of F by F̂n. A fast algorithm
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to compute the cdf P[Dn ≤ x] or its complement P[Dn > x] with good accuracy for any n
or x can be found in Simard and L’Ecuyer (2011), with code in C and Java.

The Glivenko-Cantelli theorem states that Dn
w.p.1→ 0 when n → ∞. Kolmogorov has

proved that for any cdf F (discrete or continuous),

√
nDn ⇒ K

def
= sup

−∞≤x≤∞
|B(F (x))|

where B is a standard Brownian bridge. When F is continuous, we have K = sup0≤t≤1 |B(t)|
and the distribution of this random variable K is known as the Kolmogorov distribution.
The theorem implies that Dn converges as O(n−1/2) in probability.

We also have the following large-deviation result. It applies regardless of the form of F
(e.g., the distribution can be continuous or discrete). This version, with the leading constant
equal to 2, was proved by Massart (1990).

Theorem 2.5 (Dvoretzky-Kiefer-Wolfowitz inequality.) Let X1, . . . , Xn be an independent
sample generated from any given cdf F . For any ϵ > 0 and any n > 0, one has

P[
√
nDn > ϵ] ≤ 2e−2ϵ2 . (2.20)

These results about Dn support the idea of using the empirical distribution F̂n of obser-
vations obtained from the cdf F to generate new observations in a simulation model in place
of using F , when F is unknown. However, sampling from F̂n can only produce numbers that
are already in the original sample. To get around this limitation, a first idea could be to
replace the empirical distribution by the continuous piecewise-linear variant F̃n defined by

F̃n(x) =


0 if x ≤ x(1),
i− 1

n− 1
+

x− x(i)
(n− 1)(x(i+1) − x(i))

if x(i) ≤ x ≤ x(i+1),

1 if x ≥ x(n).

(2.21)

This is illustrated by the green line in Figure 2.16. With this quasi-empirical distribution F̃n,
any value in the interval (x(1), x(n)) can be generated. In case we know that the true density
really starts at 0, we might want to start the linear approximation at (0, 0), as shown by the
red line in Figure 2.16. Then, any value in (0, x(n)) can be generated.

To be able to generate values outside these intervals, possibly up to infinity or down
to minus infinity, one can add tails to the quasi-empirical distribution. As an illustration,
Bratley, Fox, and Schrage (1987) propose the following quasi-empirical distribution which
is piecewise linear up to x(n−k), and has an exponential tail on the right, adjusted so that
the quasi-empirical distribution has the same mean as the sample (see Exercise 2.17). They
assume that the density is positive on (0,∞), with F (0) = 0, then they define

F̌n(x) =


i

n
+

x− x(i)
(x(i+1) − x(i))n

if x(i) ≤ x ≤ x(i+1), 0 ≤ i < n− k,

1− k

n
exp

[
−(x− x(n−k))/θ

]
if x > x(n−k),

(2.22)



2.9 Empirical and Quasi-Empirical Distributions 179
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0

0.5

1
F (x)

x
x

F̃
n
(x
)

Fig. 2.16. The quasi-empirical cdf F̃n(x) (in green) and a modified version that starts at 0 (in red),
for the same n = 8 observations as in Figure 2.15. The points (xi, F̂n(xi)) = (xi, i/n) are shown in
black.

where x(0) = 0, k is a small positive integer (e.g., 1 ≤ k ≤ 5), and

θ =
1

k

(
x(n−k)

2
+

n∑
i=n−k+1

(x(i) − x(n−k))

)
.

The assumption that F (0) = 0 can be dropped with a minor modification of the distribution
(Exercise 2.18). One can also change the exponential tail to a tail that has a different dis-
tribution, such as the Weibull or the gamma, for example. Bratley, Fox, and Schrage (1987)
justify the exponential tail by their theorem 4.7.1, but their argument is not convincing be-
cause it would imply that the tail of any distribution over [0,∞) could be approximated by
an exponential tail.

2.9.2 Approximating the inverse cdf directly

Since inversion is generally the preferred method for generating random variates, a cdf F for
which F−1 has an explicit and simple expression has an edge over an F for which inversion
is hard or impractical. Thus, it appears attractive to model F−1 directly by a flexible pa-
rameterized family and estimate the parameters from the available data. This was proposed
by Hora (1983), who also suggested the general structure

F−1(u) = F−1
0 (A(u)), 0 ≤ u ≤ 1,

where F0 and A, called the reference distribution and the adjustment filter, can be param-
eterized. The function A(u) must be nondecreasing in u, for 0 ≤ u ≤ 1, and must satisfy
A(0) = 0 and A(1) = 1. The purpose of the filter is to improve the fit by providing more
flexibility. Hora (1983) proposes a filter of the form

A(u) = uα0 exp

[
k∑

j=1

αj(u
j − 1)/j

]
,

and gives a method for estimating the parameters α0, . . . , αk via linear regression.
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Avramidis and Wilson (1994) point out several problems with Hora’s method. For in-
stance, the estimated filter may be decreasing or undefined in some places in (0, 1), in which
case the estimated F−1 is not a valid inverse distribution, and the estimated inverse may dif-
fer substantially from F̂−1

n , the inverse of the empirical cdf. They propose a polynomial filter
of the form A(u) =

∑k
j=1 βju

j, where β1 + · · ·+ βk = 1, and where A(u) must be increasing
in u for 0 ≤ u ≤ 1. They also propose (ordinary and weighted) least squares estimation
procedures, formulated as constrained nonlinear optimization problems, for estimating the
parameters βj for a given value of k. The value of k is chosen by heuristics. According to
Avramidis and Wilson (1994), the method seems to perform well on real-world data and a
small value of k is usually sufficient for an acceptable fit.

2.9.3 Bézier distributions

Bézier curves were introduced by Pierre Bézier (1970) as design and control tools in the
french car industry. They are widely used to model smooth curves and trajectories in font
design, robotics, animation, and computer graphics. A two-dimensional Bézier curve with
k + 1 control points p0, . . . ,pk ∈ R2 is defined as the locus {P (t) = (x(t), y(t)), 0 ≤ t ≤ 1},
where

P (t) =
k∑

j=0

Bk,j(t)pj

and the Bk,j(t) are the Bernstein polynomials defined by

Bk,j(t) =

(
k

j

)
tj(1− t)k−j for 0 ≤ t ≤ 1.

The curve is parameterized by t. For each value of t, P (t) is a convex linear combination of
the control points, with coefficients Bk,j(t) that give more weight to the points with small
[resp., large] indices when t is small [resp., large]. The coefficients are non-negative and sum
to 1 for each t ∈ [0, 1]. At the extremities of the curve, one has P (0) = p0 and P (1) = pk. In
between, the curve does not interpolate the control points, but these points act as magnets
attracting the curve from some distance.

Bézier distributions provide a highly flexible class of alternatives to classical distributions
(Wagner and Wilson 1996). The idea is to model the cdf F by a Bézier curve, assuming that
F has a bounded support. The first and last control points, p0 = (a, 0) and pk = (b, 1),
determine the boundaries of the distribution. The intermediate control points can then be
chosen to obtain the desired shape of distribution, under the constraint that both x(t) and
y(t) are increasing in t. The Bézier cdf FB is defined by putting FB(x(t)) = y(t) for 0 ≤ t ≤ 1.

Wagner and Wilson (1995) have developed a visual interactive software tool, called
PRIME, for fitting Bézier distributions either subjectively or to available data. They also
implemented a search procedure for finding the x(t) that corresponds to a given y(t) (without
knowing t). This procedure can be used for generating random variates from FB by inversion:
generate Y = Y (t) ∼ U(0, 1) and compute X = X(t) = F−1

B (Y (t)).
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2.9.4 Density estimation from given data

2 Suppose that our data set x1, . . . , xn comes from a distribution with cdf F having a density
f for which we have no parametric form, and that we are really interested in generating new
observations from a density f̂ close to f . In other words, we want a good estimator for the
density f .

Density of the quasi-empirical distribution. A first (naive) idea might be to take the
density that corresponds to one of the quasi-empirical distributions defined in Section 2.9.1.
The empirical distribution F̂n is discrete, so it does not have a density. The quasi-empirical
versions F̃n and F̌n do have a density if we assume that all the observations are distinct,
which happens with probability 1 if these observations come from a continuous distribution.
Apart from the exponential tails, these densities are piecewise constant: for x(i) < x < x(i+1),
the densities at x are

f̃n(x) = F̃ ′
n(x) =

1

(n− 1)(x(i+1) − x(i))
and f̌n(x) = F̌ ′

n(x) =
1

n(x(i+1) − x(i))
.

These functions take very large values where the observations are close to each other. They
give very irregular densities that do not converge to f when n → ∞, as illustrated by the
next example.

Example 2.10 Suppose the n observations x1, . . . , xn are generated from the uniform
density over the interval (0, 1), i.e., f(x) = 1 for 0 < x < 1. Let dn = min1≤i<n(x(i+1) −
x(i)), the distance between the nearest pair of observations. It can be shown (see L’Ecuyer,
Cordeau, and Simard 2000, Proposition 1, and the references given there) that for large n,
the random variable n(n − 1)dn has approximately the exponential distribution with mean

1. The maximum value of the density f̃n is max0≤x≤1 f̃n(x) = 1/[(n− 1)dn]. The probability
that this maximum exceeds any given positive real number y is then

P

[
max
0≤x≤1

f̃n(x) > y

]
= P[n(n− 1)dn < n/y] ≈ 1− e−n/y.

For any fixed y, however large it is, this probability converges to 1 exponentially fast as a
function of n. For example, by taking n = 10y, the probability that f̃n(x) exceeds y at some

point is approximately 1− e−10 ≈ 0.99995. This means that the density f̃n has narrow peaks
that grow higher and higher as n increases, so it is an awful estimator of f . □

For the majority of simulation problems, a good approximation of the cdf F should be
good enough and we don’t really care if the density f is badly approximated. But there
are cases for which we should care. For example, if we want to estimate the distribution of
the distance between the nearest points when n points are generated from a distribution F ,
where F itself is estimated from data, then using F̃n to generate the points would give a
highly biased answer. See also Exercise 2.22.

2From Pierre: Perhaps this should be a separate subsection.
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Quality measures for density estimators. Before looking further at specific density
estimators, we need to decide how we measure their quality. That is, if f̂n denotes an estimator
of the density f with a sample size n, we need to select a measure of discrepancy (or distance)
between f̂n and f . There are many ways of defining such a measure. In this book, we will
restrict ourselves to the most popular one, the mean integrated square error (MISE), defined
below. We assume that we want to estimate the unknown density f over a fixed finite interval
[a, b]. We measure the error at any given point x ∈ [a, b] by the MSE:

MSE[f̂n(x)] = E[f̂n(x)− f(x)]2 = E[f̂n(x)− f(x)]2 + (E[f̂n(x)]− f(x))2

= Var[f̂n(x)] + Bias2[f̂n(x)].

Then we integrate this measure with respect to x over [a, b] to obtain the MISE, which
decomposes as the sum of the integrated variance (IV) and integrated squared bias (ISB):

MISE = E
∫ b

a

(f̂n(x)− f(x))2dx (2.23)

=

∫ b

a

Var[f̂n(x)]dx+

∫ b

a

(E[f̂n(x)]− f(x))2dx = IV + ISB.

We also define AMISE, AIV, and AISB as the asympotic values of these measures when
n → ∞. For example, AMISE = κn−ν means that limn→∞ nνMISE = κ. Minimizing the
MISE or AMISE involves a bias-variance tradeoff. Other possible error measures could be
the Kullback-Leibler distance, the Hellinger distance, or some other Lp distance for p ̸= 2,
but the L2 distance (the MISE) is simple and more standard (Scott 2015).

In our analysis, for any g : [a, b]→ R, we define the roughness of g as

R(g) =

∫ b

a

(g(x))2dx.

For any ϕ : R→ R, we use the shorthand notation:

µr(ϕ) =

∫ ∞

−∞
xrϕ(x)dx for r = 0, 1, 2, . . .

Histograms. A simple and popular way of estimating the density is to make a histogram.
We can partition the interval into m equal parts of size h = (b−a)/m, and count the number
nj of observations that fall in each interval Bj = [a+(j− 1)h, a+ jh), for j = 1, . . . ,m. The

histogram density estimator (HDE) f̂h,n is constant over each interval, and proportional to
the number of observations in that interval:

f̂h,n(x) =
nj

nh
for x ∈ Bj, j = 1, . . . ,m.

Generating random variates from such a piecewise-constant density is easy. A key question
is how do we choose the bandwidth (or rectangle width) h.

A very small h gives a noisy histogram, with large variations of fh,n across successive
intervals. A larger h gives a smoother histogram, but also introduces bias in the sense that
fh,n tends to be smaller than f where f is large (in the peaks) and larger where f is small
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(in the valleys). When h is too large, this bias becomes excessive; this is oversmoothing. To
complicate things further, a given h may oversmooth in some areas and undersmooth in
other areas, so a proper choice may often require visual (human) judgment (Scott 2004).
The quality could often be improved by using a different h in different areas, but we will not
examine this here.

♣ Add an example based on the histogram in Example 1.4, for instance if we use
10 rectangles or if we use 100 rectangles. Perhaps more interesting: an example with a
multimodal density.

Under the assumption that f has an absolutely continuous and square-integrable deriva-
tive over [a, b], Scott (1979) showed that the AIV and AISB for the HDE and 1/(nh)
and h2R(f ′)/12, respectively. The proofs are simple; they exploit the fact that nk ∼
Binomial(n, pk) where pk =

∫
Bk
f(x)dx to obtain the variance, and use a Taylor expan-

sion of f in each interval Bk to bound the bias. See also Scott (2015), Section 3.2.2. For
the AMISE to converge to 0, we must have h → 0 and nh → ∞ simultaneously. The
asymptotically optimal h, which minimizes the AMISE, is then h∗ = [6/(nR(f ′)]1/3 and it
gives AMISE = (9R(f ′)/16)1/3n−2/3 = O(n−2/3). The corresponding number of intervals is
m = (b− a)/h = O(n1/3).

For comparison, when estimating the parameters for a parametric family of distributions,
under the assumption that the true density really belongs to that family, the convergence
rate is typically O(n−1). In general, parametric methods are more efficient than the non-
parametric ones in this sense, but we must know the correct parametric family in the first
place!

A simple improvement to the histogram estimator is the (piecewise-linear) polygonal
density estimator (PDE), also called frequency polygon, defined as follows: In the histogram
constructed as before, put a point in the middle of the upper bound of each rectangle
and interpolate these points by linear segments to define the density. More specifically, the
density estimator is defined by joining the points (a, n1/(n(b− a))), (a+h/2, n1/(n(b− a))),
(a+3h/2, n2/(n(b−a))), . . . , (b−h/2, nm/(n(b−a))), (b, nm/(n(b−a))). Under the assumption
that f ′′ is absolutely continuous and R(f ′′′) < ∞, Scott (1985b) has shown that for the
PDE, AIV = 2/(3nh) and AISB = 49h4R(f ′′)/2880. The asympotically optimal h is then
h∗ = 2[15/(49nR(f ′′)]1/5, which gives AMISE = (5/12)[49R(f ′′)/15]1/5n−4/5 = O(n−4/5). We
have a better convergence rate!

Another simple way of improving the HDE is to average several histograms, each one
being obtained by shifting slightly all the bin boundaries by the same amount, as proposed
by Scott (1985a). The idea is to construct r ≥ 1 distinct histograms all with bin width
h, but with the bin separators shifted to the right by (ℓ − 1)h/r) for the ℓth histogram,
for ℓ = 1, . . . , r, and then average these histograms. More specifically, we select r ≥ 1, let
δ = h/r, and partition [a, b) into the rm subintervals Ik = [a + (k − 1)δ, a + kδ) of size
δ, k = 1, . . . , rm. This partitions Bj into r such subintervals. Let ñk be the number of
observations in interval Ik. We put ñk = 0 for k < 0 and for k > rm. Bin j of the ℓth shifted
histogram covers the interval Bj,ℓ = [a+(j−1)h+(ℓ−1)δ, a+jh+(ℓ−1)δ) and contains all
the observations in this interval. Here we assume that for every shift, the shifted histogram

covers all the observations. Otherwise, we must apply some kind of correction. 3

3From Pierre: Details?
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When adding the r histograms, the total count in interval Ik becomes

Tk = rñk +
r−1∑
ℓ=1

(r − ℓ)(ñk−ℓ + ñk+ℓ). (2.24)

This sum Tk weights the counts in the small bins with weights that decrease linearly with
their distance to bin k. Averaging the r corresponding histogram density estimators gives
the average shifted histogram (ASH) density estimator, defined by

f̂ash,n(x) =
Tk
nhr2

. (2.25)

This method uses overlapping intervals to construct the histogram. It generally produces a

smoother histogram than f̂h,n.
4 Scott (1985a) derived Taylor series expansions for the

squared bias and variance of this ASH estimator as functions of h and r, and obtained that
AIV = 2(1 + 1/2r2)/(3nh) and AISB = (h2/12r2)R(f ′) + (h4/144)(1− 2/r2 + 3/5r4)R(f ′′).
When r → ∞, this gives AMISE = 2/(3nh) + h2R(f ′′)/144, which is minimized with h∗ =
[24/(nR(f ′′))]1/5, which provides AMISE = O(n−4/5). In comparison with the PDE, all the
rates are the same. The only difference is that the constant 1/144 in the AMISE here is only
about 40% of the corresponding constant 49/2880 for the PSE, so the ASH wins due to this
improved constant. One can also apply polygonal interpolation to the ASH estimator, but
for large r, this polygonal ASH provides no further improvement compared with the ASH
alone.

The computing effort required to produce the ASH increases at least linearly in r, so
assuming that r → ∞ is unrealistic. But according to Scott (1985a), Scott (2015), there is
usually no need to take r larger than 10 or so. Increasing r further has almost no effect on
the MISE and is not worth the additional effort. In the limit when n → ∞, the ASH and
polygonal ASH become equivalent to a kernel density estimator based on a triangular kernel
with bandwidth h.

The Tk defined in Eq. (2.24) can be seen as a weighted sum with weight wℓ = r − ℓ
given to observations that are at a (integer) distance ℓ from the target bin k. These weights
decrease linearly until they reach 0. Other types of weights can be used as well and some

may give smoother histograms. 5

♣ Add some figures.

Kernel density estimators. Histograms are simple and easy to compute and interpret,
and are often preferred for this reason. However, kernel density estimators (KDEs) are a
more powerful class of methods for density estimation. The general form of a KDE is

f̂n(x) =
1

nh

n∑
i=1

k((x− xi)/h), (2.26)

4From Pierre: Exercise: Show this in details. Show also that T1, . . . , Trm can be computed in O(rm) time,

recursively as follow. Define S1,k =
∑r−1

ℓ=0 ñk−ℓ and S2,k =
∑r−1

ℓ=1 ñk+ℓ. One has Tk+1 = Tk + S2,k − S1,k,
S1,k+1 = S1,k + ñk+1 − ñk−r+1, and S2,k+1 = S2,k + ñk+r − ñk+1. We start by computing T1, S1,1, and S2,1,
and the apply the recursion.

5From Pierre: More details later, perhaps in an exercise.
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where the kernel k is a fixed density and h is a positive constant called the smoothing factor
or bandwidth. We assume here that the kernel is a symmetric probability density centered
at 0, with variance σ2

k = µ2(k) < ∞. With the change of variable y = (x − xi)/h, one can
easily see that

1

h

∫ ∞

−∞
k((x− xi)/h)dx =

∫ ∞

−∞
k(y)dy = 1,

so f̂n(x) is a probability density. Here, we assume a symmetric kernel for simplicity, but
asymmetric ones can be used as well. Figure 2.17 illustrates four common choices of kernels:
uniform, triangular, Epanechnikov, and (standard) normal. The Epanechnikov kernel is a
beta distribution with parameters (2, 2) stretched over the interval [−1, 1]. Its density is
k(x) = (3/4)(1−x2) for −1 ≤ x ≤ 1. The normal kernel has infinite support, while the other
three have bounded support over [−1, 1]. When the density f is suspected to have a heavy
tail, one may use a Student-t or logistic kernel instead of the normal.
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Fig. 2.17. The uniform (blue), triangular (violet), Epanechnikov (orange), and normal (green)
kernels.

Generating random variates from the density (2.26) is easy, provided that we can easily
generate variates from the density k. It suffices to (1) generate I uniformly over {1, . . . , n},
(2) generate D from density k, independently of I, and (3) return X = xI + hD. This
technique of redrawing observations randomly from the sample, with replacement, and adding
an independent perturbation D, is identical to smoothed bootstrap (see Chapter 5 and Shao
and Tu 1995). It is not an inversion method even if we use inversion in each of the first
two steps, because the different copies of the kernel density usually overlap. Inversion for
distributions obtained via kernel density estimators is generally hard to implement.

Since the kernel density is used to add independent noise to the empirical distribution,
it is clear that the variance of the resulting density (2.26) is always larger than the variance
of the empirical distribution of the original data (Exercise 2.21). Silverman (1986) suggests
to rescale the empirical distribution so that these two variances match exactly. Let x̄n and
s̃2n = s2n(n − 1)/n be the mean and variance of the empirical distribution of the original
observations. The distance between each generated random variate and the sample mean x̄n
is multiplied by the correction factor 1/σe < 1, where 1/σ2

e = 1− (hσk/sn)
2n/(n− 1) and σk

is the standard deviation of the density k. The effect of this transformation is to move all
the observations closer to x̄n, to reduce their empirical variance.
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There are situations where the random variate X must be restricted to a given interval
of the real line; e.g., the interval [0,∞) if we do not want negative values. However, density
estimators provided by kernel methods will typically be positive outside that interval (e.g.,
with a normal kernel, the density is positive everywhere). A simple heuristic to cover that
case is to reflect the values that fall outside with respect to the boundary. That is, if X
must be restricted to some interval [a,∞) and we happen to generate X < a, then we return
2a −X instead of X. This reflection method reduces the variance of the estimated density
and this can be a problem in cases where a significant fraction of the kernel density lies
outside the target interval.

A wide variety of choices for the kernel and of rules for selecting h as a function of
the observations x1, . . . , xn, have been proposed. No method is universally optimal. Each
one performs well for its own favorite class of densities. It also depends on how we decide

to measure the discrepancy (or error) between the true density and its estimator fn.
6

Experimental evidence indicates that the choice of bandwidth h is usually more important
than the choice of kernel (Hörmann, Leydold, and Derflinger 2004).

Under our assumptions on k, if f ′′ is absolutely continuous and R(f ′′′) < ∞, then one
has (see Scott 2015, Section 6.2) AIV = µ0(k

2)/(nh) and AISB = σ2
kR(f

′′)h4/4. The AMISE
is minimized by taking the bandwidth h equal to

h∗ =
[
µ0(k

2)/(σ2
kR(f

′′)n)
]1/5

, (2.27)

which gives
AMISE = (5/4)[µ0(k

2)σk]
4/5R(f ′′)1/5n−4/5.

The kernel-dependent factor µ0(k
2)σk in this AMISE is minimized by the Epanechnikov

kernel, for which µ0(k
2) = 3/5 and σk = 1/5.

To estimate h∗, we need an estimate of R(f ′′), which is of course unknown because f
is what we want to estimate in the first place. A plug-in approach is often successful for
estimating R(f ′′) (Berlinet and Devroye 1994, Jones, Marron, and Sheather 1996, Raykar
and Duraiswami 2006, Scott 2015). The idea is to estimate f ′′ via a KDE and integrate its
square over [a, b]. To do this, we also need to select a bandwidth h which requires a good
estimate of R(f (4)), where f (4) is the fourth derivative of f . This R(f (4)) can be estimated by
integrating a KDE of f (4), and this goes on forever. In practice, one can start with a rough
estimate of R(f (r0+2)) for some even r0 ≥ 0 and apply the plug-in approach from there. An
easy way to do this is to pretend that f is a normal density with mean and variance equals to
their sample values in the data, and compute R(f (r0+2)) for this normal density. To estimate
f (r) for r ≤ r0, one can take the sample derivative of the KDE with a smooth kernel k:

f̂ (r)
n (x) ≈ 1

nhr+1

n−1∑
i=0

k(r)
(
x−Xi

h

)
, (2.28)

using a bandwidth h which is a good estimate of the asymptotically optimal value

h(r)∗ =

(
(2r + 1)µ0((k

(r))2)

σ2
kR(f

(r+2))n

)1/(2r+5)

. (2.29)

6From Pierre: However, using a normal kernel when the distribution has a finite tail tends to inflate the
tail, it seems. Make experiments and give a concrete example of this.
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Ben Abdellah et al. (2021) had good success with this approach, with r0 = 2.

Silverman (1986) and Hörmann, Leydold, and Derflinger (2004) propose the simpler
alternative (heuristic) formula h = αkh0, where

h0 = 1.36374 min(sn, q/1.34)n
−1/5, (2.30)

sn and q are the empirical standard deviation and the interquartile range of the n observa-
tions, whereas αk is a constant that depends on the type of kernel k and is defined by

αk =

(
σ−4
k

∫ ∞

−∞
k2(x)dx

)1/5

. (2.31)

This formula comes from a heuristic adjustment of Eq. (2.27), in which sn is deflated to avoid
oversmoothing when q is small. Table 2.1, adapted from Hörmann, Leydold, and Derflinger
(2004), gives the precomputed values of αk and σ2

k for selected (popular) kernels. The effi-
ciency of a kernel k is defined as the ratio of the AMISE of the Epanechnikov kernel (which
has optimal efficiency) divided by the AMISE of k.

Table 2.1. Some suggested kernels and the constants involved in the Silverman heuristic.

name distribution range αk σ2
k efficiency

Epanechnikov 2 Beta(2, 2)− 1 [−1, 1] 1.7188 1/5 1.000
triangular Triangular(−1, 1, 0) [−1, 1] 1.8882 1/6 0.986
uniform U(−1, 1) [−1, 1] 1.3510 1/3 0.930
normal N(0, 1) (−∞,∞) 0.7764 1 0.951
logistic Logistic(0, 1) (−∞,∞) 0.4340 3.2899 0.888
Student-t(3) Student-t(3) (−∞,∞) 0.4802 3 0.674

Here we have assumed that h must be the same everywhere in [a, b]. In general it is
possible to improve the KDE locally varying bandwidth h(x) > 0 to estimate the density at
x. To get an idea of how, note that the optimal 1/h is proportional to nR(f ′′). In a small
subinterval [c, c + ϵ] ⊂ [a, b] in which f ′′ is almost constant, the expected number of data
points is n1 = n

∫ c+ϵ

c
f(x)dx, so 1/h in this subinterval should be approximately proportional

to n
∫ c+ϵ

c
f(x)(f ′′(x))2dx ≈ n1(f

′′(c+ ϵ/2))2. That is, the value of 1/h used at some point x
should be approximately proportional to f(x)(f ′′(x))2. This makes sense when the interval
[a, b] does not contain thin tails or sub-regions in which maxx f(x)/minx f(x) is very large.

♣ To be added elsewhere: MISE reduction by RQMC and other methods.

Summary of convergence rates for histograms and KDEs. We now summarize the
convergence rate results for the density estimators discussed so far, when the data comes
from independent random samples, under the assumption that h is constant over [a, b]. Here,
the AMISE depends on both n and h. For all methods, we have

AMISE = AIV + AISB =
C

nh
+Bhα
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for some constants C, B, and α. The asymptotically optimal h as a function of n is

h∗ = (C/(Bαn))1/(α+1)

and it gives

AMISE =
α + 1

α
(CαBα)1/(α+1)n−α/(1+α).

Table 2.2 summarizes the values obtained for the different methods. To estimate h∗, one can
estimate R(f ′) and R(f ′′) by using a plugin approach as described earlier.

Table 2.2. Optimal bandwidths and convergence rates for histograms and KDEs. The given AMISE
rate is for h = h∗.

C B α h∗ AMISE

HDE 1 R(f ′)/12 2
(

6
nR(f ′)

)1/3
O(n−2/3)

PDE 2/3 49R(f ′′)/2880 4
(

480
49nR(f ′′)

)1/5
O(n−4/5)

ASH 2/3 R(f ′′)/144 4
(

24
nR(f ′′)

)1/5
O(n−4/5)

KDE µ0(k
2) σ2

kR(f
′′)/4 4

(
µ0(k2)

nσ2
kR(f ′′)

)1/5
O(n−4/5)

Density estimation methods for multivariate distributions are discussed in Section 2.10.7.
See Scott (2015).

2.10 Multivariate Distributions

Independence of random variables is very often presumed in simulation models for reasons of
simplicity, or lack of information, or because the available software supports only univariate
distributions. There are many situations, however, where neglecting the dependencies makes
the model grossly invalid.

In Example 2.4, for instance, the durations of the successive operations performed on a
given part could be strongly dependent. In a health-care facility model, the relevant char-
acteristics of a patient arriving to the facility should probably be modeled as a vector of
dependent random variables. The inter-arrival times to a convenience store near the local
train station should probably be modeled as positively correlated, because arrivals would
tend to come in bursts (just after train arrivals). This list of examples could go on.

There are two general ways of modeling dependencies: (1) using vectors of random vari-
ables with a given multivariate distribution and (2) using time series and other types of
stochastic processes. The main challenge is to model the dependence between the vector
components or between the successive observations.

We recall from Section A.7 that a random vector X = (X1, . . . , Xd)
t has a d-dimensional

multivariate distribution with cdf F if for any x = (x1, . . . , xd)
t ∈ Rd,
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F (x) = P[X ≤ x] = P[X1 ≤ x1, . . . , Xd ≤ xd].

The jth marginal is defined by Fj(x) = P[Xj ≤ x]. The random variables X1, . . . , Xd are
independent if and only if F (x1, . . . , xd) = F1(x1) · · ·Fd(xd). Multivariate distributions are
normally used to represent vectors of dependent random variables. When d = 2, we speak of
a bivariate distribution.

For most distributions, the generalization from univariate to multivariate is not unique,
in the sense that there are many ways of defining F so that each Fj is from a specific
family or even completely fixed in advance. For example, there is an infinite number of
bivariate distributions whose marginals are both exponential with mean 1. This complicates
the problem of specifying and using such distributions. If we also consider multivariate
distributions whose marginals Fj are from different families (which is often useful), there are
even more possibilities. When all marginals Fj are from the same family, we use the name of
that family to denote the multivariate distribution. For example we speak of a multivariate
exponential [normal, gamma, etc.] distribution if all Fj’s are exponential [normal, gamma,
etc.].

Specific multivariate distributions have been proposed and studied in the literature,
sometimes together with methods for generating the random vectors. We look at a few of
them here and refer the reader to Johnson and Kotz (1972b), Johnson (1987), Devroye
(1986), Joe (1997), Nelsen (1999), Wilson (1997) and Nelson and Yamnitsky (1998) for
several others.

2.10.1 Covariance and correlation

The most popular measures of dependence between two random variables X and Y are the
covariance Cov(X, Y ), and its normalization the linear coefficient of correlation ρ(X, Y ),
defined in Section A.8. The covariance matrix Σ = Cov[X] has elements σij = Cov[Xi, Xj]
and the correlation matrix R has elements ρ(Xi, Xj). One can write Cov[X] = E[(X −
µ)(X − µ)t] where µ = E[X]. If Y = AX + b where A is a d × d matrix and b is a d-
dimensional vector, then E[Y ] = Aµ+b and Cov[Y ] = E[A(X−µ)(A(X−µ))t] = AΣAt.

Any valid (or consistent) covariance matrix Σ, i.e., such that Σ = Cov(X) for some
random vector X, must be symmetric and nonnegative definite, because for any vector
a ∈ Rd, atΣa = Var(atX) ≥ 0. A valid correlation matrix must also have all its diagonal
elements equal to 1. On the other hand, for given marginal distributions Fj forX and a given
matrix that satisfies all these conditions, there may be an infinite number of possibilities for
the distribution of X, or there may be no possibility at all.

Let X and Y be random variables with finite variance and cdf’s F and G, respectively.
The range of values that ρ(X, Y ) can take depends on F and G. This range is always a
subset of [−1, 1] and always contains 0 (because X and Y can be taken as independent).
The minimum and maximum values are the Fréchet bounds (Fréchet 1957), given in the
following theorem, which also provides a concrete way of generating a pair (X, Y ) with
minimal or maximal correlation. We will rely on this theorem when studying correlation
induction methods for variance reduction, in Chapter 6.
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Theorem 2.6 (Hoeffding 1940, Fréchet 1951, Lehmann 1966, Whitt 1976) Let F and G
be two cdf’s with finite variances. Then, among the pairs of random variables (X, Y ) with
marginal distributions F and G, the pair

(X, Y ) = (F−1(U), G−1(U)),

where U ∼ U(0, 1), maximizes the correlation between X and Y , whereas the pair

(X, Y ) = (F−1(U), G−1(1− U))

minimizes the correlation between X and Y . Equivalently, the joint distribution with maximal
correlation is the one defined by P{X ≤ x, Y ≤ y} = min(F (x), G(y)), and the one with
minimal correlation is defined by P{X ≤ x, Y ≤ y} = max(0, F (x) +G(y)− 1).

Proof. See, for example, Lehmann (1966) or Whitt (1976) for the first part. For the first
equivalence in the second part, we have

P{X ≤ x, Y ≤ y} = P[F−1(U) ≤ x, G−1(U) ≤ y]

= P[U ≤ F (x), U ≤ G(y)]

= P[U ≤ min(F (x), G(y)]

= min(F (x), G(y)).

For the other equivalence,

P{X ≤ x, Y ≤ y} = P[F−1(U) ≤ x, G−1(1− U) ≤ y]

= P[U ≤ F (x), 1− U ≤ G(y)]

= P[1−G(y) ≤ U ≤ F (x)]

= max(0, F (x) +G(y)− 1).

Example 2.11 Let U ∼ U(0, 1) and Z = Φ−1(U), where Φ is the standard normal cdf.
Suppose we want X ∼ N(µ1, σ

2
1) and Y ∼ N(µ2, σ

2
2). The (dependent) random variables X

and Y having these distributions and with maximal correlation can be written as

X = F−1(U) = µ1 + σ1Z and Y = G−1(U) = µ2 + σ2Z.

Their correlation is

ρ(X, Y ) = E[(X − µ1)(Y − µ2)]/(σ1σ2) = E[σ1Zσ2Z]/(σ1σ2) = E[Z2] = 1.

Likewise, since Φ−1(1− U) = −Z, the random variables with minimal correlation are

X = F−1(U) = µ1 + σ1Z and Y = G−1(1− U) = µ2 − σ2Z

and their correlation is

ρ(X, Y ) = E[(X − µ1)(Y − µ2)]/(σ1σ2) = E[σ1Z(−σ2)Z]/(σ1σ2) = −E[Z2] = −1.
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This means that for a random vector (X, Y ) whose marginals are normal with arbitrary
given parameters, the correlation ρ(X, Y ) can take any value in [−1, 1].

The reader can verify that the same reasoning applies more generally to the case where
the distributions of X and Y differ only by location and scale parameters, so Y − E[Y ] can
be written as a linear function of X − E[X] and vice-versa. □

Example 2.12 If X ∼ Lognormal(0, 1) and Y ∼ Lognormal(0, 4), then one can show (Ex-
ercise 2.23) that their minimal and maximal possible correlations are −0.090 and 0.666,
respectively. □

2.10.2 Other measures of dependence

The Pearson correlation coefficient measures only linear dependence between random vari-
ables. For example, if X ∼ N(0, 1) and Y = X2, then Cov[X, Y ] = E[X3]− E[X]E[X2] = 0,
so ρ(X, Y ) = 0, yet X and Y are definitely dependent, because Y is determined uniquely
by X. More generally, if X has a symmetric density f with respect to the origin and if
Y = φ(X) where the function φ satisfies φ(−x) = φ(x) ̸= 0 for x ̸= 0, then X and Y
are dependent, but it is easily seen that ρ(X, Y ) = 0 (Exercise 2.24). Independence implies
absence of correlation, but the reverse is not true. Thus, the correlation coefficient is not
always a good indicator of the level of dependence.

Moreover, ρ(X, Y ) depends not only on the level of dependence between X and Y ,
but also on their marginal distributions. Rescaling nonlinearly the horizontal axis of the
marginals changes the value of ρ(X, Y ). Finally, ρ(X, Y ) exists only if both X and Y have
finite variances.

Rank correlation. The rank correlation (also called Spearman’s rho or fractile correlation)
avoids this last problem: It always exists. It is defined as

ρs(X, Y ) = ρ(F (X), G(Y )). (2.32)

In the case of continuous marginal distributions F and G, we have

ρs(X, Y ) = 12E[F (X)G(Y )]− 3, (2.33)

which can easily be deduced from the fact that both F (X) and G(Y ) are U(0, 1), so
E[F (X)] = E[G(Y )] = 1/2 and Var[F (X)] = Var[G(Y )] = 1/12. This coefficient then mea-
sures the dependence independently of the choice of (continuous) marginals, in the sense that
if X = F−1(U1) and Y = G−1(U2) for some uniforms U1 and U2, then ρs(X, Y ) = ρ(U1, U2)
is invariant with respect to a change in F or G. It can take any value in the range [−1, 1],
regardless of F and G. These properties do not hold if F [or G] is not continuous, because
F (X) [or G(Y )] is not U(0, 1) in that case.

Kendall’s tau. A related and also widely studied measure is Kendall’s tau, motivated and
defined as follows. Suppose we generate two independent pairs (X1, Y1) and (X2, Y2) with the
same distribution as (X, Y ), and draw a line that joints the two corresponding points in R2.
We say the the two points are concordant if this line has a positive slope and discordant it if
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has a negative slope. A positive dependence between X and Y should translate into a higher
chance of positive slope, i.e., more frequent concordance than discordance. For a negative
dependence, this should be the opposite. Kendall’s tau is simply defined as the probability
of concordance minus the probability of discordance:

τk(X, Y ) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (2.34)

When both F and G are continuous, we have

τk(X, Y ) = 4E[C(F (X), G(Y ))]− 1 (2.35)

where C(u, v) = P[F (X) ≤ u,G(Y ) ≤ v] does not depend on the marginals F and G.
As for the linear correlation, ρs(X, Y ) = 0 or τk(X, Y ) = 0 does not imply that X and Y

are independent. On the other hand, these two measures always exist and are invariant under
nonlinear rescaling of the horizontal axes of the marginal. They are members of a general
class of measures of concordance of distributions (Scarsini 1984, Nelsen 1999, Embrechts,
Lindskog, and McNeil 2003).

Another concept useful in the variance-reduction context is positive quadrant dependence
(PQD), defined in Section 6.3.2. It ensures non-negative covariance between monotone func-
tions of the random variables.

Other notions and measures of dependence are discussed, e.g., in Devroye (1986), Joe
(1997), Nelsen (1999) and Drouet Mori and Kotz (2001). Some of them are zero when and
only when the variables are independent. They are generally harder to compute.

2.10.3 The multinormal distribution

A vector X = (X1, . . . , Xd)
t has the multinormal distribution in d dimensions (or d-

dimensional normal distribution), denoted X ∼ N(µ,Σ), if its density has the form

f(x) =
1√

(2π)ddet(Σ)
exp

(
−(x− µ)tΣ−1(x− µ)/2

)
for x = (x1, . . . , xd)

t ∈ Rd, where µ = (µ1, . . . , µd)
t ∈ Rd is the mean vector and Σ =

Cov(X) is the symmetric positive-definite covariance matrix of X. One has E[Xj] = µj and
Cov(Xj, Xk) = σjk where σjk is the element (j, k) of Σ.

An equivalent definition is that X is multinormal if and only if every linear combination
X = a1X1+ · · ·+adXd, where each aj ∈ R, has the univariate normal distribution. Note that
X can be multivariate normal (i.e., have all normal marginal) without being multinormal
(Exercise 2.27).

If Z ∼ N(0, I) where I is the identity matrix, Z is said to have the standard multinormal
distribution. If Z ∼ N(0, I) and X = AZ + µ where A is a d × d matrix and µ is a d-
dimensional vector, then X ∼ N(µ,AAt). Thus, if we decompose Σ as Σ = AAt, we can
easily generate X by generating a vector Z of i.i.d. standard normals and applying the linear
transformation

X = AZ + µ.
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There are generally many ways of decomposingΣ = AAt, and some may be more convenient
than others depending on the context. The most common choice is to impose that A be lower
triangular; the decomposition is then the (unique) Cholesky decomposition.

♣ Add a small example.
For the multinormal, µ and Σ specify the distribution uniquely. But this does not apply

to other distributions in general. The multinormal distribution is very widely used, largely
because it has been extensively studied, is well understood, and gives rise to statistical models
that are easy to handle. Tong (1990) provides an extensive coverage.

A vector X = (X1, . . . , Xd)
t has the d-dimensional lognormal distribution if Y =

(lnX1, . . . , lnXd)
t is multinormal. To use this distribution, one can just take the log of

the Xj’s and use the multinormal distribution for the resulting values.

2.10.4 Elliptic Multivariate Distributions

The multinormal is a member of a more general class of distributions defined as follows
(Cambanis, Huang, and Simons 1981, Embrechts, Lindskog, and McNeil 2003). For given
positive integers k ≤ d, a random vector X has an elliptic multivariate distribution in Rd if
it can be written as

X = µ+RAU (2.36)

where U is a random vector uniformly distributed on the k-dimensional unit hypersphere
{x ∈ Rk : xtx = 1}, A is a d × k matrix, R is a real-valued random variable with an
arbitrary (fixed) distribution and independent of U , and µ is a vector in Rd. The definition
(2.36) already indicates one way of generating X: Generate a random point U on the unit
hypersphere (see Chapter 4, Example 4.12, or Devroye 1986, Section V.4.2), multiply it by the
matrixA. This generates a point on the surface of an ellipsoid. Then generate R and multiply
by it to rescale the ellipsoid randomly. Finally, add µ to shift the center of the ellipsoid from
0 to µ. This approach can be convenient if it is easy to generate from the distribution of R.
In many cases, however (e.g, for the multinormal and Student-t distributions), a different
approach is used for generating X.

We have E[X] = µ and if E[R2] <∞ then

Cov[X] = Cov[µ+RAU ] = E[R2]ACov[U ]At = E[R2]Σ/k

where Σ = AAt, because R is independent of U and Cov(U) = I/k. Without loss of
generality, we can always rescale R and A so that E[R2] = k, and then Cov[X] = Σ. The
type of an elliptic distribution depends essentially on the choice of distribution for R. If R2

has a chi-square distribution with k degrees of freedom, then X ∼ N(µ,Σ).
If X has a density, then it must be of the general form

f(x) = |Σ|−1/2g((x− µ)tΣ−1(x− µ))

for some function g : R→ [0,∞). Thus, the contours of the density, where it takes a constant
value, are ellipsoids in Rd (or unions of ellipsoids if g is not strictly decreasing). This implies
in particular that the density must be symmetric along each line that passes through the
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mean µ. This of course limits the generality of these distributions. Moreover, all univariate
marginals must be from the same family, determined by the distribution of R.

In the special case where A = cI for some constant c, the density becomes a function of
the Euclidean distance ∥x−µ∥ = Rc only, and the distribution is called radially symmetric.

Example 2.13 Let X = µ +
√
ν/YZ where Y has the chi-square distribution with ν

degrees of freedom and Z ∼ N(0,Σ) (in d dimensions) is independent of Y . This X has a
d-dimensional Student-t distribution with parameters ν (the number of degrees of freedom)
and Σ. This formula for X provides an easy way of generating X, by generating a chi-square
and a multinormal. The distribution of X turns out to be an elliptic distribution for which
A = I and R2/ν = ∥Z∥2/Y , which is a ratio of two independent chi-squares with d and ν
degrees of freedom. Thus, R2/d has a F(d, ν) distribution. One has E[R2] = ν/(ν − 2) and
Cov[X] = Σν/[(ν − 2)d]. See Fang, Kotz, and Ng (1990), Kibria and Joarder (2006) for
more details. □

2.10.5 Dirichlet distribution

The Dirichlet distribution with parameters (α1, . . . , αd), where αj > 0 for each j and α0 =∑d
j=1 αj, has pdf

f(x1, . . . , xd) = Γ (α0)
d∏

j=1

x
αj−1
j

Γ (αj)
(2.37)

for xj ≥ 0 for each j and
∑d

j=1 xj = 1. We write X = (X1, . . . , Xd) ∼ Dirichlet(α1, . . . , αd).
It is a multivariate generalization of the beta distribution: We have Xj ∼ Beta(αj, α0 − αj)
for each j.

The Dirichlet is the conjugate prior of the multinomial, in the sense that if X =
(X1, . . . , Xd) has a multinomial distribution with fixed parameter n and random parameters
p = (p1, . . . , pd) having a Dirichlet distribution with parameters (α1, . . . , αd), then condi-
tional on X, the vector p has a Dirichlet distribution with parameters (α1+X1, . . . , αd+Xd).
This is often used to estimate the unknown parameters p of a multinomial distribution via
Bayesian methods, given observations X.

2.10.6 Other standard multivariate distributions

Multivariate versions of the Johnson families of distributions, together with methods for esti-
mating the parameters and generating the random vectors, have been developed by Stanfield
et al. (1996). However, parameter estimation (beyond the mean and variance) becomes in-
creasingly difficult when the dimension increases.

Several other “standard” types of multivariate distributions are discussed in Johnson
and Kotz (1972b), Devroye (1986), Johnson (1987), and Fang, Kotz, and Ng (1987).
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2.10.7 Multivariate kernel density estimation

KDE methods (Section 2.9.4) extend to multivariate distributions. The main change is that
when estimating a density in the d-dimensional real space, the bandwidth becomes a d× d
matrix of parameters, say B, and it rapidly becomes difficult to find a good B when d
increases. Thus, this method is practically viable in general only for moderate d.

Silverman (1986) suggests to transform the data so that the empirical covariance matrix
becomes the identity, and then take B as a multiple of the identity, with a multinormal
kernel. This is equivalent to taking the original data with B equal to a multiple of the
empirical covariance matrix Sn; e.g., B = b2Sn for some smoothing factor b. Optimality
results for the AMISE in the case where the original density to be estimated is multinormal
suggest taking b = [4/((d + 2)n)]1/(d+4). As in the unidimensional case, a correction can
be made so that the variance of the estimated density matches the sample variance (the
observations are moved closer to their sample mean by a factor cb = (1 + b2)−1/2).

To generate random vectors from such a kernel density, one would first compute the
sample mean x̄n and the sample covariance matrix Sn, and decompose Sn as AAt (e.g., via
Cholesky’s decomposition) in a one-time setup. Each random vector can then be generated
as follows:

(1) generate I uniformly over {1, . . . , n};
(2) generate a vector Z from the d-dimensional N(0, I) distribution;
(3) return X = x̄n + cb(xI − x̄n + bAZ).

This algorithm is given and discussed in Hörmann, Leydold, and Derflinger (2004). These
authors also point out that the value of b should be reduced (e.g., by half) when the original
distribution departs significantly from the normal (e.g., is highly skewed or multimodal),
to avoid oversmoothing. They also point out that b = 0 corresponds to straightforward
resampling from the empirical distribution whereas b =∞ corresponds to fitting a multinor-
mal distribution to the data. Any b in between represents a compromise between these two
extremes.

♣ A more recent discussion on multivariate KDEs can be found in Scott (2015).

2.10.8 Copulas

A very general way of defining multivariate distributions is as follows. If X = (X1, . . . , Xd)
is a random vector and Xj has the continuous marginal cdf Fj for each j, then U =
(U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) has a multivariate distribution for which each marginal
has the U(0, 1) distribution. It turns out that this multivariate distribution of U determines
the dependence structure uniquely, independently of the marginals. To generate X, it then
suffices to generate U from the correct distribution and set Xj = F−1

j (Uj) for each j. But
how do we specify the distribution of U?

A cdf C whose marginals are U(0, 1) is called a dependence function or a copula. A
function C : [0, 1]d → [0, 1] is a d-dimensional copula if and only if it satisfies the following
three conditions: (i) if u ∈ [0, 1]d has at least one coordinate equal to 0, then C(u) = 0; (ii) if
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u has all its coordinates equal to 1 except for coordinate j which equals uj, then C(u) = uj;
(iii) for any rectangular box B in [0, 1]d, C determines the probability of that box (see
Exercise 2.29) and that probability must be ≥ 0 for any B. In d = 2 dimensions, for example,
whenever a1 < a2 and b1 < b2, we must have C(a2, b2)−C(a1, b2)−C(a2, b1)+C(a1, b1) ≥ 0.

One can model the dependence between the Xj’s by expressing their joint cdf F via a
copula C, function of the uj’s, as follows:

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) = C(u1, . . . , ud) (2.38)

where uj = Fj(xj). Sklar’s theorem (Sklar 1959) says that such a copula C always exists, is
unique when all the marginals Fj are continuous, and that (conversely) a copula C together
with arbitrary marginal distributions Fj define a multivariate cdf F via (2.38). This is called
the standard copula representation of F . The choice of C has an impact on the joint distri-
bution, but the marginal distributions Fj do not depend on C. This completely decouples
the dependence structure from the choice of marginals. The random variables X1, . . . , Xd are
independent if and only if C(u1, . . . , ud) = u1 · · ·ud, the product function (also called the
product copula).

Here, the Xj’s may have different types of distributions. For example, X1 can be normal
and X2 gamma, or X1 can have a discrete distribution and X2 a continuous one. When Xj is
discrete, Fj(Xj) is no longer U(0, 1), but it remains true that Xj has the same distribution
as F−1

j (Uj) if Uj ∼ U(0, 1). So to generate a random vector (X1, . . . , Xd) with distribution
function F as in (2.38), it suffices to generate (U1, . . . , Ud) from the copula C and put
Xj = F−1

j (Uj) for each j.
Note that the copula C is often constructed via (2.38) using a different class of cdfs than

the one from which we want to generate values. If G is an arbitrary d-dimensional cdf with
marginals Gj, C can be defined by

C(u1, . . . , ud) = G(G−1
1 (u1), . . . , G

−1
d (ud)). (2.39)

This C is called the copula associated with G. To generate a vector (X1, . . . , Xd) with this
copula and marginals Fj, we can generate (Y1, . . . , Yd) from distribution G, set Uj = Gj(Yj)
for each j (if each Gj is continuous) or generate (U1, . . . , Ud) from C in any other way, and
then put Xj = F−1

j (Uj) for each j. For example, we could use a multinormal distribution G in
(2.39) to determine the copula, then use the copula to generate random vectors (X1, . . . , Xd)
having marginals with a completely different type of cdf Fj, such as the gamma or Weibull
(Section 2.10.9).

Example 2.14 The following are four examples of oversimplified copulas that are easy to
generate from, and can give either zero or extremal correlation.

(a) If U1, . . . , Ud are d independent U(0, 1) random variables, their joint cdf is the product
copula C defined by C(u1, . . . , ud) = u1 · · ·ud.

(b) The strongest possible positive dependence occurs when U1 = · · · = Ud = U where
U ∼ U(0, 1), in which case the distribution of U is degenerate and uniform on the di-
agonal line that joins (0, . . . , 0) and (1, . . . , 1). The corresponding copula is defined by
C(u1, . . . , ud) = P[U ≤ u1, . . . , U ≤ ud] = P[U ≤ min(u1, . . . , ud)] = min(u1, . . . , ud).

(c) For d = 2, we have a perfect negative correlation between U1 and U2 if U1 ∼ U(0, 1),
and U2 = 1−U1. Then (U1, U2) is uniformly distributed on the diagonal line that joins (0, 1)
and (1, 0). The corresponding copula is C(u1, u2) = max(0, u1 + u2 − 1) (Exercise 2.30).
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(d) Let d = 2, U1 ∼ U(0, 1), U2 = U1 with probability p, and U2 = 1 − U1 with
probability 1− p. Then the distribution of (U1, U2) is concentrated on the union of the two
diagonal lines mentioned in (b) and (c). The corresponding copula is defined by C(u1, u2) =
pmin(u1, u2) + (1− p)max(0, u1 + u2 − 1) and is called a Fréchet copula (Fréchet 1951). By
varying p, the correlation ρ(U1, U2) can take any value in the interval [−1, 1]. For p = 1/2, this
distribution is uniform over the union of the two diagonals and we have ρ(U1, U2) = 0, but
these two random variables are clearly dependent. Despite having the same (zero) correlation
as the product copula, this copula (with p = 1/2) is quite different. □

Example 2.15 To illustrate the impact of the difference in Example 2.14(d) when p = 1/2,
let q(a) = P[U1U2 > a], where 1/2 < a < 1. With Fréchet’s copula, we have

q(a2) = P[U1 > a]/2 = (1− a)/2,

whereas with the product copula, when a is very close to 1, we have

q(a2) =

∫ 1

0

P[U1 > a2/u]du =

∫ 1

a2
(1− a2/u)du

= 1− a2(1− 2 ln a)

= 1− a2 + 2a2
[
(a− 1)− (a− 1)2/2 + o((a− 1)2)

]
= 2(1− a)2 + o((a− 1)2).

which is much smaller. If 1− a = 10−4, for example, the first probability is 10−4/2 and the
second one is 2× 10−8. This example shows that for given means, correlations, and marginal
distributions, the choice of copula can make a huge difference on the probability of some
important rare event, which may correspond for instance with a large loss or a large reward.

□

Parts (b) and (c) of Example 2.14 provide copulas that maximize and minimize, respec-
tively, the correlation between U1 and U2. The next result gives necessary and sufficient
conditions for this maximization or minimization to be transmitted to a pair (X1, X2) with
arbitrary marginals.

Theorem 2.7 (See Embrechts, McNeil, and Straumann 2002.) A random vector (X1, X2)
has the copula C(u1, u2) = min(u1, u2), which maximizes the correlation for the given
marginals, if and only if it can be written as (X1, X2) = (g1(U), g2(U)) where g1 and
g2 are both nondecreasing functions. It has the copula C(u1, u2) = max(0, u1 + u2 − 1),
which minimizes the correlation for the given marginals, if and only if it can be written as
(X1, X2) = (g1(U), g2(U)) where g1 is nondecreasing and g2 is nonincreasing.

A pair of random variables X1 and X2 that satisfy this theorem are called comonotonic
in the first case and countermonotonic in the second case. When the random variables are
discrete, the copula is not unique, but the one given by the theorem is always one of the
possibilities. When they are continuous, their rank correlation rho and Kendall’s tau are
both 1 in the first case (one can take gj(u) = F−1

j (u), the inverse distribution function of

Xj, for each j) and −1 in the second case (take g1(u) = F−1
j (u) and g2(u) = F−1

2 (1− u)).
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Example 2.16 Suppose we partition the unit square [0, 1)2 into k2 subsquares of the same
size, by partitioning each axis into k intervals of length 1/k. We then select k subsquares
forming a Latin square, i.e., so that each row and each column contains exactly one sub-
square. Consider a continuous distribution with density equal to k on the selected squares
and 0 elsewhere. This distribution always has U(0, 1) marginals, so the corresponding cdf is
a copula. This scheme generalizes easily to d > 2 dimensions: the unit hypercube [0, 1)d is
partitioned into kd subcubes of equal size, k of these cubes that form a Latin hypercube are
selected, and the density is set to k in the selected subcubes and 0 elsewhere. The corre-
sponding cdf is again a copula. Ghosh and Henderson (2001) call it a chessboard distribution.
Here, the correlations depend on which subcubes are selected. □

Example 2.17 LetG be a bivariate normal cdf where the two marginals are standard normal
and have correlation ρ ∈ (0, 1). The correlation matrix Σ and its Cholesky decomposition
are

Σ =

(
1 ρ
ρ 1

)
= LLt where L =

(
1 0
ρ (1− ρ2)1/2

)
.

If Z = (Z1, Z2)
t is a vector of two independent standard normals, then Y = (Y1, Y2)

t = LZ
has cdf G. The cdf of U = (U1, U2)

t = (Φ(Y1), Φ(Y2))
t is the copula C associated with G.

This copula is a two-dimensional normal copula. Note that we have Y1 = Z1 and Y2 =
ρZ1+(1−ρ2)1/2Z2. To generate a random vector X = (X1, X2)

t with arbitrary marginals F1

and F2 and dependence structure specified by C, we just return Xj = F−1
j (Uj) for j = 1, 2.

For this normal copula, we have the following simple relationships between the correlation
ρ, the rank correlation r = ρs(Y1, Y2) = ρ(U1, U2), and the Kendall’s tau τ = τk(Y1, Y2)
between Y1 and Y2 (Exercise 2.26):

ρ = 2 sin(rπ/6) = sin(τπ/2). (2.40)

Note that ρ, r, and τ can reach any value in (−1, 1); when one of these measures goes from
−1 to 1, the other two do the same.

We also have ρs(X1, X2) = r and τk(X1, X2) = τ regardless of what F1 and F2 are,
provided that they are both continuous. So to specify ρ in practice, we can select r or τ by
estimating the rank correlation of Kendall’s tau between X1 and X2 directly from the data,
and compute the corresponding ρ from (2.40). □

Example 2.18 The previous example can be generalized to the case where Y has an elliptic
distribution in d dimensions. The associated copula C, obtained by the standard construction
(2.39), is called an elliptic copula. Two prominent special cases are the normal and Student-t
copulas.

In the normal (or Gaussian) case, the correlation matrix R(y) (or the rank correlation
matrixR(u)) of Y determines the copula uniquely;R(y) can be computed fromR(u) and vice-
versa, via (2.40). To generate a random vector (U1, . . . , Ud) from that copula, it suffices to
generate (Y1, . . . , Yd) ∼ N(0,R(y)) (see Section 2.10.3) and return Uj = Φ(Yj) for j = 1, . . . , d.
Here, each Yj is N(0, 1). The special case where d = 2 was discussed in the previous example
and we will return to the general case in Section 2.10.9.

The Student-t copula depends on both the correlation matrix and the number of degrees
of freedom, ν. To generate (U1, . . . , Ud) from a Student copula with ν degrees of freedom and
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correlation matrix R(y), generate (Y1, . . . , Yd) from the d-dimensional Student distribution
with parameters (ν,Σ) = (ν,R(y)) (so Yj ∼ Student-t(ν) for each j) and return Uj = Tν(Yj)
for j = 1, . . . , d, where Tν is the Student-t cdf with ν degrees of freedom. □

An Archimedean copula is one that can be written as

C(u1, . . . , ud) =

{
φ−1(φ(u1) + · · ·+ φ(ud)) if φ(u1) + · · ·+ φ(ud) ≤ φ(0);

0 otherwise,

where φ : (0, 1] → R is a d times continuously differentiable function that satisfies φ(u) →
∞ when u → 0+, φ(1) = 0, φ′(u) < 0 for all u, and (−1)kdkφ−1(x)/dxk > 0 for all
x ∈ [0,∞). This function φ is the generating function of the copula. An Archimedean copula
is always symmetric and associative (i.e., C(u1, u2) = C(u2, u1) and C(u1, C(u2, u3)) =
C(C(u1, u2), u3))), and any of its two-dimensional marginals has a Kendall τ equal to

τ = 1 + 4

∫ 1

0

[φ(u)/φ′(u)]du

(Genest and MacKay 1986). Note that for any d′ < d, all d′-dimensional marginals are iden-
tical. This of course limits the flexibility. Examples of generating functions for Archimedean
copulas, that depend on a single parameter, are φ(u) = − lnu (the product copula),
φ(u) = u−λ − 1 for λ > 0 (Clayton’s copula), φ(u) = (− lnu)λ for λ > 1 (the Gumbel
copula), and φ(u) = − ln[(e−λu − 1)/(e−λ − 1) for λ ̸= 0 (Frank’s copula). One advantage of
these copulas is that they are specified by a single parameter, and there is a one-to-one corre-
spondence between the value of that parameter and the Kendall tau of the two-dimensional
marginals. One can estimate τ (e.g., by its empirical value), and it is then easy to find the
corresponding parameter value. For example, one has λ = 2τ/(1− τ) for the Clayton copula,
and λ = 1/(1− τ) for the Gumbel copula. On the other hand, having a single parameter is
a strong limitation on the flexibility, especially in higher dimensions.

An extreme-value copula is a copula that satisfies

C(uα1 , . . . , u
α
d ) = Cα(u1, . . . , ud)

for all α > 0 and (u1, . . . , ud) ∈ [0, 1]d. A multivariate extreme value distribution G defines an
extreme-value copula via Eq. (2.39). Examples of extreme-value copulas (in two dimensiona)
include the product, Gumbel, Gumbel II, Galambos, and Marshall-Olkin, copulas.

Example 2.19 (Marshall-Olkin copula) This class of copulas was introduced by Marshall
and Olkin (1967) to model component life in multicomponent systems affected by random
shocks. They can also be useful for modeling credit risk (replace components by firms) and
insurance losses, for example.

Consider a system of d components with (random) lifetimes Y1, . . . , Yd. For each nonempty
subset of components S ⊆ {1, . . . , d}, there is a shock arriving at time T (S) and which kills
all components in S. Each T (S) is an exponential random variable with parameter λ(S) and
these random variables are all independent. Thus Yj is the minimum of several independent
exponentials,
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Yj = min
{S:j∈S}

T (S), (2.41)

so it is also exponential with parameter

λj =
∑

{S:j∈S}

λ(S),

for j = 1, . . . , d. This λj represents the total shock rate for component j. The copula C
obtained by the standard construction (2.39) with the joint distribution G of (Y1, . . . , Yd) is
a Marshall-Olkin copula.

To generate a random vector (U1, . . . , Ud) from this copula, we can proceed as follows:
Generate T (S) ∼ Exponential(λ(S)) for each S such that λ(S) > 0, then for each j compute
Yj via Eq. (2.41) and set Uj = Gj(Yj) = 1− exp[−λjYj], where Gj is the (exponential) cdf of
Yj. Then, a vector (X1, . . . , Xd) with arbitrary marginals Fj and whose dependence structure
is specified by this copula can be obtained by setting Xj = F−1

j (Uj) for each j.

When d is large, we usually take λ(S) = 0 for several of the subsets S, so not all 2d − 1
possible subsets need to be considered in the algorithm. For example, we may consider only
the subsets of cardinality no more than 2, which is generally sufficient for matching a given
matrix of rank correlations (but limits the flexibility of the copula on other aspects; e.g.,
there can only be pairwise correlations).

Let us define

λi,j =
∑

{S:i∈S, j∈S}

λ(S)

for all pairs (i, j) of components. In the bivariate case (d = 2), the copula can be written as
a function of the parameters α1 = λ1,2/λ1 and α2 = λ1,2/λ2, namely

C(u1, u2) = min(u2u
1−α1
1 , u1u

1−α2
2 ).

This copula has a positive mass on the line Y1 = Y2; this mass corresponds to the simultaneous
failure of both components, which occurs at rate λ1,2. The Spearman’s rho and Kendall’s
tau between Y1 and Y2 are then (see Exercise 2.33)

ρs(Y1, Y2) = ρ(U1, U2) =
3α1α2

2α1 + 2α2 − α1α2

and

τk(Y1, Y2) =
α1α2

α1 + α2 − α1α2

,

respectively. For d > 2, each pair (Yi, Yj) has a bivariate Marshall-Olkin copula with param-
eters αi = λi,j/λi and αj = λi,j/λj, so the Spearman’s rho and Kendall’s tau for each pair
can be computed as for the bivariate copula with parameters (αi, αj). □

Example 2.20 The two-dimensional Gumbel copula, with parameter δ ≥ 1, is defined as
(Gumbel 1960, Joe 1997, Nelsen 1999):

Cδ(u1, u2) = exp
[
−
(
(− lnu1)

δ + (− lnu2)
δ
)1/δ]

(2.42)
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for 0 ≤ u1, u2 ≤ 1. With δ = 1, this gives the product copula (no dependence). The depen-
dence increases with δ and we get perfect correlation in the limit when δ →∞. The Kendall’s
tau is τ(U1, U2) = (δ − 1)/δ (Joe 1997, page 146). There is no simple formula for the rank
correlation ρ(U1, U2) as a function of δ but that function can be estimated by Monte Carlo.

Generating a pair (U1, U2) from this copula is not straightforward. One way of doing it
is to generate U1 ∼ U(0, 1) and then generate U2 from its conditional distribution given U1,
given by

C2|1(u2|u1) = P[U2 ≤ u2 | U1 = u1]

=
(1 + (lnu2/ lnu1)

δ)−1+1/δ

u1
exp

[
−
(
(− lnu1)

δ + (− lnu2)
δ
)1/δ]

(Joe 1997, page 147). To generate U2 by inversion from its conditional distribution given U1,
one can generate U ∼ U(0, 1) independent of U1 and then find the root U2 of the equation
C2|1(U2|U1) = U . Note that the conditional distribution is increasing in U2 and goes from
0 to 1, so the root is unique. Finding this root is equivalent to computing the inverse of
the conditional cdf (for which we have no closed-form formula). The root can be found by
a simple binary search or by other more refined (and perhaps more efficient) root finding
algorithms.

Higher-dimensional generalizations of this copula are defined for example in Joe (1997),
Family MM1, pages 163 and 188. There are also other generation methods that work for the
multivariate case; see Wu, Valdez, and Sherris (2006). □

Example 2.21 The choice of copula family can have a dramatic impact in certain settings.
Embrechts, Lindskog, and McNeil (2003) (Section 7.1) give the following example. An in-
surance company receives a payoff (from reinsurance against very large losses) if its losses
in each of its five lines of business exceed a given threshold, fixed at the 0.99 quantile of the
loss distribution. The five-dimensional vector of losses (X1, . . . , X5) is modeled as follows:
each Xi has the lognormal distribution with parameters (µ, σ2) = (0, 1), τk(Xi, Xj) = 0.5
for all i ̸= j, and the dependence structure is further specified by a five-dimensional copula.
For this, they compare the normal and (Archimedean) Gumbel copulas, whose parameters
are uniquely determined by the values of the Kendall tau. For the Gumbel copula, we have
τ = (δ − 1)/δ, so δ = 1/(1 − τ) = 2. For their example, they find that the probability of
receiving a payoff is about eight times larger with the Gumbel copula than with the normal,
for the same Kendall’s tau and the same marginals. This implies for instance that if we use
the NORTA method of the next section while the true dependence structure is given by a
Gumbel copula, we underestimate the payoff probability by a factor of 8. A similar kind of
behavior can be observed when estimating the value-at-risk of a portfolio of several assets
whose values change in a dependent way. □

Example 2.22 In an example related to the previous one, Blum, Dias, and Embrechts
(2002) fit seven types of two-dimensional copulas to a data set of two-dimensional claims for
fire insurance in Denmark. The two coordinates represent two different types of losses, in
logarithmic scale. For the marginals Fj, they simply take the empirical cdfs of the data. They
use each model to estimate the mean and standard deviation of four different payoff functions
that are simplified representations of typical payoff functions in the insurance industry. They
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compare these estimates with the corresponding means and standard deviations obtained
from the raw data, with the same payoff functions. The Gumbel copula provides the best
fit overall and performs much better than the normal copula (for example), which tends to
underestimate the standard deviation. Some of the copulas are doing very bad especially if
the payoff in nonzero only when both types of losses are large. These types of payoff functions
are typical in risk transfer contracts, whose purpose is to protect against large losses in several
areas simultaneously. Without this protection, such large losses may trigger bankruptcy of
the insurance company. The density in the upper right corner of the joint distribution, where
both U1 and U2 are large, can be much larger for the Gumbel copula than for the normal with
the same rank correlation. Using the wrong copula in this context may lead to a significant
underestimation of the value of the contract because it grossly underestimates the risk. See
Embrechts, McNeil, and Straumann (2002) for further discussion. □

♣ Add some plots here for the examples.

♣ Other example: Jaoua, L’Ecuyer, and Delorme (2013).
Besides the importance of choosing the correct family, the two previous examples illus-

trate again a key aspect of modeling with copulas: the distribution F of the vector X that
we want to model can be from a different family than the distribution G used to specify
the copula via Eq. (2.39). In Example 2.21, each Gj is either from the normal or Gumbel
family whereas each Fj is lognormal. In Example 2.22, each Fj is an empirical distribution
function from the data for each of the seven different choices of G. As another example, the
copula can be from the Marshall-Olkin family of Example 2.19, where the marginals Gj are
exponential, and the Fj’s could be Weibull for some j’s and gamma for others.

We saw in Example 2.22 that certain copulas (such as the Gumbel) provide stronger
dependence than others in the upper tails of the marginal distributions, in the sense that
they favor realizations where all coordinates are large simultaneously, for the same values
of the correlation coefficients. This dependence between extreme values can be measured by
the coefficient of upper tail dependence λu, which depends only on C and is defined by

λu = lim
u→1−

P[U2 > u | U1 > u] = lim
u→1−

1− 2u+ C(u, u)

1− u
(2.43)

(the limit when u converges to 1 from the left) when this limit exists (Joe 1997, page 33).
It measures a stronger level of dependence than correlation. It turns out, for example, that
λu = 0 for the normal copula (regardless of the correlation), λu > 0 (decreasing in ν) for
the Student-t copula, and λu = 2 − 21/δ > 0 for the Gumbel copula with parameter δ > 1
(Exercise 2.36). A larger λu means (very roughly) that for a given correlation ρ(U1, U2),
the joint distribution of (U1, U2) has more density in the area where both U1 and U2 are
very large. For applications like those of Example 2.22, modeling this upper tail dependence
correctly is crucial.

There is an extremely rich variety of ways of specifying a copula, each one giving rise
to a different shape of distribution. The previous examples only show a small subset of the
possibilities. Other families of copulas are described and studied in Joe (1997), Nelsen (1999),
Drouet Mori and Kotz (2001), for example. The following desirable properties are relevant
when selecting a copula family for a simulation model: (a) There should be a relatively
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easy and efficient way of generating random vectors (U1, . . . , Ud) from that copula; (b) the
parameters of the copula should not be too hard to estimate and they should preferably have
an interpretation; (c) the range of dependence structure that can be matched should be wide
and flexible, or at least flexible enough to match reasonably well the dependence structure
found in the data.

To estimate a copula, we can first estimate the marginals Fj, then transform the ob-
servations via (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)) (so that they have uniform marginals
if the Fj’s are continuous), and we find a copula that fits these transformed observations.
As d increases, however, we get hit by the curse of dimensionality, in the sense that the
difficulty of estimating the copula grows “exponentially” with the dimension. It is generally
hard to estimate a copula in more than two or three dimensions, unless we restrict ourselves
to certain specific parametric forms.

Sometimes, the target dependence structure may be only partially specified, e.g., by
specifying only the correlation coefficients (or the rank correlations or Kendall tau’s) between
the Xj’s, or perhaps only between certain pairs of Xj’s, and a copula that approximates these
correlations is selected from a restricted class. In Section 2.10.9, we discuss one practical
approach for specifying the copula indirectly in this way.

Again, it must be stressed that specifying only the marginals and correlations typically
leaves a huge amount of freedom for choosing the copula. That is, for given marginals and
rank correlations (say), we can often find a large class of very different multivariate dis-
tributions that match these rank correlations exactly. The choice of a specific distribution
within that class may have an important impact on simulation results. This must be kept
in mind when reading Section 2.10.9. The NORTA method discussed there is a convenient
heuristic for specifying (somewhat arbitrarily) one distribution in that class, using a normal
copula. However, the distribution thus specified may turn out to be far from the correct one
if the latter has a copula that is far from a normal copula. Hörmann, Leydold, and Derflinger
(2004) give other illustrations of this.

2.10.9 The NORTA method

7 Using normal copulas to model high-dimensional multivariate distribution is natural
and attractive, because these copulas are easy to handle and to generate from, and the
correlation or rank correlation matrix determines the copula uniquely. In certain situations
(e.g., in some queueing systems as in Example 2.3 and for some diffusion approximations),
the performance measure of interest depends only or mainly on the mean and covariance
matrix (i.e., first two moments) of the distribution and very little on the exact form of the
joint distribution beyond these two moments. In these cases, restricting ourselves to normal
copulas can be justified because they provide a relatively easy way to approximate a target
correlation matrix. Finding the correct type of copula in high-dimensional settings (e.g.,
10 to 100 dimensions) is usually much too difficult, so using a normal copula that fits the
correlations could be a reasonable compromise between the (unknown) correct dependence
model and a naive model that assumes independence of the coordinates.

7From Pierre: To be reorganized: this should be placed before the archimedean copulas, and the latter
should have more coverage. We ay have a separate subsection for copulas.
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Suppose we want a multivariate distribution for X = (X1, . . . , Xd)
t with (a) a given

continuous marginal cdf Fj for each j and (b) a given rank correlation matrix R(u). For this,
it suffices to have a copula C whose correlation matrix is R(u) and to define Xj = F−1

j (Uj)
where the random vector U = (U1, . . . , Ud)

t has cdf C. (If some Fj has jumps, then X
and U will have different rank correlation matrices, because Fj(F

−1
j (Uj)) ̸= Uj in that

case.) If we decide to use a normal copula, we need to find a valid correlation matrix R(y)

for the multinormal distribution, whose corresponding rank correlation matrix equals (or
approximates) the target R(u). Once we have done that, we can simply generate a vector
Y = (Y1, . . . , Yd)

t ∼ N(0,R(y)) and return U = (Φ(Y1), . . . , Φ(Yd))
t, as in Example 2.18. The

vector Y has N(0, 1) marginals whereas U has U(0, 1) marginals. Generating Y is easy:
decompose R(y) = L(y)(L(y))t, generate Z ∼ N(0, I), i.e., with i.i.d. N(0, 1) coordinates,
and return Y = L(y)Z. The vector U has a correlation matrix R(u) that is easy to compute
from R(y) and vice-versa: From Eq. (2.40), we have

r
(y)
i,j = 2 sin(r

(u)
i,j π/6) (2.44)

where r
(u)
i,j and r

(y)
i,j are the elements (i, j) of R(u) and R(y), respectively. Eq. (2.40) also

provides a similar relationship between R(y) and the Kendall’s tau correlation matrix, so
we can specify the latter instead of R(u) and compute the corresponding target R(y) in a
similar way. The remainder of this section is written in terms of R(u) but everything adapts
to Kendall’s tau correlations in a straightforward way.

The use of normal copulas has been proposed by Mardia (1970), Li and Hammond
(1975), Iman and Conover (1982), and studied further in more recent articles. Cario and
Nelson (1997) coined the appellation normal to anything (NORTA), to indicate that the
method transforms a normal vector to a vector having essentially any type of distribution
for its marginals. Instead of specifying the rank correlation matrix R(u), some authors specify
a target correlation matrix R(x) for the vector X. But this complicates the approach, as we
will see in a moment, and there seems to be no good reason for wanting to work directly with
R(x), as pointed out by Hörmann, Leydold, and Derflinger (2004). In practice, the target
R(u) of Kendall’s tau correlation matrix would normally be estimated directly from the data.

Again, restricting ourselves to a normal copula severely restrains (indirectly) the form
of dependence structure that can be obtained between the Uj’s: Only a finite number of
parameters (the entries of R(y)) can be chosen, whereas the copula C in the general case can
be chosen from a much wider class of functions. In other words, only a small subclass of the
multivariate distributions can be obtained via the NORTA method. On the other hand, this
restriction makes the scheme more manageable.

Can the NORTA method match any valid correlation matrix R(u) for U? In the two-
dimensional case, the answer is yes, because the Fréchet bounds for the correlation between
two normal r.v.’s are ±1 and they correspond to correlations of ±1 between the two uni-
forms, and r

(u)
1,2 is a continuous increasing function of r

(y)
1,2 and vice-versa, as can be seen

from Eq. (2.44). In more than two dimensions, however, Ghosh and Henderson (2002) have
shown that there are valid rank correlation matrices that cannot be matched by the NORTA
method, in the sense that the matrixR(y), whose elements are obtained from those ofR(u) via
(2.44), is not nonnegative definite and therefore is not a valid correlation matrix. The rank
correlation matrix is called NORTA-defective when this happens and NORTA-compatible oth-
erwise. More generally, a correlation matrixR(x) for a random vectorX with given marginals



2.10 Multivariate Distributions 205

Fj is called NORTA-defective [NORTA-compatible] for the given marginals if the correspond-
ing rank correlation matrix R(u) is NORTA-defective [NORTA-compatible]. Ghosh and Hen-
derson (2002) have shown empirically that a random correlation matrix generated uniformly
over the set of all valid correlation matrices for uniform marginals Fj is NORTA-defective
with a probability that increases rapidly with the dimension d. This probability is near 0.2
for d = 5, 0.8 for d = 10, and very close to 1 for d > 15.

In view of the fact that (2.44) defines a continuous mapping between R(u) and R(y), it
sounds sensible, when the desired rank correlation matrix R(u) turns out to be NORTA-
defective, to seek and use the “nearest” (in some sense) nonnegative definite correlation
matrix to R(y). This can be done by defining a measure of distance between matrices and
then solving an optimization problem. Both Lurie and Goldberg (1998) and Ghosh and
Henderson (2002) suggested and implemented this idea (they were trying to match R(x)

instead of R(u), which makes things more complicated, but the general idea is the same).
Lurie and Goldberg (1998) define a weighted norm on the space of d × d matrices A with
elements aij by

∥A∥w =
1

2

d∑
i=1

d∑
j=1

wija
2
ij,

where the wij are arbitrary positive weights. In practice, wij can be chosen larger for the

pairs (i, j) for which we have higher confidence in the estimated value of r
(u)
i,j for our model,

and smaller otherwise. Ghosh and Henderson (2002) use a norm defined by

∥A∥1 =
d∑

i=1

i−1∑
j=1

|aij| or ∥A∥∞ = max
1≤j<i≤d

|aij|

instead. After selecting a norm ∥·∥, the next step is to find a valid correlation matrix R̃(y) for

Y , for which the distance ∥R̃(y) −R(y)∥ is minimal, where R(y) is the matrix whose entries
are defined by (2.44).

Recall that a matrix R̃(y) is a valid correlation matrix for Y if and only if it has unit
diagonal elements and it can be written as R̃(y) = LLt where L is a lower triangular matrix.
Let L be the set of lower triangular matrices L such that LLt has unit diagonal elements.
Then the problem of finding the nearest valid correlation matrix can be formulated as:

Minimize ∥LLt −R(y)∥ subject to L ∈ L. (2.45)

This approximation methodology can be used as well if the target rank correlation matrix
R(u) is itself invalid. This may happen if this matrix was estimated from data, for example.
Lurie and Goldberg (1998) solve the nonlinear optimization problem (2.45) by a quasi-
Newton or Gauss-Newton algorithm (with their weighted quadratic norm), whereas Ghosh
and Henderson (2002) use techniques for solving semidefinite programming problems. In
their experiments, they find that when R(u) is NORTA-defective, there is almost always a
NORTA-compatible rank correlation matrix which is very close.

In the case where we want to specify directly R(x) instead of R(u) (we do not recommend
it, but NORTA is usually defined under that framework), we can proceed as follows. Suppose
that the Xj’s have been standardized so that E[Xj] = 0 and Var[Xj] = 1 (it suffices to
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multiply by the desired standard deviation and add the desired mean afterward, for each
j). Let r

(y)
i,j and r

(x)
i,j denote the elements (i, j) of R(y) and R(x), respectively. By integrating

with respect to the bivariate normal density of (Yi, Yj), we obtain

r
(x)
i,j = E[XiXj] =

∫ ∞

−∞

∫ ∞

−∞
F−1
i (Φ(yi))F

−1
j (Φ(yj)) ·

1

2π
√

1− (r
(y)
i,j )

2

exp

[
−
y2i + y2j − 2r

(y)
i,j yiyj

2(1− (r
(y)
i,j )

2)

]
dyidyj. (2.46)

Given r
(x)
i,j , we must solve this integral equation for r

(y)
ij , whereas we get it directly from

Eq. (2.44) when we have r
(u)
i,j and both Fi and Fj are continuous. This has to be done for all

d(d−1)/2 pairs (i, j) such that 1 ≤ i < j ≤ d, so this can be very time-consuming, especially
if precise values are sought.

Eq. (2.46) actually generalizes (2.44) to r
(x)
i,j = φi,j(r

(y)
i,j ) where each φi,j : [−1, 1] →

[−1, 1] is a one-dimensional transformation that depends on Fi and Fj. Cario and Nelson
(1997) pointed out that for any given pair of marginals (Fi, Fj), φi,j is a nondecreasing

and continuous function, φi,j(0) = 0, and the range of possible correlations r
(x)
i,j goes from

r i,j = φi,j(−1) to ri,j = φi,j(1) (see Exercise 2.38). These r i,j and ri,j are the Fréchet bounds

of Theorem 2.6 for the given marginals Fi and Fj. A value of r
(y)
i,j that solves (2.46) for a given

r
(x)
i,j can be approximated by a root finding procedure that exploits these informations. Solving

these equations provides a target correlation matrix R(y). In the case where the solution of
(2.46) is unique for each (i, j) (Henderson, Chiera, and Cooke 2000 give conditions under
which this is true), it is clear that if R(x) is NORTA-compatible for the given marginals, then
solving (2.46) will necessarily yield a valid (nonnegative definite) correlation matrix R(y) for
Y . So if (2.46) is solved exactly, NORTA will fails if and only if the target matrix R(x) is
NORTA-defective for the given marginals. (Note that such a R(x) is not necessarily invalid
for these marginals.)

To avoid the high cost of solving the integral equations (2.46), Lurie and Goldberg (1998)
first generate a sample of n i.i.d. N(0, I) random vectors Z1, . . . ,Zn. Then, by an iterative
method, they find a matrix L ∈ L that approximately minimizes ∥LLt − R(x)∥w, where
the weights wi,j are all ones and R(x) is the empirical correlation matrix of the n vectors
Xi = (Xi,1, . . . , Xi,n)

t, with Xi,j = F−1
j (Φ(Yi,j)), and (Yi,1, . . . , Yi,d)

t = Yi = LZi. The

starting point of their iterative method is the matrix L ∈ L such that LLt = R(x). Their
technique is an approximation in the sense that they find the best correlation matrix R only
for the particular sample that they have generated rather than for Z ∼ N(0, I). Increasing
n reduces this approximation error but increases the work.

The NORTA method requires non-negligible work in general, both for its setup and for
generating the variates. The amount of work required to generate Y = L(y)Z increases as
d2, the square of the dimension. On the other hand, it is a simple and easy-to-implement
heuristic that allows one to capture some of the dependence structure by matching the first
two moments of the joint distribution. See Chen and Jeng (1998), Nelson and Yamnitsky
(1998), and Ghosh and Henderson (2002) for further discussion.

♣ Add material from Avramidis, Channouf, and L’Ecuyer (2009) for the case of discrete
marginals.
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2.11 Discrete Choice Models

Situations where an individual makes a choice among a finite number of alternatives are fre-
quent. A natural way to model this is to model the choice by a multinomial random variable:
The individual selects alternative j with probability pj, where j runs over all possible alter-
natives. For example, the choice could be between different brands when buying a product,
between different routes or transportation modes to reach a given destination, or between
different airlines, flights, and travel classes when buying a flight ticket between two give
cities. The probabilities pj usually change when the properties of the different alternatives
change, and they also depend on the individual.

A standard way of taking this variation into account is to assume that each individual
has its own utility function that can be expressed as a function of both the properties of
any given alternative and the characteristics of the individual, usually with some random
terms or parameters in the function. The individual always selects the alternative that gives
her/him the largest utility. Thus, all the randomness is captured by the (random) utility
function. We already saw an instance of this in Example 1.58.

In a model with additive noise, the utility of alternative j for individual q is

Uq,j = Vq,j(βq,xq,j) + ϵq,j,

where Vq,j is a known deterministic function, βq is a vector of parameters for individual q,
xq,j is a vector of observed attributes for alternative j and individual q, ϵq,j is a random term
that reflects the unknown part of the utility, and the ϵq,j’s are assumed independent across
all pairs (q, j), usually with a common distribution. Often, Vq,j(βq,xq,j) is a linear function
of xq,j, of the form Vq,j(βq,xq,j) = βt

qxq,j, in which case the utility obeys essentially a linear
regression model. However, the behavior of the model depends very much on the distribution
of the residuals ϵq,j, which is not necessarily normal.

A popular choice discussed earlier in Example 1.58 is to assume that ϵq,j is Gumbel with
mean 0 and scale parameter 1. Under this assumption, and if we also assume that βq is
fixed (not random), one can show that the probability that q chooses alternative j, i.e., that
Uq,j > Uj,a for all a ̸= j, is given by

pq,j = exp[Vq,j(βq,xq,j)]/Kq, (2.47)

where Kq =
∑

a∈A(q) exp[Vq,a(βq,xq,a)] is the appropriate normalizing constant, and A(q) is
the set of all alternatives available to q. In this case, the choice probabilities can be computed
rather easily, provided that the number of alternatives is not excessive. In that setting, βq

is usually taken as a constant vector β that does not depend on q. This is the multinomial
logit model (Train 2003). It was originally introduced for the case of two alternatives only,
say 0 and 1. In that case, if we normalize the utility function so that Vq,0 = 0, we obtain
pq,1 = eVq,1/[1 + eVq,1 ], which is equivalent to Vq,1 = ln[pq,1/(1− pq,1)]. The latter is the logit
function of pq,1 whence the name of the method.

The multinomial logit model has certain limitations and a popular trend is to generalize
it to the case when βq is itself a random vector. We then have a mixture of distributions for
the choice probabilities. If we still assume a Gumbel distribution for the ϵq,j, the resulting
model is called a mixed logit model (Train 2003) that we examined in Example 1.58 and
Exercise 1.12.
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♣ Multivariate probit model. Parameter estimation. Also probit model for the proba-
bility of exceeding a threshold.

2.12 Stochastic processes

2.12.1 Markov processes

Recall that a stochastic process {Yt, t ≥ 0} is Markovian if conditional on the present
(t, Yt), the future {Ys, s > t} is independent of the past {Ys, s < t}. Processes encountered
in discrete-event simulation can always be made Markovian simply by incorporating enough
information in Yt (i.e., by enlarging the state space appropriately). A Markovian process
whose time index is I = {0, 1, 2, . . . } is a discrete-time Markov chain (DTMC). If its time
index is [0,∞) but its state changes only by jumps at random times and is constant between
those jumps, we have a Markovian jump process, also called a continuous-time Markov chain
(CTMC). In this case, the time to the next jump always has the exponential distribution.
See Section A.18 in the appendix for more details.

Example 2.23 Consider the GI/G/1 queue example (Section 1.11). It follows immediately
from the Lindley equation (1.39) that the process {Wi, i ≥ 0} is Markovian, and it is
a DTMC. On the other hand, the process {Q(t), t ≥ 0} is not Markovian, unless the
interarrival and service time distributions are both exponential. Indeed, if we look only at
the number of customers in the queue at time t and forget about the past, we miss important
information, such as the elapsed service time for the customer currently being served.

Suppose that the events are the arrivals, ends of service, and end of the simulation at a
fixed time T , as in Section 1.11. Define the state Si of the model at time ti, right after event
ei has occurred, as Si = (ti, Qi, ζi, ξi), where Qi is the number of customers in the queue, ζi
is the time until the next arrival, and ξi is the time until the next departure (put ξi = −1,
say, if the server is idle). Then, {Si, i ≥ 0} is a DTMC. □

Example 2.24 In a simulation context, the discrete-time stochastic process that gives the
state of the simulation program at the successive event times, including the value of the
simulation clock and the content of the event list, must be a Markov chain (otherwise the
simulation would not be possible). In practice, we are often interested in other stochastic
processes related to a given model, some not necessarily Markovian. This causes no problem,
as long as the evolution of any such process can be easily deduced from the time-evolution
of the state process of the entire simulation model. To be more precise, we introduce the
following notation.

Consider the discrete-time process {Si, i = 0, 1, 2, . . . }, where Si represents the state of
the simulation model at the time ti of the ith event ei, just after the event has occurred. We
assume that the state Si always includes the clock time ti. From this discrete-time process,
we construct the continuous-time process {S(t), t ≥ 0} defined by S(t) = SN(t), where
N(t) = sup{i | ti ≤ t} is the number of events that occur in the time interval (0, t]. We call
S(t) the state of the model at time t. It is the same as the state of the model at the time of
the last event that has occurred during the time interval (0, t]. We assume that the process
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{Si, i ≥ 0} is a Markov chain (a DTMC) and that the state of the simulation program at
time ti, just after the occurrence of ei, always contains Si (and usually more information).
This does not imply that {S(t), t ≥ 0} is Markovian; typically, it is not (see Example 2.23).
Processes like {S(t), t ≥ 0} are called semi-Markov processes (Ross 1970, Çinlar 1975). The
process {S(t), t ≥ 0} is uniquely determined from {Si, i = 0, 1, . . . }, but the opposite
is not true. For example, if ti = ti−1 (simultaneous events), Si−1 cannot be deduced from
{S(t), t ≥ 0}. So, the DTMC process {Si, i ≥ 0} contains the most information. It is the
one we usually work with. □

Numerical methods are available for computing steady-state probabilities or average
cost/reward for Markov chain models. In principle, they could be applied to compute perfor-
mance measures for entire simulation models. But from a practical viewpoint, these methods
usually break down when the dimension of the state space becomes too large, because they
then require excessive computing times and memory. With simulation, in contrast, high-
dimensional state spaces are no problem.

Filtrations for stochastic processes and stopping times with respect to filtrations are
defined in Section A.16 of the appendix. In short, T is a stopping time with respect to the
filtration {Ft, t ≥ 0} if knowing FT always reveals the value of T .

Example 2.25 Consider one day of operation of the call center in Section 1.12 and let Fi

represent all known information at the occurrence of the ith simulation event ei. If N is the
total number of events that occur during the day, then N is a stopping time with respect to
{Fi, i ≥ 0}. The last event occurs either when the center closes or when the last call ends,
and we have enough information at that time to know that it is the last event. Now, let N ′

be the event number which corresponds to the arrival of the last call of the day. This N ′ is
not a stopping time, because at the time of occurrence of that event, we cannot be sure that
no additional customer will arrive before the center closes (under the assumption that the
state Si does not reveal arrival times that occur after time ti). □

2.12.2 Random walks

A simple, yet very important type of Markovian stochastic process, with applications in
hundreds of areas, is a random walk. There are several kinds of random walks; they can
evolve over the integers, in the real space, on a graph, or in other types of spaces.

A random walk {Sj, j ≥ 0} in Rd can be defined by

Sj = Sj−1 +Xj,

where S0 = \0 ∈ Rd (a constant vector) and the Xj are i.i.d. random vectors in Rd. To
simulate trajectories of continuous-time stochastic processes in the real space Rd, we often
approximate them by random walks, as we shall see in the forthcoming subsections.

8

8From Pierre: Perhaps a subsection on deterministic and random time change around here? Or perhaps
before the Lévy process section.
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2.13 Poisson Processes

2.13.1 Definition and main properties

A counting process is a continuous-time stochastic process N = {N(t), t ≥ 0} taking its val-
ues in {0, 1, 2, . . . }, and with non-decreasing right-continuous trajectories. Usually, N(0) = 0
and one can interpret N(t) as the number of events of some sort (often called arrivals) that
have occurred during the time interval (0, t]. A renewal process is a counting process for
which the times between the successive jumps are i.i.d. random variables.

A counting process with N(0) = 0 is a Poisson process if it satisfies the following two
axioms (Çinlar 1975, page 95):

(a) Arrivals are one by one. That is, the probability that N(t) has a jump of size larger
than 1 somewhere in the time interval [0,∞) is 0.

(b) For any fixed t2 > t1 > 0, the random variable N(t2)−N(t1), the number of jumps in
the interval (t1, t2], is independent of {N(t), t ≤ t1}, the history of the process up to
time t1.

These axioms give intuition about when we should expect a counting process to be ap-
proximately Poisson, namely when events occur randomly in time, independently of each
other.

Define a(t) = E[N(t)]. For the remainder of this section, we assume that a is a continuous
function of t, differentiable except perhaps at a few isolated points. Let λ(t) = a′(t) be the
value of the derivative at the points t where it exists. Then one has

a(t) =

∫ t

0

λ(s)ds.

The functions λ(·) and a(·) are called the rate function and the cumulative rate function of
the process, respectively. An interpretation of the rate or intensity λ(t) of the Poisson process
at time t is that for a small ϵ > 0, the probability of a jump in the next ϵ units of time is
λ(t)ϵ+ o(ϵ) and the probability of two or more jumps is o(ϵ). That is,

P[N(t+ ϵ)−N(t) = 1] ≈ 1− P[N(t+ ϵ)−N(t) = 0] ≈ λ(t)ϵ.

This is similar to the failure rate function of a continuous random variable.
When λ(t) = λ for all t ≥ 0, for some constant λ > 0, the Poisson process is called

stationary, in the sense that it has a time-stationary rate and its increments have a time-
stationary distribution, or time-homogeneous. A standard Poisson process is a stationary
Poisson process with rate λ = 1.

Proposition 2.8 (Çinlar 1975, page 97.) If {N(t), t ≥ 0} is a Poisson process, then for
any fixed t2 > t1 ≥ 0, N(t2)−N(t1) is a Poisson random variable with mean a(t2)− a(t1) =∫ t2
t1
λ(t)dt. In the stationary case, the mean is (t2 − t1)λ.

Define T0 = 0, let 0 < T1 ≤ T2 ≤ T3 ≤ · · · be the jump times of the process {N(t), t ≥ 0},
and let Aj = Tj − Tj−1, j ≥ 1, be the times between the successive jumps. The following
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proposition gives an easy way of generating a stationary Poisson process; it suffices to gen-
erate the Aj’s, which are i.i.d. exponentials.

Proposition 2.9 (Taylor and Karlin 1998, page 292.) A counting process {N(t), t ≥ 0},
with N(0) = 0, is a stationary Poisson process with rate λ if and only if the random variables
A1, A2, . . . are i.i.d. exponential with rate λ.

For a Poisson process {N(t), t ≥ 0}, we can generate the number of jumps in any given
time interval by generating a Poisson random variable (Proposition 2.8), but that does not tell
us the location of these jumps in the interval. The next proposition says that for a stationary
Poisson process, conditional on the number of jumps, these jumps are uniformly distributed
over the interval. One can therefore simulate the Poisson process by first generating the
number N of jumps and then generating N i.i.d. uniforms over the time interval where these
jumps occur to determine the locations of the jumps. For a proof, see, e.g., Taylor and Karlin
(1998), p. 299.

Proposition 2.10 Given that a stationary Poisson process has n jumps in the time interval
(t1, t2], for t2 > t1 ≥ 0, the conditional distribution of the times at which these n jumps have
occurred is the same as the distribution of n i.i.d. Uniform(t1, t2) random variables, sorted by
increasing order.

2.13.2 Standardization by nonlinear time change

Any Poisson process {N(t), t ≥ 0} can be transformed into a standard (stationary) one, and
vice-versa, by stretching the time scale where the rate needs to be decreased and contracting
it where the rate should be increased, as follows. Suppose we are interested in a Poisson
process with rate function λ and cumulative rate function a. Let N0 = {N0(x), x ≥ 0} be a
standard Poisson process (with rate 1) and define the process N = {N(t), t ≥ 0} by setting
N(t) = N0(a(t)) for t ≥ 0. If the jump times of the process N are T1, T2, . . . and those of N0

are X1, X2, . . . , then we have Xj = a(Tj), or equivalently Tj = a−1(Xj).

Proposition 2.11 The process {N(t), t ≥ 0} is a Poisson process with cumulative rate
function a if and only if {N0(x), x ≥ 0} is a standard Poisson process.

Proof. Clearly, the axioms (a) and (b) defining the Poisson process are satisfied for the
processN if and only if they are satisfied forN0, because a is a continuous and non-decreasing
function. It remains to verify that E[N(t)] = a(t) for all t > 0 if and only if E[N0(x)] = x for
all x > 0. If E[N0(x)] = x, then E[N(t)] = E[N0(a(t))] = a(t). Conversely, by putting a(t) = x
we have N0(x) = N(a−1(x)). Therefore, if E[N(t)] = a(t), then E[N0(x)] = E[N(a−1(x))] =
a(a−1(x)) = x.

This transformation is very handy for simulating a Poisson process with an arbitrary
rate function, provided that the cumulative rate function a is easy to invert. One generates
the jump times Xj of the standardized process N0 and computes the jump times Tj of the
original process N via Tj = a−1(Xj), for j = 1, 2, 3, . . . .
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2.13.3 Modeling and estimating non-stationary rates

The rate function of a non-stationary Poisson process is most often modeled as a piecewise-
constant function (as in the call center example of Section 1.12), mainly because the process
is then easy to simulate. The piecewise-constant rate is also easy to estimate over each
interval of stationarity if the boundaries of these intervals are fixed: Just take the average
number of arrivals per unit of time over each interval. However, estimating the boundaries
when they are unknown is more difficult.

Lee, Wilson, and Crawford (1991) and Kuhl, Wilson, and Johnson (1997) have pro-
posed a model of non-stationary Poisson process whose rate function λ(t) has exponential,
polynomial, and multiperiodic trigonometric components:

λ(t) = exp

[
m∑
i=0

αit
i +

p∑
k=1

γk sin(ωkt+ ϕk)

]
, (2.48)

where the parameters αi, γk, ωk, and ϕk represent the amplitudes of trends, and the ampli-
tudes, frequencies, and phase shifts of the periodic components, respectively. Kuhl, Wilson,
and Johnson (1997, 1998) have also developed procedures and software to estimate the pa-
rameters and to simulate the corresponding process.

9

Other models for the rate of a Poisson process are discussed in Arkin and Leemis (2000),
Leemis (1991), Leemis (2001), Nelson and Yamnitsky (1998), Wilson (1997) and the refer-
ences given there. One obvious constraint when designing such a model is that λ(t) ≥ 0 for
all t, i.e., a(t) must be non-decreasing in t.

10

A statistical goodness-of-fit test for a stationary Poisson process over a fixed time horizon
t can be performed as follows: Test if the empirical distribution of the jump times in (0, t]
corresponds to the distribution of N(t) i.i.d. U(0, t) random variables sorted by increasing
order. If the number of jumps is fixed, instead of the time t, then test if the spacings are i.i.d.
exponential. For a non-stationary process, a simple testing approach is to first standardize
the process, and then apply the procedure just described to the standardized process.

2.13.4 Composition and decomposition

Poisson processes can be superposed and decomposed. If {N1(t), t ≥ 0}, . . . , {Nk(t), t ≥ 0}
are k independent Poisson processes with respective rates functions λ1(·), . . . , λk(·), then
N(t) = N1(t)+· · ·Nk(t) defines a Poisson process with rate function λ(t) = λ1(t)+· · ·+λk(t).
Conversely, if {N(t), t ≥ 0} is a Poisson process with rate function λ(·), if each arrival is of
type j with probability pj, independently of its time of occurrence and of the past, and if
Nj(t) denotes the number of arrivals of type j during (0, t], then {Nj(t), t ≥ 0} is a Poisson
process with rate function λj(t) = pjλ(t), t ≥ 0.

9From Pierre: Spline models.
10From Pierre: — Examples: restaurants, banks, etc.
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Example 2.26 Suppose that calls arrive to a call center according to a stationary Poisson
process with rate λ and that each call is of type j with probability pj, independently of other
calls and arrival times. Then the calls of type j arrive according to a Poisson process with
rate pjλ. This process can be simulated by generating the times between successive arrivals
as i.i.d. exponentials with parameter (rate) pjλ. □

2.13.5 Compound Poisson Process

We obtain a compound Poisson process if instead of having jump sizes all equal to 1, the
size of the jth jump is a random variable Yj, where the Yj’s are i.i.d. and independent of the
Tj’s. This can be used to model group arrivals or sales in a store, for example. The Yj do
not have to be integer-valued.

Such processes appear in time-stationary form in the decomposition of Lévy processes.
Those time-stationary compound Poisson process are often specified via their Lévy measure
ν, where for every (measurable) subset B ⊆ R, ν(B) gives the total jump rate for jumps
whose sizes belong to B. In the cases where the total jump rate λ = ν(R) is finite, one can
simulate the process N = {N(t), t ≥ 0} that counts all the jumps, and then generate the
jump sizes Yj independently via the measure ν(·)/λ. That is, the probability that any given
jump has size in B is ν(B)/λ. At time t, the compound process takes the value

X(t) =

N(t)∑
j=1

Yj.

In some situations, the total jump rate ν(R) is infinite, but when this happens, the jump rate
usually becomes finite if we consider only the jumps whose absolute sizes are larger than ϵ,
for any (small) ϵ > 0. Then, to simulate the process, we can simulate only the jumps whose
sizes are in R \ [−ϵ, ϵ], whose total jump rate ν(R \ [−ϵ, ϵ]) is finite, and approximate the
total contribution of the other (very small) jumps by another method. See Asmussen and
Glynn (2007) for further details.

As an easy generalization, the Lévy measure ν can also be defined over Rd, in which case
the Yj’s and X(t) become d-dimensional vectors.

2.13.6 Cox Processes

If the rate function {λ(t), t ≥ 0} is itself a stochastic process, and if for any fixed trajectory
of this process, the process {N(t), t ≥ 0} is a Poisson process with rate function λ, then
{N(t), t ≥ 0} is called a doubly stochastic Poisson process, or Cox process. The process
{N(t), t ≥ 0} itself is generally not a Poisson process in this case; it is a Poisson process
only conditionally on {λ(t), t ≥ 0}. See, e.g., Taylor and Karlin (1998), Sections V.1.4 and
VI.7, for examples of such processes.

Example 2.27 Suppose we want to model the arrival process of customers to an outdoor
ice cream stand, or the arrival process of phone calls to a taxi central dispatcher, from 8:00 to
22:00 on a week day. A first idea is to use a Poisson process with a time-varying arrival rate
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λ(t) for 8 ≤ t ≤ 22. However, the arrival rate for a given day should be strongly influenced
by external factors such as the weather. One may then consider the following model, which
was also adopted for the call center in Section 1.12. Let λ̃(t), 0 ≤ t ≤ 22, be the arrival
rate function for an average day, and let B be a positive random variable with mean 1. On
the ith day, the arrival process is Poisson with rate function λ(t) = Biλ̃(t), for 8 ≤ t ≤ 22,
where the Bi are i.i.d. copies of B. The rate process is thus inflated for the entire day when
Bi is large and deflated for the entire day when Bi is small. A large Bi would correspond to
a hot and sunny day for the ice cream stand, and to a rainy day for the taxis. Avramidis,
Deslauriers, and L’Ecuyer (2004) study this model when B has the gamma distribution, as
well as alternative models for this type of situation. For a data set coming from a call center,
they find that this model is more realistic than a non-stationary Poisson process model with
deterministic rate function. □

11

2.13.7 Spatial Poisson Process

So far we saw Poisson processes for which arrival events are characterized only by their
occurrence times. This can be generalized to Poisson processes in space, where the arrival
events have an occurrence location in some region R of the d-dimensional real space Rd. A
Poisson process over R is defined by specifying a rate function λ : R → [0,∞), where λ(x)
represents the arrival rate at x, for x ∈ R. The process is homogeneous if λ is constant over
R. Note that one of the coordinates of x can represent the occurrence time. We recover the
“ordinary” Poisson process discussed previously by taking R = [0,∞) and x = t.

For any (measurable) B ⊆ R, define

ν(B) =

∫
B

λ(x)dx

and let N(B) be the (random) number of arrival events (or points) in B. By definition,
we have a Poisson process with measure ν if and only if the following two conditions are
satisfied:

(a) For each B ⊆ R, N(B) ∼ Poisson(ν(B)).

(b) If B1, . . . , Bk are disjoint subsets of R, then N(B1), . . . , N(Bk) are independent random
variables.

The main properties seen earlier extend to this more general case. The total number of jumps
N(R) is Poisson with mean ν(R), and conditional on N(R), the positions of these points are
independent random variables with density λ(x)/ν(R) for all x ∈ R. These two properties
provide a general way of simulating realizations of the process: First generate N(R), and
then the positions of the points. When the process is homogeneous, these positions have the
uniform distribution over R.

11From Pierre: Add discussion on other piecewise constant models with random rates in Channouf and
L’Ecuyer (2012), Oreshkin, Régnard, and L’Ecuyer (2016). Also the models for arrival bursts in L’Ecuyer,
Gustavsson, and Olsson (2018).
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In the non-homogeneous case, if the rate function λ is upper bounded by a constant λ̄,
then another way of simulating the process is as follows. Generate a Poisson random variable
N0 with mean vol(R) λ̄, where vol(R) =

∫
R
dx represents the volume of R. Then repeat the

following N0 times, independently: Generate a point (X, Y ) uniformly in R × [0, λ̄), and
keep the point X if and only if Y ≤ λ(x). The points that are kept form the realization of
the spatial Poisson process.

♣ Discuss other arrival process models somewhere: Dirichlet, normal copulas, etc.

2.14 Brownian Motion and Gaussian Processes

2.14.1 Brownian motion (BM)

A BM resembles a stationary Poisson process; the difference is that for the BM, the increment
over any given time interval has the normal distribution instead of the Poisson distribution,
and the trajectory is continuous. We define the BM in the d-dimensional real space Rd. The

ordinary univariate BM is the special case where d = 1. 12

Definition 2.1 A d-dimensional BM with drift vector µ and covariance matrix Σ is a
process X = {X(t) = (X1(t), . . . , Xd(t)) ∈ Rd, t ≥ 0} for which:

(a) X(0) = 0;

(b) if s ≥ 0 and t > 0, then X(s+ t)−X(s) ∼ N(tµ, tΣ);

(c) for every set of disjoint time intervals (t1, t2], · · · , (t2k−1, t2k], the increments X(t2) −
X(t1), . . . ,X(t2k)−X(t2k−1) are mutually independent random vectors.

□

When d = 1, the single element σ2 = σ11 of Σ is the variance parameter or diffusion
coefficient. When µ = 0 and Σ = I (the identity), we have a (multivariate) standard BM;
this is a process whose d coordinates are simply independent one-dimensional standard BMs,
with zero drift and a diffusion coefficient of 1. A standard BM is also known as a Wiener
process.

With probability 1, the sample path of a BM is continuous everywhere but is nowhere
differentiable, and each coordinate has infinite variation.

For any decomposition of the form Σ = AAt, we can write

X(t) = tµ+A ·B(t) (2.49)

where B = {B(t), t ≥ 0} is a d-dimensional standard BM. This provides an easy way to
generate a process trajectory at a fixed set of observation times 0 = t0 < t1 < · · · < tc (this
is called a skeleton of the process trajectory): Generate the increments B(tj) −B(tj−1) ∼

12From Pierre: In other places in this book, and also in SSJ, d is the number of observation times and c
is the dimension of the state. Here we have the reverse. This should be unified.
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N(0, (tj− tj−1)I), for j = 1, . . . , c, and use Eq. (2.49) to compute the X(tj) from the B(tj).
This method simulates a multivariate random walk. It can also be written as: Generate cd
i.i.d. N(0, 1) random variables Z1,1, . . . , Z1,d, . . . , Zc,1, . . . , Zc,d, and use the recurrence

X(tj) = X(tj−1) + (tj − tj−1)µ+
√
tj − tj−1A · (Zj,1, . . . , Zj,d)

t (2.50)

for j = 1, . . . , c.
In general, one has E[Xi(t)] = tµi and

Cov[Xi(s), Xj(t)] = min(s, t)σi,j, (2.51)

where σi,j is the (i, j)th element of Σ (Exercise 2.41). The cd-dimensional vector Y =
(X1(t1), . . . , Xd(t1), . . . , X1(tc), . . . , Xd(tc))

t has a multinormal distribution whose mean vec-
tor µy and covariance matrix Σy are readily available from these mean and covariance
expressions. It is then possible to decompose Σy = AyA

t
y the way we want, and generate Y

just like an ordinary multivariate normal vector: Y = µy+AyZ, where Z is a cd-dimensional
vector of i.i.d. standard normals.

One possibility for this decomposition is the Cholesky decomposition. Another one is
the eigen-decomposition used for principal component analysis. We will return to this in
Section 6.11.

♣ Donsker functional CLT (as a motivation for why BM is important).

2.14.2 Time change and rescaling

Starting from a standard BM B over the time interval [0, 1], one can obtain an arbitrary
BM X with drift µ and covariance Σ = AAt, over a time interval [0, T ], simply by rescaling
the time linearly and adding a linear trend:

X(t) = µt+A
√
TB(t/T ) for 0 ≤ t ≤ T .

By applying a nonlinear time change via a non-decreasing function a : [0,∞)→ [0,∞) and
defining Y (t) = A(t)B(a(t)) for some time-dependent matrix A(t), we obtain a Gaussian
process whose covariance matrix at time t is a(t)A(t)A(t)t. As a special case, the nonlinearly
rescaled process defined by Y (t) = tB(1/t) is also a standard BM. Reverting the time gives
another BM: {Y (t) = X(T − t)−X(T ), 0 ≤ t ≤ T} is a BM with drift −µ and the same
covariance matrix Σ as X.

2.14.3 Maximum and first hitting time for a one-dimensional BM

Consider a one-dimensional BM {X(t), t ≥ 0} with drift µ and variance parameter σ2. The
maximum process is defined byM(t) = max0≤s≤tX(s), for t ≥ 0. For ℓ > 0, let Tℓ = min{t ≥
0 : X(t) = ℓ} denote the first hitting time of level ℓ. Clearly, P[Tℓ ≤ t] = P[M(t) ≥ ℓ].

Proposition 2.12 If µ > 0, then Tℓ ∼ InvGaussian(ℓ/µ, ℓ2/σ2). When µ = 0, we have

P[Tℓ ≤ t] = P[M(t) ≥ ℓ] = 2Φ
(
−ℓ/(σ

√
t)
)

for all t > 0, where Φ is the standard normal cdf. If X(0) = x0 ̸= 0, it suffices to replace ℓ
by ℓ− x0.
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2.14.4 Brownian bridge

A d-dimensional standard Brownian bridge B0 = {B0(t), 0 ≤ t ≤ 1} over the time interval
[0, 1] is a process whose probability law is the same as that of a standard BM B = {B(t), t ≥
0} conditional on {B(0) = B(1) = 0}. In other words, the process is tightened by boundary
conditions at both ends. More generally, for a BM X = {X(t), t ≥ 0} with drift µ and
covariance Σ, we obtain a Brownian bridge process X0 = {X0(t), t1 ≤ t ≤ t2} over the
time interval [t1, t2] if we condition on {X(t1) = x1, X(t2) = x2} for arbitrary vectors x1,x2

in Rd and t2 > t1 ≥ 0. We then have:

Proposition 2.13 For t1 < t < t2, conditional on X(t1) = x1 and X(t2) = x2, the vector
X(t) is multinormal with mean and covariance matrix

E[X(t) |X(t1) = x1,X(t2) = x2] = x1 +
t− t1
t2 − t1

(x2 − x1),

Cov[X(t) |X(t1) = x1,X(t2) = x2] =
(t− t1)(t2 − t)

t2 − t1
Σ.

♣ Perhaps add a figure here for d = 1.

This property can be used to generate an approximation of the trajectory of a BM over
the time interval [0, t] by successive refinements, as follows. For more generality, here we
let X(0) take an arbitrary value. First generate X(t), a multinormal with mean X(0) +
tµ and covariance matrix tΣ. Then generate X(t/2), whose distribution conditional on
(X(0),X(t)) is multinormal with mean (X(0) + X(t))/2 and covariance matrix (t/4)Σ.
Apply this technique recursively to generate X(t/4) conditional on (X(0),X(t/2)), then
X(3t/4) conditional on (X(t/2),X(t)), then X(t/8) conditional on (X(0),X(t/4)), and so
on, until the trajectory has been determined with the desired precision. The process X(·) is
thus generated exactly, but only at the selected points. The trajectory can be interpolated in
between those points. Lévy (1925) used exactly this technology, with a linear interpolation
between the evaluation points, to prove the existence of BM and study its properties.

This Brownian bridge sampling approach can also be used to simulate the process at
a fixed set of observation times 0 = t0 < t1 < · · · < tc, which are not necessarily equally
spaced. To simplify the notation, we assume here that c is a power of 2, but this can be
generalized. First generate X(tc), a multinormal with mean tcµ and covariance tcΣ. Then
generate X(tc/2), whose distribution conditional on (X(0),X(t)) is multinormal with mean
X(0) + (X(tc) − X(0))tc/2/tc and covariance (tc/2(tc − tc/2)/tc)Σ. Apply this technique
recursively to generate X(tc/4) conditional on (X(0),X(tc/2)), then X(t3c/4) conditional on
(X(tc/2),X(tc)), and so on. This sampling scheme was suggested by Moskowitz and Caflisch
(1996) (for d = 1) as a way to improve the effectiveness of quasi-Monte Carlo integration
for a function of these observations by reducing the effective dimension of this function
(making the function depend mostly on just the first few coordinates). It requires only the
decomposition of Σ, compared with the general method of Section 2.14.1, which requires a
decomposition of the larger matrix Σy instead.
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2.14.5 Approximation via Karhunen-Loève expansion

The Karhunen-Loève expansion provides a representation of a stochastic process by a series
(an infinite linear combination) of orthogonal sinusoidal functions with random coefficients.
In the case of a one-dimensional standard BM over the time interval [0, T ], the expansion
can be written as

B(t) =
∞∑
k=1

Zk

√
2T sin((k − 1/2)πt/T )

(k − 1/2)π
(2.52)

for 0 ≤ t ≤ T , where Z1, Z2, Z3, . . . are i.i.d. N(0, 1). By truncating the sum at a finite
number of terms, say c terms, one can obtain a fairly good approximation of the process
trajectory over the entire time interval [0, T ] by generating Z1, . . . , Zc. This contrasts with
the generation of a skeleton, where Z1, . . . , Zc are used to generate the process from its exact
distribution, but only at a fixed set of observation times t1, . . . , tc. When we really need a
good approximation of the entire trajectory in continuous-time, the expansion (2.52) can be
more accurate than using a skeleton.

♣ Give a numerical illustration, including a comparison with using a skeleton together
with linear interpolation. Compare the trajectories and compare the results when this is used
to estimate the value of a path-dependent option.

2.14.6 Geometric BM (GBM)

A d-dimensional process {S(t) = (S1(t), . . . , Sd(t)), t ≥ 0} is a multivariate GBM pro-
cess with parameters µ and Σ, denoted GBM(µ,Σ), if the process X = {X(t) =
ln[S(t)/S(0)], t ≥ 0} is a multivariate BM process with drift µ − (σ1,1/2, . . . , σd,d/2)

t and
covariance matrix Σ. This means that we can write

Si(t) = Si(0) exp[Xi(t)] (2.53)

for each coordinate i = 1, . . . , d, so to generate the GBM process, it suffices to generate the
corresponding BM process and take the exponential of it coordinatewise.

In the one-dimensional case, the GBM(µ, σ2) process obeys

S(t) = S(0) exp[X(t)] = S(0) exp[(µ− σ2/2)t+ σB(t)], (2.54)

where µ = µ1 and σ2 = σ1,1 are the drift and volatility parameters. By applying the formula
of Itô in stochastic calculus (Karatzas and Shreve 1998), we find that a GBM(µ, σ2) process
can also be specified via the stochastic differential equation

dS(t)

S(t)
= µdt+ σdB(t).

For every t0 ≥ 0, the ratio S(t0 + t)/S(t0) has the lognormal distribution with parameters
((µ − σ2/2)t, σ2t). This means that the relative variation (or percentage of change) of the
process over a given time interval does not depend on the initial value. For an ordinary
BM, this holds for the absolute variation of the process. Whereas the ordinary BM can take



2.14 Brownian Motion and Gaussian Processes 219

negative values, the GBM cannot. These properties make the GBM more appropriate than
the BM in various contexts, e.g., in financial modeling. Example 1.11 gave an illustration

of this. 13 Several other examples can be found in Hull (2000) and Glasserman (2004).
However, the GBM fails to capture some important characteristics of processes encountered
in finance and other areas, and several generalizations have been introduced for this reason,
as we will see later.

2.14.7 Gaussian processes

BM can be generalized in many directions. One way is to remove the assumption of stationar-
ity of the increments by allowing the drift vector parameter µ to depend on the current time
t and the covariance matrix Cov[X(s),X(t)] to depend on s and t. Another way is to allow
X(t) to be infinite dimensional. We may also replace the time index t ≥ 0 by an arbitrary
index t ∈ I for some general index set I. For example, t may indicate a position in space, or a
combination of time and space. This generalization yields a Gaussian process {X(t), t ∈ I},
which can be specified (uniquely) by specifying its mean function {µ(t), t ∈ I} and its co-
variance (matrix) function, Σ(s, t) = Cov[X(s),X(t)] for all s, t ∈ I. To be admissible, this
covariance function must be nonnegative definite. In one dimension, this means that for any
integer c > 0 and any t1, . . . , tc ∈ I, the c×c matrix whose elements (i, j) is Cov[X(ti), X(tj)]
must be nonnegative definite.

For the remainder of this subsection, to keep the notation simpler, we assume that d = 1
(so we have a one-dimensional process). In this case, the covariance function is nonnegative
definite if and only if for any integer c > 0 and any t1, . . . , tc ∈ I, the c × c matrix whose
elements (i, j) is Cov[X(ti), X(tj)] is nonnegative definite. When the mean and covariance
functions are known explicitly, the multinormal vector Xc = (X(t1), . . . , X(tc))

t can be
generated in a standard manner (as in Section 2.10.3) by decomposing Σc as Σc = AcA

t
c

in any way, generating a vector Zc of c independent standard normals, and putting Xc =
(µ(t1), . . . , µ(tc))

t +AcZc.

Note that if we add new observation points tc+1, . . . , td where d > c, and if we use the
Cholesky decomposition for Σc and Σd, then Ac turns out to be a submatrix (first c rows
and c columns) of Ad, and it suffices to update the decomposition by computing the new
d − c rows and d − c columns of Ad. Using this, it is possible to add one observation point
at a time until we decide to stop, and update the matrix Ac only when needed.

In any case, the decomposition of Σc generally requires Θ(c3) operations, and we also
need Θ(c2) operations to compute AcZc for each copy of Xc that we want to generate. When
c is very large, this may become impractical. Fortunately, in many practical situations, there
are faster methods that do not require the explicit decomposition of Σc. This is the case, for
example, when we generate an ordinary one-dimensional BM with the random walk approach
(Section 2.14.1): there is no explicit decomposition and we only need Θ(c) time to generate
each trajectory. Other simulation methods for Gaussian processes are discussed in Asmussen
and Glynn (2007).

13From Pierre: Add some discussion of this.
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14 A Gaussian process is stationary if µ(t) and Cov[X(t), X(t + s)] do not depend on
t, for any s. We then denote rX(s) = Cov[X(t), X(t + s)]. If the function rX is 2k times
differentiable, then the trajectory of X is k times differentiable everywhere with probability
1. In one dimension, if

lim
δ→0

− log[rX(δ)− rX(0)]
δ

<∞,

15 then the trajectory ofX is continuous with probability 1. The OU process (Section 2.15.2)
has this property, for example.

Example 2.28 A one-dimensional BM process is a non-stationary Gaussian process and
has Cov[X(t), X(t + s)] = tσ2 for t < s. The OU process (Section 2.15.2) and the ARIMA
process (Section 2.17.2) are examples of stationary Gaussian processes. □

2.14.8 Fractional BM

♣ To be done.

2.15 Stochastic Differential Equations Driven by BM

A stochastic differential equation (SDE) is a differential equation whose definition involves a
stochastic process (usually a BM, but not always). The solution of the SDE is also a stochastic
process. The SDEs discussed here are driven by a BM. They are by far the most widely
used. We first give a definition and provide (approximate) numerical simulation methods for
the general case. Then we discuss important special cases where a discrete skeleton can be
simulated exactly.

2.15.1 General formulation

We consider a stochastic process X = {X(t), t ≥ 0} in Rd, whose trajectory obeys the SDE

dX(t) = µ(X(t), t)dt+A(X(t), t)dB(t), (2.55)

with X(0) = x0 ∈ Rd, where B is a standard BM in q dimensions (we may have q ̸= d),
µ(X(t), t) is a d-dimensional vector which represents the drift, A(X(t), t) is a d× q matrix,
and both µ and A can be functions of the current process state X(t) and current time t.
When these two functions do not depend on t, the process is time-homogeneous. The term
dX(t) can be interpreted as the (infinitesimal) change in the process stateX(t) during the in-
finitesimal time interval (t, t+dt]. The covariance matrixΣ(X(t), t) = A(X(t), t)A(X(t), t)t

is also called the diffusion coefficient. Technical conditions under which (2.55) has a solution
are given in Asmussen and Glynn (2007) and Kloeden and Platen (1992), for example. Then,
an equivalent way of defining this process is via the Itô integral equation

14From Pierre: Not time-homogeneous instead?
15From Pierre: Check this.
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X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+

∫ t

0

A(X(s), s)dB(s). (2.56)

Example 2.29 If both µ and A are constant, we recover an ordinary BM:

dX(t) = µ dt+A dB(t) and X(t) = X(0) + µt+AB(t).

The GBM in one dimension is obtained via

dX(t) = µX(t)dt+ AX(t)dB(t), (2.57)

whose solution is
X(t) = X(0) exp

[
(µ− σ2/2)t+ σB(t)

]
. (2.58)

□

In some special cases, the exact distribution ofX(t+s) conditional onX(t) is known and
it is not difficult to generate random vectors from this distribution. Then, one can simulate
a discrete-skeleton of the process exactly. This happens in particular for the BM, GBM, and
the OU and CIR processes to be defined later. But in other situations, this is not possible
and one must discretize the time in small steps to generate approximate sample paths of the
SDE.

The simplest and most popular approximation technique is the Euler method. It dis-
cretizes the time in small steps of length h and just uses Eq. (2.55) iteratively with dt = h.

This gives the approximate skeleton X̃ defined recursively by X̃(0) = X(0)

X̃((j + 1)h) = X̃(jh) + µ(X̃(jh), jh)h+A(X̃(jh), jh)
√
hZj, (2.59)

for j = 1, 2, . . . , where the Zj are i.i.d. N(0, I). This is by far the most widely used method.
The Milstein method makes an additional correction to (2.59) to account for the fact that

A(X(t), t) varies and is not always equal to A(X(jh), jh) for t ∈ [jh, jh + h] (this is also
true for µ(X(t), t) but the impact is smaller). The method gets complicated and difficult to
implement in more than one dimension, so we only give the one-dimensional version. The
SDE (2.55) can then be written as

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t), (2.60)

where σ is the single element ofA. The correction terms turns out to be σx(X(jh), jh)σ(X(jh), jh) (Z2
j−

1)h/2, where σx(x, t) = ∂σ(x, t)/∂x. The approximation then becomes

X̃((j + 1)h) = X̃(jh) + µ(X̃(jh), jh)h+ σ(X̃(jh), jh)
√
hZj

+σx(X̃(jh), jh)σ(X̃(jh), jh) (Z2
j − 1)h/2. (2.61)

The gain in accuracy depends on how we measure the accuracy of the trajectory. In a majority
of applications, there is not much gain. See Asmussen and Glynn (2007), Section X.4, for a
discussion.

♣ Exact method of Beskos and Roberts: In Chapter 4.
Next, we examine two important SDE models that admit explicit solutions, so their

skeleton can be simulated exactly.
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2.15.2 The Ornstein-Uhlenbeck mean-reverting process

A one-dimensional Ornstein-Uhlenbeck (OU) process {X(t), t ≥ 0} can be defined via the
stochastic differential equation

dX(t) = α(b−X(t)) dt+ σ dB(t), (2.62)

where B is a standard BM, and α, b, and σ are positive constants, called the mean reversion
rate, the mean, and the volatility, respectively. The process is mean-reverting in the sense
that it always drifts toward its general mean b, so it tends to return constantly around that
level. This process is also known as the Vasicek model for interest rates.

For 0 ≤ s < t, conditional on X(s) = x, X(t) is normally distributed with mean
e−α(t−s)x + (1 − e−α(t−s))b and variance (1 − e−2α(t−s))σ2/(2α). This provides an easy way
to simulate the process at a finite set of observation times, by simulating the increments
successively. By taking t→∞, we see that the limiting distribution of X(t) is normal with
mean b and variance σ2/(2α). We also have that for s < t, Cov(X(s), X(t)) = [e−α(t−s) −
e−α(t+s)]σ2/(2α).

A d-dimensional OU process with mean vector b = (b1, . . . , bd)
t, mean reversion rates

α1, . . . , αd, and covariance matrix Σ, can be defined via

dX(t) = R(b−X(t)) dt+A dB(t), (2.63)

where R is a diagonal matrix with diagonal elements α1, . . . , αd, Σ = AAt, and B is a
d-dimensional standard BM. For 0 < s < t, conditional on X(s) = x = (x1, . . . , xj)

t, X(t)
is normally distributed with mean µ = (µ1, . . . , µd)

t and covariance matrix DΣ, where
µj = e−αj(t−s)xj + (1 − e−αj(t−s))bj and D is a diagonal matrix whose jth diagonal entry is
(1− e−2αj(t−s))/(2αj).

2.15.3 Square root process (CIR model)

A one-dimensional square root diffusion process of the form

dX(t) = α(b−X(t)) dt+ σ
√
X(t) dB(t), (2.64)

where B is a standard BM, and α, b, and σ are positive constants, was proposed by Cox,
Ingersoll, and Ross (1985) as a model of the (short) interest rate. It is known as the CIR
model for interest rates. Note that the only difference with the OU model is that σ is scaled
by the factor

√
X(t). This factor goes to 0 when X(t) approaches 0, and this prevents the

process from taking negative values.
It is known that for 0 ≤ s < t, conditional on X(s) = x, X(t) has the same distribution

as
σ2(1− e−α(t−s))

4α
Y,

where Y is a noncentral chi-square random variable with k = 4bα/σ2 degrees of freedom and
non-centrality parameter

λ =
4αe−α(t−s)x

σ2(1− e−α(t−s))
.

This provides a way of simulating the process at a finite set of observation times.
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2.16 Lévy Processes

2.16.1 Definition and decomposition

The class of Lévy processes contains several of the most widely used types of stochastic
processes in applied probability, including the BM and the stationary Poisson process. Other
types of Lévy processes recently became popular in financial modeling, for example, because
they provide a better fit to financial data than the more traditional (older) models (Schoutens
2003, Cont and Tankov 2004). For simplicity, we do not use boldface notation here, as if the
processes were one-dimensional, but much of what we say generalizes easily to multivariate
processes.

A Lévy process is a continuous-time stochastic process Y = {Y (t), t ≥ 0}, with Y (0) =
0, and with stationary and independent increments, i.e., for which the increments Xj =
Y (t2j)−Y (t2j−1) over disjoint time intervals (t2j−1, t2j], j = 1, 2, . . . , are independent random
variables and the distribution of Xj depends only on the length of the interval, t2j − t2j−1.
That is, Xj always has the same distribution as Y (t2j − t2j−1). These types of processes
have been studied quite extensively (e.g., Bertoin 1996, Sato 1999). The stationarity and
independence of the increments imply that they are infinitely divisible, which means that
for every fixed t, Y (t) can be written as a sum of n i.i.d. random variables for any positive
integer n (arbitrarily large). Conversely, every process having this property is a Lévy process.

The BM and the stationary Poisson process are two prominent examples of Lévy pro-
cesses, where the increments have the normal and the Poisson distribution, respectively. The
former has continuous trajectories and the latter is a counting process. It turns out that any
Lévy process can be written as the sum of a BM and a jump process with random jump
sizes (positive or negative). When the expected number of jumps per unit of time is finite,
say λ, then the jump process is a compound Poisson process of rate λ, and we can write

Y (t) = µt+ σB(t) +

N(t)∑
j=1

Dj for t ≥ 0,

where B is a standard BM, N is a Poisson process of rate λ, and the Dj are i.i.d. random
variables, independent of B and N . If we know how to generate Dj, then this process is easy
to simulate.

For many Lévy processes, however, the jump process component has an infinite jump
rate. The simulation of such processes (which is generally more complicated) is discussed
in Asmussen and Glynn (2007). In general, the jump process component can be defined by
its Lévy measure ν, where ν(B) represents the intensity of jumps whose size is in B, for
any measurable set B ⊂ R, at any given time. When ν has a density η with respect to the
Lebesgue measure, then η(x) is the jump rate for jumps of size x, and ν(B) =

∫
B
η(x)dx.

Often, for a given (small) ϵ > 0, there is a limited number of jumps of size larger than ϵ in
any given time interval, but an infinite number of very small jumps, of size smaller than ϵ.
To simulate the process in this situation, a common approach is to generate only the large
jumps and to approximate the effect of the very small jumps in a different way.

Things are also easy if we know how to generate the increment Y (t) for any given t.
Examples of Lévy processes with this property, in addition to the BM and Poisson pro-
cesses, are given in Section 2.16.4. In that case, to generate the trajectory at the discrete
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observation times 0 = t0 < t1 < · · · < tc, we can simply generate the independent incre-
ments Y (tj)− Y (tj−1) sequentially, for j = 1, . . . , c, and add them. This is the random walk
(or sequential) approach. For a stationary BM, for example, these increments are indepen-
dent normal random variables whose mean and variance are proportional to tj − tj−1 (see
Section 2.14.1).

2.16.2 Lévy bridge generation approach

For certain Lévy processes, we also know explicitly the distribution of Y (t) conditional on
{Y (t1) = y1, Y (t2) = y2} for arbitrary values of y1, y2, and t1 < t < t2. Then, it is also
possible to generate the trajectory of Y by successive refinements, via the following Lévy
bridge approach, which generalizes the Brownian bridge approach discussed in Section 2.14.4.
To keep the notation simple, we assume here that c is a power of 2. We first generate
Y (tc), then we generate Y (tc/2) from its conditional distribution given (Y (t0), Y (tc)), then
we apply the same technique recursively to generate Y (tc/4) conditional on (Y (t0), Y (tc/2)),
then Y (t3c/4) conditional on (Y (tc/2), Y (tc)), then Y (tc/8) conditional on (Y (t0), Y (tc/4)), and
so on, until all c values have been determined. When c is not a power of 2, we need to round
up or down the indices to integers, for example replace c/2 by ⌊c/2⌋, c/4 by ⌊c/4⌋, etc., so the
implementation gets a little more complicated, but the method still works. This technique
is quite effective to approximate the trajectory of Y up to a certain accuracy, and when the
required value of c is not necessarily known in advance. If the accuracy is deemed insufficient
after having generated a skeleton with c observation points, it is easy to double the value of c
and just continue the conditional generation. This approach also provides a powerful tool to
improve the effectiveness of quasi-Monte Carlo methods by reducing the effective dimension
of the problem, as we will see in Chapter 6.

2.16.3 Deterministic and random time changes

A convenient way of increasing the flexibility of a given class of Lévy processes is to apply
a nonlinear rescaling of the time index, as we saw in Section 2.13.2 for the Poisson process.
Such a time change can be specified by a (deterministic) nondecreasing function a : [0,∞)→
[0,∞), where a(t) can be interpreted as the reading at time t on a clock with time-varying
speed. If the function a is differentiable, then the derivative a′(t) is the clock speed at time
t. The function a may also be discontinuous, with positive jumps. Applying this time change
to a given process X = {X(t), t ≥ 0} yields the new process Y = {Y (t), t ≥ 0} where
Y (t) = X(a(t)). The clock function a acts like a change of variable.

A more powerful device is to replace the deterministic clock function a by a stochastic
process T = {T (t), t ≥ 0} with nondecreasing trajectories, thus making the original process
X = {X(t), t ≥ 0} doubly stochastic. We replace X(t) by Y (t) = X(T (t)) for each t, to
obtain the new process Y = {Y (t), t ≥ 0}. The process T defines a random time change and
is called a subordinator. This can be used for any process X with index t ∈ R. If both X
and T are Lévy processes, then so is Y .

If X is a one-dimensional BM process, the random time change is equivalent to replacing
the constant drift and volatility parameters µ and σ of the BM by stochastic (time-varying)
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drift and volatility processes {(µ(t), σ(t)), t ≥ 0}. In some cases, we may also keep a deter-
ministic drift component (see Section 2.16.8).

Two notable examples of Lévy processes that can act as subordinators are the gamma
process and the inverse Gaussian process. Their use as subordinators for the BM yields the
variance gamma and the normal inverse Gaussian processes, defined in Sections 2.16.6 and
2.16.8. BM processes with such a random time change do provide a much better fit to various
types of financial data (such as the log prices of stocks and commodities, etc.) than standard
BM processes.

2.16.4 Other Lévy Processes

In what follows, we mention other types of Lévy processes Y = {Y (t), t ≥ 0} for which we
know how to generate the increment Y (t), so we can generate a skeleton of these processes
via the random walk approach. Multivariate versions of these Lévy processes, which evolve
in the d-dimensional real space, are discussed in Asmussen and Glynn (2007).

2.16.5 The gamma process

A gamma process {G(t), t ≥ 0} with drift parameter µ = α/λ and volatility (or variance)
parameter ν = α/λ2 is a Lévy process whose increment over a time interval of length t has a
gamma distribution with parameters (tα, λ) = (tµ2/ν, µ/ν) (i.e., with mean tµ and variance
tν). This process has nondecreasing trajectories, because gamma random variables cannot
take negative values. It is thus admissible as a subordinator.

We can generate a skeleton of this process observed at times 0 = t0 < t1 < t2 < · · · via the
random walk approach by generating the successive independent increments G(tj)−G(tj−1),
which are gamma with parameters ((tj − tj−1)α, λ). By default, we take G(0) = 0.

Moreover, for any fixed values t1 < t < t2, the distribution of (G(t) − G(t1))/(G(t2) −
G(t1)) conditional on (G(t1), G(t2)) is Beta((t−t1)α, (t2−t)α). Thus, a skeleton of the gamma
process observed at times 0 < t1 < · · · < tc can be also be generated as in Section 2.16.2
by a gamma bridge approach, by first generating G(tc) from the Gamma(tcα, λ) distribution,
then generating G(tc/2) conditional on G(tc) by generating B ∼ Beta(tc/2α, (tc − tc/2)α)
and putting G(tc/2) = G(tc)B, then generating G(tc/4) conditional on G(tc/2) by generating
B ∼ Beta(tc/4α, (tc/2 − tc/4)α) and putting G(tc/4) = G(tc/2)B, then generating G(t3c/4)
conditional on (G(tc/2), G(ttc)) by generating B ∼ Beta((t3c/4 − tc/2)α, (tc − t3c/4)α) and
putting G(t3c/4) = G(tc/2) + (G(tc) − G(tc/2))B, and so on. Here we have assumed for
simplicity that c is a multiple of 4.

2.16.6 The variance-gamma process

A variance-gamma (VG) process Y = {Y (t), t ≥ 0} is a BM subordinated to a random time
change that obeys a gamma process. It can be defined as follows (Madan and Milne 1991,
Madan, Carr, and Chang 1998, Avramidis, L’Ecuyer, and Tremblay 2003, Avramidis and
L’Ecuyer 2006):

Y (t) = X(G(t)),
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where X is a BM with drift parameter µ = θ and variance parameter σ2, G is a gamma
process with drift and variance parameters 1 and ν, and X and G are independent. Sup-
ported by empirical evidence, Madan, Carr, and Chang (1998) proposed the VG process as a
replacement for the BM in the GBM model, to improve its realism for asset price modeling.

To simulate the process at observation times 0 = t0 < t1 < · · · < tc, we can generate G
and X by either a random walk (sequential) or Lévy bridge approach, as explained earlier.
In each case, we can either first generate the entire skeleton of the process G at these
observation times, which gives τ1 = G(t1), . . . , τj = G(tj), and then generate the skeleton
of X at its observation times τj, or generate the values in alternation by always obtaining
X(τj) immediately after τj = G(tj). In all cases, we have G(0) = X(0) = τ0 = t0 = 0.

For the random walk approach combined with alternating sampling, for instance, for
j = 1, 2, . . . , c, we first generate the increment G(tj)−G(tj−1) from the gamma distribution
with mean tj− tj−1 and variance (tj− tj−1)ν, then generate X(τj)−X(τj−1) from the normal
distribution with mean (τj − τj−1)µ and variance (τj − τj−1)σ

2. This requires the generation
of c gamma variates and c normal variates, all independent. From these increments, it is
trivial to compute the G(tj) and Y (tj).

In the bridge and alternating approach, we generate τc = G(tc), X(τc), τc/2 =
G(tc/2), X(τc/2), τc/4 = G(tc/4), X(τc/4), τ3c/4 = G(t3c/4), X(τ3c/4), . . . , in that order.
When generating τj for 0 < j < c, we first look for the largest integer a < j and the small-
est integer b > j such that the values at ta and tb have already been generated. Then we
sample τj = G(tj) from its beta distribution conditional on (G(ta), G(tb)), and X(τj) from
its (normal) distribution conditional on (τj, X(τa), X(τb)). This can be done because for any
given values ta < tj < tb and τa < τj < τb, we know how to sample from these conditional
distributions. This method requires the generation of one gamma variate, c−1 beta variates,
and c normal variates.

Another set of sampling methods exploit the property that Y can be written as the
difference of two gamma processes G+ and G−:

Y (t) = G+(t)−G−(t),

where G+ and G− are independent gamma processes with parameters (µ+, ν+) and (µ−, ν−),
respectively, with

µ+ = (
√
θ2 + 2σ2/ν + θ)/2,

µ− = (
√
θ2 + 2σ2/ν − θ)/2,

ν+ = (µ+)2ν,

ν− = (µ−)2ν,

and G+(0) = G−(0) = 0 (Madan, Carr, and Chang 1998, Avramidis and L’Ecuyer 2006).
The VG process can then be simulated by simulating G+ and G−, either one after the
other (first simulate G+ at all c observation times and then do the same for G−), or in an
alternate way (generate G+ and then G− at a given observation time, then do the same
at another observation time, and so on). In both cases, the c observation times can be
visited either in increasing order (the random walk method) or in a gamma bridge fashion.
Avramidis and L’Ecuyer (2006) proposed to combine the alternate scheme with a gamma
bridge approach and called it difference-of-gammas bridge sampling (DGBS). This scheme
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requires two gamma variates and 2c−2 beta variates. It combines effectively well with RQMC
by reducing the effective dimension. It also has the important advantage of providing bounds
on the entire (continuous-time) trajectory of the VG process after any given step of the
bridge approach. Indeed, since a gamma process is nondecreasing, knowing its value at time
tc and possibly at a few intermediate points provides a lower bound and an upper bound
on its trajectory over the interval [0, tc]. These bounds provide bounds on the difference
Y (t) = G+(t)−G−(t) at any t ≤ tc.

A geometric VG process S = {S(t), t ≥ 0} is obtained by taking

S(t) = S(0) exp [rt+X(G(t)) + ωt] ,

whereX is a BM with drift and variance parameters θ and σ,G is a gamma process with mean
and variance parameters 1 and ν, X and G are independent, and ω = ln(1− θν − σ2ν/2)/ν.
In other words, the process Y defined by Y (t) = X(G(t)) is a VG process. Geometric VG
processes are used model asset prices in finance (Avramidis, L’Ecuyer, and Tremblay 2003,
Avramidis and L’Ecuyer 2006, Madan, Carr, and Chang 1998).

2.16.7 The inverse Gaussian process

An inverse Gaussian (IG) process {I(t), t ≥ 0} with parameters (δ, γ), for δ > 0 and
γ > 0, is a Lévy process whose increment over a time interval of length t obeys I(t) ∼
InvGaussian(tδ/γ, t2δ2) (Barndorff-Nielsen, Mikosch, and Resnick 2013, Rydberg 1997). This
I(t) has the same distribution as the first hitting time of level t by a BM with drift parameter
µ = γ/δ and variance parameter σ2 = 1/δ2. It has mean tδ/γ and variance tδ/γ3. The
increments are never negative, so this process can be used as a subordinator. We can generate
a skeleton of the process observed at times 0 = t0 < t1 < · · · < tc via the random walk
approach by putting I(0) = 0 and generating the successive independent increments I(tj)−
I(tj−1), which are InvGaussian((tj − tj−1)δ/γ, (tj − tj−1)

2δ2).
An inverse Gaussian bridge approach can also be used, since for any fixed values t1 < t <

t2, it is known how to sample the ratio S = (I(t)− I(t1))/(I(t2)− I(t)) from its distribution
conditional on (I(t1), I(t2)) (Ribeiro and Webber 2003). This ratio S has density

fS(x) = (λ/2π)1/2
1

1 + r
x−3/2(1 + x) exp

(
−λ
2

(x− r)2

xr2

)
where r = (t2− t)/(t− t1) and λ = δ2(t2− t)2/(I(t2)− I(t1)). Its density does not depend on
γ. One can generate I(t) conditional on (I(t1), I(t2)) as follows (Ribeiro and Webber 2003):

generate Q ∼ χ2(1) (one can take Q = Z2 where Z ∼ N(0, 1));
let S1 = r + r

2λ

(
rQ− (4rλQ+ r2Q2)1/2

)
;

let S2 = r2/S1;

let P = r(1+S1)
(1+r)(r+S1)

;

generate U ∼ U(0, 1);
if U < P let S = S1, else let S = S2;
return I(t) = I(t1) + (I(t2)− I(t1))/(1 + S).
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This can be exploited to generate the inverse Gaussian process by a bridge approach as
described in Section 2.16.2: generate I(tc) first, then Y (tc/2) conditional on (I(t0), I(tc)),
then I(tc/4) conditional on (I(t0), I(tc/2)), etc.

See Wang and Xu (2010), Ye and Chen (2014) for parameter estimation and application
to degradation data in reliability settings.

2.16.8 The normal inverse Gaussian process

A normal inverse Gaussian (NIG) process {Y (t), t ≥ 0} is a BM with a random time
change that obeys an inverse Gaussian process, plus a deterministic linear trend. The in-
dependent increments of this Lévy process have a NIG distribution. See Barndorff-Nielsen
(1998), Barndorff-Nielsen, Mikosch, and Resnick (2013), Benth, Groth, and Kettler (2006) for
more on this process. For a NIG process with parameters (α, β, µ, δ), one has Y (0) = 0 and
Y (t) ∼ NIG(α, β, tµ, tδ). To generate Y (t), we can generate I(t) ∼ InvGaussian(tδ, γ) and then
Y (t) ∼ N(tµ+βI(t), I(t)), where γ = (α2−β2)1/2. This is equivalent to Y (t) = tµ+X(I(t))
where X is a BM with parameters (β, 1). We can generate a skeleton simply by generating
the independent NIG increments sequentially in this way.

We can also use a bridge approach to generate the skeleton at observation times
0 = t0 < t1 < · · · < tc by using the bridge to generate both the IG process and the
BM, as in Section 2.16.2. One way to do this is to generate first the IG process at all
observation times, then the BM at all observation times, conditionally on the realization
of the IG process. A second approach is to interleave the bridge generation: first generate
I(tc) ∼ InvGaussian(tcδ, γ), then Y (tc) ∼ N(tcµ + βI(tc), I(tc)), then I(tc/2) conditional on
(I(t0), I(tc)), then Y (tc/2) conditional on (Y (t0), Y (tc)), and so on.

A geometric NIG process S = {S(t), t ≥ 0} is obtained by taking

S(t) = S(0) exp [rt+ Y (t) + ωt] ,

where Y is a NIG process with parameters (α, β, µ, δ), r is a constant that often represents
the interest rate, and ω = µ+ δγ − δ(α2 − (1 + β)2)1/2.

2.16.9 The stable process

If t1/αS(t) has an α-stable distribution with location parameter µ = 0, i.e., t1/αS(t) ∼ S(1) ∼
Sα(σ, β, 0), then {S(t), t ≥ 0} is a stable process. For α < 2, this process has heavy-tailed
increments.

If the increments have a tempered stable distribution instead, then we have a tempered
stable process. A special case of it is the CGMY process, introduced by Carr et al. (2002).

2.17 Stationary Autocorrelated Stochastic Processes

Service times of successive customers in a queue, the sizes of the demands in an inventory
model, etc., are often assumed to be i.i.d. random variables in classical examples of simulation
models. This is not always realistic. There is often strong correlation between successive
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observations in such input processes. Neglecting this correlation may have a dramatic impact
on the results. In queuing systems, for examples, the average waiting times are much larger
when the correlations are taken into account. Before discussing a few methods for modeling
infinite sequences of dependent random variables by stochastic processes, we fist recall some
definitions, which will also be needed in Chapter 5.

2.17.1 Time series and autocorrelation

For a process {Yt, t ≥ 0}, either discrete-time or continuous-time, we define the mean func-
tion µt = E[Yt], the variance function σ2

t = Var[Yt], the autocovariance function Cov[Yt, Ys],
and the autocorrelation function ρt,s = Cov[Yt, Ys]/σtσs. The process is called weakly sta-
tionary if µt and σ

2
t do not depend on t and if ρt,s depends only on the lag size |s − t|. In

this case, we denote µt by µ, σ
2
t by σ2, and ρt,t+s by ρs, the autocorrelation of lag s. Weak

stationarity does not imply that the distribution of Yt is independent of t. For this, we need a
stronger notion of stationarity. The process {Yt, t ≥ 0} is called strictly stationary if for any
k ≥ 1 and any fixed vector (t1, . . . , tk), the joint distribution of the vector (Yt+t1 , . . . , Yt+tk)
is independent of t. Modeling this joint distribution directly can be very complicated, so it
is common practice to restrict attention to a narrow class of models and just fit the mean,
variance, and autocorrelation functions. This is in the same spirit as the NORTA method.

A time series model is a discrete-time stochastic process {Yn, n ≥ 0}, where the Yn’s are
generally dependent. To define such a process, say where Yn has the distribution function
F for all n, we can specify correlations directly on the Yn’s, or induce correlations on the
process of underlying uniforms Un = F (Yn), assuming that the Yn’s are generated from the
Un’s by inversion, just as with copulas for multivariate distributions. There are also hybrid
methods where the correlation is induced at some intermediate step. We now give examples.

2.17.2 Autoregressive processes and ARIMA models

A widely used class of time series models is the autoregressive integrated moving average
(ARIMA) models studied by Box, Jenkins, and Reinsel (1994). The general form of an
ARIMA(p, d, q) model is

(1− ϕ1B − · · · − ϕpB
p)(1−B)dYn = θ0 + (1− θ1B − · · · − θqBq)ϵn, (2.65)

where B represents the backshift operator defined by BrYn = Yn−r, the ϕj are the autore-
gressive parameters, the θj are the moving average parameters, and {ϵn, n ≥ 0} is an i.i.d.
sequence of random disturbances with mean 0 and variance σ2. For statistical analysis, it
is typically assumed that the ϵn are normally distributed, which in turns implies that the
Yn have the normal distribution. Thus, this model is a Gaussian process with discrete time
index. The parameters must satisfy certain conditions for the model to be stationary (e.g.,
to avoid that Yn →∞).

When d = q = 0, the model reduces to

(1− ϕ1B − · · · − ϕpB
p)Yn = θ0 + ϵn, (2.66)

i.e.,
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Yn = ϕ1Yn−1 + · · ·+ ϕpYn−p + θ0 + ϵn. (2.67)

This is an autoregressive model of order p, denoted AR(p).
The parameters of ARIMA models are usually estimated by least-squares methods, un-

der the normality assumption. This assumption makes the model quite restrictive, because
normally distributed input processes in simulation models are more the exception than the
rule. But it certainly facilitates the mathematical analysis.

2.17.3 ARTA and VARTA models

In the same spirit as the NORTA method, Cario and Nelson (1996) introduced a class of
processes called autoregressive to anything (ARTA), whose purpose is to match exactly a
desired stationary cdf F for Yn and all autocorrelations up to lag p. The ARTA process
{Yn, n ≥ 0} is simply defined by Yn = F−1[Φ(Zn)] where {Zn, n ≥ 0} is an AR(p) process
whose parameters ϕj are selected in just the right way to get the desired autocorrelations. The
authors provide procedures to compute those parameters, for given target autocorrelations.
Biller and Nelson (2002) propose a methodology for estimating the parameters of an ARTA
model from raw data, for the case where F is from the Johnson family of distributions. See
also Cario and Nelson (1998), Nelson and Yamnitsky (1998) for further details.

In Deler and Nelson (2001), this methodology is extended to multivariate time series,
where each Yn is a d-dimensional vector, yielding vector autoregressive to anything (VARTA)
processes. Now {Zn, n ≥ 0} is a d-dimensional vector AR(p) process, denoted VAR(p),
whose parameters are specified indirectly by specifying the covariance matrix of Yn and the
autocorrelation matrices up to order p. The authors work out the case where all the marginals
of Yn are Johnson-type distributions.

2.17.4 Other ways of inducing autocorrelation between the underlying uniforms

Theminification andmaxificationmethods of Lewis and McKenzie (1991), and the transform-
expand-sample (TES) method proposed by Melamed (1991), transform an i.i.d. U(0, 1) se-
quence {Zn, n ≥ 0} into a sequence of correlated U(0, 1) random variables {Un, n ≥ 0}. The
autocorrelations of the transformed sequence decrease with the lag, either monotonously or
with a damped oscillation. To obtain an autocorrelated time series {Yn, n ≥ 0} where Yn has
cdf F , one defines Yn = F−1(Un). To obtain autocorrelations of alternating signs (e.g., nega-
tive correlation between pairs of successive observations), one can replace Un−1 by 1− Un−1

in the recurrence formulas below.
The minification and maxification methods use a single parameter c > 1. Theminification

method defines U0 = Z0 and

Un = c ·min{Un−1, Zn−1/(Zn−1 + c− 1)} (2.68)

for n ≥ 1. The autocorrelations of the Un’s decrease exponentially with the lag: One has
ρj = ρ(Un, Un+j) = c−j. The maxification method defines U0 = Z0 and

Un = max{U c
n−1, Z

c/(c+1)
n−1 } (2.69)
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for n ≥ 1. It gives the autocorrelation function ρj = 3/(2cj + 1) for the Un’s.

The TES method is motivated by the following simple idea. Given Un−1, instead of gen-
erating Un ∼ U(0, 1) as in the i.i.d. case, generate Un uniformly in a small neighborhood
of Un−1 (for a positive correlation) or in a small neighborhood of 1 − Un−1 (for a negative
correlation). The smaller the neighborhood the larger the (absolute) correlation. The neigh-
borhood is determined by two parameters L and R, where −0.5 < L < R ≤ 0.5. One defines
U0 = Z0 and

Un = (Un−1 + L+ (R− L)Zn) mod 1 (2.70)

for n ≥ 1. This recurrence is equivalent to defining

Un = (U0 + nL+ (R− L)(Z1 + · · ·+ Zn)) mod 1.

Jagerman and Melamed (1992) give (complicated) expressions for the autocorrelation func-
tion of the Yn’s in terms of the Laplace transforms of F−1 and of the density function of the
Yn’s, and as a function of L and R. With the TES method, the autocorrelations |ρj| decrease
at a rate slower than exponential as a function of the lag j. The method tends to preserve
large correlations much longer than the more traditional methods. It seems appropriate for
modeling processes such as the incoming traffic in a communication system dealing with
video images, Internet traffic, and the like, where long range correlations are commonplace.

Example 2.30 Livny, Melamed, and Tsiolis (1993) give a numerical illustration showing
the dramatic effect of autocorrelations in the interarrival times or in the service times or
both, on the average waiting time in an M/M/1 queue with arrival rate λ and service rate
µ. These authors first applied the minification method to induce autocorrelations in the
sequence of uniforms used to generate the exponential interarrival times (by inversion), and
(separately) to the sequence of uniforms used to generate the exponential service times. In
this context, the distribution F is the exponential and one has Yn = − ln(1 − Un)/λ if Yn
is an interarrival time and Yn = − ln(1 − Un)/µ if Yn is a service time. Then they did the
same for the TES method with L + R = 0 and compared the results. Table 2.3 gives a
small subset of their results, for λ = 0.8 and µ = 1. The values of ρa,1 and ρs,1 in the table
are the autocorrelations of lag 1 on the successive interarrival times and on the successive
service times, respectively. The last two columns of the table give estimates of the ratio of
the average waiting times with and without the autocorrelation. The TES method gives a
much larger increase in the waiting times, due to the larger autocorrelations which make the
arrival and service processes more bursty. □

These constructions are simple ways of inducing controlled correlations in a sequence
of uniforms, with only one or two parameters. Models with more parameters could provide
a larger amount of flexibility in the autocorrelation function, i.e., in how ρj behaves as a
function of j.
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Table 2.3. Ratios of the average waiting times with correlation over that without correlation, for
the minification and the TES methods

ρa,1 ρs,1 minification TES
0.00 0.00 1.0 1.0
0.50 0.00 1.7 6.0
0.00 0.50 1.8 4.6
0.25 0.25 1.5 2.4
0.50 0.50 2.6 10.2
0.85 0.85 10.4 424.6
−0.40 −0.40 0.5 8.9

2.18 Fitting a Distribution

2.18.1 Estimating the Parameters

The maximum likelihood method is arguably the grand favorite among the several approaches
for constructing parameter estimators. Suppose an i.i.d. sample x1, . . . , xn of n observations
has been obtained from a density fθ(x), where θ is an unknown parameter (scalar or vector).
The maximum likelihood estimator (MLE) θ̂n of θ is the value of θ that maximizes the
likelihood function

L(θ) = fθ(x1) · · · fθ(xn).
For discrete distributions, one simply replaces the density by the probability mass function.

Example 2.31 Consider the Weibull distribution with location parameter δ = 0. Its density
is

f(x) = αλαxα−1e−λxα

for x > 0.

The parameter θ in this case is the vector (α, λ) and the likelihood function is

L(α, λ) = αnλnα(x1 · · · xn)α−1e−λα(xα
1+···+xα

n).

The logarithm of the likelihood function reaches its maximum at the same place as the
likelihood function itself, so here we will find the maximum of lnL(α, λ) because it is easier
to work with than L(α, λ) (as is often the case). We have

lnL(α, λ) = n lnα + nα lnλ+ (α− 1)
n∑

i=1

lnxi − λα
n∑

i=1

xαi .

Equating the gradient (i.e., the partial derivatives) to zero, we obtain the two equations:

∂ lnL(α, λ)

∂α
=

n

α
+ n lnλ+

n∑
i=1

lnxi −
n∑

i=1

(λxi)
α ln(λxi) = 0,

∂ lnL(α, λ)

∂λ
=

αn

λ
− αλα−1

n∑
i=1

xαi = 0.



2.18 Fitting a Distribution 233

To solve this system of two nonlinear equations in two unknowns, we can write λ as a function
of α using the second equation, which yields the estimator

λ̂n =

(
n

xα1 + · · ·+ xαn

)1/α

,

replace λ by this expression in the first equation, then solve the first equation for α numer-
ically by an iterative fixed-point algorithm (Qiao and Tsokos 1994) and define α̂n as the
solution. The MLE estimator of θ = (α, λ) is then θ̂n = (α̂n, λ̂n).

In the special case of the exponential distribution (α = 1), one has λ̂n = 1/x̄n =
n/
∑n

i=1 xi. □

MLEs enjoy several nice statistical properties that justify their popularity: (1) The MLE
is typically unique; (2) MLEs are strongly consistent, i.e., if θ̂n is the MLE of θ (a vector),

then limn→∞ θ̂n
w.p.1
= θ; (3) MLEs are invariant; i.e., if θ̂n is the MLE of θ and g is some

function, then g(θ̂n) is the MLE of ν = g(θ); (4) MLEs are asymptotically normal:
√
n(θ̂n − θ) ⇒ N(0, n(I(θ))−1) (2.71)

as n → ∞, where I(θ) is the Fisher information matrix, defined as the expectation
of the Hessian of − lnL(θ). That is, if θ = (θ1, . . . , θd)

t, the (i, j)th entry of I(θ) is
−E[∂2 lnL(θ1, . . . , θd)/∂θi∂θj]. This asymptotic normality provides a way of computing a
confidence interval for θ together with the MLE, using the normal (or multinormal) distri-
bution. For this, an estimate of the matrix I(θ) must be inverted to estimate the covariance
matrix of θ̂n.

Example 2.32 For the exponential distribution, we saw that the MLE of λ is λ̂n = 1/x̄n.
In this case it is easy to verify that I(λ) = n/λ2. Therefore

√
n(λ̂n − λ) ⇒ N(0, λ2), and

thus
√
n(λ̂n − λ)/λ̂n ⇒ N(0, 1), when n → ∞. (For this simple example, this result also

follows directly from the CLT.) □

There are cases where the MLE is not well defined; e.g., for Weibull, gamma, and log-
normal distributions with unknown location parameters. There are also situations where the
MLE has significant bias for finite n. Other approaches can then be used, such as the moment
matching, which consists in selecting the parameter values so that the low-order moments
of the fitted distribution match those of the data, the least-squares method, widely used in
regression, etc. For a solid theoretical coverage of statistical estimation, we refer the reader
to Lehmann and Casella (1998).

2.18.2 Assessing goodness of fit

After a distribution has been selected and the parameters have been estimated, one may
want to measure or test the quality of fit of the retained distribution to the empirical data.
There are two classes of approaches: visual heuristic procedures and formal tests.

Simple heuristics include comparing (visually) the histogram of the retained distribu-
tion with that of the data, comparing box plots, etc. These methods and many others are
supported by standard statistical software.
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Q-Q plots and P-P plots. Comparing the shapes of an empirical cdf with some theoretical
cdf by direct visual assessment is usually difficult, especially if the two have approximately the
same mean and variance, which often happens when parameters have been estimated. The
quantile-quantile (Q-Q) plots and probability-probability (P-P) plots belong to the general
class of probability plots, which are graphical techniques designed to facilitate the visual
assessment.

Suppose we want to compare an empirical distribution F̂n with a continuous distribution
F . The basic idea of the P-P plot is to plot the values of F̂n(x) against those of F (x): they
should look like a straight line at 45 degrees. More precisely, for each observation x(i), the P-P

plot puts a point at (δi, F (x(i))), where δi = F̂n(x(i))− 0.5/n = (i− 0.5)/n is the mid-point

of the ith jump of F̂n; i.e., the average between F̂n(x(i)) and F̂n(x
−
(i)) = limϵ→0+ F̂n(x(i) − ϵ).

For the Q-Q plot, we just apply F−1 to both coordinates of the P-P plot points. That
is, we plot the points (F−1(δi), x(i)), 1 ≤ i ≤ n, which should also form (roughly) a straight
line at 45 degrees.

The Q-Q plots tend to amplify differences in the tails of the distributions, whereas P-P
plots amplify the differences in the middle.

2.18.3 Testing goodness of fit

Formal goodness-of-fit tests consider the null hypothesis H0 : “The data comes from the
retained distribution” and look for evidence against this hypothesis. A test is defined by a
test statistic Y , function of the data, and whose distribution under H0 is known at least
approximately. The test rejects H0 if the observed value of Y is deemed too large (say). It is
common practice to compute and report the p-value of the test, defined as p = P[Y ≥ y | H0]
if y is the value actually taken by Y . When Y has a continuous distribution under H0, the
p-value should be a U(0, 1) random variable. A very small p-value suggests that the obtained
value of Y is unlikely to have been obtained by chance under H0 because it is too large, and
thus provides evidence against H0. Deciding how small is too small is a question of subjective
judgment. When the p-value is deemed too small, we reject the distribution and seek another
one. Standard goodness-of-fit tests include the chi-square, Kolmogorov-Smirnov, Anderson-
Darling, etc. (e.g., Durbin 1973, Read and Cressie 1988).

The chi-square test, introduced by Karl Pearson in 1900, is typically used for testing the
fit of a discrete distribution to a particular data set. The possible outcomes (possible values
of the random variable whose distribution is tested) are partitioned into a finite number of
categories. Suppose there are k categories and that each observation belongs to category i
with probability pi, for 0 ≤ i < k, under H0. If there are n independent observations, the
expected number of observations in category i is ei = npi, and the chi-square test statistic
is defined as

X2 =
k−1∑
i=0

(Oi − ei)2

ei
(2.72)

where Oi is the actual number of observations falling in category i. Assuming that all ei’s are
large enough (a popular rule of thumb asks for ei ≥ 5 for each i), X2 follows approximately
the chi-square distribution with k − 1 degrees of freedom (e.g., Read and Cressie 1988). If
some ei’s are too small, one can simply regroup categories. In fact, the approximation by the
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chi-square distribution can also be good when the ei are small, provided that k is large and
the ei are close to each other. So if x is the value taken by the test statistic X2, the (right)
p-value is given (approximately) by p = 1− F (x) where F is the cdf of a chi-square random
variable with k − 1 degrees of freedom. A very small p-value indicates a large discrepancy
between the expected and observed counts. There are circumstances where one may also
want to reject H0 when the fit is “too good to be true,” i.e., p too close to 1.

A general way of testing the fit of a set of observations x1, . . . , xn to a univariate con-
tinuous distribution is to compute a measure of distance between the corresponding cdf F
and the empirical cdf F̂n of the observations (defined in Section 2.9.1) and use the distance
as a test statistic. Different measures of distance define different tests. A large distance indi-
cates a poor fit. Let x(1), . . . , x(n) be the observations sorted by increasing order and define
u(i) = F (x(i)) for each i.

The Kolmogorov-Smirnov (KS) test uses the L∞-distance Dn defined in Eq. (2.19):

Dn = sup
−∞<x<∞

|F̂n(x)− F (x)|,

and which can be computed as follows:

D+
n = max

1≤i≤n
[i/n− u(i)],

D−
n = max

1≤i≤n
[u(i) − (i− 1)/n],

Dn = max (D+
n , D

−
n ).

This is the maximal vertical distance between the empirical and theoretical cdfs, over their
entire domains. Computing the p-value of the test requires the cdf of Dn under H0. Approx-
imations of this distribution are given by Darling (1960), Corollary Z, page 356, Stephens
(1970), and Marsaglia, Tsang, and Wang (2003). The one-sided distances D+

n and D−
n are

also used as test statistics in some situations.
The Anderson-Darling test uses the distance

A2
n = n

∫ ∞

−∞

(F̂n(x)− F (x))2

F (x)(1− F (x))
f(x)dx, (2.73)

where f is the density of F . It can be computed by the formula

A2
n = −n− 1

n

n∑
i=1

(2i− 1)(ln(u(i)) + ln(1− u(n+1−i))).

(One must be careful about numerical errors when u(1) is too close to 0 or u(n) is too close to
1). This test statistic is designed to be much more sensitive than Dn to detect discrepancies
in the tails of the distribution. The denominator of the integrand in (2.73) becomes small in
the tails and this gives more weight to the discrepancies in these areas. For approximations
of the cdf of A2

n, see Stephens (1986) and Marsaglia and Marsaglia (2004).
Goodness-of-fit test statistics do not have the same distribution under the null hypothesis

if the parameters have been estimated from the same data that are used for the tests, than
if the parameters were fixed in advance or estimated from different (independent) data.
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One must make sure that the right distribution of the test statistic is used. For a cdf F
fixed in advance, the distributions of Dn and A2

n under H0, for example, do not depend
on F . But if the parameters of F were estimated from the n observations that define F̂n,
then the distributions of Dn and A2

n depend on the type of distribution of F (normal,
exponential, Weibull, gamma, etc.). Recipes to approximate the p-values in these situations
are summarized by Law and Kelton (2000).

Moreover, if several distributions are fitted to the data, the one that looks best from
visual inspection is retained, and a standard goodness-of-fit test at level α is applied to it,
then the true level of the test is generally much less than α, because this distribution was
retained for its good fit in the first place, so it is less likely to give a bad fit than if it was
fixed a priori. The chance of rejecting H0 with such a procedure can be small even if none
of the distributions tried really corresponds to the data, because if many have been tried,
it is likely that one will look similar to the data by chance. Distribution-fitting software for
simulation often use this type of procedure. Do not trust blindly the p-values that they claim.

For references to tests of independence and stationarity, we refer the reader to Schmeiser
(1999) and Law and Kelton (2000).

It is important to realize that applying any of these tests formally is not really appropriate
to determine whether or not a given input distribution is adequate, as we already mentioned
in Section 2.2.2. In practice we already know that H0 is never formally true. When it is
not rejected, the reason is (most of the time) that the test is not powerful enough to detect
the difference. We may say that undetected differences are certainly small differences and
are therefore acceptable because they should not influence the end results significantly. But
this actually depends on the model and on its intended application. Differences declared
significant by some test with a lot of data can also be deemed acceptable in many situations.
The truly relevant question is: “What kind of lack-of-fit is acceptable for the application at
hand?”

2.19 Performance Measures over Finite and Infinite Time
Horizons

A simulation model is called a finite-horizon model if we are interested in its evolution only
up to the time tN of the Nth event, where N is in general a random variable, N <∞ with
probability 1, and the value of N is known after the Nth event has occurred. That is, N
should be a stopping time with respect to the filtration {Fi, i ≥ 0} generated by {Si, i ≥ 0},
where Si is the state of the model immediately after event i has occurred, so Fi represents the
cumulative information available thus far (as in Example 2.25). A deterministic time horizon
T fits this definition if we schedule an event at time T . We have an infinite-horizon model
if, for example, we are interested in the total expected discounted cost, or the average cost
per unit of time or per customer (or other entity), assuming that the model runs forever.
We examine these different kinds of models in this section. What we call the cost here can
be any real-valued performance measure. It does not have to involve money.
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2.19.1 Finite horizon, additive cost function

In a finite-horizon simulation model, we want to estimate an unknown quantity µ by a
random variable X that can be computed in finite time from a simulation. This random
variable can often be expressed as a sum:

X = VN =
N∑
i=1

Ci, (2.74)

where N is a stopping time with respect to {Fi, i ≥ 0}, and each Ci is a Fi-measurable
random variable which can be interpreted as the cost (or reward) incurred at the time ti of
the i-th event ei. The cost function VN in (2.74) is additive. If E[VN ] is what we want to
estimate, we readily have an unbiased estimator.

In some models, the costs or rewards are accumulated continuously at a state-dependent
rate c(·). The total cost until the time tN of the Nth event is

VN =

∫ tN

0

c(S(t))dt, (2.75)

where S(t) is the state of the model at time t. If we assume that S(t) does not change
between events (i.e., that the model is purely “discrete-event”), then (2.75) can be rewritten
in the form (2.74) by putting

Ci =

∫ ti

ti−1

c(S(t))dt = (ti − ti−1)c(Si−1)

for each i.
Alternatively, one can define Ci as the expected value of

∫ ti
ti−1

c(S(t))dt, conditional on
Si−1, as is usually done in dynamic programming contexts (Bertsekas 1995). This gives a
different estimator than (2.74), but it has the same expectation, is sometimes less expensive
to compute, and may have less variance than (2.74) (see Section 6.6).

Sometimes, one may want to split the estimator in two parts, one written as (2.74) and
the other written as (2.75). These are just rewritings of the general finite-horizon estimator
(2.74).

Quantities of interest are not always naturally expressed as the expectation of an additive
function of the form (2.74) or (2.75). This is illustrated by Example 1.12 and the next
examples.

Example 2.33 Consider the call center example (Section 1.12) and suppose we want to
estimate the expected number of calls whose waiting time exceeds 20 seconds, in a day. We
can define Ci = 1 if event ei starts the service for a call having waited more than 20 seconds;
Ci = 0 otherwise.

If we want to estimate the probability of losing more than five calls on a given day, we
can define N = j and CN = 1 if the sixth abandonment of the day occurs at event ej, and
all other Ci’s equal 0. If less than six abandonments occur, then eN is the last event of the
day and Ci = 0 for all i.
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Now, suppose we want to estimate instead the expected total wait in the queue during
the day, from the opening time T0 to the closing time T1. The waiting time after closing is
not counted. This is the expectation of ∫ T1

T0

Q(t)dt (2.76)

where Q(t) is the queue length at time t. The simulation program in Section 1.12 does not
compute this integral. Moreover, since Q(t) changes when there is an abandonment, we would
need to have an event at every abandonment to be able to write this integral in the form
(2.74) and compute it that way during the simulation. In its current form, the program does
not have such an event and finds about (earlier) abandonment of a calling customer only
when trying to pick up the call from the queue. But if we add an event at each abandonment,
then the integral equals (2.74) where Ci = (ti−ti−1)Q(ti−1), ti is the occurrence time of event
i, Q(ti−1) is the number of calls in the queue at time ti−1, just after event ei−1, and N is the
number of the event that closes the center. This integral can be computed in a simulation
program by a statistical collector of type Accumulate, as in the example of Section 1.11.1.

Things are simpler if we want to compute the total waiting time in the queue for the day,
not counting the customers who abandoned (if any), including the wait in the queue after
the center closes. This total waiting time is simply the sum of waiting times of all calls and
it is already computed by the program. This last sum can be written as (2.74) where Ci is
the sum of waiting times of all calls that leave the queue at event i. Occasionally, there could
be more than one call leaving the queue at a given event. For many events, there would be
none and this Ci will be 0.

If we divide the total waiting time of the day by max(T, T1)− T0, where T is the epoch
when the last call leaves the queue, then we get a ratio of two random variables, because T is
random. Each of the two terms of this ratio is additive and has the form (2.74) but not the
ratio itself, unless we just define CN as equal to this ratio. Using the expectation of this ratio
as a performance measure would be highly questionable, because if T ≫ T1 due to the fact
that a single call has waited a long time in the queue after the center was closed, the ratio
can take a much smaller value than the average queue length during the operation hours.
So the expected value of the ratio may differ significantly from the expected average queue
length during the operating hours, which is the expectation of (2.76) divided by T1 − T0. □

Example 2.34 For the GI/G/1 queue example, let X be the maximum size of the queue
during a deterministic time interval [0, T ], and suppose that we are interested in estimating
E[X]. This is a non-additive cost function. To fit this into the additive framework (2.74) for
which Ci is Fi-measurable, we must define CN = X and Ci = 0 for i < N . Likewise, in
Examples 1.8 and 1.4, to put the estimator in the form (2.74), we must also define CN = X.
For these examples, the costs are not additive. □

2.19.2 Discounted costs

Costs incurred in the future can be multiplied by a discount factor smaller than 1 to take
into account the fact that they have to be paid only later. Discounting appears in almost
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all finance and economic models, for instance. The discount factor is often an exponentially
decreasing function of time, equal to e−ρt at time t. The constant ρ > 0 is called the discount
rate. If a cost Ci is incurred at time ti, the corresponding discounted cost becomes C̃i =
e−ρtiCi and the total discounted cost Vρ,N for the first N events is given by (2.74) with Ci

replaced by C̃i:

Vρ,N =
N∑
i=1

C̃i =
N∑
i=1

e−ρtiCi. (2.77)

For a cost that accumulates continuously at state-dependent rate c(S(t)), one defines Ci =∫ ti
ti−1

e−ρ(t−ti)c(S(t))dt and C̃i =
∫ ti
ti−1

e−ρtc(S(t))dt.

Example 2.35 In Example 1.11, there is a single payoff CN at time tN = T , and the
discounted payoff is Vρ,N = C̃N = e−ρtNCN . □

Example 2.36 This example is taken from L’Ecuyer (1983). Consider a system with M
identical components subject to individual failures (e.g., street lights, truck tires, etc.). When
a component fails, it must be replaced immediately by a new one. Components can also be
replaced preventively at any time. We assume that the component lifetimes are i.i.d. random
variables and that the replacements are instantaneous. At each intervention, there is a fixed
cost c1, plus a cost c2 for each component replaced, plus a cost c3 if the intervention is forced
by a failure.

The replacement decisions are dictated by a policy which tells what to do for every
possible state of the model. One example of such a policy: Select two arbitrary thresholds
θ̄ > θ > 0, and whenever a component fails or its age reaches θ̄, perform an intervention that
replaces all components whose age exceeds θ, plus the failed component if any.

If components are not replaced very frequently and the model evolution is simulated over
several years, it makes sense to discount the costs, because one dollar paid in several years
costs less than one dollar paid today. Suppose the discount rate is ρ per year. Then, the total
cost over a time horizon of T years is

Vρ,N(T ) =

N(T )∑
i=1

e−ρti [c1 + ηic2 + δic3] (2.78)

where N(T ) is the number of events that occur during the time interval [0, T ], ti is the
time of the ith intervention (the ith event), ηi is the number of components replaced at that
intervention, and δi = 1 if this event was forced by a failure, δi = 0 otherwise. This expression
has the form (2.77), except that N is replaced here by the (random) stopping time N(T ).
For a given policy, the expected discounted cost over the interval [0, T ] can be estimated by
simulation. Usually, the end goal is to optimize the policy; we will return to this later. □

2.19.3 Ratios and other nonlinear functions of expectations

There are situations where the quantity µ of interest is expressed as a ratio of two mathemat-
ical expectations, or as a more general function of several expectations over a finite horizon,
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instead of as a single expectation. An important setup where µ is a ratio of two expectations
is regenerative simulation (see Chapter 5).

Example 2.37 Consider a random variable X and an event B ∈ F , and suppose that we
are interested in the conditional expectation E[X | B]. This conditional expectation can be
written as µ = E[X | B] = E[X · I(B)]/E[I(B)], where I is the indicator function, and the
problem of estimating µ becomes the problem of estimating each of the two expectations in
that ratio. □

Example 2.38 In the call center example, suppose we are interested in estimating the
expected fraction of calls waiting less than s seconds on a given day. If A is the number of
arrivals and X = G(s) the number of those who waited less than s seconds, then we are
interested in E[X/A] (in case A = 0, we define 0/0 as equal to 0) and we readily have an
unbiased estimator of that expectation by simulating one day of operation and computing
X/A.

On the other hand, suppose we are interested instead in g(s), the (expected) fraction of
calls waiting less than s seconds in the long run, assuming that the center operates over an
infinite sequence of successive days. It can be shown (see Section 5.12) that this fraction is
equal to the ratio E[X]/E[A], which differs from E[X/A] and is more difficult to estimate
in the sense that no unbiased estimator is readily available, unless we know E[A] exactly
beforehand.

The quantity E[X/A] is a finite-horizon performance measure, whereas g(s) is a perfor-
mance measure over an infinite horizon. If one picks a day at random, then choose a random
call among those which arrived that day, the probability that this call waits more than 20
seconds is E[X/A]. The calls that happen to be on days when A is small have more chance to
be picked than those which are on days where A is large. On the other hand, if one chooses a
random call uniformly from the set of all arriving calls over all days, the probability that it
waits more than 20 seconds is g(s). Here, all the calls have the same chance of being picked
and this measure really corresponds to an average per call in the long run.

Similarly, the average waiting time per call for all arriving calls (over all days) is not
the same as the expectation of the average waiting time per call for a given day (see Exer-
cise 2.48). □

In Chapters 5 and 7, we will see other examples where ratios (or more general functions)
of expectations are involved. See also Glynn and Heidelberger (1990) and Glynn, L’Ecuyer,
and Adès (1991). In those situations, an unbiased estimator for the quantity of interest is
rarely available, even if an unbiased estimator is available for each individual expectation, and
estimation is more difficult than for a single expectation. However, asymptotically unbiased
estimators are generally available.

2.19.4 Infinite-horizon, long-term average

Here, we consider models that run forever. We might want to estimate a steady-state average,
i.e., a long-term time-average, assuming that such an average exists uniquely. A common case
is the time-average
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v̄
def
= lim

t→∞

E[VN(t)]

t
. (2.79)

Under certain ergodicity conditions (Meyn and Tweedie 1993; see also Theorem A.18), one
also has

v̄
w.p.1
= lim

t→∞

VN(t)

t
. (2.80)

Typically, in contrast to E[VN(t)], v̄ does not depend on the initial state S0 but is usually
harder to estimate. Assuming that tN →∞ as N →∞, one also has

v̄ = lim
N→∞

E[VN ]
tN

w.p.1
= lim

N→∞

VN
tN
. (2.81)

Alternatively, instead of being interested in a time-average, one may be interested in a limit
of the form:

ṽ = lim
t→∞

E[VN(t)]

E[Nc(t)]

w.p.1
= lim

t→∞

VN(t)

Nc(t)
, (2.82)

where Nc(t) is the number of events of a certain particular type that have occurred by time
t. This expression gives the average cost per event, in the long run, for the events considered.

Example 2.39 In the GI/G/1 queue example (Section 1.11), let VN(T ) =
∫ T

0
Q(t)dt, so

that VN(t)/t represents the average size of the queue over the time interval [0, t], and v̄ = q,
the average queue length over an infinite time horizon. To illustrate (2.82), let Nc(t) be the
number of customers who have started their service by time t, and let Ci be the waiting time
in the queue for the customer who begins its service at time ti if event ei starts a service,
Ci = 0 otherwise. Then, VN(t) is the total waiting time in the queue for all the customers who
have started their service by time t and ṽ represents the average waiting time per customer
in the long run. □

The v̄ and ṽ in (2.79)–(2.82) are often referred to as steady-state averages. Under certain
conditions, they are indeed averages with respect to some steady-state or limiting distribu-
tion. Here, “limiting distribution” may have different meanings, as we explain in Chapter 5.

2.19.5 Total discounted cost

When discounting is present, it makes sense to speak of the total discounted cost over an
infinite horizon. (Without discounting, the total cost over an infinite horizon is typically
infinite.) With a discount rate ρ > 0, this cost is a random variable defined as:

V ∞
ρ = lim

t→∞
Vρ,N(t) = lim

t→∞

N(t)∑
i=1

e−ρtiCi =
∞∑
i=1

C̃i, (2.83)

assuming that limt→∞N(t) = ∞. Note that the distribution of V ∞
ρ depends on the initial

state S0. We denote

v∞ρ = lim
t→∞

E[Vρ,N(t)] (2.84)
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When simulating to estimate v∞ρ , we must stop at some finite t, and this gives a biased
estimator. For a fixed total computing budget, there is a compromise to be made between
increasing t to reduce the bias, and decreasing t to increase the number of replications and
thus reduce the variance. We will return to this in Chapter 5.

Example 2.40 In the component replacement problem (Example 2.36), we may be inter-
ested in estimating the total expected discounted cost over an infinite time horizon. This
expectation is given by v∞ρ . □

2.19.6 Finite vs infinite horizon

When is an infinite horizon more appropriate than a finite horizon, and vice-versa? And
when should we discount the costs or rewards? Of course, this depends on the situation
and it is a matter of judgment. One may argue that real life is always over a finite horizon:
In the long run, our world will eventually end anyway. Infinite-horizon models are always
approximations for systems that really evolve over a finite horizon. Moreover, simulation
models can only be run over a finite period of time, so infinite-horizon models must in turn
be approximated (somewhat paradoxically) by finite-horizon simulations. More energy is
often spent on the question of whether the (long) finite-horizon simulation approximates
the infinite-horizon model well enough than on the (perhaps more relevant) question of how
realistic the infinite-horizon model is.

A steady-state infinite-horizon model might be appropriate when:

(a) The system can be assumed time-stationary, i.e., its laws of evolution and underly-
ing probability distributions do not change with time, at least for the time period of
interest.

(b) The steady-state distribution is approached relatively quickly for any reasonable initial
state.

(c) We are interested in the performance of the system over a long period of time, in
comparison with the time required to approach the steady-state distribution.

Steady-state models are also frequently used when we want to compare the output of a
simulation (sub)model with values provided by analytical formulas. This is sometimes done
at validation and verification stages.

Example 2.41 Steady-state analysis over an infinite horizon might be appropriate for a
communication switch where packets of information arrive at a rate so fast that the effect of
the initial state essentially disappears after a few seconds on the simulation clock. □

Example 2.42 In telephone call centers, incoming traffic is a random process with an
arrival rate that depends on the time of the day, day of the week, and other conditions. Call
center managers often divide the time into half-hour periods and assume a constant arrival
rate over each such period, as we did in Section 1.12. To be able to use analytic formulas,
they also frequently assume that over any given half-hour period, the system behaves as
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if it was in steady-state, and they analyze the system by computing infinite-horizon long-
term averages. This may give reasonable rough-cut approximations if calls are short and
arrive at a frequent rate. If both the interarrival times and service times are assumed to be
i.i.d. exponential, for instance, and if the number of agents (the servers) is fixed, then the
proportion g(s) of calls that must wait more than s seconds in the queue, over an infinite
horizon, can be computed via one of the Erlang formulas (Gross and Harris 1998, Gans,
Koole, and Mandelbaum 2003) or by certain approximations based on an analysis under
limiting conditions, such as the Halfin-Whitt approximation mentioned in Section A.19.
This is the main reason why steady-state models are used. Simulation, on the other hand,
can handle more realistic models which are never really in steady-state. □

Example 2.43 Suppose a major reorganization of a production plant is to take effect
on Monday in two weeks. We want to simulate the new plant to evaluate what is likely to
happen. In that context, the current state of the plant (inventories, demands, machine states,
etc.) should be taken as initial state. A steady-state infinite-horizon model is appropriate
here only if the effect of this initial state disappears quickly (e.g., the turnaround in the plant
is very fast), and if stationarity can be assumed over the time period of interest. One should
start collecting statistics to estimate the steady-state average only after the reorganization is
in effect. If we are mainly interested in the first few days after reorganization, a finite-horizon
model must be used. □

A model with discounting (with finite or infinite horizon) is a simple way to give (expo-
nentially) decreasing importance to the future, so that things that happen far away in time
have little influence on the result. This makes sense for models that involve costs over a long
period of time (several months or years). It is the standard way of incorporating the effect
of the interest rate on the accumulated costs and is used routinely in finance and economics.

If a simulation model is used periodically to predict future costs or performance, a
rolling horizon is another popular way of removing the effect of what happens too far away
in the future, where the validity of the model may become questionable. This technique is
often used in optimization, when the decisions regarding the operation of a system have
to be periodically re-optimized. The idea is to use a finite horizon T , starting from the
current state, each time the simulation (or optimization) is performed. The horizon T thus
moves ahead each time the system is re-simulated or re-optimized. For the production plant
discussed above, for example, the system can be simulated every week, starting from its
current (physical) state, with a time horizon of 52 weeks.

2.20 Exercises

2.1 Identify what could be a reasonable distribution for the random variable X, and explain
why, if X represents

(a) The number of raisins in a raisin bread.

(b) The time until the first failure of a component in a large computer network.

(c) The average weight of 10 adults chosen at random in the population of Montreal.
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(d) The number of ambulance calls in a given city on a given day.

2.2 (Hawthorne effect.) You need data to estimate the distribution of times taken by
workers to perform a certain job. If the workers are aware of your observation and data
collection, discuss how this can bias your results.

2.3 Consider a GI/G/1 single-server queue with distributions F and G for the interarrival
times and service times.

(a) Suppose the interarrival times are exponential with parameter λ = 1. What is w,
the average waiting time per customer in steady-state, for each of the following service time
distributions: (1) constant, always equal to 1/2; (2) uniform over the two values 0 and 1; (3)
exponential with parameter µ = 2; (4) gamma with parameters (1/10, 1/5)?

(b) What if the interarrival times are constant instead, always equal to 1? Run a sim-
ulation experiment to estimate w for the four service time distributions and compare your
results with the values found in (a). For this, you can simulate 103+106 customers and start
collecting the statistics only after the first 103 customers have started their service. You can
repeat this n = 5 times, independently, to obtain independent observations for computing a
confidence interval.

(c) For interarrival times that are exponential with parameter 1, and the four service
time distributions as in (a), run a simulation experiment as in (b) to estimate the fraction
of customers whose waiting time exceeds 2, in steady-state. Discuss your results.

2.4 In the call center example of Section 1.12, suppose we want to estimate the expected
number of abandonments in a day and study the impact of certain approximations or simpli-
fications on that expectation. Perform the following sensitivity analysis, with the parameters
given in Section 1.7 for the first configuration (these parameters values should be in the data
file that comes with the program). In each case, give an estimate of the relative bias (or
change in the expected value of the estimator) caused by the simplification, and comment
on the importance of that additional error.

(a) If we model the service time distribution as an exponential instead of a gamma distri-
bution, where the exponential has the same mean α/β as the gamma, does this significantly
affect (i.e., by more than 10%) the expected number of abandonments in a day?

(b) Same question if we replace the service time by its expectation in the model, i.e., if
we use a constant service time always equal to α/β.

(c) And what if the non-stationary Poisson process is replaced by a stationary Poisson
process whose arrival rate λ equals the average expected arrival rate over the day, i.e.,
λ = (λ1 + · · ·+ λm)/m?

(d) And if we combine the two simplifications in items (b) and (c)?

2.5 Customer abandonment in a queueing system can have a large impact on the waiting
times because they help reducing the queue size just when we need it: when the waiting
times are long. In a queueing system with high utilization factor, an abandonment ratio of
just a few percent can make a large difference on the fraction of customers whose waiting
times exceed a given threshold.
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For the call center example of Section 1.12, our estimation of g(20)/a in Section 1.7,
with the data given there, was approximately 0.86±0.01 with 90% confidence. The patience
time was assumed to be 0 with probability p = 0.1 and exponential with rate ν = 0.001 with
probability 1− p.

Now we want to compare our estimate of g(s)/a with this patience time distribution
to that obtained with the two following alternatives: (i) p = ν = 0 (no abandonment) and
(ii) p = 0.2 and ν = 0.04 (faster abandonment). Simulate the center for 1000 days with the
three alternatives, with well-synchronized common random numbers, to evaluate the impact
of the patience time distribution on g(s)/a and on ℓ = E[Li]/a. Discuss your results.

2.6 Sensitivity to claim size distribution in ruin probability: See Asmussen (2000), page 86.
16

2.7 If b > 0 is a real number and T is a (continuous) uniformly distributed random variable
over the interval [0, b), show that X = (T + t) mod b is also uniformly distributed over [0, b)
for any fixed t ≥ 0.

2.8 Show that if X1, . . . , Xq are independent random variables where Xi ∼ Binomial(ni, p),
then X = X1 + · · ·Xq ∼ Binomial(n, p) where n = n1 + · · ·+ nq.

2.9 Show that if X ∼ Geometric(p), then P[X = y + x | X ≥ y] = P[X = x]. This is called
the memoryless property of the geometric distribution.

2.10 Show that if X1, . . . , Xq are independent and Xi ∼ Poisson(λi) for each i, then X =
X1 + · · ·+Xq ∼ Poisson(λ) where λ = λ1 + · · ·+ λq.

2.11 Show that if X is a binomial random variable with parameters (N, p) where N is a
Poisson random variable with parameter λ, then X ∼ Poisson(λp).

2.12 Show that if X ∼ Erlang(k, λ) and Y ∼ Poisson(λx), then P[X ≤ x] = P[Y ≥ k]. Hint:
You can use the fact that the times between the successive jumps of a stationary Poisson
process are i.i.d. exponentials. This equivalence gives the expression (2.11) for the Erlang
cdf.

2.13 Give two examples of distributions F for which Theorem 2.2 holds with δ = 0 and
α = 1. What is the limiting Weibull distribution of Wn/dn then?

2.14 Show that if X1, . . . , Xk are independent exponential random variables with rates
λ1, . . . , λk, respectively, then X = min(X1, . . . , Xk) is exponential with rate λ = λ1+· · ·+λk.
Hint: Write the reliability function F̄ (x) = P[X > x].

2.15 Consider anM/G/1/K queue with arrival rate λ, exponential phase-type service-time
distribution with k phases, and finite capacity K (any arrival occurring when there is already

16From Pierre: Details... Check first for expressions for the moment generating functions and if change of
measure is easy to get ...
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K customers in the system is simply dismissed, so the number of customers in the system
never exceeds K). For the phase-type distribution, let the duration of phase j be exponential
with rate parameter µj and let 1− pj be the probability of exit after phase j.

(a) Explain how to simulate the sequence of events and their times of occurrence in such
a system without an event list. How would you define the state of the system to have a finite
state space? Hint: Knowing how many customers are in the queue is not enough.

(b) Implement it and run the simulation with λ = 1, k = 5, µj = 5j, pj = 0.9, K = 10,
and a time horizon T = 105. Compute the number of customers lost due to overflow and the
average queue length.

2.16 Let F be the cdf of some random variable Y and let −∞ < a < b <∞.
(a) Prove that if X = F−1(U) where U ∼ Uniform(F (a), F (b)), then X has the same

distribution as Y , but truncated to the interval (a, b], i.e., X has the distribution of Y
conditional on Y ∈ (a, b]. This provides an efficient way to generate X from this conditional
distribution when F and F−1 are easy to evaluate. Hint: To show that, it suffices to show
that the cdf of X is the same as the cdf of Y conditional on Y ∈ (a, b].

(b) If F is continuous, truncating to (a, b] is the same as truncating to the interval [a, b],
but not if F has a jump at a. Why? How would you generateX from distribution F truncated
to [a, b] in the latter case?

2.17 Show that the mean of the quasi-empirical distribution F̌n defined in (2.22) equals
the sample mean (1/n)

∑n
i=1 xi. Derive an expression for the variance of this quasi-empirical

distribution.

2.18 Construct a modification of the quasi-empirical distribution (2.22) which starts at x(1)
instead of x(0) = 0. Its definition will be the same as F̃ in (2.21) for x ≤ x(n−k), with an
exponential tail for x > x(n−k), and the cdf must be continuous. Give a formula for how to
choose the parameter of the exponential tail so that the quasi-empirical distribution and the
sample have the same means.

2.19 (Bratley, Fox, and Schrage 1987, Problem 4.6.1.) Suppose we have a known theoretical
distributionG over [0,∞) that we don’t really like (e.g., because it is hard to generate random
variables from G), and we want to approximate it by a piecewise linear distribution F , with
an exponential tail, of the same form as in (2.22):

F (t) =


i

n
+

t− xi
(xi+1 − xi)n

if xi ≤ t ≤ xi+1 and 0 ≤ i ≤ n− k − 1,

1− k

n
e−(t−xn−k)/θ if t > xn−k,

where n > k > 0 are integer parameters, while 0 = x0 ≤ x1 ≤ · · · ≤ xn−k and θ > 0 are real
numbers. We define xi = G−1(i/n) for i ≤ n− k and then try to define θ so that the mean
of the quasi-empirical distribution F equals the mean of G.

(a) Give an expression for θ.
(b) The piecewise linear interpolation can shift the mean to the left or to the right. If

it is shifted to the right, it may be impossible to find a θ > 0 such that F and G have the
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same mean. Give an example of a G for which this is impossible, for n = 100 and k = 1.
Show that for any G and n, this is always possible by choosing k large enough (e.g., k = n).
What is the smallest k that works in your example?

2.20 Suppose we want to estimate the expected value of the distance between the nearest
pairs of observations whenm i.i.d. observations are generated from a given cdf F with density
f . That is, estimate µ = E[Dm] where Dm = min1≤i≤m−1(X(i+1) −X(i)). One can perform a
simulation experiment that generates theXj’s, computesDm, and repeats this independently
n times to estimate µ.

(a) Do this with m = 100 and n = 100, assuming that F is the standard normal cdf.
Compute a 95% confidence interval on µ.

(b) Now, generate 100 i.i.d. observations X1, . . . , Xn from the standard normal distribu-

tion, compute the quasi-empirical distribution function F̃n for these observations, and then
pretend that you don’t know the true cdf F of these observations. Repeat the same experi-
ment as in (a), but using this time F̃n instead of F . Compare and discuss the results, in the
light of Example 2.10.

2.21 Suppose that a kernel density estimator is fitted to a data set of size n with sample
mean x̄n and sample variance s2n.

(a) Show that the distribution with density given in Eq. (2.26) always has variance larger
than s̃2n = s2n(n − 1)/n, regardless of k and h. Give an expression for that variance. Hint:
The proof stands in two lines.

(b) Prove that if each observation xi is replaced by x̃i = x̄n + (xi− x̄n)/σe in Eq. (2.26),
where 1/σ2

e = 1 − (hσk/s̃n)
2 and σk is the standard deviation of the density k, then the

kernel density (2.26) has exactly the same mean and variance as the sample.
(c) If k is the normal kernel, n = 50, s̃2n = 25, and h = 1.36374αksnn

−1/5, what is the
variance for the density (2.26) without the correction, and what is the value of σe?

2.22 Consider a system with a resource shared by two types of customers. (For example, the
resource could be a link in a communication network.) For each customer type, the times (in
minutes) between the successive demands for the resource are i.i.d. random variables having
the Gamma(5000, 50) distribution (the same for both customer types). There are thus two
independent arrival streams of demands. If the resource is free when a customer asks for it,
the customer gets it and holds it for 1 minute. If it is already taken, this demand is lost and
a cost has to be paid. We want to estimate the expected fraction p of demands that are lost,
in the long run.

(a) Get a rough estimate of p by simulating the system for 108 minutes, and repeating
this simulation three times.

(b) Suppose now that the distribution of the time between demands is unknown and
replaced in the model by a quasi-empirical distribution estimated from some data. Generate
100 independent observations from the Gamma(5000, 50) distribution (this will act as data

collected from the system) and construct the corresponding distribution function F̃n as in
Eq. (2.21). Then repeat the simulation as in (a), but by generating the times between de-

mands from distribution F̃n instead of from the original gamma distribution. Discuss your
results.
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(c) Repeat the same experiment as in (b), but using a kernel density estimator with

normal kernel instead of F̃n.
(d) Can you figure out the exact value of p by mathematical arguments (without any

simulation)?

2.23 Let (X1, X2) be a random vector. What is the range of possible values of r12 = ρ(X1, X2)
in the following cases?

(a) Both X1 and X2 are uniform over (0, 1).
(b) X1 ∼ N(0, 1) and X2 ∼ N(0, 4).
(c) X1 ∼ U(0, 1) and X2 ∼ Exponential(1).
(d) X1 and X2 are both lognormal, with parameters (µ1, σ

2
1) = (0, 1) and (µ2, σ

2
2) =

(0, σ2), respectively. Give the range of values as a function of σ2, then evaluate the bounds
for σ2 = 4 and σ2 = 100. What happens to ρ(X1, X2) and to ρs(X1, X2) when σ

2 →∞?

2.24 Prove that if (X1, X2) is a random vector such that X1 has a symmetric density f with
respect to the origin and X2 = φ(X1) where φ is a function that satisfies φ(−x) = φ(x),

then ρ(X1, X2) = 0. Hint: show that
∫ 0

−∞ xφ(x)f(x)dx = −
∫∞
0
xφ(x)f(x)dx.

2.25 LetX ∼ N(µ,Σ) in d dimensions. Partition the (column) vectorX asX = (X1,X2)
t,

where X1 and X2 have d1 and d2 dimensions, respectively. Let

µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
be the corresponding partitions of µ and Σ. Suppose that you have generated X1 from
the N(µ1,Σ11) distribution and you now want to generate X2 with the correct distribution
conditional on the value ofX1. What is the exact distribution ofX2 conditional onX1 = x1?

2.26 (a) Show that if X and Y are normally distributed, then

ρ(X, Y ) = 2 sin(ρs(X, Y )π/6) = sin(τk(X, Y )π/2).

(b) Show that the absolute difference |ρ(X, Y ) − ρs(X, Y )| reaches its maximum at
ρs(X, Y ) ≈ ±0.576, and that the value of this maximum difference is approximately 0.018.
(This means that in the case of the normal distribution, using ρ(X, Y ) rather than ρs(X, Y ),
or vice-versa, does not make much of a difference.)

2.27 Give an example of a random vector X whose marginals are all standard normal but
where X is not multinormal. Hint: you may consider X = (X1, X2) = (Φ−1(U1), Φ

−1(U2))
where (U1, U2) is a bivariate uniform vector generated from the two-dimensional copula
considered in Example 2.16. Prove that it satisfies the conditions.

2.28 Show that if X has an elliptic distribution and Y = BX + b for some (constant)
matrix B and vector b, then Y also has an elliptic distribution.

2.29 Let F : Rd → [0, 1] be a d-dimensional cdf and let B be a rectangular box in Rd, with
opposite corners a = (a1, . . . , ad) and b = (b1, . . . , bd), where aj < bj for all j. The cdf F
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determines the probability of box B, say P[B]. Show that P[B] can be written as a sum of 2d

terms of the form ±F (x) where x = (x1, . . . , xd) is at one corner of the box for each term,
and the sign is positive if xj = aj for an even number of coordinates and negative otherwise.
Therefore, for F to be a cdf, this sum must be non-negative for any B.

2.30 For each of the following functions C, find if it is a copula or not and prove it. (Hint:
Condition (iii) in the definition of a copula can often be verified by finding the corresponding
density and checking that it is never negative.) For those that are copulas, describe the
corresponding multivariate distribution over the unit hypercube and explain how to generate
a random vector from that copula.

(a) C(u1, . . . , ud) = u1 · · ·ud (the product).
(b) C(u1, . . . , ud) = min(u1, . . . , ud).
(c) C(u1, u2) = max(u1 + u2 − 1), for d = 2.
(d) C(u1, . . . , ud) = max(u1 + · · ·+ ud − d+ 1), for d > 2.
(e) C(u1, u2) = (u−δ

1 + u−δ
2 − 1)−1/δ for δ ≥ 0. Hint: for random variate generation, you

can find and use the conditional distribution of X2 given X1.

2.31 Let (X1, . . . , Xd) be a continuous random vector with copula C and let gj : R → R
be a strictly increasing function for j = 1, . . . , d. Show that in this case, the random vector
(g1(X1), . . . , gd(Xd)) also has copula C.

2.32 Consider a d-dimensional cdf F with associated copula C, with joint densities f and
c, respectively, and where each marginal Fj has density fj. Show that the density f can be
written as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd)
= c(u1, . . . , ud)f1(F

−1
1 (u1)) · · · fd(F−1

d (ud))

for (u1, . . . , ud) ∈ (0, 1)d. Hint: Consider differentiating (2.38).

2.33 Prove the expressions for the Spearman’s rho and Kendall’s tau given in Example 2.19
for d = 2.

2.34 (Adapted from Hörmann, Leydold, and Derflinger 2004).
Suppose we want a pair (U1, U2) of U(0, 1) random variables with given rank correlation

ρs.
(a) Explain how to achieve this (i) with the NORTA method and (ii) with a Fréchet

copula, as defined in Example 2.14. In each case, give a formula for the parameter value that
provides the desired rank correlation.

(b) For ρs = 0.9, estimate P[U1 +U2 < 0.1] by simulating 106 independent pairs (U1, U2)
from the corresponding distribution, for each of these two copulas.

(c) Do the same with ρs = 0.8 and P[U1 − U2 < 0.05].

2.35 Consider the two-dimensional Gumbel copula with parameter δ ≥ 1, defined in
Eq. (2.42).
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(a) Find the values of δ (if they exist) for which the Kendall tau τk(X, Y ) that corresponds
to this copula takes the four values 0, 0.5, 0.8, and 1.0.

(b) Suppose we want to generate vectors (X, Y ) with τk(X, Y ) = 0.8 and marginals that
are both exponential with mean 1. Explain in detail how to do this with (a) a normal copula
(the NORTA method) and (b) a Gumbel copula. Write a program that generates (X, Y ) for
each case.

♣ Try also a Student copula. Can take d > 2.

(c) Estimate P[X > 3, Y > 3] by simulation for each of the two copulas mentioned in
(b). Use a sample size n large enough to obtain an estimator with less than 5% relative error
in each of the two cases.

2.36 Show that the coefficient of upper tail dependence λu is λu = 0 for a normal copula
and λu = 2− 21/δ ≥ 0 for a Gumbel copula with parameter δ ≥ 1.

2.37 Show that if R(y) is a valid correlation matrix for a multinormal vector, then for any
marginal distributions F1, . . . , Fd, the matrix R(x) with elements defined by (2.46) is a valid
correlation matrix for a random vector X with marginal distributions F1, . . . , Fd.

2.38 Show that for any given pair of marginals (Fi, Fj) with mean 0 and variance 1, φij

defined in Section 2.10.9 has the following properties:

(a) Its minimum and maximum are rij = φij(−1) and rij = φij(1), respectively, and
φij(0) = 0;

(b) It is a nondecreasing and infinitely differentiable function. (Cario and Nelson (1997)
prove this under additional conditions, but J. R. Wilson later found an alternative proof
without these conditions.)

2.39 Suppose that arrivals occur according to a Poisson process, and that each arrival is of
type j with probability pj, for 1 ≤ j ≤ J , independently of the others. How can you simulate
efficiently the process consisting of only the arrivals of type 1?

2.40 Consider a nonstationary Poisson process with rate function λ(t), t ≥ 0. If an arrival
occurs at time s, show that it is incorrect to generate the time to the next arrival by
generating an exponential with mean 1/λ(s). (Give a specific counterexample.)

2.41 Show that for a d-dimensional BM with covariance matrix Σ with elements σi,j, for
s, t ≥ 0, one has Cov[Xi(s), Xj(t)] = min(s, t)σi,j.

2.42 Show that for a GBM(µ, σ2) process, if µ − σ2/2 < o < µ, then when t → ∞, we

have S(t)
w.p.1→ ∞ but E[S(t)]→∞. Why is this possible? Hint: You can use the fact that a

standard BM satisfies B(t)/t
w.p.1→ 0.

2.43 Write a simulation program that implements the Monte Carlo method described in
Example 1.11 to estimate the value of an Asian option on a single asset whose underlying
value follows a GBM. The payoff is given by Eq. (1.10). Consider an option with the following
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parameters: σ = 0.3, r = 0.05, K = 55, S(0) = 50, T = 1, d = 64, and ζj = j/64 for
j = 1, . . . , 64.

(a) Use your program to estimate the value of the option by a standard Monte Carlo
method, with n = 106 replications. Compute a 95% confidence interval for this value.

(b) Do the same thing, but by using the Brownian bridge methodology described in
Section 2.14.4 to generate the trajectory of the underlying BM. Compare your results.

2.44 Show that for the minification, maxification, and TES methods, defined in Eqs. (2.68),
(2.69), and (2.70), Un is U(0, 1) for each n.

2.45 You want to estimate the vector of parameters (µ, σ2) of a lognormal distribution from
an i.i.d. sample of size n, x1, . . . , xn.

(a) What is the maximum likelihood estimator for this vector?

(b) What is the moment matching estimator (that matches the first two moments)?
Compare these two estimators and discuss.

2.46 Suppose that X1, . . . , Xn are an independent sample from the InvGaussian(µ, λ) distri-
bution, with unknown parameters (µ, λ).

(a) Write the corresponding log-likelihood function and show that the maximum likeli-
hood estimator for (µ, λ) is (µ̂n, λ̂n) where µ̂n = X̄n and n/λ̂n =

∑n
i=1(1/Xi − 1/X̄n).

(b) Show that µ̂n and λ̂n are independent, that µ̂n ∼ InvGaussian(µ, nλ), and nλ/λ̂n ∼
χ2(n− 1). Explain how this can be used to compute confidence intervals on µ and λ.

2.47 Consider a single-server queue where the events are the arrivals, ends of service, and
end of the simulation at a fixed time T , as in Section 1.11 and Example 2.23. You are asked

to express this model by a stochastic recursion of the form 17 . How would you define ωi,
Q, and T , if Si is defined as in Example 2.23? In the case of an M/M/1 queue, how can Si
be simplified? What would be ωi, Q, and T in that case?

2.48 In Example 2.38, estimate the relative difference (g(s)− E[X/A])/g(s) for s = 20, by
simulating n = 1000 (independent) days. Do not perform separate simulations to estimate
the two terms g(s) and E[X/A] in the difference; i.e., simulate n days, not 2n days. Repeat
this experiment 10 times, independently, and compute a confidence interval on the difference.
What is your conclusion? What type of change in the distribution of A should make the
difference larger, if E[X] and E[A] remain constant?

2.49 Consider the total discounted cost V ∞
ρ over an infinite-horizon, defined in (2.83).

(a) Show that in general, v∞ρ can be infinite even if the Ci’s are all positive and bounded
by a finite constant K.

(b) Show that if |Ci| ≤ K for all i and E[N(t)] ≤ tL for all t ≥ 0, for some finite constants
K an L, then |v∞ρ | <∞. Give an explicit upper bound.

17From Pierre: Not yet defined...
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(c) If the costs are accumulated at a state-dependent rate c(S(·)) (as a function of time)
and if the function |c(·)| is bounded by a constant K, show that |v∞ρ | < ∞ and give an
explicit upper bound.



3. Uniform Random Number Generation

1 This chapter elaborates on the concept of uniform random number generator (RNG)
introduced in Section 1.3. For simulation, the RNG should reproduce the statistical prop-
erties on which the analysis of simulation models and results is based. That is, it should
provide a good approximation of the correct distribution for the output random variables
of interest, so that the user finds no significant difference with the expected behavior of the
stochastic model even when the sample size is large. For other types of applications such
as cryptology and gambling machines, where an opponent might be actively trying to crack
the generator, the requirements are stronger and include some form of “unpredictability”:
there should be no practical way of predicting the forthcoming numbers better than at ran-
dom (L’Ecuyer and Proulx 1989, Lagarias 1993, Luby 1996). Most RNGs discussed here are
based on linear recurrences and do not satisfy the latter requirement. However, they are
faster, easier to implement, easier to analyze, and easier to split into substreams, than the
cryptographic generators. The good ones are also reliable enough for almost all practically
relevant simulation problems.

The remainder of this chapter is organized as follows. In the next section, we give a defi-
nition and the main requirements of a uniform RNG. Generators based on linear recurrences
modulo a large integer m, their lattice structure and quality criteria, and their implementa-
tion, are covered in Section 3.2. In Section 3.3, we have a similar discussion for RNGs based
on linear recurrences modulo 2. Nonlinear RNGs are briefly presented in Section 3.4. In Sec-
tion 3.5, we discuss empirical statistical testing of RNGs and give some examples. Section 3.6
contains a few pointers to recommended RNGs and software. Other basic references include
Knuth (1998), L’Ecuyer (1994b), Niederreiter (1992), and Tezuka (1995).

3.1 Major Issues, Definitions, and Requirements

3.1.1 Why not just use a physical device?

Non-experts in simulation often ask this question. High-quality random numbers can indeed
be produced by physical mechanisms such as gamma ray counters, fast oscillators sampled at
low and slightly random frequencies, amplifiers of thermal noise in semiconductors, photon
counters, photon trajectory detectors, and so on (Stefanov et al. 2000, Suematsu et al. 2007).
Some of these devices sample a signal at successive epochs; each sampling returns 0 if the
signal is below a given threshold, and 1 if it is above the threshold. Some devices return the

1From Pierre: This chapter needs a lot of refreshing!
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parity of a counter. A key issue when constructing such a physical RNG is that a “random”
or “chaotic” output does not suffice; the output values must also approximate realizations
of independent and uniformly distributed random variables. If the device generates a stream
of bits, for example, then each bit should be 0 or 1 with equal probability and should be
independent of all the other bits.

Almost all physical devices produce sequences of bits that are slightly correlated and
often slightly biased, but the bias and correlation can be reduced to a level that is practically
undetectable by statistical tests, by combining the bits in a clever way. For example, a simple
technique proposed by von Neumann to eliminate the bias, when there is no correlation,
places the successive bits in non-overlapping pairs, discards all the pairs 00 and 11, and
replaces the pairs 01 and 10 by 1 and 0, respectively. Generalizations of this technique can
eliminate both the bias and correlation (Blum 1986, Chor and Goldreich 1988). Simpler
methods such as xoring (adding modulo 2) the bits by blocks of 2 or more, or xoring several
bit streams from different sources, are often used in practice. Several reliable devices to
generate random bits and number, using these techniques, are available on the market. These
types of devices are needed for applications such as cryptography, for example, where some
amount of real randomness (or entropy) is essential to provide the required unpredictability
and security.

For simulation, physical devices have several disadvantages compared to a good algo-
rithmic RNG: (a) they are more cumbersome to install and run; (b) they are more costly;
(c) they are slower; (d) they cannot reproduce exactly the same sequence twice. Item (d)
is important, for example, for program verification, debugging, and comparison of similar
systems with common random numbers to reduce the variance (see Section 6.4). Of course,
the sequence can be made reproducible by storing all output values in memory, but this is
inconvenient and not very efficient. Physical RNGs are nevertheless useful for selecting the
seed of an algorithmic RNG, more particularly for applications in cryptology and for gam-
ing machines, where frequent reseeding of the RNG with an external source of entropy (or
randomness) is important. In a poker or keno gambling machine, for example, it is common
to have an algorithmic RNG running at full speed in the background, providing an output
stream from which a few numbers are taken when needed (e.g., when the player hits some
key on the machine’s keyboard). The RNG can also be reseeded every few minutes or seconds
by modifying its state with random bits coming from a physical source of entropy.

3.1.2 Generators Based on a Deterministic Recurrence

An algorithmic RNG can be defined by a mathematical structure (S, Q, f,U , g) where S is
a finite set of states (the state space), Q is a probability distribution on S used to select the
initial state (or seed) s0, f : S → S is the transition function, U is the output space, and
g : S → U is the output function. In what follows, unless stated otherwise, we assume that
U = (0, 1). The initial state s0 is s with probability Q(s) for each s ∈ S. Then the state
evolves according to the deterministic recurrence sn = f(sn−1), for n ≥ 1, and the output at
step n is un = g(sn) ∈ U . The output values u0, u1, u2, . . . are the so-called random numbers
produced by the RNG.

Frequently, the initial state s0 is just fixed arbitrarily in S instead of being selected at
random, because this is simpler. For example, a software that provides an RNG whose state
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is a pair of 32-bit integers may use s0 = (12345, 12345) as default seed. In that case, every
program that uses this generator will receive exactly the same sequence of random numbers,
unless the seed (or state) is changed explicitly by the program.

Because S is finite, there are necessarily finite integers l ≥ 0 and j > 0 such that
sl+j = sl. Then, for all n ≥ l, one has sn+j = sn and un+j = un. That is, the state and
output sequences are eventually periodic. The smallest positive j for which this happens is
called the period of the RNG, and is denoted by ρ. When l = 0, the sequence is said to be
purely periodic. Otherwise, it has a transient part of length l. Obviously, ρ cannot exceed |S|,
the cardinality of S. If the state has a k-bit representation on the computer, then ρ ≤ 2k.
Good RNGs are designed so that their period ρ is not far from that upper bound. In general,
it could happen that ρ depends on the seed s0, but for well-designed RNGs, the period is
the same for all admissible seeds.

In practical implementations, it is important that the output be strictly between 0 and
1, because F−1(U) is often infinite when U is 0 or 1. Good implementations take care of
that. For the mathematical analysis of the uniformity RNGs, on the other hand, we often
assume that the output space is [0, 1) (i.e., 0 is admissible), because this simplifies the
analysis considerably without making much difference in the mathematical structure of the
generator.

3.1.3 Quality Criteria

As argued in Section 1.3, a long period and high uniformity of the sets Ψs and ΨI are important
requirements for a good RNG. These properties must be guaranteed by mathematical proofs.
For an arbitrary set of non-negative integers I = {i1, . . . , is}, ΨI is formally defined by

ΨI = {((ui1 , . . . , uis) = (g(si1), . . . , g(sis)) : s0 ∈ S}

and Ψs is the corresponding set when I = {0, . . . , s − 1}. This is the set of all vectors of s
successive output values that can be produced by the generator. (Here s is used to denote
the dimension and si is the state at step i; one should pay a little attention not to confuse
them.)

The RNG must also be efficient (run fast and use a small amount of memory), repeatable
(able to reproduce exactly the same sequence as many times as we want), and portable
(work the same way in different software/hardware environments). The availability of efficient
jump-ahead methods that can quickly compute sn+ν given sn, for any large ν and any n,
permits one to partition the RNG sequence into long disjoint streams and substreams of
random numbers, to create an arbitrary number of virtual generators from a single RNG.
These virtual generators can be used on parallel processors or to support different sources
of randomness in a large simulation model, for example (see Sections 1.3 and 1.7).

To show that a very long period does not suffice, consider an RNG with state space
S = {0, . . . , 21000 − 1}, transition function sn+1 = f(sn) = (sn + 1) mod 21000, and output
un = g(sn) = sn/2

1000. This RNG has period 21000 and is easy to implement efficiently, but
is far from imitating randomness.

If we select the seed s0 at random, uniformly over S, e.g., by using a physical device,
then the vector u0,s = (u0, . . . , u0+s−1) has the uniform distribution over Ψs. More generally,
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if I = {i1, . . . , is}, then uI = (ui1 , . . . , uis) is uniformly distributed over ΨI . This uniform
distribution over ΨI acts as an approximation of the uniform distribution over [0, 1)s. For
the approximation to be good, ΨI must be uniformly spread over this unit hypercube.

The design of good-quality RNGs must therefore involve practical ways of measuring the
uniformity of the sets ΨI of interest, even when they have huge cardinalities. In fact, a large
state space S is necessary to obtain a long period, but an even more important reason for
having a huge number of states is to make sure that ΨI can be large enough to provide a
good uniform coverage of the unit hypercube, at least for the sets I deemed important.

Measures of uniformity of the sets ΨI are equivalent to goodness-of-fit test statistics for
the multivariate uniform distribution. The choice of a specific measure typically depends on
the mathematical structure of the RNG to be studied, because we must be able to compute
it quickly even when the cardinality of S is very large. This obviously excludes any method
that requires explicit generation of the sequence over its entire period. The selected measure
is usually computed for each set I in a predefined class J . These values are then weighted or
normalized by factors that depend on I, and the worst-case (or average) over J is adopted
as a figure of merit for ranking RNGs. The choice of J and of the weights are arbitrary.
Typically, J would contain sets I such that s and is − i1 are small. Examples will be given
in forthcoming sections.

Algorithmic RNGs discussed in this chapter are purely periodic. For a purely periodic
sequence, the transition function f has an inverse, so one can go backwards in the sequence
and define the states s−1, s−2, . . . and the output values u−1, u−2, . . . in the obvious way.
The sn’s and un’s are then defined for all integer indices n, even the negative ones, and the
sets Ψs and ΨI have the following useful property:

Proposition 3.1 If the RNG is purely periodic, for any set of integer indices I = {i1, . . . , is},
the set ΨI can be defined as

ΨI = {(ui1+τ , . . . , uis+τ ) : sν ∈ S} (3.1)

for any fixed integers τ and ν. That is, this set does not depend on τ and ν.

Proof. To any given state sν ∈ S, if sν is in a cycle of length ρ, there corresponds to sν a
doubly infinite sequence of states . . . , s−1, s0, s1, s2, . . . . This sequence is periodic with period
ρ. Let s∗ = sν−τ in this sequence. The output vector (ui1+τ , . . . , uis+τ ) that corresponds to
this sequence is the same as the vector (ui1 , . . . , uis) obtained when s0 = s∗. But when sν goes
through all the states of the cycle, sν−τ visits exactly the same set of states (in a different
order). This holds for every cycle of the recurrence. Therefore, the set ΨI defined above is
the same regardless of τ and ν. Since Ψs is a special case of ΨI , the result also applies to Ψs.

Example 3.1 Consider the tiny generator defined by the recurrence xn = 3xn−1 mod 7 and
un = xn/7, where S = Z7 = {0, . . . , 6}. With x0 = 1, the output sequence is 1/7, 3/7, 2/7,
6/7, 4/7, 5/7, 1/7, 3/7, etc.

Let I = {0, 2}, τ = 0, and ν = 0 in (3.1). Then when sν = s0 goes from 0 to 6 in
this order, the vector (ui1+τ , ui2+τ ) = (u0, u2) takes the values (0, 0), (1/7, 2/7), (2/7, 4/7),
(3/7, 6/7), (4/7, 1/7), (5/7, 3/7), (6/7, 5/7). These seven vectors form the set ΨI in this case.



3.1 Major Issues, Definitions, and Requirements 257

If we take τ = 3 and ν = 1 instead, when s1 goes from 0 to 6, the vector (ui1+τ , ui2+τ ) =
(u3, u5) takes the values (0, 0), (2/7, 4/7), (4/7, 1/7), (6/7, 5/7), (1/7, 2/7), (3/7, 6/7),
(5/7, 3/7). This is the same set ΨI enumerated in a different order. Any other integer values
of τ and ν also give the same set. □

3.1.4 Statistical Testing

After an RNG has been designed, based presumably on a sound mathematical analysis of its
properties, it can be implemented in a computer program and then submitted to batteries
of empirical statistical tests. These tests try to detect empirical evidence against the null
hypothesis H0: “the un are realizations of i.i.d. U(0, 1) random variables.” A test can be
defined by any function that maps a sequence u0, u1, . . . in (0, 1) to a real number Y , and
for which a good approximation is available for the distribution of the random variable Y
under H0. For the test to be practical, Y must depend on only a finite and relatively small
(but perhaps random) number of un’s. Passing many tests may improve one’s confidence in
the RNG, but never guarantees that the RNG is foolproof for all kinds of simulations.

Building a RNG that passes all statistical tests is an impossible dream. Consider, for
example, the class of all tests that examine the first (most significant) b bits of n successive
output values, u0, . . . , un−1, and return a binary value Y ∈ {0, 1}. There are 2nb possibilities
for those n bits. Select α ∈ (0, 1) so that α2nb is an integer and let Tn,b,α be the tests in
this class that return Y = 1 for exactly α2nb of the 2nb possible output sequences. We may
say that the sequence fails the test when Y = 1. The number of tests in Tn,b,α is equal to
the number of ways of choosing α2nb distinct objects among 2nb. The chosen objects are the
sequences that fail the test. Now, for any given output sequence, the number of such tests
that return 1 for this particular sequence is equal to the number of ways of choosing the other
α2nb − 1 sequences that also fail the test. This is the number of ways of choosing α2nb − 1
distinct objects among 2nb− 1. In other words, as pointed out by Leeb (1995), every output
sequence fails exactly the same number of tests! Viewed from a different angle, this result is
just a disguise of the well-known fact that under H0, each of the 2nb possible sequences has
the same probability of occurring, so one may argue that none should be considered more
random than any other (Knuth 1998).

For statistical testing to be meaningful, all tests should not be considered on equal
footing. Which ones are more important? Any answer is certainly tainted with its share of
arbitrariness. For large values of n, the number of tests is huge and all but a tiny fraction are
too complicated even to be implemented. So we may say that bad RNGs are those that fail
simple tests, whereas good RNGs fail only complicated tests that are very difficult to find
and run. This common-sense compromise has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their set ΨI ,
and based on recurrences that are not too simplistic, pass most reasonable statistical tests,
whereas RNGs with short periods or bad structures are usually easy to crack by standard
tests. For sensitive applications, it is a good idea (when this is possible) to apply addi-
tional specialized statistical tests designed in close relationship with the random variable
of interest (e.g., based on a simplification of the stochastic model being simulated, and for
which the theoretical distribution can be computed). Specific statistical tests are examined
in Section 3.5.
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3.2 Linear Recurrences Modulo m

3.2.1 The Multiple Recursive Generator

A large class of RNGs are based on the linear recurrence

xn = (a1xn−1 + · · ·+ akxn−k) mod m, (3.2)

where k ≥ 1 is the order, m ≥ 2 is the modulus, the coefficients a1, . . . , ak are in the finite
ring Zm = {0, . . . ,m − 1} in which all operations are performed with reduction modulo m,
and ak ̸= 0. The latter condition ensures that the sequence is always purely periodic, i.e.,
has no transient state (Lidl and Niederreiter 1986, Theorem 6.11). The state at step n is
sn = xn = (xn−k+1, . . . , xn)

t and the state space Zk
m has cardinality mk. A sequence that

satisfies Eq. (3.2) is a linear recurring sequence (LRS) with characteristic polynomial

P (z) = zk − a1zk−1 − · · · − ak = −
k∑

j=0

ajz
k−j, (3.3)

where a0 = −1. The recurrence (3.2) can also be written in matrix form as

xn = Axn−1 mod m =


0 1 · · · 0
...

. . .
...

0 0 · · · 1
ak ak−1 · · · a1

xn−1 mod m, (3.4)

and P (z) is the characteristic polynomial of the matrix A.

A multiple recursive generator (MRG) 2 uses (3.2) with a large value of m and defines
the output as

un = xn/m. (3.5)

The output space is then the finite set U = Zm/m = {0, 1/m, . . . , (m − 1)/m}, which can
be a “good approximation” of the real interval [0, 1] only if m is very large. For k = 1, this
is the classical linear congruential generator (LCG), whose recurrence is defined by

xn = axn−1 mod m. (3.6)

In practice, the output function is modified slightly to make sure that un never takes
the value 0 or 1 (e.g., one may define un = (xn + 1)/(m+ 1), or un = xn/(m+ 1) if xn > 0
and un = m/(m + 1) otherwise) but to simplify the theoretical analysis, we will follow the
common convention of assuming that un = xn/m (in which case un does take the value 0
occasionally). The modification does not change significantly the structure of the point sets
ΨI .

2From Pierre: This is the standard name, but I think linear congruential generator of order k would be
a better name.
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3.2.2 Alternative representations

To study LRSs and MRGs, it is convenient to introduce alternative equivalent representations
of the recurrence (3.2). We define one-to-one mappings between the following three spaces;
either of them can be interpreted as the state space of the generator:

(i) the space Zk
m of k-dimensional vectors with coordinates in Zm (the state xn defined

earlier and the recurrence (3.4) are in this representation).

(ii) the space Zm[z]/(P ) of polynomials of degree less than k with coefficients in Zm, which
can be interpreted as the space of polynomials reduced modulo P (z), and

(iii) the space L(P ) of formal Laurent series of the form s̃(z) =
∑∞

j=1 cjz
−j, where the

coefficients cj are in Zm and obey the recurrence (3.2), i.e., cj = (a1cj−1 + · · · +
akcj−k) mod m for all j > k.

The series s̃(z) should be viewed as just a way of representing the infinite sequence {cn, n ≥
1}. These three spaces of cardinalitymk offer three different representations of the generator’s
state. Each representation has its advantages, depending on what we want to do. For example,
the polynomial representation turns out to be convenient for jumping ahead in the sequence
and for checking maximal period conditions.

The mappings are defined as follows. To the vector representation xn = (xn−k+1, . . . , xn)
t

of the state, we associate the formal series

s̃n(z) =
∞∑
j=1

xn−k+jz
−j (3.7)

where xn+1, xn+2, . . . are uniquely determined by the recurrence (3.2). This series is the
generating function of the sequence {xn−k+j, j ≥ 1}. We also associate to xn the polynomial

pn(z) = P (z)s̃n(z) mod m, (3.8)

where the product is meant as a product of formal series (of which polynomials are a special
case) and the operations on the coefficients are performed in Zm. The next proposition states
that these mappings define bijections between Zk

m, L(P ), and Zm[z]/(P ). It also shows that
pn(z) is effectively a polynomial, and gives an easy way to compute the coefficients of pn(z)
given xn and vice-versa. For the proof, see Exercise 3.2.

Proposition 3.2 The mappings xn → s̃n(z) → pn(z) defined above are one-to-one map-
pings between Zk

m, L(P ), and Zm[z]/(P ). Moreover, the corresponding mapping xn → pn(z)
satisfies

pn(z) =
k∑

j=1

cn,jz
k−j (3.9)

where 
cn,1
cn,2
...
cn,k

 =


1 0 . . . 0
−a1 1 . . . 0
...

. . .
...

−ak−1 . . . −a1 1



xn−k+1

xn−k+2
...
xn

 mod m. (3.10)
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By multiplying the generating function s̃n−1(z) by z, we obtain

zs̃n−1(z) = z
∞∑
j=1

xn−k−1+jz
−j =

∞∑
j=0

xn−k+jz
−j = xn−k + s̃n(z).

This can be written as
s̃n(z) = zs̃n−1(z) mod 1, (3.11)

where “mod 1” means that we remove the polynomial part and keep only the terms with
negative powers of z. Multiplying this equation by P (z) gives

pn(z) = zpn−1(z) mod P (z), (3.12)

where “mod P (z)” means that pn(z) is the remainder of the division of the polynomial
zpn−1(z) by the polynomial P (z), with the operations on the coefficients performed in Zm.
The recurrences (3.11) and (3.12) show that an MRG can be seen as an LCG in a space of
formal series, with multiplier z and modulus 1, or in a space of polynomials, with multiplier
z and modulus P (z). This last representation is convenient for studying the periodicity of
the LRS in (3.2).

Example 3.2 Consider a small MRG with m = 101, k = 3, and (a1, a2, a3) = (28, 49, 8), so
P (z) = z3−28z2−49z−8. Suppose the generator starts in state x0 = (12, 12, 12)t. From the
recurrence, we can compute x1 = (12, 12, 10)t, x2 = (12, 10, 55)t, and so on. Using (3.10),
we find p0(z) = 12z2 + 80z + 98, p1(z) = 12z2 + 80z + 96, p2(z) = 12z2 + 78z + 96, and so
on. One can easily verify (3.12) with these polynomials. □

3.2.3 Jumping Ahead

To jump ahead directly from xn to xn+ν , for an arbitrary integer ν, it suffices to exploit the
relationship

xn+ν = Aνxn mod m = (Aν mod m)xn mod m,

which follows readily from Eq. (3.4). If this is to be done several times for the same ν,
the matrix Aν mod m can be precomputed once for all. For a large ν, this can be done in
O(log2 ν) matrix multiplications via a standard square-and-multiply (or divide-and-conquer)
exponentiation algorithm (Brassard and Bratley 1988, Knuth 1998, Section 4.6.3):

Aν mod m =

{
(Aν/2 mod m)(Aν/2 mod m) mod m textifν is even;

A(Aν−1 mod m) mod m if ν is odd.

Jumping ahead is also easy in the polynomial representation. It follows from (3.12) that

pn+ν(z) = zνpn(z) mod P (z) = (zν mod P (z))pn(z) mod P (z),

where the polynomial zν mod P (z) can be precomputed once for all with the same type of
square-and-multiply algorithm as above. So a second way to jump ahead from xn to xn+ν

is to transform the state to the polynomial representation via (3.10), jump ahead in that
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representation by computing pn+ν = (zν mod P (z))pn(z) mod P (z) for the appropriate ν,
then transform back to the vector representation xn+ν .

♣ See also Haramoto et al. (2008) for potentially more efficient methods.

Example 3.3 Let k = 3, m = 232 − 209 = 4294967087, a1 = 0, a2 = 1403580, and
a3 = −810728. (This negative value of a3 is equivalent to a3 +m, because all operations are
performed modulo m.) This gives the matrix

A =

 0 1 0
0 0 1

−810728 1403580 0

 .

Let ν = 2127. By squaring A 127 times modulo m, we obtain

Aν mod m =

2427906178 3580155704 949770784
226153695 1230515664 3580155704
1988835001 986791581 1230515664

 .

So to jump ahead by 2127 steps, it suffices to multiply the current state xn by this matrix,
modulo m. Doing this by calling the generator 2127 times would take much longer than
anyone’s lifetime! This particular example, with the same step size, is used in the package
of L’Ecuyer et al. (2002). □

3.2.4 Period

To study the periodicity, we will use the polynomial representation. Note that the zero state
xn = 0 corresponds to the zero polynomial pn(z) = 0. This state must be avoided, because
it is absorbing: if xn = 0 then xn+i = 0 and pn+i(z) = 0 for all i ≥ 0. After removing this
state, there remains mk − 1 nonzero states, so the period of (3.2) cannot exceed mk − 1.
Moreover, the LRS (3.2) has full period mk − 1 if and only if the recurrence (3.12) does,
i.e., if it visits all mk − 1 nonzero polynomials in Zm[z]/(P ) in a single cycle. If we start this
recurrence with p0(z) = 1, we have

pn(z) = zn mod P (z),

which means that the maximal period is reached if and only if the smallest n such that
zn mod P (z) = 1 is n = mk − 1. A polynomial P (z) that satisfies this condition is called a
primitive polynomial. The following is well-known in number theory (Lidl and Niederreiter
1986):

Proposition 3.3 For P (z) to be a primitive polynomial, it is necessary that m be a prime
number and ak ̸= 0. If k > 1 it is also necessary that aj ̸= 0 for at least one j such that
0 < j < k.

When m is prime, Zm turns out to be a finite field, usually denoted by Fm (this means
that each nonzero element a ∈ Fm has a multiplicative inverse a∗ ∈ Fm, which satisfies
a∗a mod m = 1).
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Obviously, verifying the primitivity of a polynomial P (z) by computing all powers of
z modulo P (z) is impractical. The following two propositions provide equivalent but more
convenient conditions. The proof of Proposition 3.4 is left as an exercise.

Proposition 3.4 If zn mod P (z) = 1 for n = mk − 1, and if zn mod P (z) ̸= 1 for n =
(mk−1)/q for all prime numbers q > 1 that dividemk−1, then P (z) is a primitive polynomial.

This proposition implies that it suffices to compute z(m
k−1)/q mod P (z) for q = 1 and

for the prime factors q of mk − 1. Finding those prime factors is not always easy. Observe,
however, that mk − 1 = (m − 1)(mk−1 + · · · + m + 1) and that m − 1 is even, so we can
decompose

mk − 1 = 2hr

where h = (m−1)/2 and r = (mk−1)/(m−1) are integers. The prime factors of mk−1 are
the prime factors of h and r, together with 2. For k > 2, r is generally the hardest number to
factor. A convenient way to avoid this factoring problem is to select m and k so that h and
r are both prime numbers. This is easier to verify because checking the primality of large
numbers is much easier than factoring. Then, the only values of q that need to be considered
are 1, 2, h, and r.

The next proposition refines the previous one by giving a set of necessary and sufficient
conditions that involve smaller powers of z than the numbers (mk− 1)/q in Proposition 3.4.
These are the conditions that are used in practice.

Proposition 3.5 (Alanen and Knuth 1964) The following three conditions are necessary
and sufficient for P (z) to be a primitive polynomial modulo m:

(i) ((−1)k+1ak)
(m−1)/q mod m ̸= 1 for each prime factor q of m− 1;

(ii) zr mod (P (z),m) = (−1)k+1ak mod m;

(iii) (zr/q mod (P (z),m)) has positive degree for each prime factor q of r, for 1 < q < r.

In the special case where m is prime and k = 1, one has r = 1 and the conditions of the
two previous propositions reduce to:

a
(m−1)/q
1 mod m ̸= 1 for each prime factor q of m− 1 (3.13)

(see Exercise 3.3). An integer a1 ∈ Zm satisfying this condition is called a primitive element
modulo m.

♣ Give an efficient algorithm that specifies in what order to do the exponentiations to
verify these conditions.

Example 3.4 Let m = 101 and k = 1. We have m − 1 = 22 × 52, so the prime factors of
m − 1 are q = 2 and q = 5. Then the values of (m − 1)/q to be considered in (3.13) are 50
and 20. For a1 = 12, for example, we get a501 mod 101 = 100 ̸= 1 and a201 mod 101 = 95 ̸= 1,
so a1 = 12 is a primitive element modulo 101 and this proves that the LCG with m = 101
and a = 12 has maximal period ρ = 100. □
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Example 3.5 Let m = 101, k = 3, and P (z) = z3 − 28z2 − 49z − 8, as in Example 3.2.
Here, r = (1013 − 1)/100 = 10303 is a prime number. We can verify the conditions of
Proposition 3.5 as follows. For (i), we have ak = 8 and the relevant values of (m− 1)/q are
again 50 and 20. We find that 850 mod 101 = 100 ̸= 1 and 820 mod 101 = 87 ̸= 1, so (i)
is verified. For Condition (ii), we find z10303 mod (P (z), 101) = 8 = ak. Condition (iii) is
automatically verified because r is prime. Therefore, P (z) is primitive and the MRG based
on the recurrence xn = (28xn−1 + 49xn−2 + 8xn−3) mod 101 has period 1013 − 1 = 1030300.

□

To search for primitive polynomials of order k > 1, it is convenient to first find a value of
ak satisfying (i) in Proposition 3.5, and then perform a search for good values of the remain-
ing coefficients (a1, . . . , ak−1). Typically, we want to impose conditions on the polynomial
coefficients aj to be able to implement the MRG efficiently (see Section 3.2.11). The search
is then restricted to the set of coefficients that satisfy these conditions. When the number
of possibilities is too large for an exhaustive examination, we can simply perform a random
search. In terms of efficiency, we would prefer to have only a small number of nonzero coef-
ficients aj and set the other ones to zero, to save multiplications. In view of Proposition 3.3,
for k > 1, the smallest number of nonzero coefficients for a primitive polynomial is two and
this gives the simplified recurrence:

xn = (arxn−r + akxn−k) mod m. (3.14)

The primitive polynomials are scattered pretty much randomly over the monic polyno-
mials of degree k in Fm[z] (i.e., the polynomials of the form (3.3)) for any given m and k.
The next proposition implies that the proportion of monic polynomials of degree k that are
primitive modulo a prime m is

1

k

J∏
j=1

pj − 1

pj

where p1, . . . , pJ are the distinct prime factors of mk − 1. The proposition’s statement uses
the Euler function ϕ, defined over the positive integers by

ϕ(n) = n

J∏
j=1

pj − 1

pj
=

J∏
j=1

p
ej−1
j (pj − 1) (3.15)

where n = pe11 · · · p
eJ
J is the prime factorization of n.

Proposition 3.6 (Pellet, 1870) For a prime number m, the number of monic polynomials
of degree k that are primitive modulo m is ϕ(mk − 1)/k.

Example 3.6 Letm = 231−1 and k = 1. Thenmk−1 = m−1 = 231−2 = 2×32×7×11×31×
151×331 and the proportion of polynomials of degree 1 that are primitive modulom is ϕ(mk−
1)/(m − 1) = ϕ(m − 1)/(m − 1) = (1/2)(2/3)(6/7)(10/11)(30/31)(150/151)(330/331) ≈
0.248943.

If m = 231 − 1 and k = 2, then 2h = 231 − 2, r = m + 1 = 231, and mk − 1 =
(m+ 1)(m− 1) = 231(m− 1), so the pj’s are the same as for k = 1. Thus, the proportion of
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polynomials that are primitive is ϕ(m2− 1)/(2(m2− 1)) = ϕ(m− 1)/(2(m− 1)) ≈ 0.124471.
□

Prime h and r. As we said earlier, choosing m and k such that both m, h, and r are
prime avoids the problem of factorizing h and r. Additional benefits are that the primitivity
condition (iii) in Proposition 3.5 is always trivially satisfied, there are only 2 values of q
(2 and h) to check in condition (i), and the primitive polynomials are more abundant than
when there are more factors. There are indeed (h− 1)(r− 1)/k primitive polynomials when
h and r are distinct primes and m > 2, so their fraction is (h − 1)(r − 1)/(2hrk) ≈ 1/(2k)
for large m. A selection of pairs (m, k) for which m, h, and r are prime, and m is near some
large power of 2, can be found in L’Ecuyer (1999a).

If m = 2 and r = 2k − 1 is prime (such a r is called a Mersenne prime), the fraction is
(2k − 2)/(k(2k − 1)) ≈ 1/k for large enough k.

Example 3.7 Suppose we take k = 5, we want m to be a prime number slightly smaller
than 263, and we also want h and r to be prime. An exhaustive computer search tells us that
the largest m that satisfies these conditions is m = 263 − 19581. With these values, if we
select a polynomial at random uniformly in the set of all mk monic polynomials of degree
5 with coefficients in Zm, the probability that this polynomial is primitive is approximately
1/(2k) = 1/10. Primitive polynomials are thus easy to find by random search in this case.
Any such primitive polynomial provides an MRG with period mk − 1 ≈ 2315.

As another example, suppose we want m < 231. The largest prime m smaller than 231 is
m = 231 − 1. For this reason, this m has been used extensively in the past as a modulus for
LCGs. Factorizations of mk − 1 for k ≤ 6 can be found in L’Ecuyer, Blouin, and Couture
(1993). However, h and r are not prime for these pairs (m, k).

For k = 3, for example, the largest prime integer m < 231 for which both h and r are
prime is m = 231 − 21069. With this pair (m, k), a random polynomial of degree k with
coefficients in Zm is primitive with probability near 1/3. □

3.2.5 What if m is a Power of Two?

It is tempting to take the modulus m equal to a power of 2, because computing ax mod m
is then much easier: compute the product ax and chop off the high-order bits. On a 32-
bit computer, for instance, if m = 232 it suffices to make sure that overflow-checking is
turned off, compute the product ax using unsigned integers, and the overflow will take care
automatically of the modulo m operation.

However, there is a large price to pay in terms of a much shorter period and a poor quality
of the least significant bits. If m = 2e, the period of the recurrence (3.2) cannot exceed 2e−2

for k = 1 and e ≥ 4, and (2k−1)2e−1 for k > 1 (Knuth 1998, Eichenauer-Herrmann, Grothe,
and Lehn 1989). Moreover, for k = 1, the period of the ith least significant bit of xn cannot
exceed max(1, 2i−2) (Bratley, Fox, and Schrage 1987), and if a full cycle is split into 2d equal
segments, all segments are identical except for their d most significant bits (De Matteis
and Pagnutti 1988). For k > 1, the period of the ith least significant bit cannot exceed
(2k − 1)2i−1. Thus, the behavior of the low-order bits is much too regular. In conclusion,
LCGs and MRGs with power-of-2 moduli should not be used.
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Example 3.8 If k = 7 andm = 231−1 (a prime), the maximal period is (231−1)7−1 ≈ 2217.
On the other hand, for m = 231 and the same value of k, we have ρ ≤ (27 − 1)231−1 < 237,
which is more than 2180 times shorter. Moreover, the least significant bit has period at most
27 − 1 = 127, the second least significant bit has period at most 2(27 − 1) = 254, and so on.

□

Example 3.9 The values of x0, . . . , x7 obtained from the recurrence xn = 10205xn−1 mod 215

with x0 = 12345 are (in base 10 and in base 2):

x0 = 12345 = 0110000001110012

x1 = 20533 = 1010000001101012

x2 = 20673 = 1010000110000012

x3 = 7581 = 0011101100111012

x4 = 31625 = 1111011100010012

x5 = 1093 = 0000100010001012

x6 = 12945 = 0110010100100012

x7 = 15917 = 0111110001011012.

We see that the last two bits never change, the third least significant bit has period 2, the
fourth least significant bit has period 4, and so on. □

To improve the period when m is not a prime number (e.g., if it is a power of 2), one can
think of adding a constant c to the right side of the recurrence (3.2) before the reduction
modulo m. One can show (L’Ecuyer 1990a, page 87) that a linear recurrence of order k
with such a constant term is equivalent to some linear recurrence of order k + 1 with no
constant term. As a result, an upper bound on the period of such a recurrence with m = 2e

is (2k+1 − 1)2e−1, which is still much smaller than mk for large e and k.

For k = 1 and c > 0, the largest possible period is m = 2e (the size of the state space)
and it is achieved if and only if c is odd and a mod 4 = 1 (Knuth 1998, Page 17).

LCGs with power-of-2 moduli were popular in the past. Some examples are given in
Table 3.1. RANDU was the generator offered on the IBM System/360 computers. Its set Ψ3

(in three dimensions) lies in exactly 15 equidistant planes (see Law and Kelton 2000, page
427, for an illustration). The BSD ANSI C generator is the one provided in the standard
ANSI C library. All these RNGs should be avoided.

3.2.6 Linear Recurrences With Carry

We just discarded the idea of using a power-of-two modulus with the linear recurrence (3.2),
but this type of modulus may become interesting again if we change the recurrence slightly.
To obtain a large period even when m is a power of two, Marsaglia and Zaman (1991)
introduced the idea of adding a carry to the linear recurrence (3.2). Their proposal was
studied and generalized by Tezuka, L’Ecuyer, and Couture (1993), Couture and L’Ecuyer
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Table 3.1. Some (old) popular LCGs with power-of-2 moduli

m a c Reference
224 1140671485 12820163 in early VisualBasic from Microsoft
231 65539 0 RANDU
231 134775813 1 in early Turbo Pascal
231 1103515245 12345 rand() in BSD ANSI C
232 69069 1 on VAX/VMS systems
232 2147001325 715136305 in the BCLP language
235 515 7261067085 Knuth (1998)
248 68909602460261 0 Fishman (1990)
248 25214903917 11 Unix’s rand48()
248 44485709377909 0 on CRAY system
259 1313 0 in NAG Fortran/C library

(1994), Couture and L’Ecuyer (1997), and Goresky and Klapper (2003), to get a class of
generators called multiply-with-carry (MWC), defined by

xn = (a1xn−1 + · · ·+ akxn−k + cn−1)d mod b, (3.16)

cn = ⌊(a0xn + a1xn−1 + · · ·+ akxn−k + cn−1)/b⌋, (3.17)

un =
∞∑
ℓ=1

xn+ℓ−1b
−ℓ, (3.18)

in which b is a positive integer, a0, . . . , ak are arbitrary integers such that a0 is relatively
prime to b, and d is the multiplicative inverse of −a0 modulo b, i.e., (−a0d) mod b = 1.
Eq. (3.16) is equivalent to (a0xn + a1xn−1 + · · · + akxn−k + cn−1) mod b = 0, and the carry
cn represents the number of times b has to be subtracted to perform the latter “mod b”
operation. The state at step n is xn = (xn−k+1, . . . , xn, cn)

t. In practice, b is usually taken as
a power of 2 and the sum in (3.18) is truncated to a few terms (it could be a single term if
b is large), but the theoretical analysis is much easier for the infinite sum.

Define m =
∑k

ℓ=0 aℓb
ℓ and let a be the inverse of b in arithmetic modulo m, assuming for

now that m > 0. A major result proved in Tezuka, L’Ecuyer, and Couture (1993), Couture
and L’Ecuyer (1997), and Goresky and Klapper (2003) is that if the initial states agree, the
output sequence {un, n ≥ 0} is exactly the same as that produced by the LCG with modulus
m and multiplier a. Therefore, the MWC can be seen as a clever way of implementing an
LCG with very large modulus.

In the original proposals of Marsaglia and Zaman (1991), called add-with-carry and
subtract-with-borrow, one has −a0 = ±ar = ±ak = 1 for some r < k and the other coefficients
aj are zero. We will see in Section 3.2.10 that all nonzero vectors of the form (un−k, un−r, un)
(or equivalently, (un, un−r+k, un+k)) produced by the LCG associated with these generators
lie in at most three planes in the three-dimensional unit cube. We saw a concrete illustration
of this type of generator in Example 1.16.

In the version studied by Couture and L’Ecuyer (1997), it was assumed that−a0 = d = 1.
Then, the period cannot exceed (m− 1)/2 if b is a power of two. A concrete implementation
was given in that paper. Goresky and Klapper (2003) pointed out that the maximal period
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of ρ = m−1 can be achieved by allowing a more general a0. They provide specific parameters
that give a maximal period for b ranging from 221 to 235 and ρ up to approximately 22521.

3.2.7 The Lattice Structure

We now examine the structure of the point sets ΨI produced by MRGs and discuss how we
can measure their uniformity. We will see where the regular structure observed in Figure 1.8
comes from and show that all point sets ΨI produced by MRGs have this type of structure.

♣ Perhaps add a small example here.

We use ei to denote the ith unit vector, with a 1 in position i and 0’s elsewhere. The
dimension of this vector will be obvious from the context; it is k in this paragraph and s in the
next paragraph, for example. Denote by xi,0, xi,1, xi,2, . . . the values of x0, x1, x2, . . . produced
by the recurrence (3.2) when xk−1 = (x0, . . . , xk−1)

t = ei, and let yi = (xi,0, xi,1, . . . , xi,s−1)
for any given s ≥ k. We have

y1 = (1, 0, . . . , 0, x1,k, . . . , x1,s−1)
t

...
...

yk = (0, 0, . . . , 1, xk,k, . . . , xk,s−1)
t.

An arbitrary state xk−1 = (z1, . . . , zk)
t ∈ Zk

m can be written as the linear combination
xk−1 = z1e1+· · ·+zkek. Then the vector of successive values y = (x0, x1, . . . , xs−1)

t produced
by the linear recurrence when xk−1 is the initial state is given by the linear combination
y = z1y1 + · · ·+ zkyk, reduced modulo m. That is,

xk = (z1x1,k + · · ·+ zkxk,k) mod m,

xk+1 = (z1x1,k+1 + · · ·+ zkxk,k+1) mod m,

and so on. Reciprocally, any linear combination z1y1 + · · · + zkyk reduced modulo m is the
vector of values y = (x0, x1, . . . , xs−1)

t obtained from the initial state xk−1 = (z1, . . . , zk)
t ∈

Zk
m.

Reduction of the jth coordinate modulo m is achieved by subtracting an integer multiple
of mej, the s-dimensional vector with a m in position j and 0’s elsewhere. When computing
y = z1y1 + · · · + zkyk, this reduction can be needed only for j > k, because zi ∈ Zm for
each i. This means that for s ≥ k, a vector y = (x0, x1, . . . , xs−1)

t in Zm is produced by the
recurrence (3.2) if and only if it can be written as

y = z1y1 + · · ·+ zsys

where yi = mei for i > k and z1, . . . , zs are arbitrary integers.

If we divide everything by m and apply Proposition 3.1, we find that a s-dimensional
vector (u0, . . . , us−1) ∈ [0, 1)s is in Ψs if and only if it can be written as a linear combination,
with integer coefficients, of the vectors
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v1 = (1, 0, . . . , 0, x1,k, . . . , x1,s−1)
t/m

...
...

vk = (0, 0, . . . , 1, xk,k, . . . , xk,s−1)
t/m

vk+1 = (0, 0, . . . , 0, 1, . . . , 0)t

...
...

vs = (0, 0, . . . , 0, 0, . . . , 1)t.

Let Ls be the s-dimensional vector space

Ls =

{
v =

s∑
i=1

zivi | zi ∈ Z

}
, (3.19)

which is the set of all vectors that can be written as integer linear combinations of v1, . . . ,vs.
This Ls is a discrete set that contains an infinite number of points in the s-dimensional real
space. A point of this set belongs to Ψs if and only if all its coordinates are reduced modulo
1, i.e., are in the interval [0, 1). We have just shown the following:

Proposition 3.7 For the MRG, for each s ≥ 1, we have Ψs = Ls ∩ [0, 1)s.

Example 3.10 In Figure 1.8(a), we have k = 1, m = 101, a1 = 12, and s = 2. Then,
y1 = (1, 12)t, y2 = (0, 101)t, v1 = (1/101, 12/101)t, and v2 = (0, 1)t. These two vectors
are displayed in Figure 1.8(a). The set Ψ2 is comprised of the 101 vectors v = (u0, u1)

t of
the form v = z1v1 + z2v2 where z1 ∈ Z101 and z2 = −⌊12z1/101⌋. In other words, we take
the vectors 0,v1, 2v1, 3v1, . . . and subtract v2 as many times as needed when the second
coordinate exceeds 1. As can be seen from the figure, the set Ψ2 contains the vectors v = iv1

for i = 0, . . . , 8, v = iv1 − v2 for i = 9, . . . , 16, v = iv1 − 2v2 for i = 17, . . . , 25, and so on,
ending with v = iv1 − 11v2 for i = 93, . . . , 100. □

0 1

1

un+1

un

Fig. 3.1. The lattice structure of Ψ2 for the LCG with m = 101 and a = 12.
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Example 3.11 In Figure 1.8(b), where a1 = 51, we have y1 = (1, 51)t, y2 = (0, 101)t,
v1 = (1/101, 51/101)t, and v2 = (0, 1)t, and 2v1 mod 1 = 2v1 − v2 = (2/101, 1/101)t, which
represents the nonzero point closest to the origin in Figure 1.8(b). All integral multiples of
this vector v∗ = (2/101, 1/101)t belong to the lattice; they include all points on the lower
line of Figure 1.8(b). Given that v∗ is very short, this line must necessarily contain a large
number of points (it actually contains 51 points out of 101). Likewise, starting from the
leftmost point of the second line and adding any integral multiple of v∗, we obtain a lattice
point, so this second line must also contain a large number of points. This implies in turn
that all points must stand on a very small number of lines, which is bad from the uniformity
viewpoint. This observation applies generally and also in higher dimensions: whenever the
lattice Ls contains a very short vector, all the lattice points must lie on a small number of
parallel hyperplanes in [0, 1)s (which are lines when s = 2) and the uniformity cannot be
good. □

Example 3.12 Let k = 2 and s = 4, for arbitrary values of m, a1 and a2. In that case, for
(x1,0, x1,1) = (1, 0) we have

x1,2 = (a1x1,1 + a2x1,0) mod m = a2 and

x1,3 = (a1x1,2 + a2x1,1) mod m = a1a2 mod m.

For (x2,0, x2,1) = (0, 1) we have

x2,2 = (a1x2,1 + a2x2,0) mod m = a1 and

x2,3 = (a1x2,2 + a2x2,1) mod m = (a21 + a2) mod m.

The vectors v1, . . . ,v4 are then

v1 = (1, 0, a2, a1a2 mod m)t/m

v2 = (0, 1, a1, (a
2
1 + a2) mod m)t/m

v3 = e3

v4 = e4.

□

For s ≤ k, Ls contains all vectors whose coordinates are multiples of 1/m and there
are ms such vectors that belong to [0, 1)s. For s > k, Ls contains a fraction mk−s of those
vectors and mk distinct ones belong to [0, 1)s. It is easily seen that Ls contains all corners
of the unit hypercube [0, 1]s, and therefore all vectors with integer coordinates. Adding an
integer vector z ∈ Zs to all the points of Ψs gives the set of points of Ls that belong to the
unit hypercube [z, z + 1) having lower left corner at z. That is, for each integer vector z,
Ls ∩ [z, z + 1) is just a shifted copy of Ψs that contains m

k points, so Ls is obtained simply
by tiling an infinite number of copies of Ψs, in all directions.

A discrete vector space of the form (3.19) with vectors vi ∈ Rs is a lattice in Rs (Conway
and Sloane 1999). The matrix V whose rows are vt

1, . . . ,v
t
s is a generator matrix of Ls. The

lattice can also be written as Ls = {V z : z ∈ Zs}. When v1, . . . ,vs are linearly independent,
they form a basis of the lattice. Then the average number of lattice points per unit of volume,
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called the density of the lattice, is equal to 1/det(V ) where det(V ) is the determinant of V .
In our case, the generator matrix is

V =



1/m 0 · · · 0 x1,k/m · · · x1,s−1/m
...

...
...

0 0 · · · 1/m xk,k/m · · · xk,s−1/m
0 0 · · · 0 1 · · · 0

...
...

...
0 0 · · · 0 0 · · · 1


.

Its rows are clearly linearly independent and its determinant is the product of the diagonal
elements, m−k. We have 1/det(V ) = mk, which corresponds to the density of the lattice (the
number of points per unit of volume).

This lattice structure implies that the points of Ψs are distributed according to a very
regular pattern. For example, each point of Ls has a nearest neighbor at the same distance
and in the same direction as any other point, and there are families of equidistant parallel
hyperplanes that cover all the points, as shown in Figures 1.8 and 1.8 for k = 1 and s = 2,
where the points belong to equidistant parallel lines. In terms of uniformity, we clearly
prefer Figure 1.8(a) to Figure 1.8(b). In Figure 1.8(b), each point is too close to its nearest
neighbor and the points are covered by lines that are too far away from one another, whereas
in Figure 1.8(a), the points are far from one another and the distance between the lines is
smaller.

In view of this regular structure, natural ways of measuring the uniformity for this type
of point set Ψs include the following (among others):

(a) the (Euclidean) distance from a point to its nearest neighbor, which is also the distance
from the origin to its closest point, or equivalently the length of the shortest nonzero
vector in Ls;

(b) the distance between the two farthest hyperplanes that bound an area that contains
no point from Ls;

(c) the minimal number of equidistant parallel hyperplanes that can cover all the points
of Ψs.

For given values of m and k, we want the quantities in (a) and (c) to be as large as
possible, and the distance in (b) to be as small as possible.

Example 3.13 In Figure 1.8(b), a point of L2 closest to the origin is (2/101, 1/101), at
distance

√
5/101, and all the points of Ψ2 are in only 2 parallel lines. The distance between

these two lines is 1/
√
5 ≈ 0.4472. In Figure 1.8(a), a closest point to the origin is (−8, 5), at

distance
√
89/101, and we need 13 parallel hyperplanes to cover all the points. The distance

between the lines is much smaller. □



3.2 Linear Recurrences Modulo m 271

3.2.8 Figures of Merit

Distance between the points. We now examine in more detail the uniformity measures
(a) to (c) introduced above. We start with (a), the (Euclidean) length of the shortest nonzero
vector in the lattice Ls. Let ds denote this length.

Any vector v in Ls can be written as v =
∑s

i=1 zivi for some integers zi. Its square
(Euclidean) length is the quadratic form

∥v∥2 =
s∑

i=1

s∑
j=1

ziv
t
ivjzj = ztV tV z

where z = (z1, . . . , zs)
t. Finding the shortest nonzero vector in Ls can thus be formulated as

an integer programming optimization problem with a quadratic objective function:

Minimize ∥v∥2 =
s∑

i=1

s∑
j=1

ziv
t
ivjzj

subject to z1, . . . , zs all integers and not all zero.

The optimal value is d2s, the squared length of the shortest nonzero vector. Dieter (1975) gave
an algorithm to solve the problem, based essentially on branch-and-bound methodology. An
improved version is detailed by Knuth (1998). A more efficient algorithm that exploits tighter
bounds for the branch-and-bound was proposed by Fincke and Pohst (1985) (see also Tezuka
1995, L’Ecuyer and Couture 1997).

How large can be the distance between the points? Suppose we put a solid ball of radius
ρ centered at each point of Ls. The largest ρ we can use before the balls overlap is precisely
ds/2. Since there are n = mk lattice points per unit of volume, the fraction of the space
occupied by these spheres is ∆s = nVsρ

s where Vs is the volume of a s-dimensional sphere
with radius 1. This problem of packing the space as densely as possible by a lattice of identical
spheres has been studied extensively in mathematics (Conway and Sloane 1999). Let ∆∗

s be
the maximal value of ∆s for a general lattice in s dimensions. We then have

ds = 2ρ ≤ 2(∆∗
s/(nVs))

1/s.

This gives the upper bound

ds ≤ d∗s(n)
def
= γ1/2s n−1/s (3.20)

where γs = 4(∆∗
s/Vs)

2/s is a constant that depends only on s.
These γs’s are known as the Hermite constants (Conway and Sloane 1999, Knuth 1998).

(Beware: some authors use γs to denote our γ
1/2
s .) They are known exactly only for s ≤ 8.

For s > 8, however, upper and lower bounds on these constants are available. In particular,
Rogers’ bound on the density ∆s of a sphere packing (Conway and Sloane 1999, page 19)
yields

γs ≤ γ̄s
def
= 21+2R(s)/s,

3 where the value of R(s) is given in Conway and Sloane (1999), page 15, for s ≤ 24 and
can be approximated by

3From Pierre: Should be log2(∆
∗
s/Vs) ≤ R(s)− s/2. Check this.
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R(s) ≈ 1

2
s lg

( s

4πe

)
+

3

2
log2(s)− log2(e/

√
π) +

5.25

s+ 2.5
,

with O(1/s) error and four decimal digits of precision for s ≥ 25. To obtain a lower bound
on γs, we can use the largest density ∆s known so far. The best known values of ∆s/Vs are
given in Conway and Sloane (1999), page xix (in the preface), for s ≤ 48. The corresponding
values of 4(∆s/Vs)

2/s can be taken as lower bounds γ
s
on γs. For all s ≤ 8, the lower bound

is attained by one or more known lattice(s), so γ
s
= γs.

We emphasize that the bound (3.20) is not necessarily attainable by a lattice that can
be obtained from the point set Ψs of an MRG. These bounds are for general lattices with
basis vectors vi ∈ Rs.

♣ Give an example that compares the bound (3.20) with the best attainable value for
an MRG of a given size, found by exhaustive search.

♣ Should give graph showing the bounds as a function of s...

3.2.8.1 The dual lattice and distance between hyperplanes. The dual lattice to Ls

is defined as
L∗
s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls}. (3.21)

This is the set of vectors h whose scalar product with any vector of Ls is an integer. In our
case, the generating matrix V is upper-triangular with positive values on the diagonal, so it
clearly has an inverse, say W = V −1, whose determinant is det(W ) = 1/det(V ) = mk =
|Ψs|. It can be verified (Exercise 3.6) that the columns of W are w1, . . . ,ws, where

wi = mei for 1 ≤ i ≤ k, and

wi = ei − (x1,i−1, . . . , xk,i−1, 0, . . . , 0)
t for k < i ≤ s.

These vectors wi form a basis of the dual lattice L∗
s. That is, we can write

L∗
s =

{
h =

s∑
i=1

ziwi | zi ∈ Z

}
. (3.22)

Since all coordinates of these vectors are integers, we can conclude that all vectors of the
dual lattice have integer coordinates, i.e., L∗

s ⊂ Zs. This dual lattice has density m−k: it
contains only integer vectors, and one integer vector out of mk.

For each vector h = (h1, . . . , hs) ∈ L∗
s and each integer z, the set {v ∈ Rs : htv = z}

is an hyperplane orthogonal to h. When z runs through all integers, we obtain a family
H(h) of equidistant parallel hyperplanes which cover all points v of Ls, because htv ∈ Z
for each v ∈ Ls. The distance between two successive hyperplanes of H(h) is the distance
from the hyperplane with z = 1 to that with z = 0, i.e., to the origin, since the latter
contain the origin. But the vector v closest to the origin, i.e., with minimal square length
∥v∥22 = v21 + · · · + v2s , under the constraint that htv = 1, is easily characterized using a
Lagrange multiplier λ, as follows. By differentiating ∥v∥22+λ(1−htv) with respect to vi and
equaling the derivative to zero, we find that vi = (λ/2)hi, so vi must be proportional to hi
for each i. The scaling constant λ/2 can then be determined from the constraint. We have

1 = htv = (λ/2)(h21 + · · ·+ h2s)
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which gives λ/2 = 1/∥h∥22 and then vi = hi/∥h∥22. This vector v has length ∥v∥2 =
∥h∥2/∥h∥22 = 1/∥h∥2 and this length is the distance between the successive parallel hy-
perplanes of the family H(h).

If ℓs is the Euclidean length of a shortest non-zero vector h in L∗
s, then there is a

family of hyperplanes at distance 1/ℓs apart that cover all the points of Ls, and no family
of hyperplanes can cover all the points if they are spaced more than 1/ℓs apart. A small
ℓs means that there are thick slices of empty space between the hyperplanes and we want
to avoid that. A large ℓs means a better (more uniform) coverage of the unit hypercube by
the point set Ψs. The problem of computing ℓs is the same as that of computing ds: just
replace Ls by L

∗
s and use the same algorithm. Computing ℓs is often called the spectral test

for historical reasons. It was first proposed by Coveyou and MacPherson (1967) for LCGs.
These authors introduced ℓs via Fourier analysis and called it the minimal wave number.
Knuth (1969) details this viewpoint. The lattice structure of LCGs was also pointed out by
Marsaglia (1968).

Example 3.14 For the LCG illustrated in Figure 1.8(a), we have s = 2, k = 1,m = 101, and
a1 = 12. The vectors w1 = me1 = (101, 0)t and w2 = e2 − (12, 0)t = (−12, 1)t form a basis
of the dual lattice L∗

2. Any vector in this dual lattice can be written as h = z1w1 + z2w2 =
(101z1− 12z2, z2)

t and its square length is ∥h∥22 = (101z1− 12z2)
2 + z22 . To find the shortest

nonzero vector in L∗
2 we must minimize this expression with respect to (z1, z2)

t ∈ Z2 \ {0}.
This is an integer programming problem, whose optimal solution is (z1, z2) = (1, 8). The
corresponding shortest vector is h = w1+8w2 = (5, 8)t and has length ℓ2 =

√
52 + 82 =

√
89,

so all points of Ls here are contained in parallel lines that are at distance 1/
√
89 ≈ 0.1060

apart. □

Example 3.15 In Figure 1.8(b), we have a1 = 51 instead, so w1 = (101, 0)t and w2 =
(−51, 1)t. The vector h = w1+2w2 = (−1, 2)t has length ℓ2 =

√
5 and is the shortest vector.

So here all the points are contained in parallel lines that are at distance 1/
√
5 ≈ 0.4472 apart.

□

Since Ls has density n = mk, the dual lattice L∗
s has density m−k and the upper bound

on ℓs that corresponds to (3.20) becomes

ℓ∗s(m
k)

def
= d∗s(m

−k) = γ1/2s mk/s. (3.23)

Number of hyperplanes to cover the points. The smallest number of parallel hyper-
planes that cover all the points of Ψs can be found by computing a shortest nonzero vector
in L∗

s using the L1-norm instead of the Euclidean norm. Recall that the L1-norm of a vector
h = (h1, . . . , hs) ∈ Rs is ∥h∥1 = |h1|+ · · ·+ |hs|.

Dieter (1975) pointed out that for any nonzero h ∈ L∗
s, the number of hyperplanes in

H(h) that intersect the open unit hypercube (0, 1)s (i.e., excluding the point 0) is ns =
∥h∥1 − 1. A vector h∗ that minimizes this L1 norm (and the value of ns) can be found by
solving the optimization problem:
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Minimize ∥h∥1 − 1

subject to h = z1h1 + · · ·+ zshs ̸= 0 and each zi ∈ Z.

This problem can be solved by a branch-and-bound procedure, as suggested by Dieter (1975).
The algorithm of Dieter (1975) works fine for s up to about 10 but becomes very slow for
larger s (the time is exponential in s). If

ns = ∥h∗∥1 − 1

denotes the minimal number of hyperplanes thus found, we can conclude that all the nonzero
points of Ψs are covered by exactly ns hyperplanes from the family H(h∗), and they cannot
be covered by fewer hyperplanes.

Knuth (1998), Exercise 3.3.4-16, shows that if we include the point 0, then we need
∥h∥1 − δ(h) hyperplanes to cover all the points, where δ(h) = 1 if h has two coordinates of
opposite sign and δ(h) = 0 otherwise (that is, when all coordinates of h have the same sign,
we need one more hyperplane and it contains only the point 0).

Marsaglia (1968) pointed out that by applying the general convex body theorem of
Minkowski, we obtain the upper bound

ns ≤ n∗
s(n)

def
= (s! n)1/s, (3.24)

where n is the density of the lattice Ls. For an MRG, we have n = mk.
The numbers ds, ℓs, and ns are just three ways of assessing the uniformity of a lattice

Ls. There are many more that we shall not discuss here. They include, for example, the
Beyer quotient (Beyer, Roof, and Williamson 1971, Afflerbach and Grothe 1985) and some
discrepancy measures used when lattices are used for QMC integration (Sloan and Joe 1994,
Hickernell 1998b, L’Ecuyer 2009).

Lacunary indices. The lattice properties discussed so far hold as well for the point sets ΨI

formed by values at arbitrary lags defined by a fixed set of indices I = {i1, · · · , is}. One has
ΨI = LI ∩ [0, 1)s for some s-dimensional lattice LI . We can define and compute for the lattice
LI the counterparts of ds, ℓs, and ns, which we denote by dI , ℓI , and nI , respectively. That
is, dI is the minimal distance between any two points (or the length of a shortest nonzero
vector) in LI , 1/ℓI is the largest distance between successive hyperplanes for a family of
hyperplanes that cover all the points of LI , where ℓI is the Euclidean length of a shortest
nonzero vector in the dual lattice L∗

I , and nI is the minimal number of hyperplanes that
intersect [0, 1)s, among all families that cover LI .

The lattice LI and its dual can be constructed as explained in Couture and L’Ecuyer
(1996) and L’Ecuyer and Couture (1997). Essentially, LI is the lattice generated by the k+s
vectors (xi,i1 , xi,i2 , . . . , xi,is)/m for 1 ≤ i ≤ k and ei for 1 ≤ i ≤ s. These vectors are not
linearly independent in general but they can be used to construct a basis by eliminating the
redundant ones.

The upper bounds on ds, ℓs, and ns are also valid for dI , ℓI , and nI when |I| = s. That
is, for each set I = {i1, . . . , is}, we have



3.2 Linear Recurrences Modulo m 275

dI ≤ d∗s(m
k) = γ1/2s m−k/s, (3.25)

ℓI ≤ ℓ∗s(m
k) = γ1/2s mk/s, (3.26)

nI ≤ n∗
s(m

k) = (s!mk)1/s. (3.27)

♣ Give numerical examples with lacunary indices... See guide of LatMRG.

3.2.9 Figures of merit based on several projections

Note that when adding a new coordinate to a given set I, the value of dI can only decrease,
whereas ℓI and nI can only increase. So for sets I of different cardinalities s (i.e., projections
LI in different number of dimensions), the values of dI are not comparable, and similarly for
ℓI and nI . For this reason, when considering figures of merit that take into account several
sets I of different cardinalities, it is convenient to divide each quantity dI , ℓI , or nI by its
upper bound in (3.25)—(3.27), to obtain a standardized value between 0 and 1 that can be
compared across different values of s.

Such a figure of merit can be defined by selecting a class J of sets I and taking the worst
(minimum) standardized value over this class. For example, if we use the quantity ℓI , this
gives a figure of merit of the form

MJ = min
I∈J

ℓI/ℓ
∗
|I|(m

k), (3.28)

4 which takes into account all index sets I ∈ J . There are similar definitions using dI and
nI . In all cases, a small value of MJ means that for at least one of the selected index sets I,
the lattice LI has a bad lattice structure. We want MJ to be as close to 1 as possible.

In Eq. (3.28), we assume that for s > 8, the constants γs in the definition of ℓ∗s(m
k/s) are

replaced by their bounds, either γ̄s or γs. Since we believe that the lower bound γs should be
closer to the exact γs than Rogers’ upper bound (it is likely that γ

s
= γs for several values

of s), we prefer using this lower bound to standardize in (3.28). If ℓI ever exceeds γ
s
mk/s,

we would have found a better lattice than the best one known so far!
The criterion MJ has been widely used since Fishman and Moore III (1986) by taking

J as the sets of the form I = {0, . . . , s− 1} for s ≤ s1, where s1 is an arbitrary integer. This
choice considers vectors of successive output values, in dimensions up to s1. L’Ecuyer and
Lemieux (2000) generalized this criterion by considering also pairs, triples, quadruples, etc.,
of non-successive coordinates whose indices are not too far apart. They suggested taking

J = {{0, 1, . . . , i} : i < s1}
∪{{i1, i2} : 0 = i1 < i2 < s2}
∪ · · ·
∪{{i1, . . . , id} : 0 = i1 < . . . < id < sd}

for some positive integers d, s1, . . . , sd. We shall denote by Ms1,s2,...,sd the criterion MJ with
this choice of J . In practice, d must remain small (no more than 3 or 4), otherwise computing
MJ becomes too time consuming.

4From Pierre: Attention: This is correct only if the number of points in each projection is mk. We should
impose this condition. Otherwise, in general it could be smaller for some projections!
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The criterion (3.28) can be generalized by giving an arbitrary weight wI ≥ 0 to each set
I ∈ J . This gives:

M̃J = min
I∈J

wIℓI/ℓ
∗
|I|(m

k). (3.29)

In Section 6.10.9, Eq. (6.89), we will examine a more general form of this criterion, and
another one in which the min is replaced by the sum of the reversed terms.

Example 3.16 Let m = 101 and k = 3, as in Example 3.5. The prime factorization of
mk − 1 is 22 × 52 × 10303, so among the mk − 1 = 1030300 nonzero possibilities for the
vector of coefficients (a1, a2, a3), the number of vectors for which the recurrence has full
period is ϕ(mk − 1)/3 = (mk − 1)(1/2)(4/5)(10302/10303)/3 = 137360. For each of them,
we computed M8, the figure of merit obtained by taking J as the class of sets of the form
I = {0, . . . , s− 1} for s = 4, . . . , 8. The vectors (a1, a2, a3) = (28, 49, 8) and (73, 49, 93) were
co-winners among all full-period generators, with M8 = 0.73047. □

Example 3.17 Fishman and Moore III (1986) performed an exhaustive search to find all
full-period LCGs with modulus 231− 1 and with M6 ≥ 0.8. The best multiplier according to
this criterion is a = 742938285, with M6 = 0.8320. The widely-used multiplier a = 16807,
on the other hand, had M6 = 0.3375. □

Example 3.18 Computerized searches for good MRGs with respect to the criterionMs1 are
reported by L’Ecuyer, Blouin, and Couture (1993), L’Ecuyer and Andres (1997), L’Ecuyer
(1999a), for example, for s1 as high as 45. □

Example 3.19 L’Ecuyer and Lemieux (2000), Table 1, provide a list of good LCGs with
respect to the criteria M32,24,12,8 and M32,24,16,12, for prime moduli ranging from 1021 to
131071. These small LCGs should not be used as RNGs; their intended use is as lattice rules
for quasi-Monte Carlo integration. □

3.2.10 Bounds on ℓI and nI in terms of the MRG coefficients

Propositions 3.8 and 3.9, taken from Couture and L’Ecuyer (1994) and L’Ecuyer (1997),
provide upper bounds on ℓI and nI in terms of the coefficients aj for the MRG and in terms
of the decomposition of m as a linear combination of powers of a for the LCG (3.6). The first
proposition implies that the sum of squares of the coefficients aj must be large if we want to
have any chance of having a good lattice structure.

Proposition 3.8 If I contains all indices i such that ak−i ̸= 0 (including i = k, because
a0 = −1) and if we put ai = 0 for i < 0, then the vector h = (−ak−i1 , . . . ,−ak−is)

t belongs
to the dual lattice L∗

I . Therefore,

ℓ2I ≤ ∥h∥22 = 1 + a21 + · · ·+ a2k (3.30)

and

nI ≤ ∥h∥1 − 1 = |a1|+ · · ·+ |ak|, (3.31)
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which implies that the nonzero points of ΨI = LI ∩ [0, 1)s are contained in at most
∑

i∈I |ai|
equidistant parallel hyperplanes.

Proof. For the special case where I = {0, . . . , s−1}, consider the vector h = (−ak, . . . ,−a1, 1, 0, . . . , 0)t.
For any vector v = (v0, v1, . . . , vs−1)

t ∈ Ls, the first k + 1 coordinates must satisfy the re-
currence vk = (a1vk−1 + · · ·+ akv0) mod 1, because the successive coordinates of every basis
vector vi do satisfy this recurrence. This implies that the scalar product htv must be an inte-
ger. Thus, h belongs to the dual lattice L∗

s. Its square Euclidean length ∥h∥22 = 1+a21+· · ·+a2k
provides an upper bound on ℓ2s and its L1-length 1 + |a1| + · · · + |ak|, minus 1, is an upper
bound on the minimal number of hyperplanes that cover all the nonzero points. For a general
set I that satisfies the conditions of the proposition, replace h by the vector hI obtained
from h by picking only the coordinates whose indices belong to I. A similar argument can
be made with this hI (Exercise 3.8).

Constructing MRGs with only two nonzero coefficients and taking these coefficients small
has been a popular idea, because this makes the implementation easier and faster (L’Ecuyer,
Blouin, and Couture 1993, Deng and Lin 2000, Knuth 1998). However, MRGs thus obtained
have a bad structure.

Example 3.20 As a worst-case illustration, consider the widely-available additive or sub-
tractive lagged-Fibonacci generator, based on the recurrence (3.2) where the two coefficients
ar and ak are both equal to ±1:

xn = (±xn−r ± xn−k) mod m. (3.32)

In this case, whenever I contains {0, k − r, k}, Proposition 3.8 tells us that ℓ2I ≤ 3, so
the distance between the hyperplanes is at least 1/

√
3, and that all the nonzero points

of ΨI are covered by two hyperplanes. This happens in particular in three dimensions for
I = {0, k − r, k}. This type of structure can have a dramatic effect on certain simulation
problems and is a good reason for staying away from these lagged-Fibonacci generators,
regardless of their parameters. □

Example 3.21 A similar problem occurs for the fast MRG proposed by Deng and Lin
(2000), based on the recurrence

xn = (−xn−1 + axn−k) mod m = ((m− 1)xn−1 + axn−k) mod m,

with a2 < m. If a is small, the bound ℓ2I ≤ 1 + a2 implies a bad lattice structure for
I = {0, k − 1, k}. A more detailed analysis by L’Ecuyer and Touzin (2004) shows that this
type of generator cannot have a good lattice structure even if the condition a2 < m is
removed. □

Example 3.22 Another special case proposed by Deng and Xu (2003) has the form

xn = a(xn−j2 + · · ·+ xn−js) mod m. (3.33)

In this case, for k = js and I = {0, k − js−1, . . . , k − j2, k}, the vectors (1, a, . . . , a) and
(a∗, 1, . . . , 1) both belong to the dual lattice L∗

I , where a
∗ is the multiplicative inverse of a

modulo m. So neither a nor a∗ should be small. □
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To get around this structural problem when I contains certain sets of indices, Lüscher
(1994) and Knuth (1998) recommend to skip some of the output values to break up the bad
vectors. For the lagged-Fibonacci generator, for example, one can output k successive values
produced by the recurrence, then skip the next d values, output the next k, skip the next d,
and so on. A large value of d (e.g., d = 5k or more) may get rid of the bad structure, but
slows down the generator. See Wegenkittl and Matsumoto (1999) for further discussion.

The next result says that the lattice structure of an LCG is also guaranteed to be bad
if the modulus m can be written as a linear combination of powers of the multiplier a, with
small coefficients.

Proposition 3.9 (Couture, L’Ecuyer, and Tezuka 1993, L’Ecuyer 1997) For the LCG, if
m can be decomposed into powers of a as m =

∑s
j=1 cija

ij for some integers ij and cij , and
I = {i1, . . . , is}, then

ℓ2I ≤
s∑

j=1

c2ij . (3.34)

Proof. One can verify that the vectors w1 = me1 and wj = mej − aije1 for j = 2, . . . , s
form a basis of the dual lattice L∗

s. Then the vector

w = w1 +
s∑

j=2

cijwj = (c0, ci2 , . . . , cis)
t

belongs to the dual lattice and its square length is ∥w∥2 =
∑s

j=1 c
2
ij
.

Example 3.23 The MWC generator defined in Section 3.2.6 is essentially equivalent to an
LCG with modulus m = a0 + a1b + · · · + akb

k and multiplier a = b−1 mod m. If we use the
multiplier b instead of a, the LCG produces the same sequence of numbers, but in reverse
order, so it has exactly the same lattice structure if we take the vector coordinates in reverse
order. As a result, it follows from Proposition 3.9 that the value of ℓs for this LCG satisfies
ℓ2s ≤ a20 + · · ·+ a2k for s ≥ k, which means that the lattice structure is necessarily bad unless
the sum of squares of coefficients aj is large, just like for MRGs. This bound also applies
more generally to ℓI whenever I contains all values of j for which aj ̸= 0.

The add-with-carry and subtract-with-borrow generators of Marsaglia and Zaman (1991)
(see Section 3.2.6) are a special case with m = ak ± ar ± 1 for some integers a > 1 and
k > r > 0. These generators are still used in popular software. The previous proposition
implies that for this type of generator, for I = {0, k− r, k}, we have ℓI ≤

√
3 and all nonzero

vectors (un, un+k−r, un+k) produced by the approximating LCG lie in two parallel planes that
are 1/

√
3 apart. Because of this bad structure, these RNGs should not be used. □

3.2.11 MRG Implementation

The modulus m is often taken as a large prime number close to the largest integer directly
representable on the computer (e.g., equal or near 231 − 1 for 32-bit computers). Since each
xn−j can be as large as m − 1, one must be careful in computing the right side of (3.2)
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because the product ajxn−j is typically not representable as an ordinary integer. Various
techniques for computing this product modulo m are discussed and compared by Fishman
(1996), L’Ecuyer and Côté (1991), L’Ecuyer (1999a), and L’Ecuyer and Simard (1999). Note
that if aj = m− a′j > 0, using aj is equivalent to using the negative coefficient −a′j, which is
sometimes more convenient from the implementation viewpoint. In what follows, we assume
that aj can be either positive or negative.

Floating-point implementation. One approach is to perform the arithmetic modulo m
in 64-bit (double precision) floating-point arithmetic (L’Ecuyer 1999a). Under this rep-
resentation, assuming that the usual IEEE floating-point standard is respected, all posi-
tive integers up to 253 are represented exactly. Then, if each coefficient aj is selected to
satisfy |aj|(m − 1) ≤ 253, the product |aj|xn−j will always be represented exactly and
zj = |aj|xn−j mod m can be computed by the instructions

y = |aj|xn−j; zj = y −m⌊y/m⌋.

Similarly, if (|a1|+ · · ·+ |ak|)(m− 1) ≤ 253, a1xn−1+ · · ·+ akxn−k will always be represented
exactly.

Example 3.24 Let k = 2, m = 231 − 1, a1 = 46325, a2 = 1084587. These values are taken
from Table II of L’Ecuyer, Blouin, and Couture (1993). We have (a1 + a2)(m− 1) < 252. If
the generator’s state (xn−1, xn) is represented in variables x0 and x1, the following piece of
Java code implements the recurrence:

static final double m = 2147483647;
static double x0, x1;

double x = 46325.0 * x1 + 1084587.0 * x0;
int k = (int)(x / m); x -= k * m;
x0 = x1; x1 = x;

□

Approximate factoring. A second technique, called approximate factoring (Bratley, Fox,
and Schrage 1987, L’Ecuyer and Côté 1991), uses only the integer representation and works
under the condition that |aj| = i or |aj| = ⌊m/i⌋ for some integer 0 < i <

√
m. One pre-

computes qj = ⌊m/|aj|⌋ and rj = m mod |aj|. Then, zj = |aj|xn−j mod m can be computed
by

y = ⌊xn−j/qj⌋; z = |aj|(xn−j − yqj)− yrj;
if z < 0 then zj = z +m else zj = z.

All quantities involved in these computations are integers between −m and m, so no overflow
can occur ifm can be represented as an ordinary integer (e.g.,m < 231 on a 32-bit computer).
To show that this is true and that the method gives the correct result, we can write (replacing
|aj|, xn−j, qj, rj by a, x, q, r, for simplification):
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ax mod m = (ax− ⌊x/q⌋m) mod m

= (ax− ⌊x/q⌋(aq + r)) mod m

= (a(x− ⌊x/q⌋q)− ⌊x/q⌋r) mod m

= (a(x mod q)− ⌊x/q⌋r) mod m.

When computing this last expression, the term a(x mod q) never exceeds a(q − 1) < m
whereas ⌊x/q⌋r < ⌊(aq + r)/q⌋r ≤ ar, so it remains to show that ar < m. But if a <

√
m,

then ar < a2 < m because r < a. Otherwise, we have a = ⌊m/i⌋ for i < a, in which case q = i
and r < q. Implementations using this technique can be found, e.g., in Bratley, Fox, and
Schrage (1987), L’Ecuyer (1988), L’Ecuyer, Blouin, and Couture (1993), L’Ecuyer (1996b).

#define norm 1.0842021724855052e-19
#define m 9223372036854769163
#define a2 1754669720
#define q2 5256471877
#define r2 251304723
#define a3n 3182104042
#define q3 2898513661
#define r3 394451401

long long s0, s1, s2;

double MRG64bit ()
{
long long h, p2, p3;
h = s0 / q3; p3 = a3n * (s0 - h * q3) - h * r3;
h = s1 / q2; p2 = a2 * (s1 - h * q2) - h * r2;
if (p3 < 0) p3 += m;
if (p2 < 0) p2 += m - p3; else p2 -= p3;
if (p2 < 0) p2 += m;
s0 = s1; s1 = s2; s2 = p2;
return (p2 * norm);
}

Fig. 3.2. An implementation of a 64-bit MRG using approximate factoring, in the C language.

Example 3.25 Figure 3.2 gives an example of an MRG implementation in 64-bit integer
arithmetic, using approximate factoring, in the C language. The modulus and coefficients are
m = 263 − 6645, a1 = 0, a2 = 1754669720, and a3 = −3182104042. The values of rj, qj, and
1/m are precomputed and defined as constants in the code. The implementation assumes
that all integers from −m1 and m1 are represented exactly in the “long long” type. The
variables s0, s1, s2 must be initialized to non-negative integers less than m and not all
zero before the first call. This MRG is one component of a combined MRG proposed by
L’Ecuyer (1999a). (It is not intended to be used alone.) □

Power-of-two decomposition. The powers-of-two decomposition approach selects coef-
ficients aj that can be written as a sum or difference of a small number of powers of 2
(Wu 1997, L’Ecuyer and Simard 1999, L’Ecuyer and Touzin 2000). For example, one may
take aj = ±2q ± 2r and m = 2e − h for some positive integers q, r, e, and h. To compute
y = 2qx mod m, decompose x = z0 + 2e−qz1 (where z0 = x mod 2e−q) and observe that
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y = 2q(z0 + 2e−qz1) mod (2e − h) = (2qz0 + hz1) mod (2e − h).
Suppose now that

h < 2q and h(2q − (h+ 1)2−e+q) < m. (3.35)

Then 2qz0 ≤ 2e − 2q < m and hz1 ≤ h(m − 1)/2e−q = h(2e − h − 1)/2e−q = h(2q − (h +
1)2−e+q) < m, so each of the two terms in 2qz0 + hz1 is less than m. To compute y, obtain
2qz0 by shifting z0 by q positions to the left, then add h times z1, and subtract m if the result
exceeds m− 1. If h is a power of 2, this requires only shifts, additions, and subtractions (no
multiplication). Intermediate results never exceed 2m − 1. Things simplify further if q = 0
or q = 1 or h = 1. For h = 1, y is obtained simply by swapping the blocks of bits z0 and z1
(Wu 1997).

To multiply x by a = ±2q ± 2r, repeat this operation with r instead of q, and add (or
subtract) the results modulo m. Figure 3.3 gives an example of how this technique can be
implemented in C, for m = 230 − 35 and a = 215 + 213.

#define m 1073741789 /* 2^30 - 35 */
#define h 35
#define q 15
#define emq 15 /* e - q */
#define mask1 32767 /* 2^(e-q) - 1 */
#define r 13
#define emr 17 /* e - r */
#define mask2 131071 /* 2^(e-r) - 1 */
#define norm 1.0 / m

long x;

double axmodm () {
unsigned long k, x0, x1;
x0 = x & mask1; x1 = x >> emq;
k = (x0 << q) + h * x1;
x0 = x & mask2; x1 = x >> emr;
k += (x0 << r) + h * x1;
if (k < m) x = k;
else if (k < m * 2) x = k - m;
else x = k - m * 2;
return x * norm;
}

Fig. 3.3. Implementation of an LCG with a = 215 + 213 and m = 230 − 35

L’Ecuyer and Simard (1999) pointed out that LCGs with parameters of the form m =
2e − 1 and a = ±2q ± 2r have bad statistical properties because the recurrence does not
“mix the bits” well enough. However, good and fast combined MRGs can be obtained via
the power-of-two decomposition method, as explained in L’Ecuyer and Touzin (2000).

Equal coefficients. Another idea for improving efficiency is to take all nonzero coefficients
aj equal to the same constant a (Marsaglia 1996, Deng and Xu 2003). Then, computing
the right side of (3.2) requires a single multiplication. Deng and Xu (2003) provide specific
parameter sets and concrete implementations for MRGs of this type, for prime m near 231,
and k = 102, 120, and 1511. Example 3.22 shows a limitation on the quality of the lattice
structure for this type of RNG.
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Power-of-two modulus. Taking m equal to a power of two is a bad idea for LCGs and
MRGs, but it is generally the way to go for MWC generators. When m = 2e, the “mod m”
operation is very easy to perform: just keep the e least significant bits and mask-out all
others.

♣ Elaborate on MWC implementation ...

3.2.12 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two nonzero coef-
ficients both close to zero) are generally in conflict with those required for having a good
lattice structure and statistical robustness. Combined MRGs are one solution to this problem.
Consider C distinct MRGs evolving in parallel, based on the recurrences

xc,n = (ac,1xc,n−1 + · · ·+ ac,kxc,n−k) mod mc (3.36)

where ac,k ̸= 0, for c = 1, . . . , C. Let δ1, . . . , δC be arbitrary integers,

zn = (δ1x1,n + · · ·+ δCxC,n) mod m1, un = zn/m1, (3.37)

and
wn = (δ1x1,n/m1 + · · ·+ δCxC,n/mC) mod 1. (3.38)

This defines two RNGs, with output sequences {un, n ≥ 0} and {wn, n ≥ 0}.
Suppose that the mc are pairwise relatively prime, that each recurrence (3.36) is purely

periodic with period ρc, and that δc and mc have no common factor, for each c. Let m =
m1 · · ·mC and let ρ be the least common multiple of ρ1, . . . , ρC . Under these conditions, the
following was proved by L’Ecuyer and Tezuka (1991) for k = 1 and L’Ecuyer (1996a) for
k > 1.

Proposition 3.10 (a) the sequence (3.38) is exactly equivalent to the output sequence of an
MRG with (composite) modulus m, with coefficients aj given by

aj =

(
C∑
c=1

ac,jncm

mc

)
mod m (3.39)

for j = 1, . . . , k, where nc = (m/mc)
−1 mod mc = (m/mc)

mc−2 mod mc for each c.
(b) the two sequences in (3.37) and (3.38) have period ρ; and
(c) if both sequences have the same initial state, then un = wn + ϵn where maxn≥0 |ϵn|

can be bounded explicitly by a constant ϵ > 0 that is very small when the mc are close
to one another. For the case where C = 2, δ1 = −δ2 = 1, and m1 > m2, we have ϵ =
(m1 −m2)(m2 − 1)/(m1m2).

Thus, combining MRGs can be viewed as a practical way of implementing an MRG
with a large m and several large nonzero coefficients. The idea is to cleverly select the
components so that: (1) each one is easy to implement efficiently (e.g., has only two small
nonzero coefficients) and (2) the MRG that corresponds to the combination has a good lattice
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structure. If each mc is prime and if each component c has maximal period ρc = mk
c −1, then

each ρc is even and ρ cannot exceed ρ1 · · · ρC/2C−1. For C = 2, for example, the best we can
achieve is ρ = (mk

1 − 1)(mk
2 − 1)/2 ≈ m/2. The generator will then have two large cycles of

length ρ, and three other cycles of respective lengths mk
1 − 1, mk

2 − 1, and 1. These shorter
cycles correspond to the situation where one of the two components is in the zero state.

Tables of good parameters for combined MRGs of different sizes that reach this upper
bound are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin (2000), together with C
implementations.

Example 3.26 The MRG32k3a generator proposed by L’Ecuyer (1999a) is a combined
MRG with C = 2 components of order k = 3. The components are defined by (3.36),
with m1 = 232 − 209, a1,1 = 0, a1,2 = 1403580, a1,3 = −810728, m2 = 232 − 22853,
a2,1 = 527612, a2,2 = 0, a2,3 = −1370589. The combination is defined by zn = (x1,n −
x2,n) mod m1. The MRG that corresponds to this combination has order k = 3, modulus
m = m1m2 = 18446645023178547541 and multipliers a1 = 18169668471252892557, a2 =
3186860506199273833, and a3 = 8738613264398222622. Its period is (m3

1 − 1)(m3
2 − 1)/2 ≈

2191 ≈ 3.1× 1057. The output is defined by un = zn/(m1+1) if zn > 0 and un = zn/(m1+1)
otherwise.

This generator was found by a computerized search of several hours. In the search, the
values of C, k, m1, and m2 were fixed, and the constraints a1,1 = a2,2 = 0 and (|ac,0|+ |ac,1|+
|ac,2|)(mc−1) < 253 were imposed to make sure that the recurrence of each component could
be implemented easily in standard floating-point arithmetic. The selected values of m1 and
m2 have the properties that both hc = (mc− 1)/2 and rc = (m3

c − 1)/(mc− 1) = m2
c + 1 are

prime, for c = 1 and 2. The conditions of Proposition 3.5 are then easier to verify. Moreover,
the numbers h1, r1, h2, r2 are all distinct, which implies that (m3

1−1) and (m3
2−1) have only

2 as a common factor.
The figure of merit was the worst-case standardized spectral test value in up to 32

dimensions, i.e., we wanted to maximize MJ with J = {{0, . . . , i} : i < 32}. The retained
generator (given above) has MJ = 0.6336. It also has MJ = 0.6225 if we go up to 45
dimensions instead of 32.

This particular generator is implemented in several simulation and statistical packages
such as MATLAB, SAS, Arena, Automod, Witness, Simul8, ns-3, and SSJ, for instance. □

♣ Add another good example, with power of 2 decomposition.

3.3 Generators Based on Recurrences Modulo 2

3.3.1 A General Framework

It appears natural to exploit the fact that computers work in binary arithmetic and to
design RNGs defined directly in terms of bit strings and sequences. We do this under the
following framework, taken from L’Ecuyer and Panneton (2002) and L’Ecuyer and Panneton
(2009). Let F2 denote the finite field with two elements, 0 and 1, in which the operations are
equivalent to addition and multiplication modulo 2. Consider the RNG defined by a matrix
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linear recurrence over F2, as follows:

xn = Axn−1, (3.40)

yn = Bxn, (3.41)

un =
w∑

ℓ=1

yn,ℓ−12
−ℓ = .yn,0 yn,1 yn,2 · · · , (3.42)

where xn = (xn,0, . . . , xn,k−1)
t ∈ Fk

2 is the k-bit state vector at step n, yn = (yn,0, . . . , yn,w−1)
t ∈

Fw
2 is the w-bit output vector at step n, k and w are positive integers, A is a k× k transition

matrix with elements in F2, B is a w× k output transformation matrix with elements in F2,
and un ∈ [0, 1) is the output at step n. All operations in (3.40) and (3.41) are performed in
F2.

Since there are 2k − 1 nonzero states, the maximal period for this RNG is 2k − 1. To
study the periodicity, we start with the characteristic polynomial of the matrix A, defined
by

P (z) = det(zI −A) = zk − α1z
k−1 − · · · − αk−1z − αk,

where I is the identity matrix and each αj is in F2. The linear recurrence

xn = (α1xn−1 + · · ·+ αkxn−k) (in F2) (3.43)

also has this characteristic polynomial P (z). We will assume henceforth that αk = 1, so that
the recurrence (3.43) has order k and it is purely periodic. In practice we always construct
A so that this is true.

In view of its definition in (3.40), the sequence {xn, n ≥ 0} must satisfy the recurrence
with characteristic polynomial P (z) (and any other polynomial that is a multiple of the
minimal polynomial Q(z) of the recurrence (3.43), which is defined below); that is,

xn = (α1xn−1 + · · ·+ αkxn−k) (in F2). (3.44)

Therefore, the sequence {xn,j, n ≥ 0} obeys (3.43) for each j, 0 ≤ j < k. The sequence
{yn,j, n ≥ 0}, for 0 ≤ j < w, also obeys that same recurrence. However, these sequences
may also obey recurrences of order smaller than k.

For any periodic sequence in F2, there is a single linear recurrence of minimal order
obeyed by this sequence. The characteristic polynomial Q(z) of this recurrence, called the
minimal polynomial of the sequence, can be computed by the Berlekamp-Massey algorithm
(Massey 1969). It is the polynomial Q(z) of smallest degree such that Q(A) = 0. The
sequences {xn,j, n ≥ 0} may have different minimal polynomials for different values of j,
and also different minimal polynomials than the sequences {yn,j, n ≥ 0}. But all these
minimal polynomials must be divisors of P (z). If P (z) is irreducible (it has no divisor other
than 1 and itself), then it must be the minimal polynomial of all these sequences. Reducible
polynomials P (z) do occur when we combine generators (Section 3.3.3); in that case, P (z) is
typically the minimal polynomial of the output bit sequences {yn,j, n ≥ 0} as well, but the
sequences {xn,j, n ≥ 0} often have minimal polynomials (divisors of P (z)) of much smaller
degrees.

We already saw that the recurrence (3.43) has maximal period 2k−1 if and only if P (z) is
a primitive polynomial over F2. This is a stronger condition than irreducibility. An irreducible
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polynomial P (z) over F2 is also primitive if and only if for all prime divisors pi of r = 2k−1,
zr/pi ̸≡ 1 mod P (z). When k is large, a good (recommended) way to verify primitivity is
to verify irreducibility first, then check the second condition. Note that if r is prime (this
type of prime is called a Mersenne prime), the second condition is automatically verified.
This is the main reason why the proposed large-period generators often have a period that
is a Mersenne prime (Matsumoto and Kurita 1994, Matsumoto and Nishimura 1998). But
Mersenne primes are in very limited supply, so we may sometimes decide to adopt composite
values of r, especially if we want to combine two or more generators of similar orders. In
that case, Proposition 3.6 suggests that we should avoid integers r whose prime factorization
contains many small factors, because it reduces the chances of finding primitive polynomials.
The primitivity condition is also more expensive to verify when r has more distinct factors.
Simple algorithms to verify irreducibility and primitivity of polynomials over F2 are given in
L’Ecuyer and Panneton (2009).

When constructing an RNG, we usually fix k and impose a special structure onA, so that
a fast implementation of the RNG is available. Then we search for matrices A that satisfy
these constraints and have a primitive characteristic polynomial. For combined generators
(Section 3.3.3), we may do this separately for each component, retain a short list of maximal-
period candidates for each component, and then analyze the uniformity of all combinations
obtained by taking one component from each list.

3.3.2 Jumping Ahead

Jumping ahead in (3.40) from xn to xn+ν for large ν can be done in the same way as for the
MRG (Section 3.2.3), at least in principle. This is fine if k is small, but becomes slow for large
values of k, say over a few hundreds. Precomputing the matrix Aν mod 2 requires O(k3 log ν)
operations if the matrix multiplications are done by the straightforward method, and O(k2)
words of memory are needed to store this binary matrix. Then, each multiplication of xn by
this binary matrix (modulo 2) requires O(k2) operations.

Haramoto et al. (2008) have proposed a more efficient method. It represents the state
xn+ν as gν(A)xn, where gν(z) =

∑k−1
j=0 djz

j is a precomputed polynomial of degree less than
k, with coefficients in F2. The product

gν(A)xn =
k−1∑
j=0

djA
jxn =

k−1∑
j=0

djxn+j

can be computed simply by running the generator for k−1 steps to obtain xn+1, . . . ,xn+k−1

and adding (modulo 2) the xn+j’s for which dj = 1. For large k, the cost is dominated by
these additions. Their number can be reduced (e.g., by a factor of about 4 when k = 19937)
by using a sliding window technique, as explained in Haramoto et al. (2008). This method still
requires O(k2) operations but with a smaller hidden constant and (most importantly) much
less memory than the standard matrix multiplication. For k in the thousands, it remains
rather slow. Adopting a combined generator, as discussed next, is a good way to speed up
the jumping-ahead when k is large; in that case, the ν-step jumping-ahead is done separately
for each component.
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3.3.3 Combined F2-Linear Generators

Linear generators over F2 can be combined in a similar way as MRGs, and for similar reasons.
The idea is to select simple components that can run fast, and combine them in a way that
the combination has a more complicated structure and a guaranteed good uniformity of the
point sets ΨI , for the sets of indexes I deemed important.

We consider the following class of combinations. For some integer C > 1, we take C
distinct recurrences of the form (3.40)–(3.41), where the cth recurrence has parameters
(k, w,A,B) = (kc, w,Ac,Bc) and state xc,n at step n, for c = 1, . . . , C. The output of
the combined generator at step n is defined by

yn = B1x1,n ⊕ · · · ⊕BCxC,n,

un =
w∑

ℓ=1

yn,ℓ−12
−ℓ,

where ⊕ denotes the bitwise exclusive-or (xor) operation. The resulting combined generator
is equivalent to the generator (3.40)–(3.42) with k = k1 + · · · + kC , A = diag(A1, . . . ,AC),
and B = (B1, . . . ,BC). If Pc(z) is the characteristic polynomial of Ac for each c, then
the characteristic polynomial of A is P (z) = P1(z) · · ·PC(z). This polynomial is obviously
reducible, so the combined RNG cannot have maximal period 2k − 1. Its period ρ is in fact
the least common multiple of the periods ρc of its components (Tezuka and L’Ecuyer 1991,
Tezuka 1995). So if we select the parameters so that each component has maximal period
ρc = 2kc − 1 and the ρc are pairwise relatively prime (no pair has a common factor), then
the combined generator has period ρ =

∏C
c=1(2

kc − 1), the product of the periods of the
components. This is very close to 2k − 1 when the kc’s are not too small. As an illustration,
one may have four components of periods 263 − 1, 258 − 1, 255 − 1, 247 − 1, so the state of
each component fits a 64-bit integer, and the overall period is near 2223. The only states
that are not visited by the combined generator in its main cycle are those in which at least
one component is in the zero state. Constructions of this form can be found in Tezuka and
L’Ecuyer (1991), Wang and Compagner (1993), L’Ecuyer (1999b), Tezuka (1995). Many of
the best linear generators over F2 are defined by such combinations.

3.3.4 Measures of Uniformity

Easily computable uniformity measures for the point sets ΨI produced by F2-linear RNGs
are defined by exploiting the fact that ΨI is a linear space, as was the case for MRGs
(L’Ecuyer 1996b, L’Ecuyer and Panneton 2009, Tezuka 1995). More specifically, suppose we
select an arbitrary vector q = (q1, . . . , qs) of non-negative integers, and we partition the unit
hypercube [0, 1)s into 2qj intervals of the same length along axis j, for each j. This determines
a partition of [0, 1)s into 2q1+···+qs rectangular boxes of the same size and shape. We would
like the points of ΨI to be evenly spread between those boxes. The best that can happen is
that ΨI has exactly 2t points in each box, where the t = k − q1 − · · · − qs ≥ 0. We then say
that ΨI is q-equidistributed. This means that among the 2k points (ui1 , . . . , uis) of ΨI , if we
consider all (k − t)-bit vectors formed by the qj most significant bits of uij for j = 1, . . . , s,
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each of the 2k−t possibilities occurs exactly the same number of times. Of course, this is
possible only if q1 + · · ·+ qs ≤ k.

Example 3.27 The point set Pn displayed in Figure Figure 1.15 has the same type of linear
structure as the set Ψ2 from an F2-linear generator with k = 8. The figure illustrates the
fact that this point set is q-equidistributed for q = (3, 5) (left panel) and q = (6, 2) (right
panel). □

When k− t (the number of rectangles) is large, q-equidistribution might seem very hard
to achieve. It is indeed extremely unlikely for an arbitrary point set, but here it turns out
to occur naturally because ΨI is a linear space, as we now explain. Recall that the box in
which a point falls is determined by k− t bits, with qj bits taken from the jth coordinate. If
I = {i1, . . . , is}, these qj bits are the qj most significant bits of yij , which are the first qj bits

of the vector Bxij = BAijx0 when the initial state is x0. Then the binary vector z0 ∈ Fk−t
2

that contains these k − t bits can be written as

z0 = Mqx0

where Mq is the (k − t)× k binary matrix formed by the first q1 rows of BAi1 , followed by
the first q2 rows of BAi2 , . . . , and ending with the first qs rows of BAis .

Clearly, ΨI is q-equidistributed if and only if z0 takes each of its 2k−t possible values
exactly 2t times when x0 runs through its 2k possibilities. Obviously, this can happen only
if the linear mapping defined by Mq is surjective from Fk

2 to Fk−t
2 , which occurs if and only

if this matrix has full rank k − t (i.e., its k − t rows are linearly independent). In that case,
the image of the linear mapping has dimension k − t over F2, and therefore the kernel (the
linear subspace of vectors that are mapped to 0) must have dimension t. It then follows from
standard linear algebra that 2t distinct vectors from Fk

2 are mapped to each rectangle, so
q-equidistribution holds. We have just shown that ΨI is q-equidistributed if and only if Mq

has rank k − t. Thus, q-equidistribution can easily be verified by constructing the matrix
Mq and checking its rank via (binary) Gaussian elimination. This is a major motivation for
adopting this measure of uniformity: it is easily computable even when k is large.

The matrix Mq that corresponds to ΨI can be constructed as follows. For j ∈ {1, . . . , k},
start the generator in initial state x0 = ej, where ej is the unit vector with a 1 in position j
and zeros elsewhere, and run the generator for is steps. Record the q1 most significant bits
of the output at step i1, the q2 most significant bits of the output at step i2, . . . , and the qs
most significant bits of the output at step is. These bits form the jth column of the matrix
Mq. Repeat this for all columns j.

Ideally, we would like to have q-equidistribution for most of the vectors q that satisfy
the condition q1+ · · ·+ qs ≤ k. But when k is very large (say, over a few hundreds), checking
q-equidistribution for all those vectors is practically infeasible, because there are just too
many of them. For this reason, it is customary to consider only a smaller class of vectors q,
namely those for which all the coordinates qj are equal to a given constant ℓ ≥ 1. That is, we
look at the ℓ most significant bits for each coordinate, which amounts to partitioning the unit
cube [0, 1)s into 2sℓ cubic boxes. If each of those cubes contains the same number of points
from ΨI , i.e., if ΨI is q-equidistributed for q = (ℓ, . . . , ℓ), then it is called s-distributed with
ℓ bits of accuracy. The largest value of ℓ for which this holds is called the resolution of the
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set ΨI and is denoted by ℓI . It cannot exceed ℓ
∗
s = min(⌊k/s⌋, w). We define the resolution

gap of ΨI as

δI = ℓ∗s − ℓI .

We want it to be as small as possible for each I.
Similar to what we did in Section 3.2.9, potential figures of merit can then be defined by

∆J ,∞ = max
I∈J

ωIδI and ∆J ,1 =
∑
I∈J

ωIδI

for some non-negative weights ωI , where J is a preselected class of index sets I. The weights
are often taken all equal to 1.

We also denote by sℓ the largest dimension s for which Ψs is s-distributed with ℓ bits of
accuracy, and we define the dimension gap for ℓ bits of accuracy as

δ̃ℓ = s∗ℓ − sℓ,

where s∗ℓ = ⌊k/ℓ⌋ is an upper bound on sℓ. We may then consider the worst-case weighted
dimension gap and the weighted sum of dimension gaps, defined as

∆̃∞ = max
1≤ℓ≤w

ωℓδ̃ℓ and ∆̃1 =
w∑

ℓ=1

ωℓδ̃ℓ

for some non-negative weights ωℓ, as alternative figures of merit for our generators. Often,
the weights are all 1 and the word “weighted” is removed from these definitions.

When ∆̃∞ = ∆̃1 = 0 with ωℓ = 1 for all ℓ ≤ w, the RNG is said to be maximally
equidistributed (ME) or asymptotically random for the word size w (L’Ecuyer 1996b, Tezuka
1995, Tootill, Robinson, and Eagle 1973). This property ensures perfect equidistribution of
all sets Ψs, for any partition of the unit hypercube into subcubes of equal sizes, as long as
ℓ ≤ w and the number of subcubes does not exceed 2k, the number of points in Ψs.

The ME property puts no constraint on what could happen with the points when sℓ > k.
For example, if k = 31, the ME property would imply that for s = 8 we have equidistribution
for ℓ = 3 bits of resolution, with 27 = 128 points per box, but it could happen that there
are still 128 points per box when we divide further by taking ℓ = 4. This would give 224

boxes with 128 points each, and 232 − 224 empty boxes. To prevent this type of behavior,
L’Ecuyer 1996b proposed an additional requirement called the collision-free property. For
q1 + · · · + qs ≥ k, we say that ΨI is q-collision-free (CF) if no box contains more than one
point. This occurs if and only if Mq has rank k, where Mq is still a matrix with k − t rows
and k columns, but t is now negative. If Ψs is ME and also (ℓ, . . . , ℓ)-collision-free whenever
sℓ ≥ k, we say that the RNG is collision-free (CF).

Large-period ME (or almost ME) and ME-CF generators are given by L’Ecuyer (1999b),
L’Ecuyer and Panneton (2002), Panneton and L’Ecuyer (2004), and Panneton, L’Ecuyer,
and Matsumoto (2006), for example.

For a combined generator as in Section 3.3.3,Mq can be constructed by first constructing

the corresponding matrices M
(c)
q for the individual components, and simply juxtaposing

these matrices, as suggested in L’Ecuyer (1999b). This is yet another advantage of combined
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generators: the matrices Mq are easier to construct, by decomposition. To describe how this

is done, let Ψ
(c)
I be the point set that corresponds to component c alone, and let

x0 =

x
(1)
0
...

x
(C)
0


where x

(c)
0 is the initial state for component c. If z

(c)
0 is the (k− t)-bit vector relevant for the

q-equidistribution of Ψ
(c)
I alone, then we have z

(c)
0 = M

(c)
q x

(c)
0 for some (k − t) × kc binary

matrix M
(c)
q that can be constructed as explained earlier. Note that the point set ΨI can be

written as the direct sum

ΨI = Ψ
(1)
I ⊕ · · · ⊕ Ψ

(C)
I = {u = u(1) ⊕ · · · ⊕ u(C) | u(c) ∈ Ψ (c)

I for each c},

where ⊕ denotes the bitwise sum of binary expansions, coordinate by coordinate, and observe
that

Mqx0 = z0 = z
(1)
0 ⊕ · · · ⊕ z

(C)
0 = M (1)

q x
(1)
0 ⊕ · · · ⊕M (C)

q x
(C)
0 .

This means that Mq is just the juxtaposition of M
(1)
q , · · · ,M (C)

q . That is, M
(1)
q gives the

first k1 columns of Mq, M
(2)
q gives the next k2 columns, and so on.

For very large values of k, the matrix Mq is expensive to construct and reduce. An
alternative method studied in Couture and L’Ecuyer (2000), based on the computation of
the shortest nonzero vector in a lattice of formal series, can be used to verify the (ℓ, . . . , ℓ)-
equidistribution, and is more efficient than computing the rank of Mq when k is very large;
see Section 3.3.5.

The figures of merit defined above look at the most significant bits of the output values,
but give little importance to the least significant bits. We could of course extend them so that
they also measure the equidistribution of the least significant bits, simply by using different
bits to construct the output values and computing the corresponding q-equidistributions via
the matrices Mq that correspond to those bits. But these computations are cumbersome
and expensive in general, because there are too many ways of selecting which bits are to
be considered. The Tausworthe (or LFSR) generators defined in Section 3.3.6 have the in-
teresting property that if all output values are multiplied by a given power of two, modulo
1, all equidistribution properties remain unchanged. In other words, their least significant
bits have the same equidistribution as the most significant ones. Panneton and L’Ecuyer
(2010) call such generators resolution-stationary and prove that a linear generator over F2 is
resolution-stationary if and only if it is equivalent to a Tausworthe generator.

Aside from good equidistribution properties, linear generators over F2 are also required
to have characteristic polynomials P (z) whose number N1 of nonzero coefficients is not too
far from half the degree, i.e., near k/2 (Compagner 1991, Wang and Compagner 1993). One
intuitive reason for this is that if N1 is very small and if the state xn contains many 0’s and
only a few 1’s, then there is a high likelihood that the N1 − 1 bits used to determine any
given new bit of the next state are all zero, in which case this new bit will also be zero. So
the next state is likely to contain much more 0’s than 1’s, and this may go on for a large
number of steps. Cryptologists would say that the recurrence has low diffusion capacity and
Markov chain experts would call it slowly mixing.
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An illustration of this with the Mersenne twister can be found in Panneton, L’Ecuyer, and
Matsumoto (2006). In particular, generators for which P (z) is a trinomial or a pentanomial,
which have been often used in the past, should be avoided. They fail simple statistical tests
(Lindholm 1968, Matsumoto and Kurita 1996). The fraction N1/k of nonzero coefficients in
P (z) can be used as a secondary figure of merit for an RNG.

Other measures of uniformity are popular in the context where k is small and the entire
point set Ψs is used for quasi-Monte Carlo integration (see Section 6.10.2); these measures
can be computed only when k is small.

♣ Add examples: take a small LFSR, show how to construct Mq for one or two vectors
q, show how to compute the resolution and dimension gaps. Show how to construct Mq for
a combined generator with two components.

♣ Add an example where the gaps are zero (ME-CF): see later.

3.3.5 Lattice Structure in Spaces of Polynomials and Formal Series

The equidistribution measures studied in Section 3.3.4 do not apply to MRGs, because the
relevant bits cannot be expressed as a linear function of the bits of the MRG’s state. In
general, MRGs do not have this type of equidistribution property in base 2. Reciprocally,
F2-linear generators defined via (3.40)–(3.42) do not have a lattice structure in the real
space like MRGs do. However, they do have a lattice structure in a space of formal series,
as explained by Tezuka (1995), Couture and L’Ecuyer (2000), and L’Ecuyer and Panneton
(2009). The real space R is replaced by the space L2 of formal power series with coefficients
in F2, of the form

∑∞
ℓ=ω xℓz

−ℓ for some integer ω. In that setting, the lattices have the form

Ls =

{
v(z) =

s∑
j=1

hj(z)vj(z) such that each hj(z) ∈ F2[z]

}
,

where F2[z] is the ring of polynomials with coefficients in F2, and the basis vectors vj(z) are
in Ls

2. The (ℓ, . . . , ℓ)-equidistribution of Ψs can be verified by computing a shortest vectors in
the dual lattice, with an appropriate definition of vector length (or norm). Much of the theory
and algorithms developed for lattices in the real space (Sections 3.2.7 and 3.2.8) translates to
these different types of lattices (Couture and L’Ecuyer 2000, L’Ecuyer and Panneton 2009)
and is especially useful when k is very large.

3.3.6 The LFSR Generator

Perhaps the oldest and best-known type of F2-linear generator is the Tausworthe or linear
feedback shift register (LFSR) generator (Tausworthe 1965, L’Ecuyer 1996b, Tezuka 1995).
It is defined by a linear recurrence modulo 2, and two positive integers w and s. At every s

steps of the recurrence, a block of w successive bits is taken from the sequence: 5

5From Pierre: This s differs from from the s that denotes the dimension, used earlier. Should probably
replace s by another symbol.
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xn = a1xn−1 + · · ·+ akxn−k, (3.45)

un =
w∑

ℓ=1

xns+ℓ−12
−ℓ. (3.46)

where a1, . . . , ak are in F2 and ak = 1. This fits our framework by taking A = (A0)
s (in F2)

where

A0 =


1

. . .

1
ak ak−1 . . . a1

 , (3.47)

and the blank entries in the matrix are zeros. If w ≤ k, the matrix B just contains the first
w rows of the k × k identity matrix. But we may also have w > k; this often happens when
the LFSR is a component of a combined generator. In that case, an equivalent generator can
be obtained by expanding A into a w×w matrix in the right way (L’Ecuyer and Panneton
2009).

Here, P (z) is the characteristic polynomial of the matrix A = (A0)
s, not that of the

recurrence (3.45), and the choice of s is important for determining the quality of this gen-
erator. The characteristic polynomial of A0 is Q(z) = zk − a1zk−1 − · · · − ak. A frequently
encountered case is when a single aj is nonzero in addition to ak; then, Q(z) is a trinomial
and we have a trinomial-based LFSR generator. Typically, s is small to make the implemen-
tation efficient. These trinomial-based generators are known to have important statistical
weaknesses (Matsumoto and Kurita 1996, Tezuka 1995) but they can be used a components
of combined LFSR generators (Tezuka and L’Ecuyer 1991, Wang and Compagner 1993,
L’Ecuyer 1996b). That is, component c will be a LFSR whose characteristic polynomial
Q(z) is Qc(z) = zkc − zkc−qc − 1, and the combination is made by an exclusive-or as in
Section 3.3.3. The matrix A of the combined generator has the form A = diag(A1, . . . ,AC)
where Ac = Asc

0,c and A0,c is the matrix A0 associated with component c, for each c. It can
be written equivalently as A = As

0 where A0 = diag(A0,1, . . . ,A0,C) and s is an integer that
satisfies Equation (3) of L’Ecuyer (1996b). This means that the combined LFSR is equivalent
to an LFSR with Q(z) = Q1(z) · · ·QC(z) and this value of s.

Tables of parameters for maximally equidistributed combined LFSR generators, and
implementations for 32-bit and 64-bit computers, can be found in L’Ecuyer (1999b). These
generators are among the fastest ones currently available.

Example 3.28 Consider the combined LFSR generator with C = 4 components whose
recurrences (3.45) have the characteristic polynomials: Q1(z) = z31 − z6 − 1, Q2(z) = z29 −
z2 − 1, Q3(z) = z28 − z13 − 1, and Q4(z) = z25 − z3 − 1, and whose values of s in (3.46) are
s1 = 18, s2 = 2, s3 = 7, and s4 = 13, respectively. All these polynomials Qc(z) are primitive,
so each component has period 2kc − 1 where kc is the degree of Qc(z).

The recurrence (3.45) for the combined generator has characteristic polynomial Q(z) =
Q1(z)Q2(z)Q3(z)Q4(z) of degree 113, with 58 coefficients equal to 0 and 55 equal to 1. Its
period length is (231 − 1)(229 − 1)(228 − 1)(225 − 1) ≈ 2113, because the numbers 2kc − 1
are pairwise relatively prime. This combined generator is ME. It was proposed by L’Ecuyer
(1999b), who provides an implementation under the name of lfsr113. □
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We outline an algorithm that implements an LFSR generator efficiently under certain
constraints on the parameters. It generalizes the algorithm given by Tezuka and L’Ecuyer
(1991). Suppose that in (3.45), aj = 1 for j ∈ {j1, . . . , jd} and aj = 0 otherwise, where
k/2 ≤ j1 < · · · < jd = k ≤ w and 0 < s ≤ j1. We work directly with the w-bit vectors
yn = (xns, . . . , xns+w−1), assuming that w is the computer’s word length. Under the given
conditions, a left shift of yn by k−ji bits, denoted yn ≪ (k−ji), gives a vector that contains
the first w − k + ji bits of yn+k−ji followed by k − ji zeros (for i = d, ji = k so there is
no shift). Adding these d shifted vectors by a bitwise xor, for j = 1, . . . , d, gives a vector ỹ
that contains the first w − k + j1 bits of yn+k = yn+k−j1 ⊕ · · · ⊕ yn+k−jd followed by k − j1
other bits (which do not matter). Now we shift ỹ by k − s positions to the right, denoted
ỹ ≫ (k − s); this gives k − s zeros followed by the last w − k + s bits of yn+s (the k − j1
bits that do not matter have disappeared, because s ≥ j1). Zeroing the last w − k bits of
yn and then shifting it to the left by s bits gives the first k − s bits of yn+s. Adding this
to ỹ then gives yn+s. This is summarized by the following algorithm, in which & denotes a
bitwise “and” and mask contains k 1’s followed by w − k 0’s.

Algorithm LFSR [One step of an LFSR generator]:
Let ỹ = yn;
For i = 2, . . . , d, let ỹ = ỹ ⊕ (yn ≪ (k − ji));
Let yn+s = (ỹ ≫ (k − s))⊕ ((yn& mask)≪ s);

This algorithm will work properly if y0 has been initialized to a valid state, which means
that the values xk, . . . , xw−1 must satisfy the recurrence xj = a1xj−1 + · · · + akxj−k for
j = k, . . . , w − 1. For that, we can take (x0, . . . , xk−1) as an arbitrary nonzero vector, and
then compute xk, . . . , xw−1 from the recurrence. L’Ecuyer (1996b) explains how to implement
this. An even simpler method to get a valid state, when k is close to w, is to just apply
Algorithm LFSR once to an arbitrary k-bit vector.

♣ – Example of a tiny LFSR generator + display point set.

Example 3.29 The combined generator of Example 3.28 was obtained by L’Ecuyer (1999b)
after first selecting C = 4 and the degrees kc of the characteristic polynomials Qc(z) so that
kc < 32 for each c and the numbers 2kc − 1 are pairwise relatively prime. This gave k1 = 31,
k2 = 29, k3 = 28, and k4 = 25. Then for each c, the author made a list of all primitive
polynomials of the form Qc(z) = zkc − zqc − 1 with 0 < 2qc < kc, and for each one a list of
all step sizes sc satisfying 0 < sc ≤ kc − qc < kc ≤ w = 32 and gcd(sc, 2

kc − 1) = 1. The
corresponding recurrence (3.45) has the two nonzero coefficients akc = akc−qc = 1, period
2kc − 1, and can be implemented efficiently via Algorithm LFSR. Then we examined all the
combinations that can be obtained by taking one component from these lists for each c; there
are approximately 3.28 million such combinations. We found that 4744 of them give ME-CF
generators. The lfsr113 generator is one of them. □

Example 3.30 We illustrate in detail the implementation of the first component of lfsr113,
for which kc = 31, qc = 6, and sc = 18. In the notation of Algorithm LFSR, we have w = 32,
k = 31, d = 2, k − j2 = 6, and s = 18. The algorithm can then be written as:

y = (xn−1 ≪ 6)⊕ xn−1,

xn = ((xn−1 with last bit at 0)≪ 18)⊕ (y ≫ 13).
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We illustrate this algorithm for a given initial state xn−1. The bits in orange are discarded.
The state xn after the transition is shown in red. It is the juxtaposition of the two blocks of
bits in blue.

xn−1 = 00010100101001101100110110100101

10010100101001101100110110100101

y = 00111101000101011010010011100101

y ≫ 13 = 00111101000101011010010011100101

xn−1 00010100101001101100110110100100

00010100101001101100110110100100

xn = 00110110100100011110100010101101

Note that the first 31 bits of x1,x2,x3, . . . , visit all integers from 1 to 231 − 1 exactly
once before returning to x0. □

Example 3.31 Figure 3.4 gives an implementation of the lfsr113 generator, taken from
L’Ecuyer (1999b), and where each of the four components is implemented via Algorithm
LFSR. □

unsigned long z1, z2, z3, z4; /* Contain the state. */

double lfsr113 ()
{ /* Generates numbers between 0 and 1. */
unsigned long b;
b = (((z1 << 6) ^ z1) >> 13);
z1 = (((z1 & 4294967294) << 18) ^ b);
b = (((z2 << 2) ^ z2) >> 27);
z2 = (((z2 & 4294967288) << 2) ^ b);
b = (((z3 << 13) ^ z3) >> 21);
z3 = (((z3 & 4294967280) << 7) ^ b);
b = (((z4 << 3) ^ z4) >> 12);
z4 = (((z4 & 4294967168) << 13) ^ b);
return ((z1 ^ z2 ^ z3 ^ z4) * 2.3283064365387e-10);
}

Fig. 3.4. An implementation of lfsr113 in the C language.

3.3.7 The GFSR, Twisted GFSR, and Mersenne Twister

Here we take A as a pq × pq matrix with the general form

A =


S1 S2 Sq−1 Sq

Ip
Ip

. . .

Ip


for some positive integers p and q, where Ip is the p × p identity matrix, and each Sj is a
p× p matrix. Often, w = p and B contains the first w rows of the pq× pq identity matrix. If
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Sr = Sq = Ip for some r and all the other Sj’s are zero, this generator is the trinomial-based
generalized feedback shift register (GFSR), introduced by Lewis and Payne (1973), for which

xn = xn−r ⊕ xn−q

(a bitwise exclusive-or) and xn gives the w bits of un. This is an extremely fast RNG.
However, its state occupies pq bits whereas its period cannot exceed 2q − 1 (much less
than 2pq), because each bit of xn follows the same binary recurrence of order k = q, with
characteristic polynomial P (z) = zq − zq−r − 1.

More generally, we can define

xn = xn−r1 ⊕ xn−r2 ⊕ · · · ⊕ xn−rd

where rd = q, so that each bit of xn follows a recurrence in F2 whose characteristic polynomial
P (z) has d + 1 nonzero terms. This corresponds to taking Sj = Ip for j ∈ {r1, . . . , rd} and
Sj = 0 otherwise. However, the period is still bounded by 2q − 1, whereas considering the
pq-bit state, we should expect a period close to 2pq.

This was the main motivation for the twisted GFSR (TGFSR) generator, originally in-
troduced by Matsumoto and Kurita (1992) with w = p, Sq defined as the transpose of A0

in (3.47) with k replaced by p, Sr = Ip, and all the other Sj’s are zero. The characteristic
polynomial of A is then P (z) = PS(z

q + zq−r), where PS(ζ) = ζp − apζ
p−1 − · · · − a1 is

the characteristic polynomial of Sq, and its degree is k = pq. If the parameters are selected
so that P (z) is primitive over F2, then this TGFSR has period 2k − 1. The matrix B was
originally selected simply as the first w rows of the identity matrix.

Matsumoto and Kurita (1994) pointed out important weaknesses of this original TGFSR,
and introduced an improved version that uses a well-chosen matrix B whose rows differ from
those of the identity. They called tempering the operations implemented by this matrix. Their
purpose is to improve the uniformity of the points produced by the RNG.

The Mersenne twister (Matsumoto and Nishimura 1998, Nishimura 2000) (MT) is a
variant of the TGFSR where k is slightly less than pq and can be a prime number It uses a
pq-bit vector to store the k-bit state, where k = pq− r is selected so that r < p and 2k− 1 is
a Mersenne prime. The matrix A is a (pq−r)×(pq−r) matrix similar to that of the TGFSR
and the implementation is also quite similar. The main reason for using a k of that form is
to simplify the search for primitive characteristic polynomials, as discussed in Section 3.3.1.
With k = pq it is impossible to have a Mersenne prime because 2pq − 1 is divisible by 2p− 1
and 2q − 1. A specific instance proposed by Matsumoto and Nishimura (1998), and named
MT19937, has become quite popular; it is fast and has the huge period of 219937 − 1.

Panneton, L’Ecuyer, and Matsumoto (2006) underline and illustrate one weakness of this
RNG: if the generator starts in (or reaches) a state that has very few ones, it may take up
to several hundred thousands steps before the ratio of ones in the output and/or the average
output value are approximately 1/2. For example, for MT19937, if we average the output
values at steps n + 1 to n + 100 (a moving average) and average this over all 19937 initial
states x0 that have a single bit at one, then we need at least n > 700, 000 before the average
gets close to 1/2 as it should be. This is graphically illustrated by Panneton, L’Ecuyer, and
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Matsumoto (2006). Likewise, if two states differ by a single bit, or by only a few bits, a
very large number of steps are required on average before the states or the outputs differ by
about half of their bits. The source of the problem is that this RNG has a (huge) 19937-bit
state and few of these bits are modified from one step to the next, as explained near the end
of Section 3.3.4. It has only N1 = 135 nonzero coefficients out of 19938 in its characteristic
polynomial. Moreover, the figure of merit ∆̃1 takes the large value 6750 for this generator.

It has been proved that the TGFSR and Mersenne twister construction methods used
in Matsumoto and Kurita (1994), Matsumoto and Nishimura (1998) cannot provide ME
generators in general. They typically have large equidistribution gaps. But combining them
via a bitwise xor can yield generators with the ME property. Examples of ME combined
TGFSR generators with periods near 2466 and 21250 are given by L’Ecuyer and Panneton
(2002). These generators have the additional property that the resolution gaps δI are also
zero for a class of index sets I of small cardinality and whose elements are not too far
apart. These combined RNGs are of course a bit slower than their original (uncombined)
counterparts.

3.3.8 The WELL RNGs

The acronym WELL stands for well-equidistributed long-period linear. These RNGs were
developed by Panneton (2004) and are described by Panneton, L’Ecuyer, and Matsumoto
(2006). The idea of the WELL project was to “sprinkle” a small number of very simple
operations on w-bit words (where w is taken as the size of the computer word), such as xor,
shift, bit mask, etc., into the matrix A in a way that the resulting RNG has maximal period,
runs about as fast as the Mersenne twister, has a characteristic polynomial with around
50% nonzero coefficients, and has the best possible equidistribution properties under these
constraints.

The state xn = (vt
n,0, . . . ,v

t
n,r−1)

t is comprised of r blocks of w = 32 bits vn,j, and
the recurrence is defined by a set of linear transformations that apply to these blocks, as
described in Panneton, L’Ecuyer, and Matsumoto (2006). The transformations modify vn,0

and vn,1 by using several of the other blocks. They are selected so that P (z), a polynomial
of degree k = rw − p, is primitive over F2. The output is defined by yn = vn,0.

The authors list specific parameters for WELL generators with periods ranging from
2512−1 to 244497−1. Many of them are ME and the others are nearly ME. Their characteristic
polynomials have approximately 50% coefficients equal to 1. These RNGs have much better
diffusion capacity than the Mersenne twister and have comparable speed.

3.3.9 Xorshift Generators

Marsaglia (2003) proposed a class of very fast RNGs whose recurrence can be implemented
by a small number of xorshift operations only, where a xorshift operation consists in replacing
a w-bit block in the state by a (left or right) shifted version of itself (by a positions, where
0 < a < w) xored with the original block:

x = (x≫ a)⊕ x.
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The constant w is the computer’s word size (usually 32 or 64). The specific generators he
proposed in his paper use three xorshift operations at each step. Since xorshifts are linear
operations in F2, these generators fit our setting.

Panneton and L’Ecuyer (2005) analyzed the theoretical properties of a general class of
xorshift generators that contains those proposed by Marsaglia. They studied maximal-period
conditions, limits on the equidistribution, and submitted xorshift generators to empirical
statistical testing. They concluded that generators built from only three xorshifts are unsafe,
and they came up with generators based on 7 and 13 xorshifts, whose speed is only 20%
slower than those with three xorshifts to generate U(0, 1) real numbers. Aside from the tests
that detect F2-linearity, these RNGs pass other standard statistical tests.

Brent (2004) has proposed a family of generators that combine a xorshift RNG with a
Weyl generator. The resulting generator is no longer F2-linear and it behaves well empirically
(L’Ecuyer and Simard 2007).

3.3.10 Examples

♣ To be done.

3.4 Nonlinear RNGs

All RNGs discussed so far are based on linear recurrences and their structure may be deemed
too regular. There are at least two ways of getting rid of this regular linear structure: (1) use
a nonlinear transition function f or (2) keep the transition function linear but use a nonlinear
output function g. Several types of nonlinear RNGs have been proposed over the years; see,
e.g., Blum, Blum, and Schub (1986), Eichenauer-Herrmann (1995), Eichenauer-Herrmann,
Herrmann, andWegenkittl (1998), Hellekalek andWegenkittl (2003), Knuth (1998), L’Ecuyer
(1994b), Niederreiter and Shparlinski (2002), and Tezuka (1995). Their nonlinear mappings
are defined in various ways by multiplicative inversion in a finite field, quadratic and cubic
functions in the finite ring of integers modulo m, and other more complicated transforma-
tions. Many of them have output sequences that tend to behave much like i.i.d. U(0, 1)
sequences even over their entire period, in contrast with “good” linear RNGs, whose point
sets Ψs are much more regular than typical random points (Eichenauer-Herrmann, Her-
rmann, and Wegenkittl 1998, L’Ecuyer and Hellekalek 1998, L’Ecuyer and Granger-Piché
2003, Niederreiter and Shparlinski 2002). On the other hand, their statistical properties
have been analyzed only empirically or via asymptotic theoretical results. For specific non-
linear RNGs, the uniformity of the point sets Ψs is very difficult to measure theoretically.
Moreover, the nonlinear RNGs are generally significantly slower than the linear ones. The
RNGs recommended for cryptology are all nonlinear.

An interesting idea for adding nonlinearity without incurring an excessive speed penalty
is to combine a small nonlinear generator with a fast long-period linear one (Aiello, Ra-
jagopalan, and Venkatesan 1998, L’Ecuyer and Granger-Piché 2003). L’Ecuyer and Granger-
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Piché (2003) show how to do this while ensuring theoretically the good uniformity properties
of Ψs for the combined generator. A very fast implementation can be achieved by using pre-
computed tables for the nonlinear component. Empirical studies suggest that mixed linear-
nonlinear combined generators are more robust than the linear ones with respect to statistical
tests, because of their less regular structure.

♣ Add an example of this.
Several authors have proposed various ways of combining RNGs to produce streams of

random numbers with less regularity and better “randomness” properties; see, e.g., Collings
(1987), Knuth (1998), Gentle (2003), Law and Kelton (2000), L’Ecuyer (1994b), Fishman
(1996), Marsaglia (1985), and other references given there. This includes shuffling the output
sequence of one generator using another one (or the same one), alternating between several
streams, or just adding them in different ways. Most of these techniques are heuristics. They
usually improve the uniformity (empirically), but they can also make it worse. For random
variables in the mathematical sense, certain types of combinations (e.g., addition modulo 1)
can provably improve the uniformity, and some authors have used this fact to argue that
combined RNGs are provably better than their components alone (Brown and Solomon 1979,
Deng and George 1990, Marsaglia 1985, Gentle 2003), but this argument is faulty because the
output sequences of RNGs are deterministic, not sequences of independent random variables.
To assess the quality of a combined generator, one must analyze the mathematical structure
of the combined generator itself, as in L’Ecuyer (1996b), L’Ecuyer (1996a), L’Ecuyer and
Granger-Piché (2003), Tezuka (1995), rather than the structure of its components.

♣ Multiplicative lagged-Fibonacci. Kiss generator from Marsaglia. Combined cubic
generators.

3.4.1 Speed Comparisons

Table 3.2 reports the speed of some RNGs available in the SSJ simulation package (L’Ecuyer
and Buist 2005). The timings are for the SSJ implementations on a 2.4 GHz 64-bit AMD-
Athlon computer with SUN’s JDK 1.5, C implementations on the same processor, and C
implementations running on a 2.8 GHz 32-bit Intel processor. The first and second columns
of the table give the generator’s name and its approximate period. All these generators
are implemented for a 32-bit computer, although the C implementation of the two MRG
generators (last two lines) used on the 64-bit computer was different; it exploits the 64-bit
arithmetic. The SSJ implementations of all generators have more overhead because they
support multiple streams. The C implementations do not. The jumping ahead in SSJ is
implemented via a multiplication byAν as explained in Section 3.3.2. For the combined LFSR
generators, the linear recurrence that corresponds to the matrix Aν is implemented directly
using the algorithm of Section 3.3.6, for each component of the combination. It is much faster
for this reason. Column 3 of the table gives the CPU time (sec) to generate 109 random
numbers and add them up, whereas column 4 gives the CPU time needed to jump ahead
106 times by a very large number of steps (to get a new stream), in SSJ. For comparison,
columns 5 and 6 give the time to generate 109 numbers with the C implementation available
in TestU01 (L’Ecuyer and Simard 2007), first on the same computer (gen. 64), and then on
the 32-bit computer (gen. 32).
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Table 3.2. CPU time (sec) to generate 109 random numbers, and CPU time to jump ahead 106

times, with some RNGs available in SSJ

RNG ρ ≈ CPU time in SSJ (Java) CPU time in C
gen. jump gen. 64 gen. 32

LFSR113 2113 31 0.1 10 39
LFSR258 2258 35 0.2 12 58
WELL512 2512 33 234 12 38
WELL1024 21024 34 917 11 37
MT19937 219937 36 — 16 42
MRG31k3p 2185 51 0.9 21 71
MRG32k3a 2191 70 1.1 21 99

The first five RNGs are F2-linear and the last two are combined multiple recursive gen-
erators (MRGs). The first two are combined LFSRs proposed by L’Ecuyer (1999b) for 32-bit
and 64-bit computers, with four and five components, respectively. The two WELL RNGs
are proposed in Panneton, L’Ecuyer, and Matsumoto (2006). Other WELL generators with
much longer periods (up to nearly 244497) proposed in that paper have approximately the
same speed as those given here to generate random numbers, but are much slower than
WELL1024 for jumping ahead because of their larger value of k. For the Mersenne twister
MT19937 of Matsumoto and Nishimura (1998), jumping ahead is also slow and is not im-
plemented in SSJ. All these F2-linear RNGs have roughly the same speed for generating
random numbers. Other ones with about the same speed are also proposed by Panneton and
L’Ecuyer (2004) and Matsumoto and Kurita (1994), e.g., with periods near 2800.

The timings of the two MRGs in the table are reported for comparison. The first one
(MRG31k3p) was proposed by L’Ecuyer and Touzin (2000) while the second one (MRG32k3a)
was proposed by L’Ecuyer (1999a) and is used in several simulation packages to provide
multiple streams and substreams. This latter RNG has been heavily tested over the years
and is very robust. On the other hand, the F2-linear generators are faster.

3.5 Statistical Tests

For now, replace this section by the article of L’Ecuyer and Simard (2007). The section
should be rewritten based on that paper.

As mentioned earlier, a statistical test for RNGs is defined by a random variable X whose
distribution under H0 can be well approximated. When X takes the value x, we define the
right and left p-values of the test by

pr = P[X ≥ x | H0] and pl = P[X ≤ x | H0].

When testing RNGs, there is no need to prespecify the level of the test. If any of the right
or left p-value is extremely close to zero, e.g., less than 10−15, then it is clear that H0 (and
the RNG) must be rejected. When a suspicious p-value is obtained, e.g., near 10−2 or 10−3,
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one can just repeat this particular test a few more times, perhaps with a larger sample size.
Almost always, things will then clarify.

Most tests are defined by partitioning the possible realizations of (u0, . . . , uτ−1) into a
finite number of subsets (where the integer τ can be random or deterministic), computing
the probability pj of each subset j under H0, and measuring the discrepancy between these
probabilities and empirical frequencies from realizations simulated by the RNG.

A special case that immediately comes to mind is to take τ = s (a constant) and
cut the interval [0, 1) into d equal segments for some positive integer d, to partition the
hypercube [0, 1)s into k = ds subcubes of volume 1/k. We then generate n points ui =
(uti, . . . , uti+t−1) ∈ [0, 1)s, for i = 0, . . . , n − 1, and count the number Nj of points falling
in subcube j, for j = 0, . . . , k − 1. Any measure of distance (or divergence) between the
numbers Nj and their expectations n/k can define a test statistic X. The tests thus defined
are generally called serial tests of uniformity (Knuth 1998, L’Ecuyer, Simard, and Wegenkittl
2002). They can be sparse (if n/k ≪ 1), or dense (if n/k ≫ 1), or somewhere in between.
There are also overlapping versions, where the points are defined by ui = (ui, . . . , ui+t−1) for
i = 0, . . . , n− 1 (they have overlapping coordinates).

Special instances for which the distribution under H0 is well-known are the chi-square,
the (negative) empirical entropy, and the number of collisions (L’Ecuyer and Hellekalek
1998, L’Ecuyer, Simard, and Wegenkittl 2002, Read and Cressie 1988). For the latter, the
test statistic X is the number of times a point falls in a subcube that already had a point in
it. Its distribution under H0 is approximately Poisson with mean λ1 = n2/(2k), if n is large
and λ1 not too large.

A variant is the birthday spacings test, defined as follows (Marsaglia 1985, Knuth 1998,
L’Ecuyer and Simard 2001). Let I(1) ≤ · · · ≤ I(n) be the numbers of the subcubes that
contain the points, sorted by increasing order. Define the spacings Sj = I(j+1) − I(j), for
j = 1, . . . , n − 1, and let X be the number of collisions between these spacings. Under H0,
X is approximately Poisson with mean λ2 = n3/(4k), if n is large and λ2 is small.

Consider now a MRG, for which Ψs has a regular lattice structure. Because of this
regularity the points of Ψs will tend to be more evenly distributed among the subcubes than
random points. For a well-chosen k and large enough n, we expect the collision test to detect
this: it is likely that there will be too few collisions. In fact, the same applies to any RNG
whose set Ψs is very evenly distributed. When a birthday spacings test with a very large k
is applied to a MRG, the numbers of the subcubes that contain one point of Ψs tend to be
too evenly spaced and the test detects this by finding too many collisions.

These specific interactions between the test and the structure of the RNG lead to sys-
tematic patterns in the p-values of the tests. To illustrate this, suppose that we take k
slightly larger than the cardinality of Ψs (so k ≈ ρ) and that due to the excessive regu-
larity, no collision is observed in the collision test (X = 0). The left p-value will then be
pl ≈ P[X ≤ 0 | X ∼ Poisson(λ1)] = exp[−n2/(2k)]. For this p-value to be smaller than a
given ϵ, we need a sample size n proportional to the square root of the period ρ. And after
that, pl decreases exponentially fast in n2.

Example 3.32 ♣ .... □
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Extensive experiments with LCGs, MRGs, and LFSR generators confirms that this is
actually what happens with these RNGs (L’Ecuyer and Hellekalek 1998, L’Ecuyer 2001,
L’Ecuyer, Simard, and Wegenkittl 2002). For example, if we take ϵ = 10−15 and define n0

as the minimal sample size n for which pl < ϵ, we find that n0 ≈ 16ρ1/2 (very roughly) for
LCGs that behave well in the spectral test as well as for LFSR generators. For the birthday
spacings test, the rule for LCGs is n0 ≈ 16ρ1/3 instead (L’Ecuyer and Simard 2001). So to be
safe with respect to these tests, the period ρ must be so large that generating more than ρ1/3

numbers is practically unfeasible. This certainly disqualifies all LCGs with modulus smaller
than 2100 or so.

Example 3.33 ♣ .... □

Other types of tests for RNGs include tests based on the closest pairs of points among
n points generated in the hypercube, tests based on random walks on the real line or over
the integers, tests based on the linear complexity of a binary sequence, tests based on the
simulation of dices or poker hands, and many others (Knuth 1998, L’Ecuyer and Simard
2002, Marsaglia 1996, Rukhin et al. 2001, Vattulainen, Ala-Nissila, and Kankaala 1995).

When testing RNGs, there is no specific alternative hypothesis to H0. Different tests
are needed to detect different types of departures from H0. Test suites for RNGs include
a selection of tests, with predetermined parameters and sample sizes. The best known are
DIEHARD (Marsaglia 1996), the NIST test suite (Rukhin et al. 2001), and the TestU01
library (L’Ecuyer and Simard 2002, L’Ecuyer and Simard 2007). The latter implements a
large selection of tests in the C language and provides a variety of test suites, some designed
for i.i.d. U(0, 1) output sequences and others for strings of bits.

3.6 RNG Software

When we apply test suites to RNGs currently found in commercial software (statistical and
simulation software, spreadsheets, etc.), we find that many of them fail the tests spectacularly
(L’Ecuyer 1997, L’Ecuyer and Simard 2007). There is no reason to use these poor RNGs,
because there are also several good ones that are fast, portable, and pass all these test suites
with flying colors. Among them we recommend, for example, the combined MRGs, combined
LFSRs, and Mersenne twisters proposed in L’Ecuyer (1999b), L’Ecuyer (1999a), L’Ecuyer
and Panneton (2002), Matsumoto and Nishimura (1998), and Nishimura (2000).

A convenient object-oriented software package with multiple streams and substreams of
random numbers, is described in L’Ecuyer et al. (2002) and is available in Java, C, and C++,
at http://www.iro.umontreal.ca/~lecuyer.

♣ This section must be expanded. Provide concrete examples of RNGs with multiple
streams, with details. Several are available in SSJ.
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3.7 Exercises

3.1 Suppose that a stream of bits {Bj, j ≥ 0} can be described by a Markov chain with
the two states {0, 1}, and with transition probabilities P[Bj+1 = 1 | Bj = 0] = p and
P[Bj+1 = 0 | Bj = 1] = q, where 0 < p, q < 1. This simple model is often a good description
of binary sequences produced by physical devices. Define the (asymptotic) bias and lag-1
correlation as β = limj→∞ E[Bj]− 1/2 and ρ1 = limj→∞ Corr[Bj−1, Bj].

(a) Give explicit formulas for β and ρ1 as functions of p and q. Hint: Compute the
steady-state probabilities of the Markov chain.

(b) To reduce the bias and correlation, suppose we define another Markov chain {Cj, j ≥
0} via Cj = B2j⊕B2j+1. What are the bias and lag-1 correlation for this new sequence? Hint:
Define a Markov chain whose state at step j is (B2j, B2j+1) and compute its steady-state
probabilities.

(c) A second way of modifying the sequence is as follows. For j = 0, 1, 2, . . . , if
(B2j, B2j+1) = (1, 0), output 1; if (B2j, B2j+1) = (0, 1), output 0; and if (B2j, B2j+1) = (0, 0)
or (1, 1), output nothing and go to the next j. This clever transformation was proposed long
ago by von Neumann (1951). Let {Di, i ≥ 0} be the output sequence thus obtained. That
is, when we output nothing, we increase j by 1, but not i. What are the bias and lag-1
correlation for this sequence?

3.2 The aim of this exercise is to prove Proposition 3.2.

(a) Show that for any xn ∈ Zk
m and s̃n(z) defined by Eq. (3.7), pn(z) = P (z)s̃n(z) is a

polynomial of degree less than k, whose coefficients are given by Eq. (3.9) and Eq. (3.10).

(b) Show that the three sets Zk
m, L(P ), and Zm[z]/(P ) have the same cardinality and

that the mappings xn → s̃n(z)→ pn(z) define bijections between these sets.

3.3 Show that in the special case where m is prime and k = 1, the conditions of Propo-
sition 3.5 reduce to the single condition that a1 is a primitive element modulo m, i.e., that
a
(m−1)/q
1 mod m ̸= 1 for each prime factor q of m− 1.

3.4 Prove Proposition 3.4. 6

3.5 For m = 231 − 1 and k = 3, what is the proportion of vectors (a1, . . . , ak) (among the
mk− 1 nonzero possibilities) for which the LRS (3.2) has full period mk− 1? And for k = 5?
(The required factorizations can be found in L’Ecuyer, Blouin, and Couture 1993).

3.6 Prove that for an MRG, the vectors w1, . . . ,ws defined by wi = mei for i ≤ k and
wi = ei − (x1,i−1, . . . , xk,i−1, 0, . . . , 0)

t for i > k are indeed the columns of V −1. Then prove
that these vectors form a basis of the dual lattice L∗

s.

3.7 Consider an MRG with k = 3, a2 = 0, and arbitrary values of m, a1 and a3. We are
interested in the lattice Ls, and its dual L∗

s, for s = 5. Write down explicitly a basis v1, . . . ,v5

for L5 and a basis w1, . . . ,w5 for L∗
5.

6From Pierre: Should give some hints...
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3.8 Complete the proof of Proposition 3.8 for a general set I.

3.9 Consider an MRG of order 2 with recurrence

xn = (a1xn−1 + a2xn−2) mod m

and an MRG of order k with recurrence

xn = (a1xn−r + a2xn−k) mod m,

where 0 < a1, a2 < m and 1 ≤ r < k. Show that in any dimension s > k, the length of a
shortest vector in the dual lattice L∗

s is exactly the same for these two MRGs.

3.10 ♣ À traduire...

Soit un MRG basé sur la récurrence

xn = (xn−1 + axn−2) mod m

et un = xn/m, où m = 231 − 1 et a est un entier positif. On veut étudier l’uniformité de
l’ensemble Ψ3 des points de la forme (un, un+1, un+2) produits par ce générateur, à partir de
toutes les valeurs initiales possibles.

(a) Trouvez une base du réseau Ls défini en (3.19), selon la méthode décrite à la Sec-
tion 3.2.7, pour s = 3. Trouvez ensuite la base duale correspondante, tel que décrit à la
Section 3.2.8.1.

(b) Prouvez directement, sans invoquer la Proposition 3.8, que le vecteur (a, 1,−1) ap-
partient au réseau dual L∗

3. Que peut-on en déduire à propos de la distance entre les plans
parallèles équidistants qui recouvrent L3? Et à propos de la mesure normalisée ℓ3/ℓ

∗
3(m

2)?
Et à propos de n3, le nombre minimal de plans pour recouvrir L3 ∩ (0, 1)3? Qu’est-ce que
cela implique pour l’uniformité de l’ensemble de points Ψ3 et pour la qualité du générateur si
a est petit, comme par exemple a < 25? (Pour s = 3, la constante de Hermite est γs = 21/3.)

(c) Supposons que l’on partitionne le cube unitaire [0, 1)3 en k = 109 sous-cubes en di-
visant chaque axe en 1000 parties égales. On génère ensuite n = 106 points (u3i, u3i+1, u3i+2),
i = 0, . . . , 106 − 1, en utilisant ce générateur, puis on regarde dans quel sous-cube chacun
des points tombe, et on compte le nombre de collisions C, i.e., le nombre de fois qu’un point
tombe dans un sous-cube déjà visité. Si C est beaucoup trop grand ou beaucoup trop petit
comparativement à sa “valeur attendue”, on dira que le générateur échoue le test de collision.

Si les n points étaient vraiment indépendants et suivaient la loi uniforme sur [0, 1)3, la
variable aléatoire C suivrait approximativement quelle loi avec quel paramètre? Pensez-vous
que ce générateur échouera ce test si a < 25? Expliquez pourquoi.

3.11 ♣ À traduire... On considère un générateur LFSR combiné à deux composantes. Pour

c = 1, 2 la composante c est un LFSR défini par (3.45) et (3.46), avec les paramètres k = kc,
s = sc, et seulement deux coefficients non nuls dans la récurrence, akc = akc−qc = 1 (les autres
coefficients sont 0). Le polynôme caractéristique de la matrice A0 pour la composante c est
donc Qc(z) = zkc−zqc−1 (modulo 2). La combinaison se fait tel que défini à la Section 3.3.6.
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On choisit les paramètres suivants: (k1, q1, s1) = (29, 2, 18) et (k2, q2, s2) = (28, 9, 14).
Dans chacun des deux cas, on peut montrer que le polynôme caractéristique est primitif.

(a) Quelle est la période du générateur combiné? Quel est le polynôme caractéristique
de la matrice A0 qui lui correspond? Quelle est cette matrice? Est-ce que la matrice A a
une forme particulière? Laquelle?

(b) Faites une implantation de ce générateur, en Java ou en C, en utilisant l’algorithme
LFSR donné à la Section 3.3.6. Vous pouvez vous inspirer du code du générateur lfsr113.
Utilisez des entiers de 32 bits pour l’implantation.

(c) Pour initializez l’état de chacune des deux composantes à un état valide, avec les
paramètres choisis, il suffit d’initialiser l’état de chacune des deux composantes à un entier
supérieur à 8, puis de faire une itération de l’algorithme. Initialisez l’état de chacune des
deux composantes à 12345, sautez la première valeur générée, puis imprimez les 10 valeurs
suivantes. Assurez-vous bien qu’elles sont dans l’intervalle [0, 1).

(d) Expliquez, sans l’implanter, mais en donnant assez de détails pour qu’un program-
meur qui ne connait rien aux RNGs puisse l’implanter facilement en suivant vos instructions,
ce qu’il faut faire pour mesurer l’équidistribution de ce générateur combiné, en 3 dimensions.
Expliquez en détail comment construire la matrice requise et quoi faire avec. Dans le meilleur
des cas, on pourrait avoir l’équidistribution pour combien de bits en 3 dimensions, dans ce
cas-ci?
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4. Non-Uniform Random Variate Generation

Here we are interested in imitating or simulating random variables and random vectors from
various distributions, as well as stochastic processes and other kinds of random objects such
as matrices, graphs, points on a sphere, geometric structures, etc.

The primary requirement for any method is correctness. In practice, the generated ran-
dom variate X (or random object) does not always have exactly the required distribution,
because this would sometimes be much too costly or even impossible. But we must have
a good approximation and, preferably, some understanding of the quality of that approxi-
mation. Robustness is also important: when the accuracy depends on the parameters of the
distribution, it must be good uniformly over the entire range of parameter values that we
are interested in.

The method must also be efficient both in terms of speed and memory usage. Often, it
is possible to increase the speed by using more memory (e.g, for larger precomputed tables)
or by relaxing the accuracy requirements. Some methods need a one-time setup to compute
constants and construct tables. The setup time may be significant but well worth spending
when amortized by a large number of subsequent calls to the generator. For example, it
makes sense to invest in an expensive setup if we plan to make a million calls to a given
generator and if the investment can really speed up the generator, but not if we expect to
make only a few calls.

In general, compromises must be made between simplicity of the algorithm, quality of
the approximation, robustness with respect to the distribution parameters, and efficiency
(generation speed, memory requirements, and setup time).

Compatibility with variance reduction techniques (Chapter 6) is another important issue
in many situations. We may be willing to sacrifice some speed to preserve inversion, because
the gain in efficiency obtained via the variance reduction methods may more than compensate
(sometimes by orders of magnitude) for the slower generator.

In the forthcoming sections, we consider the case of a unidimensional random variable
X.

4.1 Inversion

The inversion method, defined in Section 1.3.5, returns

X = F−1(U) = min{x | F (x) ≥ U}
where U ∼ U(0, 1). This should be the method of choice for generating non-uniform random
variates in a majority of situations. The fact that X is a monotone (non-decreasing) func-
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tion of U makes this method compatible with important variance reduction techniques such
as common random numbers, antithetic variates, latin hypercube sampling, and random-
ized quasi-Monte Carlo (Chapter 6). To maximize or minimize the correlation between two
random variables, given their individual distributions, we must generate them by inversion
(explicitly or implicitly), according to Fréchet’s bounds (Section 2.10.1, Theorem 2.6). To
sample from a multivariate distribution defined via a copula, we usually sample a vector
with uniform marginals from the copula, and then we must apply inversion to recover the
desired marginals (Section 2.10.8). To generate a sorted i.i.d. sample X(1), . . . , X(n) from dis-
tribution function F , we can generate a sorted i.i.d. U(0, 1) sample U(1), . . . , U(n) and apply
F−1 to these U(i)’s. Sampling from truncated distributions is also easier if we use inversion
(Section 2.8.26).

Inversion is easy to implement for certain distributions, e.g., when an analytic expression
is available for the inverse distribution function F−1 or in the case of a discrete distribution
over a small set of integers. There are distributions (e.g., the normal, Student, chi-square)
for which there is no closed-form expression for F−1 but good numerical approximations
are available. When the distribution has only scale and location parameters, it suffices to
approximate F−1 for a standardized version of the distribution.

Example 4.1 For the normal distribution, once we have an efficient method for evaluating
Φ−1, the inverse distribution function of a N(0, 1) random variable, a normal with mean µ
and variance σ2 can be generated by X = σΦ−1(U) + µ. There is no closed-form formula for
either Φ or Φ−1, but Blair, Edwards, and Johnson (1976) have developed a quick and accurate
approximation method for Φ−1 based on a rational Chebyshev approximation. It gives 16
decimal digits of accuracy everywhere when using 64-bit floating point numbers. This method
is highly recommendable. Marsaglia, Zaman, and Marsaglia (1994) propose a slightly faster
algorithm (by about 20% according to some experiments with C and Java implementations)
based on table lookups, but it returns only 6 decimal digits of accuracy and returns wrong
(meaningless) numbers when U is outside the interval [1.2 × 10−10, 1 − 1.2 × 10−10] (i.e.,
|X| > 6.33). □

When shape parameters are involved (e.g., the gamma and beta distributions), things
are more complicated because F−1 then depends on the parameters in a more fundamental
manner.

Sometimes, the probability model itself can be selected in a way that makes inversion
easier. For example, one can fit a parametric, highly-flexible, and easily computable inverse
distribution function F−1 to the data, directly or indirectly (Nelson and Yamnitsky 1998
and Section 2.9.2).

In the remainder of this section, we discuss how inversion can be implemented when
there is no closed-form formula for F−1, first for discrete distributions, then for continuous
ones. In general, inversion can be formulated as a root-finding problem: for a given U , we
need to find X such that F (X) − U = 0. Standard iterative root-finding algorithms can
be used to solve this equation for X, provided that we have (at least) a good algorithm to
compute F . But finding the root X by an iterative method each time we generate X can be
quite expensive.
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4.1.1 Inversion for Discrete Distributions

Sequential search. Suppose X has a discrete distribution over the real numbers x0 < · · · <
xk−1, where k can be finite or infinite. To generate X by inversion, we generate U ∼ U(0, 1),
find I = min{i | F (xi) ≥ U}, and return X = xI . The efficiency of this approach depends
on how we implement the search for I. The simplest implementation is by sequential search:
Just try i = 0, 1, 2, . . . in succession until we get F (xi) ≥ U . This give:

Sequential search (needs O(k) iterations in the worst case);
generate U ∼ U(0, 1);
let i = 0;
while F (xi) < U do i = i+ 1;
return xi.

If we plan to generate several copies of X with the same distribution, we should pre-
compute the pairs (xi, F (xi)) and store them in a look-up table, in a one-time initialization
step. If k is infinite or too large, only a finite portion of the table, that contains most of the
probability mass, would be precomputed. The other values are computed only when needed.
That is, if the table contains (xi, F (xi)) for k0 ≤ i < k1, additional values of F (xi) for i ≥ k1
or i < k0 need to be computed only when U > F (xk1−1) or U ≤ F (xk0). If U > F (xk1−1),
this can be done in the “while” loop by adding pi = P[X = xi] to the current value of F (xi),
which is stored in a temporary variable. Likewise, the values of F (xi) for i < k0 are computed
only when U ≤ F (xk0), by subtracting the relevant pi’s. Usually, we would take k0 = 0, but
if the probabilities pi are extremely small for small i, it may be better to take k0 > 0. For
example, if X is Poisson with mean λ = 2500, then the probability that X takes a value
outside the interval [2200, 2799] is approximately 2.1× 10−9, so we could take k0 = 2200 and
k1 = 2800. Of course, we may prefer to store more or fewer values, depending perhaps on
how many copies of X we plan to generate, how much memory we are ready to spend, how
large is the memory cache of our computer, etc. Taking a larger look-up table may actually
slow down the generator at some point, because the table would not fit into the memory
cache or would use too much of it. This is often the most important reason for keeping the
table small. At the other extreme, we may choose not to precompute and store any values
(e.g., if a single copy of X has to be generated); this means taking k1 = 0.

Sequential search can be slow when k is large; in the worst case, we may have to do
k − 1 turns into the “while” loop. The exact number of iterations in the loop (the number
of times the code “i = i+ 1” inside the loop is executed) is I, so we will do E[I] iterations
on average. If X is distributed over the integers {0, 1, 2, . . . }, then I = X and the expected
number of iterations is E[X], so sequential search is fine if E[X] is small, but not if it is
large. For example, if X has the Poisson distribution with mean λ, we need λ iterations on
average. If X is binomial with parameters (n, p), the expected number of iterations is np.

When the xi’s have negligible probabilities for small values of i, as in the Poisson example
mentioned earlier, it makes more sense to start the sequential search from around the mean
or median of the distribution, rather than starting it at i = 0. We preselect a fixed index m
such that xm is near the middle of the distribution (for instance, we may take m = ⌊λ⌋ for
the Poisson distribution with mean λ), and do the following:
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Sequential search from near the center;
generate U ∼ U(0, 1);
let i = m;
while F (xi) < U do i = i+ 1;
while F (xi−1) ≥ U do i = i− 1;
return xi.

Binary search. When E[I] is large, binary search can beat sequential search. Suppose that
k <∞ and that all pairs (xi, F (xi)) have been precomputed. Then the algorithm is:

Binary search (needs either ⌊log2 k⌋ or ⌈log2 k⌉ iterations);
generate U ∼ U(0, 1);
let i = 0 and j = k;
while i < j − 1 do

m = ⌊(i+ j)/2⌋;
if F (xm−1) < U then i = m else j = m;
/* Invariant: at this stage, I is in {i, . . . , j − 1}. */

return xi.

This algorithm always requires either ⌊log2 k⌋ or ⌈log2 k⌉ iterations (Brassard and Bratley
1988), i.e., approximately log2 k iterations both in the worst case and on average. Despite the
better worst-case bound, binary search is not always preferable to sequential search, because
(1) each iteration requires more work and (2) the average number of iterations can be smaller
for sequential search than for binary search; i.e., we may have E[I] < log2 k regardless of the
size of k. This would happen for example if most of the probability mass is concentrated on
the first couple of values.

The binary search algorithm can be modified in many different ways. For example, if
k = ∞, we can start with an arbitrary value of j, double it until F (xj−1) ≥ U , and start
the algorithm with this j and i = j/2. Only a finite portion of the table, that contains most
of the probability mass, would be precomputed in this case. The other values are computed
only when needed. This can also be done if k is finite but large.

Indexed search. The fastest inversion techniques when k is large use indexing or buckets
to speed up the search (Chen and Asau 1974, Bratley, Fox, and Schrage 1987, Devroye 1986).
We can partition the interval (0, 1) into c subintervals of equal sizes and start the search at
a pre-tabulated initial value of i that depends on the subinterval in which U falls. Define
is = inf{i : F (xi) ≥ s/c} for s = 0, . . . , c, so that when U ∈ [s/c, (s + 1)/c), the final
value of i must be in the set {is, . . . , is+1}. After generating U , we can compute the random
variable S = ⌊cU⌋, the number of the subinterval to which U belongs, and search for I in
the corresponding set by sequential or binary search. This gives:

Indexed search (combined with sequential search);
generate U ∼ U(0, 1);
let s = ⌊cU⌋ and i = is;
while F (xi) < U do i = i+ 1;
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return xi.

Indexed search (combined with binary search);
generate U ∼ U(0, 1);
let s = ⌊cU⌋, i = is, and j = is+1;
while i < j − 1 do

m = ⌊(i+ j)/2⌋;
if F (xm−1) < U then i = m else j = m;

return xi.

By conditioning on S we obtain that for both versions, the expected number of iterations
of the “while” loop cannot exceed

c−1∑
s=0

P[S = s](is+1 − is) =
1

c

c−1∑
s=0

(is+1 − is) =
k

c
.

Although tighter (and more complicated) bounds can be developed, this one already gives
enough information for our purpose. With a larger value of c, the search is faster (on the
average) but the setup is more costly and a larger table is required. The best compromise
depends on the situation (e.g., the value of k, the number of variates we plan to generate,
etc.). If k is not excessively large, we may take c = k or even c > k, for example, to get
an extremely fast algorithm. For c = 1, we recover the basic sequential and binary search
algorithms given earlier.

A well-implemented indexed search with a large enough c is competitive with the fastest
algorithms, including the alias method (Section 4.2), and it has the advantage of implement-
ing inversion. It is hard to beat. When k/c is not too large, the sequential version is generally
preferable because it has smaller overhead.

All the search methods discussed here can be easily adapted to several related situations.
For example, to generate a random variate from a piecewise-linear (or piecewise-polynomial)
distribution by inversion, after generating U ∼ U(0, 1), we must first determine what piece
corresponds to this U . This can be implemented by any of the search methods that we have
examined. Then we perform an interpolation step on the appropriate piece (Bratley, Fox,
and Schrage 1987).

4.1.2 Inversion for Continuous Distributions

For arbitrary discrete distributions, inversion can be exact, in the sense that the returned
value of X is not an approximation. For general continuous distributions however, F (X)−
U = 0 can often be solved only approximately. A measure of accuracy of the approximation
can be defined in different ways, depending on the distribution, among other things (Devroye
1986). Suppose X̃ is our approximation to the exact solution X. If X takes its values in a
bounded interval [a, b], for example, the absolute error |X̃ −X| could be the right thing to
check. But if the distribution of X has an infinite tail, its density far in the tail must be
close to zero and a very small change in U can give a large variation in X in that area, so
controlling the absolute error |X̃ − X| becomes impractical. Then we can use |F (X̃) − U |
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as an alternative measure of error. Sometimes, we may want to bound the relative error
|X̃ −X|/|X| instead. When solving F (X) − U = 0 approximately by an iterative method,
the stopping criterion can be based on any of these error measures.

Again, we distinguish (a) the case where it is worth investing in an expensive initial-
ization, because the generator is to be used many times with the same parameters, and (b)
the case where the generator will be called only a few times or will be called with different
shape parameters of the distribution. Case (b) often occurs in an optimization procedure
that constantly changes the parameter of the distribution, for example. We start with this
second case, where no table is precomputed.

Search Without Tables. When an algorithm is available for computing F , the simplest
and most robust method for finding a root x∗ of F (X) − U = 0 is binary search. In its
basic form it requires that we start with an interval guaranteed to contain the root x∗. This
interval is then halved recursively until its size is small enough or the increase of F over that
interval is small enough. Of course, we would like the initial interval to be as short as possible.
But for distributions with infinite (or very wide) support, selecting a short initial interval
that contains x∗ is not always straightforward. Then, we can guess some initial interval and
enlarge it if it does not contain x∗.

We now give an algorithm that implements this idea for an arbitrary continuous distribu-
tion over R. It is adapted from Cheng (1998). In this algorithm, we first select two numbers
xmin < xmax such that xmin < 0 if F (0) > 0, xmax > 0 if F (0) < 1, F (xmin) is close to 0, and
F (xmax) is close to 1. If the density is nonzero only on a bounded interval, we can select xmin

and xmax as the limits of that interval. We then have F (xmin) = 0 and F (xmax) = 1, so in
that case the first two while loops can be removed and the numbers xmin and xmax can have
any sign. After the initialization (i.e., in the final “while” loop), the interval [x1, x2] always
contains the root x∗. Here, we stop when either the interval length x2 − x1 or the change in
F over that interval, is deemed small enough. For this, we select two accuracy thresholds ϵx
and ϵu, which are small positive real numbers typically between 10−8 and 10−15.

Binary search for continuous distribution;
generate U ∼ U(0, 1);
let x1 = xmin and x2 = xmax;
while F (x2) < U do

x1 = x2 and x2 = 2x2; /* valid if x2 > 0 */
while F (x1) > U do

x2 = x1 and x1 = 2x1; /* valid if x1 < 0 */
while (x2 − x1 > ϵx) and (F (x2)− F (x1) > ϵu) do

x = (x1 + x2)/2;
if F (x) < U then x1 = x else x2 = x;
/* Invariant: at this stage, X always belongs to [x1, x2]. */

return x = (x1 + x2)/2.

Binary search is simple and robust. It works even if the density is zero in some interval or
if F is discontinuous (then, F (x)−U may not converge to 0 because F (x) = U may have no
solution, but x nevertheless converges to F−1(U)). However, it is not very efficient: we only
gain one bit of accuracy per iteration. If we start with an interval of length 1, we need for
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example 52 iterations (and 52 evaluations of F ) to get a value of x with 52 bits of accuracy.
When F is smooth, other techniques such as the false position, secant, and Newton-Raphson
algorithms converge much faster.

In the false position method (also called regula falsi), instead of taking the next point in
the middle of the current interval, we interpolate linearly between (x1, F (x1)) and (x2, F (x2))
and take the point x at which the linear interpolation equals U . That is, we replace “x =
(x1 + x2)/2” in the “while” loop by

x = x1 + (x2 − x1)
U − F (x1)

F (x2)− F (x1)
,

hoping that this number is closer to the root x∗ than the middle value.
For the secant method, x is computed in the same way, but it always replaces the least

recently computed value between x1 and x2, i.e., we never update the same side of the
interval twice in a row. With this approach, the interval [x1, x2] does not always contain
solution x∗, whereas with the false position and binary search methods, it always does. The
secant method is faster when F is smooth and we are close to the solution, but otherwise
less robust; it may fail if F is too wavy.

The Newton-Raphson method does not use an interval [x1, x2] that contains the solution
x∗. It starts with an initial guess of x∗, say x, and updates the guess at each iteration by
taking the point where the tangent to the graph of F at the current x crosses level U . In other
words, it uses a linear extrapolation whose slope is obtained by evaluating the derivative of
F at x. This derivative is simply the density f(x). This method is guaranteed to converge if
it is restricted to an area where the density f is always increasing and we start from the right
of x∗, or the density f is always decreasing and we start from the left of x∗. If this condition
is satisfied and if an efficient algorithm is available to compute the density, this is the method
of choice. For a unimodal density with mode at x = xm, for example, if U ≥ F (xm) we can
apply the method by starting in the interval [xm,∞) and otherwise starting in the interval
(−∞, xm]. A very simple choice in this case is to start at xm, as in the following algorithm,
although starting closer to the solution would make the convergence much faster in general.

Inversion by Newton-Raphson for continuous distribution;
generate U ∼ U(0, 1);
let x = xm;
while |F (x)− U | > ϵu do

x = x− (F (x)− U)/f(x);
return x.

If the density f has bounded derivative, Newton-Raphson’s method converges quadrat-
ically: If ϵn is the absolute error |x− x∗| at iteration n, then

ϵn+1 ≈ ϵ2n(f
′(x∗)/(2f(x∗))

when we are close enough to the solution x∗. If f ′(x∗)/[2f(x∗)] is not too large, this means
(very roughly) that each iteration squares the error, i.e., doubles the number of digits of
accuracy in the solution. For the secant method, on the other hand, we have
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ϵn+1 ≈ ϵγn[f
′(x∗)/(2f(x∗))]1/γ

where γ = (1+
√
5)/2 ≈ 1.618 is the golden ratio, so each iteration (very roughly) multiplies

the number of digits of accuracy by 1.618. Practically speaking, this is almost as good as
Newton-Raphson and there is no need to evaluate the density. For comparison, each iteration
of binary search only adds one bit of accuracy. These convergence rates are asymptotic, i.e.,
valid in the limit when we converge to the solution. The false position method often performs
quite well in practice and has the advantage that it always brackets the root, but in terms of
its guaranteed convergence, we can prove no better than ϵn+1 ≤ Kϵn for some constant K.

In situations where convergence does not seem to occur with the fast methods, e.g., if
f ′ changes too rapidly, we can always switch to the slower but more reliable binary search.
A good starting point is often an important ingredient for the fast methods. In some cases,
we may have to start with a few binary search iterations to find a reasonable starting point.
Hörmann, Leydold, and Derflinger (2004) suggest switching from the false position method
to binary search if the method has failed to converge after 50 iterations, and using one step
of binary search whenever the same side of the interval was updated in the last two steps of
the false position method.

A more refined and robust root-finding algorithm is the method of Brent (1971); see also
Brent (1973), Chapter 4, and Press et al. (1992), Chapter 9. Brent’s method provides super-
linear convergence while being more robust than the secant and Newton-Raphson methods.
We recommend it as an efficient general-purpose root-finding method for monotone func-
tions. It maintains an interval [x1, x2] that always contains the solution. At each step, if
function evaluations are available at three distinct points, inverse quadratic interpolation is
used to find the next trial point x, otherwise the secant method is used. If this new trial
point x does not bring sufficient improvement (as measured by a specific set of criteria), it
is discarded and we switch to bisection (which is slower but more robust) for this step.

It is sometimes worthwhile to make a change of variable of the form X = φ(Y ), replacing
the equation F (X)−U = 0 by F (φ(Y ))−U = 0 (Devroye 1986, page 31). If φ is well-chosen,
G = F ◦φ could be much smoother and nicer than F and the standard root-finding methods
would then work better when applied to find a root Y of G(Y )− U = 0 than when applied
directly to F (X) − U = 0. This can happen, for example, if φ : [0, 1] → R is a rough (and
very simple) approximation of F−1, so G = F ◦ φ is close to the identity function over the
interval [0, 1].

Using Precomputed Tables. If we plan to generate many copies of X from the same
distribution, it may be worth spending time to precompute an index, mapping each value
of U ∈ (0, 1) to a short interval that contains X. Like in the discrete case, we may select an
integer c > 0, then compute (by any accurate method) and tabulate the values xs = F−1(s/c)
for s = 0, . . . , c. To generate X, we first generate U and compute S = ⌊cU⌋. Then we know
that X ∈ [xS, xS+1], so we can start the false position method or binary search with this
interval, or start Newton-Raphson from somewhere in that interval. The choice of c certainly
depends on the situation, but it is rarely profitable to go beyond a few hundred. Observe that
once we are close enough to the exact solution X, doubling c only adds one bit of accuracy
to the initial solution x (by halving the intervals) whereas one additional Newton-Raphson
iteration suffices to double the number of bits of accuracy. The main purpose of the index is
to make sure that we do not start too far from the solution.
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Here we have separated [0, 1) into c intervals of equal probabilities. Ahrens and Kohrt
(1981) argue that this is not necessarily the best choice, because this often leads to intervals
for X that are too large in the tails of the distribution. It is often better to use intervals
with smaller probabilities in the tails.

Precomputed tables to avoid evaluating F at generation time. The function F is
often costly to compute or just unavailable, We can avoid evaluating it when we generate
X by constructing an explicit approximation for F−1. The methods discussed here are for
distributions with bounded support [a, b], i.e., we assume that F (a) = 0, F (b) = 1, and a
and b are finite. But they can be applied to most other distributions by truncating the tails
far enough for the error to be negligible.

Hörmann and Leydold (2003) propose a method that approximates F−1 by piecewise-
cubic Hermite interpolation, given a function that computes F . This interpolating function
is a variant of a cubic spline that matches the value of F and its derivative f at selected
points a = x0 < x1 < · · · < xc = b and is a polynomial of degree 3 over each interval
[xs, xs+1]. Distributions with unbounded support can be handled by truncating the “numer-
ically negligible” part of each tail. The points x0, x1, . . . , xc and the value of c are selected
in the initialization step by an adaptive method based on a heuristic approximation of the
maximum interpolation error. The coefficients of the polynomials for the different intervals
are computed and stored in a table, together with the values of xs and F (xs). To generate
a value of X, their algorithm generates U ∼ U(0, 1), uses indexed search to find the interval
number S that corresponds to this U , then evaluates at U the cubic polynomial for this
interval. Since F is never reevaluated during the generation step, this method generally re-
quires a much larger c than when the table is used to find starting points for an iterative
method, for a comparable accuracy.

Derflinger, Hörmann, and Leydold (2010) provide an algorithm that constructs an ap-
proximation of F−1 to the accuracy specified by the user, for the situation where only the
density f of X is available, again under the assumption that the distribution has bounded
support. This algorithm is an improvement over similar methods in Ahrens and Kohrt (1981),
who proposed techniques based on piecewise-polynomial interpolation using Chebyshev poly-
nomials. These methods require a rather expensive and complicated initialization, but once
the setup is done, they are extremely fast.

4.2 The Alias and Acceptance-Complement Methods

To generate a random variate X by inversion over the finite set {x0, . . . , xk−1}, sequential
and binary search require O(k) and O(log k) time, respectively. Indexed search with an index
of size O(k) requires only O(1) time per variate on average, but O(k) or O(log k) (depending
on how we make the search inside each interval) in the worst case. The alias method (Walker
1974, Walker 1977) can generate X in O(1) time per variate in the worst case, after a table
setup that takes O(k) time and space. In principle, this is better than the indexed search,
especially if we are not willing to have a long generating time for X once in a while. An
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important drawback, however, is that it does not implement inversion; the transformation
from U to X is not monotone. It is also usually not faster on average than indexed search
with the same table size. This is nevertheless an elegant and interesting method that deserves
examination.

To explain the principle, consider a bar diagram of the distribution, where each index
i has a bar of height pi = P[X = xi]. The idea is to “equalize” the bars so that they all
have height 1/k, by cutting-off bar pieces and transferring them to other bars. We can think
of it as “moving the mountains into the lakes.” This is done in a way that in the new
diagram, each bar i contains one piece of size qi (say) from the original bar i and one piece
of size 1/k − qi from another bar whose index j, denoted A(i), is called the alias value of i.
The setup procedure initializes two tables, A and R, where A(i) is the alias value of i and
R(i) = (i − 1)/k + qi. This R(i) can be interpreted as follows: when U ∈ [(i − 1)/k, i/k),
the generated value corresponds to one of the two pieces in bar i; it is the value from the
original piece if and only if U < R(i) (this happens with probability qi). Thus, to generate
X after the initialization step, we do:

Generating X by the alias method;
generate U ∼ U(0, 1);
let i = ⌈kU⌉;
if U < R(i) return xi else return xA(i);

The following method, due to Kronmal and Peterson (1979), initializes the tables A and
R.

Initialization for the alias method;
let H = {i : pi > 1/k} (the set of “high” bars);
let L = {j : pj < 1/k} (the set of “low” bars);
let qi = pi for all i;
while L ̸= ∅ do

choose any i ∈ H and j ∈ L;
remove j from L and let R(j) = (j − 1)/k + qj;
let A(j) = i and qi = qi − (1/k − qj);
if qi ≤ 1/k remove i from H;
if qi < 1/k add i to L;

At each iteration of this setup procedure, we select a “low” bar j and fill it exactly up
to level 1/k by cutting a piece from bar i and moving it to bar j. Then j can be removed
from the set L. The cardinality of L decreases by 1 at each iteration, which implies that the
procedure converges after a finite number of iterations. At the end, since there are k bars
with total height 1 and none is lower than 1/k, all the bars must be at height 1/k. During
the algorithm, all the bars in H ∪ L always contain a single piece (from the original bar
only). A second piece can be added only when the bar is removed from L. Thus, no bar can
contain more than two pieces at the end.

To approximate the monotonicity more closely, at each iteration we can (as a heuristic)
select the values i and j so that |j − i| is as small as possible.

♣ Add figure + example.
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There is a version of the alias method for continuous distributions, called the acceptance-
complement method (Kronmal and Peterson 1984, Devroye 1986, Gentle 2003). The idea is
to decompose the density f of the target distribution as the convex combination of two
densities f1 and f2, f = wf1 + (1 − w)f2 for some real number w ∈ (0, 1), in a way that
wf1 ≤ g for some other density g and so that it is easy to generate from g and f2. The
algorithm works as follows: Generate X from density g and U ∼ U(0, 1); if Ug(X) ≤ wf1(Y )
return X, otherwise generate a new X from density f2 and return it.

4.3 Composition and Convolution

Suppose F is a mixture of several distributions, i.e., F (x) =
∑

j pjFj(x), or more generally

F (x) =
∫
Fy(x)dH(y). To generate X from F , one can generate J = j with probability

pj, or Y from H, then generate X from FJ or FY . This composition algorithm is useful for
generating from compound distributions such as the hyperexponential and from more general
mixtures.

It is also frequently used to design efficient algorithms for generating from complicated
densities or more generally for generating random points in complicated surfaces and solids.
The idea is to partition the surface or solid into pieces, where piece j has proportion pj. We
then select a piece, giving piece j a probability pj for each j, then draw a random point over
that piece. If the partition is defined so that it is fast and easy to generate from the large
pieces, then this method can be fast on average. In Section 4.4.2, we will see how to combine
this technique with the rejection method.

A dual method to composition is the convolution method, which can be used when X =
Y1 + Y2 + · · · + Yk, where the Yi’s are independent with specified distributions. With this
method, one just generates the Yi’s and sum up. This requires at least k uniforms. Examples
of random variables that can be expressed as sums like this include the hypoexponential (a
sum of exponentials), Erlang (a sum of exponentials with the same mean), the binomial (a
sum of Bernoulli random variables), the chi-square (a sum of squares of standard normals),
and many others.

4.4 The Rejection Method

4.4.1 The principle

Generating from a density f . This technique was introduced by von Neumann (1951)
and is the most important variate generation method after inversion. Suppose we want to
generate a continuous random variable X having a complicated density f . Let

S(f) = {(x, y) ∈ R2 : 0 ≤ y ≤ f(x)},

the surface under the curve of f .
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Proposition 4.1 If (X, Y ) is a random point uniformly distributed in S(f), then X has
density f . Conversely, if X has density f and the conditional distribution of Y given X is
U(0, f(X)), then (X, Y ) is uniformly distributed over S(f).

Proof. Since the total area of S(f) is 1, if (X, Y ) is uniform over S(f) then P[X ≤ x] is
equal to the area of {(z, y) ∈ S(f) : z ≤ x}, which is

∫ x

−∞ f(z)dz. This proves that X has

density f . Conversely, under the conditions of the second part, for any (x, y) ∈ R2,

P[X ≤ x, Y ≤ y] =

∫ x

−∞
P[Y ≤ y | X = z]f(z)dz

=

∫ x

−∞
min(1, y/f(z))f(z)dz

=

∫ x

−∞
min(f(z), y)dz,

which is the area of the part of S(f) that is below y and to the left of x. This implies that for
any measurable subset D of S(f), the probability that (X, Y ) belongs to D is proportional
to the area of D. That is, (X, Y ) is uniformly distributed over S(f).

So we can generate X simply by generating (X, Y ) uniformly in S(f), but how do we
do that when this surface has a complicated shape? The idea is simple: Pick a larger surface
B that contains S(f) and has a much simpler shape (a rectangular box, for example), and
generate a random point (X, Y ) uniformly over B. If (X, Y ) belongs to S(f), take it as a
random point from S(f), otherwise try again. Conditional on (X, Y ) ∈ S(f), this point is
indeed uniformly distributed over S(f), as Proposition 4.2 will tell us. Since the successive
attempts until the first success are independent, the first point (X, Y ) that belongs to S(f)
is uniformly distributed over S(f) and its first coordinate is a random variate with density
f , from Proposition 4.1.

The general rejection idea. The next proposition deserves to be introduced in a more
general setting than what we just described: We replace the surface S(f) by an arbitrary
set A in the d-dimensional real space Rd, with 0 < vol(A) < ∞, where vol(A) denotes
the volume of A (in two dimensions, it is the area of the surface A). (All sets considered
here are assumed measurable, implicitly.) Let B ⊂ Rd be another set such that A ⊆ B and
vol(B) <∞, and selected so that it is easy to generate a random point uniformly in B. For
example, A can be a solid with complicated shape and B a rectangular box that contains A.
To generate a random point uniformly in A, we generate one in B, return it if it belongs to A,
and otherwise try again, until the generated point belongs to A. This is the rejection method.
The successive attempts being independent, the retained point is distributed according to
the conditional distribution given that the point falls in A.

Proposition 4.2 Suppose a random point X is generated uniformly in the set B. Then,
conditional on the event {X ∈ A}, X is uniformly distributed in A.

Proof. For any set D ⊆ A, we have P[X ∈ D] = vol(D)/vol(B) and therefore
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P[X ∈ D |X ∈ A] = P[X ∈ D ∩A]
P[X ∈ A]

=
vol(D)/vol(B)
vol(A)/vol(B)

=
vol(D)
vol(A)

.

This means that the conditional distribution of X given that X ∈ A is uniform over A.

Rejection algorithm with a hat function. The standard way of constructing a set B
that contains S(f) for the rejection method is to select another density g and a constant
a ≥ 1 such that

f(x) ≤ h(x)
def
= ag(x)

for all x, and such that generating variates from the density g is easy. The function h is called
a hat function or majoring function and g is the corresponding sampling density. Then we
apply the above setting with A = S(f) and

B = S(h) = {(x, y) ∈ R2 : 0 ≤ y ≤ h(x)},

the surface under h. This gives the following rejection (or acceptance-rejection) algorithm to
generates X with density f (e.g., Devroye 1986, Hörmann, Leydold, and Derflinger 2004):

Algorithm 4 : Rejection algorithm
repeat

generate X from the density g and V ∼ U(0, 1), independent;
until V h(X) ≤ f(X);
return X.

Proposition 4.3 This procedure generates a random variate X with density f .

Proof. From the second part of Proposition 4.1 with f replaced by g, each pair (X, V g(X))
generated in the “while” loop is uniformly distributed in the surface under g. Then, each pair
(X, V h(X)) is uniformly distributed in B, the surface under h, because h is just a rescaling
of g. By taking A = S(f) in Proposition 4.2, we then get that when we exit the loop, the
pair (X, V h(X)) is uniformly distributed in S(f). The result then follows from the first part
of Proposition 4.1.

To give additional insight, we provide a second, more self-contained, proof. If F is the
distribution function corresponding to density f , we have

P [X ≤ x and X is accepted]

= P [X ≤ x and V ≤ f(X)/h(X)]

=

∫ ∞

−∞
P [z ≤ x and V ≤ f(z)/h(z) | X = z]g(z)dz

=

∫ x

−∞
[f(z)/h(z)]g(z)dz

=

∫ x

−∞
[f(z)/a]dz = F (x)/a.

From that, we obtain
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P [X ≤ x | X is accepted] =
P [X ≤ x and X is accepted]

P [X is accepted]

=
F (x)/a

1/a
= F (x).

Thus, the conditional distribution function of X is F , the correct one.

The number R of turns into the “repeat” loop of the rejection algorithm is one plus a
geometric random variable with parameter 1/a, so E[R] = a. Thus, we want a ≥ 1 to be as
small as possible, i.e., we want to minimize the area between f and h. There is generally a
compromise between bringing a close to 1 and keeping g simple.

Unknown normalization constant. In our description of the rejection method, we have
assumed that f is known and can be computed easily. But in reality we only need to know f
up to a multiplicative constant κ > 0, i.e., it is sufficient to know f̃ = κf even if we do not
know κ. We just replace f by f̃ in the algorithm and make sure that a is large enough so that

f̃(x) ≤ h(x)
def
= ag(x) for all x. Then the geometric random variable R − 1 has parameter

κ/a, and E[R] = a/κ.

♣ Applications of this in statistics... see Evans and Swartz (2000).

Examples. The following examples are oversimplified compared with the most efficient
rejections methods currently available, but they illustrate the main ideas without getting
into excessively complicated constructions.
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Fig. 4.1. A rejection method with uniform hat function for the Beta(3, 2) density.

Example 4.2 Suppose we want to generate X from the beta distribution with parameters
(α, β) = (3, 2), over the interval (0, 1). The density is f(x) = 12x2(1−x). It has a maximum
at x∗ = 2/3 (this is easily found by finding x such that f ′(x) = 0) and its maximum value is
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Fig. 4.2. A second hat function for the Beta(3, 2) density.

f(2/3) = 12(2/3)2(1/3) = 16/9 ≈ 1.77778. We can thus take h(x) = a = 16/9 for 0 ≤ x ≤ 1
as a hat function. The corresponding sampling density g is uniform over [0, 1] and a = 16/9
is the smallest a that we can choose for a uniform sampling density. This is illustrated in
Figure 4.1, where S(f) is the darkly-shaded area and B = S(h) is the surface under the top
horizontal line. At each turn of the loop, we generate X ∼ U(0, 1), then V ∼ U(0, 1), and
accept X if and only if aV ≤ f(X), i.e., if (X, aV ) falls into the dark area. The acceptance
probability is 9/16 and the expected number of turns into the loop is E[R] = a = 16/9.

To reduce the value of a, we can take a slightly less simplistic hat function, as in Fig-
ure 4.2. This hat function has the form

h(x) =


f(x1) for x < x1;

16/9 for x1 ≤ x ≤ x2;

f(x2) for x > x2,

where x1 and x2 are two constants such that 0 < x1 < 2/3 < x2 < 1. The rejection area
(between f and h) is thus reduced by x1(16/9 − f(x1)) + (1 − x2)(16/9 − f(x2)), which
is the combined area of R1 and R2 in Figure 4.2. To minimize a, we want to maximize
this reduction, i.e., select the values of x1 and x2 that maximize x1(16/9 − f(x1)) and
(1 − x2)(16/9 − f(x2)), respectively. These values turn out to be x1 = 0.281023 and x2 =
0.89538. The area of R1 ∪ R2 is then 0.38881 and a is reduced from 1.77778 to 1.38997.
Since the sampling density g = h/a is piecewise-constant, the corresponding distribution
function G and its inverse are piecewise-linear, so it is easy to generate from it by inversion
(Exercise 4.7).

Of course, we could use more than three pieces in our piecewise-constant hat function h,
to further reduce a. For arbitrary breakpoints 0 = x0 < x1 < x2 < · · · < xc = 1, we can take

h(x) =


f(xj) if xj−1 < x ≤ xj < x∗;

f(xj−1) if x∗ < xj−1 < x ≤ xj;

16/9 otherwise, i.e., if xj−1 < x, x∗ ≤ xj.
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If the breakpoints are optimized to minimize a for any given c, then a→ 1 when c→∞.
Why not take the hat function piecewise-linear instead of piecewise-constant? For a

given number of breakpoints, this can certainly give a smaller surface between f and h, and
thus a smaller value of a. However, a piecewise-linear sampling density means a quadratic
distribution function, whose inversion involves taking a square root, which is more expensive
than computing a linear function. So even if we reduce a, we may lose on overall efficiency.

□

Example 4.3 Consider generating a gamma random variate X with parameters (α, λ),
for α ≥ 1. Since λ is just a scale parameter, we can take it equal to 1 and then divide the
generated random variate by λ to rescale it correctly. So, suppose λ = 1. The density is then

f(x) =
xα−1e−x

Γ (α)
for x > 0.

Fishman (1976) proposes the exponential hat function h(x) = ag(x) where g(x) = exp(−x/α)/α,
the density of an exponential with mean α, from which we can easily generate a ran-
dom variate by inversion. The minimal value of a for which f(x) ≤ h(x) for all x is
a = αα exp(1 − α)/Γ (α). This gives a = 1 for α = 1 (the exponential case), a ≈ 1.83
for α = 3, a ≈ 4.18 for α = 15, and a increases with α. This method is not very efficient, but
it can be used as a “quick-and-simple” solution when α is small. An easy improvement would
be to replace the exponential hat by a constant function equal to f(xm) over the interval
[0, xm], where xm is the mode of the density f . But in any case, there are better (although
more complicated) rejection methods for the gamma distribution (Hörmann, Leydold, and
Derflinger 2004).

To illustrate the fact that there is no need to know the normalization constant κ =
1/Γ (α) in this example, suppose we only know that f is proportional to f̃ defined by f̃(x) =
xα−1e−x for x > 0, but we don’t know the proportionality constant. Then we select a sampling
density g and a constant a such that f̃(x) ≤ ag(x) for all x. We sample X from g and
V ∼ U(0, 1) (independently) until we get f̃(X) ≤ V ag(X), and return this last value of X.

□

Example 4.4 (From Devroye 1986, page 44, with small modifications.) Let f be the
standard normal density, f(x) = (2π)−1/2e−x2/2, and suppose we take h proportional to the
Laplace density g(x) = (1/2)e−|x|, for x ∈ R. By taking a =

√
2e/π, we obtain

h(x) = ag(x) = (2e/π)1/2(1/2)e−|x| = (2π)−1/2e−|x|+1/2.

Then,
2 ln(h(x)/f(x)) = x2 − 2|x|+ 1 = (1− |x|)2 ≥ 0,

which implies that h(x) ≥ f(x) for all x, so h is a valid hat function. To generate X from
the Laplace density, we can generate U ∼ U(0, 1) and take X = − ln(2U − 1) if U ≥ 1/2
and X = ln(1 − 2U) if U < 1/2. This is not inversion but it is equivalent to generating
an exponential with a random sign, which is the same as a Laplace random variate. The
condition V h(X) ≤ f(X) is then the first inequality in:

2 lnV ≤ 2 ln(f(X)/h(X)) = (1− |X|)2 = (1 + ln |2U − 1|)2.
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Putting these pieces together gives the algorithm:

A normal generator by rejection from the Laplace density;
repeat

generate U ∼ U(0, 1) and V ∼ U(0, 1), independent;
let X = ln |2U − 1|;

until 2 lnV ≤ (1 +X)2;
if U < 1/2 return X else return −X.

The expected number of pairs (U, V ) that need to be generated is a =
√

2e/π ≈ 1.35. □

Discrete distributions. The rejection method works for discrete distributions as well; it
suffices to replace densities by probability mass functions. The sampling density g in this
case can be either discrete or continuous. In the latter case, assuming that X takes integer
values and f(x) = P[X = x] defines the probability mass function, the acceptance condition
can be either V h(⌊X⌋) ≤ f(⌊X⌋) or V h(X) ≤ f(⌊X⌋), and the returned value is ⌊X⌋
(Exercise 4.9). See also Devroye (1986) and Chapter 10 of Hörmann, Leydold, and Derflinger
(2004) for further details and other variants.

Squeeze functions. Often, the density f(x) is expensive to compute, so we would like
to reduce the number of times we have to evaluate it when checking for rejection in the
algorithm. This can be achieved by using squeeze functions s1 and s2 that are faster to
evaluate and such that

0 ≤ s1(x) ≤ f(x) ≤ s2(x) ≤ h(x)

for all x. To verify the condition V h(X) ≤ f(X), we first check if V h(X) ≤ s1(X), in which
case we accept Y immediately, otherwise we check if V h(X) ≥ s2(X), in which case we reject
X immediately. The value of f(X) must be computed only when V h(X) falls between the
two squeezes. Sequences of embedded squeezes can also be used, where the primary ones are
the least expensive to compute, the secondary ones are a little more expensive but closer to
f , etc. In practice, a squeeze s1 below f is often used, but a squeeze s2 above f is much less
common.

Example 4.5 For the beta distribution in Example 4.2, suppose we use the piecewise-
constant hat function with breakpoints 0 = x0 < x1 < x2 < · · · < xc = 1 defined there. For
a squeeze s1, we can take another piecewise-constant function with the same breakpoints,
but for which s1(x) ≤ f(x) for all x. The largest function s1 that satisfies these constraints
is defined by s1(x) = min(f(xj−1), f(xj)) for xj−1 < x ≤ xj. This gives

s1(x) =


f(xj−1) if xj−1 < x ≤ xj < x∗;

f(xj) if x∗ < xj−1 < x ≤ xj;

min(f(xj−1), f(xj)) otherwise.

This squeeze is constant over each piece and it can be evaluated faster than the beta density.
□
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4.4.2 Rejection with composition and recycling

The general idea here is to partition the surface S(h) under the hat function into k pieces
S0, . . . , Sk−1, where Si takes a proportion pi of the total surface. The pieces are constructed
so that some of them are entirely contained in S(f), the surface under f . Suppose the first
k0 pieces have this property. To generate X, we first generate a piece number I with the
probabilities pi (using, e.g., indexed search), then we generate a random point (X, Y ) in that
piece. If I < k0, we return X immediately (no need to check for the acceptance condition).
If I ≥ k0, we accept X if Y ≤ f(X), otherwise we start all over again. It is often convenient
and safe to use the same uniform U to generate both I and X, and there is no need to
generate Y when I < k0.

Example 4.6 Consider again the beta distribution as in Examples 4.2 and 4.5, with
piecewise-constant hat and squeeze functions with breakpoints 0 = x0 < x1 < x2 < · · · <
xc = 1. For j = 0, . . . , c − 1, we split the surface under the hat function in the interval
[xj, xj+1] in two rectangular boxes: S2j is the surface under the squeeze and S2j+1 is the
surface between the squeeze and the hat. For i = 0, . . . , 2c − 1, let pi be the area of box i
divided by the total area under h and Ri = p0 + · · · + pi the total probability of the boxes
with index smaller or equal to i. Note that p0 = p2c−2 = 0 and that box i is over the interval
[xj, xj+1] where j = ⌊i/2⌋.
♣ Add a figure...
To generate X, we generate U ∼ U(0, 1) and use it first to select the box number

I = min{i : Ri ≥ U}. The left side of this box is at x = xJ where J = ⌊I/2⌋. Conditional on
I, U −RI−1 has the uniform distribution over [0, pI ] and we can use its value to generate X
in the interval [xJ , xJ+1]: just take X so that a proportion (U −RI−1)/pI of the area of box
SI is on the left of X. This means selecting X so that (U−RI−1)/pI = (X−xJ)/(xJ+1−xJ),
which gives

X = xJ + (U −RI−1)(xJ+1 − xJ)/pI .
Here, the uniform U used to generate I is recycled to generate X as well. Note that if each
interval [xj, xj+1] had only one box, this would be equivalent to generating the proposed
X (before acceptance) by inversion from U . If I is even (box I is under the squeeze) X is
accepted immediately. If I is odd (box I is between the squeeze and the hat), X is accepted
with probability (f(X)− s1(X))/(h(X)− s1(X)). Summarizing, we get:

Rejection with composition for the beta distribution;
repeat

generate U ∼ U(0, 1);
let I = min{i : Ri ≥ U} and J = ⌊I/2⌋;
let X = xJ + (U −RI−1)(xJ+1 − xJ)/pI ;
if I is even, return X;
else

generate V ∼ U(0, 1);
if V ≤ (f(X)− s1(X))/(h(X)− s1(X)) return X;

until false.

□
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4.5 Change of variables

4.5.1 General formulation

A key tool for developing efficient variate generation algorithms is a change of variable,
i.e., a transformation of the coordinates. The principle applies in an arbitrary number of
dimensions but here we describe it in two dimensions only (a) to keep the notation simpler
and (b) because the changes of variables used in the context of random variate generation are
often two-dimensional. In the rejection method, for example, we want to generate a random
pair (X, Y ) uniformly in the surface under the hat function.

The idea is to express the continuous random vector (X, Y ) of interest as a function φ
of another continuous random vector (U, V ), where φ : R2 → R2 is a one-to-one mapping
between the two spaces. That is, we consider the change of variable

(x, y) = (φ1(u, v), φ2(u, v)) = φ(u, v)

where φ1 : R2 → R and φ2 : R2 → R. Standard calculus tells us that (X, Y ) has density f if
and only if (U, V ) has density t given by

t(u, v) = f(φ1(u, v), φ2(u, v))|J(u, v)|, (4.1)

where J(u, v), the Jacobian of the transformation φ, defined as the determinant of the matrix
of partial derivatives of x and y as functions of u and v:

J(u, v) =
∂φ1(u, v)

∂u

∂φ2(u, v)

∂v
− ∂φ2(u, v)

∂u

∂φ1(u, v)

∂v
.

The idea is to generate (U, V ) from the density t and compute (X, Y ) = φ(U, V ) to get a
random vector with the desired density f . Note that if t is the uniform density over some
finite region C, then (X, Y ) will be uniformly distributed over φ(C) if and only if |J(u, v)| is
constant over C.

Example 4.7 (The Box-Muller method for normal random variates.) We want to generate
a standard normal random variate X. Box and Muller (1958) proposed to exploit the fact
that it is easier to generate a standard bivariate normal (X, Y ), with density

f(x, y) =
1

2π
e−(x2+y2)/2

over R2, by changing the Cartesian coordinates (x, y) to polar coordinates (r, θ) via r2 =
x2 + y2 and cos θ = x/r. The inverse transform is given by x = r cos θ and y = r sin θ. So
the idea is to generate the polar coordinates (R,Θ) from the appropriate density t(r, θ), and
return the transformed coordinates (X, Y ) = (R cosΘ, R sinΘ).

♣ Add figure.
To find t(r, θ), note that the Jacobian of the transformation (r, θ)→ (x, y) has determi-

nant
(cos θ)(r cos θ)− (sin θ)(−r sin θ) = r(cos2 θ + sin2 θ) = r,
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so we have
t(r, θ) = rf(r cos θ, r sin θ) = (r/2π)e−r2/2.

Since this density does not depend on θ, Θ must have the uniform density over [0, 2π].
Integrating with respect to θ over the interval [0, 2π], we find that R has density

fR(r) = re−r2/2 for r ≥ 0.

The corresponding distribution function is FR(r) = 1− e−r2/2 and its inverse is defined by

F−1
R (u) =

√
−2 ln(1− u)).

From this, it is easy to generate (R,Θ). Transforming back to Cartesian coordinates, to
obtain a pair (X, Y ) of independent standard normal random variates. If a single variate
is needed, we can save the other for the next call, so the following algorithm needs to be
executed n times to generate 2n normal random variates:

Box-Muller method to generate a pair of independent normals;
Generate U1 ∼ U(0, 1) and U2 ∼ U(0, 1), independently;
let Θ = 2πU1 and R =

√
−2 ln(1− U2);

return (X, Y ) = (R cosΘ, R sinΘ).

This change of variable is nice and elegant, but the method turns out to be slower
in practice than inversion based on a well-crafted approximation of Φ−1, because the sine,
cosine, logarithm, and square root are too expensive to compute. However, one can get rid
of the sine and cosine as follows (Marsaglia 1962).

Consider the point (V1, V2) = (D cosΘ, D sinΘ), where R is replaced by D =
√
U2. This

point, located at distance D from the origin, turns out to be uniformly distributed in the
disk of radius 1 centered at the origin (Exercise 4.13). We have X = R cosΘ = RV1/D and
Y = R sinΘ = RV2/D. We can generate (V1, V2) directly by generating random points in
the square [−1, 1]2 and retain the first one that falls inside the disk, i.e., for which U2 =
D2 = V 2

1 + V 2
2 < 1. Then, we can compute R/D =

√
−2 ln(1− U2)/U2, X = V1R/D, and

Y = V2R/D. This is known as the polar method. □

Transforming from Cartesian to polar coordinates is useful for developing elegant variate
generation methods for several distributions other than the normal. See, e.g., Devroye (1996)
for other examples, including the Student and beta distributions.

4.5.2 Rejection with a change of variable

In the standard rejection method, the aim is to generate a random point (X, Y ) uniformly
in S(f), the surface under f . With a change of variable, we generate instead a random
point (U, V ) uniformly in another surface C, and transform it by some one-to-one mapping
φ : C → S(f). To make sure that (X, Y ) = φ(U, V ) is uniformly distributed over S(f) when
(U, V ) is uniformly distributed over C. we assume that the Jacobian J(u, v) is constant. If
|J(u, v)| ≡ K, this means that φ maps each piece of area ϵ in C to a piece of area ϵ/K in
S(f), and vice-versa,
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Transposing the rejection method in the space of (U, V ) coordinates, we seek a set C̄ that
contains C, from which it is easy to sample uniformly, and whose area is not much larger
than that of C. Typically, the set C̄ will be defined by choosing a hat function h in the (u, v)
space such that 0 ≤ v ≤ h(u) whenever (u, v) ∈ C. This gives:

Rejection method in transformed coordinates;
repeat

generate (U, V ) uniformly in C̄;
until (U, V ) ∈ C;
return X = φ1(U, V ).

Proposition 4.4 This algorithm generates a random variate X with density f .

The goal here is to find a transformation φ and a set C̄ such that (a) it is easy to generate
a point (U, V ) uniformly in C̄, to check if it belongs to C, and to compute X = φ1(U, V ),
and (b) the acceptance probability, given by area(C)/area(C̄), is near 1. We discuss special
cases in what follows.

4.5.3 A univariate change of variable

Consider a one-to-one differentiable transformation τ : R→ R and put X = τ(U). If X has
density f then U = τ−1(X) has density t defined by t(u) = f(τ(u))τ ′(u). To generate X
from f , we can generate U from t and return X = τ(U).

In the context of the rejection method, this means generating a random point (U, V ) on
the surface S(t) under t instead of a random point (X, Y ) on the surface S(f) under f . We
can define the one-to-one correspondence (X, Y ) = φ(U, V ), by X = φ1(U, V ) = τ(U) and
Y = φ2(U, V ) = V/τ ′(U). The Jacobian of this transformation is easily seen to be J(u, v) ≡ 1
(Exercise 4.11). Therefore, (X, Y ) is uniformly distributed over S(f) if and only if (U, V ) is
uniformly distributed over

S(t) = φ−1(S(f)) = {(u, v) : 0 ≤ v ≤ f(τ(u))τ ′(u)}.

A transformed density rejection algorithm generates a random point in S(t) by the rejection
method, using a hat function for the density t.

If τ−1 approximates F , the distribution function of X, then U has approximately the
U(0, 1) distribution. In that case, if U = τ−1(X) takes its values only in [0, 1], U can often
be generated efficiently by rejection from a uniform hat function h(u) = a for 0 ≤ u ≤ 1,
where a is close to 1. This approach is known as almost-exact inversion (Devroye 1986).

Example 4.8 (Wallace 1976, Hörmann, Leydold, and Derflinger 2004). Suppose we want
to generate X from the positive part of the standard normal density, so f(x) is proportional
to f̃(x) = exp(−x2/2), for x > 0. (This can be used to generate a normal random variate
by adding a random sign.) Wallace (1976) suggests the transformation τ : [0, 1) → [0,∞)
defined by τ(u) = 1.22u(1 + 0.14/(1 − u)). We have τ ′(u) = 1.22(1 + 0.14/(1 − u)2) and
the density t(u) is proportional to t̃(u) = f̃(τ(u))τ ′(u)/1.22, whose maximum value on the
interval (0, 1) is ã = 1.17054363007, attained at u = 0.73791696460. We can then use the
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0

1

v0 = 1.138738

0 X u0 = 0.798207 1

1.1705436
↘
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Fig. 4.3. Example 4.8: A rejection method with uniform hat function for the transformed normal
density t.

constant hat function h(u) = ã to generate U by the rejection method and transform it
into X. For that, we generate U ∼ U(0, 1) and accept it with probability t̃(U)/ã. We have∫ 1

0
t̃(u)du ≈ 1.02730667035. The acceptance probability is this integral divided by ã, namely

1/a ≈ 0.8776.

Hörmann and Derflinger (1994) replace the constants 1.22 and 0.14 by different numbers
that increase the acceptance probability to 1/a ≈ 0.8904. To speed up the algorithm, they
also add a rectangular squeeze as follows: Select a constant 0 < u0 < 1 and let v0 =
min0≤u≤u0 t̃(u)/ã. Whenever U ≤ u0 and V ≤ v0, we already know that U will be accepted
and there is no need to compute the expression in the “until” statement. The constant u0
can be chosen to maximize the area below the squeeze, u0v0. With the same numbers as
above, this gives u0 = 0.798207256116 and v0 = 1.138738153941, and the probability of
falling under the squeeze is u0v0/ã ≈ 0.7765.

Collecting these ingredients gives the following transformed density rejection algorithm:

Transformed rejection to generate a positive standard normal;
repeat

generate U ∼ U(0, 1) and V ∼ U(0, 1);
let X = 1.22 U(1 + 0.14/(1− U));
if U ≤ 0.798207256116 and V ≤ 1.138738153941/1.17054363007 return X;

until 1.17054363007 V ≤ exp(−X2/2)(1 + 0.14/(1− u)2);
return X.

□
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Transformations of the form U = lnX for X > 0 (i.e., τ(U) = exp(U) for U ∈ R)
and U = X−1/2 for X > 0 (i.e, τ(U) = 1/U2 for U > 0) are often used to transform the
density f into a concave density t for U . The concavity of t makes it easier to construct good
hat and squeeze functions (often piecewise linear) for it. This class of transformed density
rejection methods has several variants and extensions (Devroye 1986, Evans and Swartz 2000,
Hörmann, Leydold, and Derflinger 2004).

♣ Other examples...

4.5.4 A generalized ratio-of-uniforms method

We consider the class of invertible transformations (X, Y ) = φ(U, V ) defined by

X = φ1(U, V ) = (U − b(V ))/g′(V ),

Y = φ2(U, V ) = g(V ),

where g : [0,∞)→ [0,∞) is a differentiable and invertible (increasing) function with g(0) =
0, and b is an arbitrary function. The inverse of φ is defined by v = g−1(y) and u =
g′(v)x− b(v). For any density f and constant κ > 0, this transformation defines a bijection
between the sets

C =
{
(u, v) ∈ R2 : 0 ≤ v ≤ g−1

(
κf

(
u− b(v)
g′(v)

))}
and S(κf) = {(x, y) ∈ R2 : 0 ≤ y ≤ κf(x)}, and its Jacobian is equal to 1 (Exercise 4.11). It
then follows from Proposition 4.4 that to generate X with density f , it suffices to generate
a point (U, V ) uniformly in C, and return X = φ1(U, V ).

Kinderman and Monahan (1977) have originally proposed this technique with g′(v) = v
and b(V ) = 0, i.e.,X = U/V and Y = V 2/2. To generate (U, V ) uniformly in C, they generate
(U, V ) uniformly in a rectangular box C̄ that contains C, by generating two independent
uniforms U and V , until (U, V ) ∈ C. Their algorithm then returns X = U/V . For this
reason, they call it the ratio-of-uniforms method. The generalization considered here is from
Wakefield, Gelfand, and Smith (1991).

Rejection is the usual approach for generating (U, V ) uniformly over C. We define a
region C̄ that contains C and in which it is easy to generate a point uniformly (for example,
a rectangular box or a polygonal region). We then generate (U, V ) uniformly over C̄, until
it belongs to C. If there is another region C contained in C and for which it is very fast
to check if (U, V ) ∈ C, this C can be used as a squeeze to accelerate the verification that
(U, V ) ∈ C. Several special cases and refinements are described in Devroye (1986), Gentle
(2003), Hörmann, Leydold, and Derflinger (2004), and other references given there.

Since (x, y) ∈ S(κf) implies that y ≤ κf(x), for each point (u, v) ∈ C we must have
0 ≤ v = g−1(y) ≤ g−1(κf(x)). So v can never exceed

v+ = sup
−∞<x<∞

g−1(κf(x)).

Moreover, since u = g′(v)x− b(v), it must lie in the interval from
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u− = inf
−∞<x<∞

inf
0≤y≤κf(x)

g′(g−1(y))x− b(g−1(y))

to
u+ = sup

−∞<x<∞
sup

0≤y≤κf(x)

g′(g−1(y))x− b(g−1(y)).

When these quantities are finite, we can use the minimal bounding rectangle [u−, u+]× [0, v+]
as the bounding region C̄.

Example 4.9 As in Example 4.3, we want to generate X from the gamma distribution
with parameters (α, 1), for α ≥ 1. Its density is proportional to

κf(x) = xα−1e−x for x > 0

and has a maximum at x = α − 1. We use the transformation X = U/V + α − 1 and
Y = V 2/2. That is, g′(V ) = V and b(V ) = (α− 1)V .

Here g−1(κf(x)) = (2κf(x))1/2 = (2κxα−1e−x)1/2 has a maximum at x = α−1, the mode
of the density. We have

v+ =
√
2κ(α− 1)α−1e−α+1.

We also have

g′(g−1(y))x− b(g−1(y)) =
√

2yx− (α− 1)
√
2y =

√
2y(x− α + 1),

from which we find, by combining with 0 ≤ y ≤ κf(x) = xα−1e−x, that

u− = inf
x≥0

√
2xα−1e−x(x− α + 1) < 0

and
u+ = sup

x≥0

√
2xα−1e−x(x− α + 1) > 0.

These values are finite. They can be computed numerically and the rectangular box [u−, u+]×
[0, v+] can be used for C̄. □

Example 4.10 .... □

4.6 Thinning a Point Process with Time-Varying Rate

Thinning is a variant of the rejection method, useful to generate events from a non-
homogeneous Poisson process with complicated rate function. Suppose the process has rate
λ(t) at time t, with λ(t) ≤ λ̄ for all t, where λ̄ is a finite constant. One can generate
Poisson pseudo-arrivals at constant rate λ̄ by generating i.i.d. exponential interarrival times
with mean 1/λ̄. A pseudo-arrival at time t is accepted (becomes an arrival) with probabil-
ity λ(t)/λ̄ and is rejected with probability 1 − λ(t)/λ̄. That is, for each pseudo-arrival we
generate V ∼ U(0, 1) independent of everything that has happened before, and turn this
pseudo-arrival into an arrival if and only if V ≤ λ(t)/λ̄.
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Non-homogeneous Poisson processes can also be generated by inversion, as we saw in
Section 2.13.2, by applying a nonlinear transformation of the time scale to standardize the
process (so it becomes homogeneous with rate 1 in the new time scale), generate the arrivals
by inversion for the standardized process, then transform it back to find the arrival times in
the original time scale. This method can be adapted to other types of point processes with
time-varying rates.

4.7 Kernel Density Estimation and Generation

Instead of selecting a hard-to-invert parametric distribution and estimating its parameters,
we can estimate the density via a kernel density estimation method for which random variate
generation is very easy (Devroye 1986, Hörmann and Leydold 2000, and Section 2.9.4). In
the case of a Gaussian kernel, for example, random variates can be generated simply by
selecting one observation at random from the data and adding random noise generated form
a normal distribution with mean zero. This method is not equivalent to inversion. Because of
the added noise, selecting a larger observation does not necessarily guarantee a larger value
for the generated variate.

4.8 Special Techniques

Besides the general methods, elegant special techniques have been designed for a number of
specific distributions. We give selected examples.

Example 4.11 (A Poisson random variate with small mean.) We want X ∼ Poisson(λ)
where λ is small. One way to generate X is to simulate a Poisson process with rate λ over
the time interval (0, 1] and count the number X of arrivals. Let A1 be the time until the
first arrival and A2, A3, . . . the times between the successive arrivals. These Aj’s are i.i.d.
exponentials with mean 1/λ. The number X of arrivals during (0, 1] satisfies

X∑
j=1

Aj ≤ 1 <
X+1∑
j=1

Aj.

If each Aj is generated by inversion from 1 − Uj ∼ U(0, 1), we have Aj = −(lnUj)/λ and
this inequality can be written as

−
X∑
i=1

ln(Ui) ≤ λ < −
X+1∑
i=1

ln(Ui),

i.e.,
X∏
i=1

Ui ≥ e−λ >
X+1∏
i=1

Ui,

or
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X = max

{
k such that eλ

k∏
i=1

Ui ≥ 1

}
.

This gives:

A Poisson(λ) generator;
let X = 0 and p = eλ;
repeat

generate U ∼ U(0, 1);
let p = pU and X = X + 1

until p < 1;
return X − 1.

This simple algorithm requires E[X + 1] = λ iterations on average. It is fine for small λ
but highly inefficient when λ is large. □

Example 4.12 (Random points on the surface of a d-dimensional sphere.) Generating a
random point on the surface of a hypersphere centered at zero is equivalent to generating
a random direction from the origin, in d dimensions. This can be achieved by generating a
random point from a radially symmetric density in d dimensions, which is defined as a density
that is constant on the surface of any sphere centered at the origin (i.e., that can be written as
a function of the distance to the origin, or the sum of squares of coordinates). The standard
multinormal density is the most notorious example. To generate a random point X on the
d-dimensional sphere of radius r, generate a vector Z from any radially symmetric density,
and normalize its length to r by defining X = rZ/∥Z∥2, where ∥Z∥2 = (Z2

1 + · · · + Z2
d)

1/2

is the Euclidean norm of Z. The most common way of generating Z is from the standard
normal distribution; in that case, Z1, . . . , Zd are i.i.d. N(0, 1) random variates.

In two dimensions, one alternative is to generate a random angle Θ uniformly over the
interval (0, 2π), and return (X1, X2) = (r cosΘ, r sinΘ), which is the point at angle Θ on the
circle. Note that this could be slower than the previous method, because the trigonometric
functions can be more expensive to evaluate than generating the standard normals.

On the three-dimensional sphere of radius r centered at zero, it turns out (somewhat
surprisingly) that any of the three coordinates of a random point on the sphere is uniformly
distributed over (−r, r). So we can first generate, say, the third coordinate X3 uniformly
over this interval. Suppose X3 takes the value x3. Then it remains to generate a random
point uniformly over the circle defined by the intersection of the surface with the place
X3 = x3. This circle has radius r̃ = r cos(arcsinx3), so we can generate an angle Θ as in the
two-dimensional case, and put (X1, X2) = (r̃ cosΘ, r̃ sinΘ). □

Example 4.13 (Random points in a three-dimensional sphere.)
□

Automatic methods. Recently, there has been an effort in developing automatic or black
box algorithms for generating variates from an arbitrary (known) density, and reliable soft-
ware that implements these methods (Hörmann and Leydold 2000, Hörmann, Leydold, and
Derflinger 2004, Leydold and Hörmann 2002, Leydold, Janka, and Hörmann 2002).
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The most extensive coverage of non-uniform variate generation remains the book of
Devroye (1986).

4.9 Markov Chain Monte Carlo

♣ To be done...

4.10 Exercises

4.1 Explain how to generate a random variate X from each of the following distributions,
by inversion. Then, implement it, generate 1000 variates, compute their mean and variance,
and check if the values make sense.

(a) The triangular distribution with parameters (a, b,m), whose density is positive only
over the interval (a, b), attains its maximum at x = m, and is linear over the intervals [a,m]
and [m, b].

(b) The Pareto distribution with parameters (α, β), whose distribution function is F (x) =
1− (β/x)α for x ≥ β.

(c) The Cauchy distribution, for which F (x) = 1/2 + arctan(x)/π for x ∈ R.
(d) The logistic distribution, for which F (x) = 1/(1 + e−x) for x ∈ R.
(e) The Rayleigh distribution with parameter β, for which F (x) = 1 − exp[−x2/β] for

x > 0.

4.2 Suppose we want to generate a random variate X with the same distribution as
max(Y1, . . . , Yn), where the Yj are i.i.d. with distribution function F . Show that X can
be generated directly via X = F−1(U1/n) where U ∼ U(0, 1).

4.3 Implement a fast algorithm to compute the inverse of the Poisson distribution function
with parameter λ, using indexed search with an index of size c = λ. There should be an
initialization procedure that constructs the tables and a procedure that returns F−1(U) for
any given U ∈ (0, 1). In an object-oriented programming environment, a Poisson generator
of this kind would normally be implemented as an object, with a method for computing F−1

and a different method (that calls the first method) to generate random variates (because
sometimes we only want to compute F−1 and not generate a random variate). The tables
would be computed by the constructor. It is recommended that you implement it that way.
Then, use your algorithm to generate 1000 i.i.d. Poisson random variates with mean λ = 20.
Compute and print their mean and variance and check if these values make sense.

4.4 Suppose you have functions that return good approximations of the gamma and beta
inverse distribution functions. Show how to use these functions to generate random variates
from the Pearson type 5 and type 6 distributions by inversion.

4.5 Recall that if X ∼ Erlang(k, λ) and Y ∼ Poisson(λx), then P[X ≤ x] = P[Y ≥ k]
(Exercise 2.12). Explain how this can be used to generate a Poisson(λ) random variate with
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large λ, by inversion, if a good approximation of the inverse gamma distribution function is
available.

4.6 A simple way of generating a random point in a d-dimensional sphere of radius 1 is by a
rejection method as follows. Define a d-dimensional cube of side 2 that contains the sphere,
and generate random points in the cube until one falls in the sphere. What is the expected
number of trials with this method, as a function of the volume Vd of the d-dimensional unit
sphere? Compute this expected number for d = 2, 5, 10, and 20. Discuss the viability of the
method as a function of d. Hint: see Exercise 1.19.

4.7 (a) In Example 4.2, explain in detail how to generate from the sampling density g that
corresponds to the hat function h of Figure 4.2, by inversion.

(b) Implement the algorithm for each of the two function h, in Figures 4.1 and 4.2, and
compare their average execution times. Explain how you have made the comparison and how
you have tested the correctness of your two implementations.

(c) Design a version of the method where the hat function is piecewise-constant with five
pieces (c = 5) instead of three. Optimize the four breakpoints and compute the corresponding
value of a.

4.8 In Example 4.3, the function was taken proportional to an exponential density of
parameter θ, with θ = 1/α. But we could use a different value of θ. What is the minimal
value of a as a function of θ, and what value of θ minimizes this a?

4.9 Suppose we use a continuous sampling distribution g to generate an integer-valued
discrete random variateX by the rejection method, as explained near the end of Section 4.4.1.
We want X to have probability mass function f , i.e., P[X = x] = f(x) for all integers x ∈ Z.
Let h be a hat function such that h(x) = ag(x) ≥ κf(x) for all x, for some constant κ > 0.

(a) Prove that with the acceptance condition V h(X) ≤ κf(⌊X⌋), the returned value ⌊X⌋
has the correct discrete distribution.

(b) Prove that this is also true with the acceptance condition V h(⌊X⌋) ≤ κf(⌊X⌋), if
(1/h(k))

∫ k+1

k
h(x)dx has the same value for all integers k for which f(k) > 0 (this is the

case, for instance, if h is constant between any two integers). Give a counterexample showing
that if this last condition is not satisfied, the method with this second acceptance condition
can be invalid.

4.10 Detail a rejection algorithm that uses a hat function proportional to a Cauchy density
to generate standard normal random variates. Find the appropriate constant a.

4.11 Prove that in Section 4.5.3 and Section 4.5.4, the Jacobian of the transformation φ is
equal to 1.

4.12 Detail an algorithm to generate a random point uniformly distributed inside a d-
dimensional ellipsoid centered at the origin, defined by xtAx ≤ 1 where A is a d×d positive
definite matrix.
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4.13 (a) For the polar method described at the end of Example 4.7, show that if U2 = D2 is
uniformly distributed over (0, 1), then the point (V1, V2) is uniformly distributed in the disk
of radius 1 centered at the origin. Use this to prove that the pair (X, Y ) returned at the end
is a pair of independent standard normal random variables.

(b) Implement the Box-Muller and the polar method and compare their speed by gen-
erating a few million standard normals with each of them.

♣ Simulation of Archimedean copulas in d ≥ 2 dimensions. E.g., Gumbel copula.

♣ Truncated binormal random vector. First show that marginal is not truncated normal.
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5. Output Analysis

5.1 Quality and Precision of Statistical Estimators

We estimate an unknown quantity µ by an estimator X, whose quality can be assessed in
different ways. In the introduction, we adopted the efficiency Eff[X] as a quality measure,
assuming that the estimation error can be measured by the mean square error MSE[X].
However, any quality measure for an estimator X is imperfect, and Eff[X] is no exception.
For example, the MSE gives the same weight to negative error (underestimation) than to
positive error (overestimation). It may well be that one of these two types of error is more
damaging than the other. The damage is also not necessarily proportional to the square of
the error (as measured by the MSE).

Another important aspect of the quality of an estimator, not measured by Eff[X], is the
availability of a good way to assess the estimation error. For example, if our error assessment
is based on the variance of X, we need a good variance estimator. In this situation, given two
unbiased estimators X and Y with similar computing costs and variances, if S2

X and S2
Y are

the available (unbiased) estimators for the variances of X and Y and if Var[S2
X ]≪ Var[S2

Y ],
we would probably prefer X to Y even though Eff[X] ≈ Eff[Y ]. (See Exercise 1.16.)

Reporting a confidence interval is a standard way to provide an estimate of an unknown
quantity, together with an assessment of the estimation error. For 0 ≤ α ≤ 1, a confidence
interval with confidence level 1 − α (also called 100(1 − α)% confidence interval) for an
unknown quantity µ is a random interval [I1, I2] such that P[I1 ≤ µ ≤ I2] = 1 − α. (The
random variables in this statement are I1 and I2.) Confidence intervals are constructed for
a nominal or target confidence level 1 − α under certain assumptions (e.g., normality), but
the true value of P[I1 ≤ µ ≤ I2], called the coverage probability, is often different and
unknown, due to departure from the assumptions or because the coverage may depend on
the (unknown) exact value of µ. The difference P[I1 ≤ µ ≤ I2] − (1 − α) is called the
coverage error. An ideal confidence interval has large coverage probability and small width.
But since a smaller width generally implies a smaller coverage probability, a compromise
must be made and the quality of a confidence interval must be judged based on these two
conflicting criteria. For two confidence intervals having the same coverage probability one
would normally prefer the one with the smallest expected width. Another relevant quality
measure is the variance of the width.

Often, the word “estimator” refers to a sequence of estimators {Yn, n ≥ 1}, and we refer
to this sequence by Yn (a slight abuse of notation). Two examples of this are X̄n and S2

n,
introduced in Section 1.4. If we want to estimate µ, then Yn is said to be asymptotically
unbiased if E[Yn − µ] → 0 as n → ∞, consistent if Yn → µ in probability as n → ∞, and
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strongly consistent if Yn → µ with probability one as n → ∞. Consistency is generally a
required property of estimators. One has, for example, that X̄n is unbiased and strongly
consistent for E[Xi] whereas S

2
n is unbiased and consistent for Var[Xi]. A confidence interval

(In,1, In,2) is asymptotically valid if its coverage probability converges to the desired coverage,
1− α, when n→∞.

Most of the techniques explained in this section apply to estimators obtained via simula-
tion or by other means. An important difference between simulation data and data obtained
from real-life systems is that it is generally much easier to increase the sample size in a simu-
lation setting than in the real world. For example, for statistical studies looking at the effect
of different drugs on a given human disease, sample sizes are limited. For simulation, we are
limited only by the computing time we are ready to spend. We also (normally) have much
better control over simulation experiments than over experiments with real-life systems. As
a result, there is some difference between the appropriate statistical output analysis tools
for simulation and the most popular techniques in classical statistics. For example, the com-
putation of confidence intervals based on regenerative analysis, and the question of choosing
between one long run and several smaller runs to estimate an infinite-horizon average, are
important in the simulation context but are usually not considered in (classical) statistical
data analysis textbooks.

Simulation can be used to estimate expectations over a finite horizon, steady-state av-
erages over an infinite horizon, expected total discounted costs over an infinite horizon,
quantiles of a distribution, linear or nonlinear functions of one or several expectations, roots
of functions, solutions of optimization problems, and there are many other possibilities. Tech-
niques for constructing estimators of these quantities, and for assessing the error of these
estimators (e.g., by constructing confidence intervals), are discussed in this chapter. We
also examine related questions such as how to compute confidence intervals for multivariate
performance measures (i.e., for vectors), and methods for comparing two or more systems.

It is important to emphasize that the error estimates here take into account only the
simulation error, and not the modeling error, and the error made in estimating the model
parameters used for the simulation. The simulation error can often be made much smaller
then the other two. In that case, the confidence intervals computed by considering only the
simulation error can give an overly optimistic view. One must be very careful about their
interpretation.

♣ Expand this last discussion a bit. Add a section on CI methods that take into account
the error in parameter estimation (e.g., via bootstrap techniques).

5.2 Estimation of a finite-horizon expectation

If the quantity µ of interest is the expectation of some random variable X that can be
computed over a finite horizon (e.g., as in Eq. (2.74)), one can obtain a sample of n i.i.d. copies
of X, say, X1, . . . , Xn, by performing n independent simulation runs. Obvious estimators
of µ = E[X] and of σ2 = var[X] are the sample mean X̄n and the sample variance S2

n,
respectively. We are back to the setup of Section 1.4.3. The classical way of computing a
confidence interval in that case is to assume either that X has the normal distribution, or
that n is large enough so that X̄n is approximately normal because of the CLT.
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5.2.1 Small samples, normal observations

We recall a standard result in elementary statistics. Part (iii) follows directly from (i–ii) and
the definition of the Student distribution.

Theorem 5.1 (e.g., Hogg and Craig 1995). If X1, . . . , Xn are i.i.d. N(µ, σ2), then
(i) X̄n and S2

n are independent;
(ii) (n− 1)S2

n/σ
2 has the chi-square distribution with n− 1 degrees of freedom;

(iii)
√
n(X̄n − µ)/Sn has the Student-t distribution with n− 1 degrees of freedom.

Part (iii) of this theorem can be used to compute a confidence interval for µ, as ex-
plained in Section 1.4.3. An interval with coverage probability 1 − α is given by (X̄n ±
tn−1,1−α/2Sn/

√
n), where tn−1,1−α/2 = F−1(1 − α/2) and F denotes the Student(n − 1) dis-

tribution function. That is, tn−1,1−α/2 is the unique real number x for which the probability
that a Student(n − 1) random variable exceeds x is α/2, The quantity tn−1,1−α/2Sn/

√
n is

called the half-width of the interval.

For large n (e.g., n ≥ 30 or so), the Student distribution is approximately identical to the
standard normal, i.e., tn−1,1−α/2 ≈ z1−α/2 = Φ−1(1 − α/2), where Φ is the standard normal
distribution function. One has tn−1,1−α/2 > z1−α/2 and the smaller is n, the larger is the
difference (so the confidence intervals are wider than with the normal approximation).

♣ Make figures.

5.2.2 Large samples, central-limit effects

If n is large, X̄n may be approximately normally distributed even if X is not, because of the
CLT. A confidence interval can then be computed as in Section 1.4.3.

One must be careful however: The distribution of X̄n can be far from normal, e.g., if n is
small, or if α is close to 0, or if the distribution of the Xi’s is highly asymmetric, or if there
are outliers at more than 3 or 4 standard deviations away from the mean. In any case, one
must measure how the distribution of the Xi’s departs from the normal distribution. The
test of normality of Shapiro, Wilk, and Chen (1968) is often recommended.

♣ Berry-Essen bound: See Theorem A.16 in the appendix.

Example 5.1 Example 1.24 in Section 1.4.3 gave an illustration where the normal approxi-
mation appeared reasonable. We had n = 1000 i.i.d. Bernoulli(p) random variablesX1, . . . , Xn

and wanted to estimate p by X̄n. In that example, we had p ≈ 0.88. Suppose now that p
is very close to 1 and that we have obtained 998 successes, i.e., X̄n = 0.998. In this case,
the normal approximation to the binomial is bad; one should compute a confidence interval
using the binomial probabilities directly or via the Poisson approximation for the number of
failures; i.e.,

∑n
i=1(1−Xi) ≈ Poisson(n(1− p)) (see Section 5.2.3). □

♣ Add examples and exercises on this.
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1 Nelson (1992) suggests that when the Xi’s are highly non-normal, a good idea is to
batch the observations to improve normality. Regroup the observations into (say) 30 batches
of equal sizes, take the average within each batch, and compute a confidence interval by
considering these 30 averages, or batch means, as the observations. When n is large, Nelson
(1992) advocates using batch means anyway, whatever be the distribution of the Xi’s, and
then test the normality of the batch means. This does not change the mean X̄n, neither the
expectation of its variance estimator S2

n/n, which equals Var[Xi]/n with or without batching.
However, batching changes the distribution (and generally increases the variability) of the
variance estimator and of the confidence interval half-width. Exercise 5.4 illustrates this.

An alternative (and often better) approach for computing confidence intervals in the case
of highly non-normal observations is the bootstrap (Section 5.9).

5.2.3 Confidence Intervals for Discrete distributions

In Example 5.1, suppose this time that p is very close to 0. We want to compute a confidence
interval on µ = np from a single observation of Y = X1 + · · · + Xn, knowing that Y ∼
Binomial(n, p). For example, if n = 1000 and Y = 2, what is an appropriate confidence
interval on p for a given α? The following general methodology allows us to compute such
an interval.

Let Y be an integer-valued random variable with (unknown) continuous parameter θ,
such that Pθ[Y ≥ y] is a monotone function of θ for any y, where Pθ denotes the probability
when the parameter value is θ. Binomial, geometric, and Poisson random variables, for
example, are of this type. Suppose we want to compute a confidence interval [I1, I2] with
confidence level (approximately) 1−α for θ. We can define the confidence interval as follows.
Decompose α as α = α1 + α2 where α1 > 0 and α2 > 0 (for example, α1 = α2 = α/2). Here,
we assume that Pθ[Y ≥ y] increases with θ; for the decreasing case, just permute ≤ and ≥
in (5.1). Compute I1 = I1(y) and I2 = I2(y) as the solutions of the equations

α1 = PI1 [Y ≥ y] and α2 = PI2 [Y ≤ y], (5.1)

where y is the observed value of Y . These equations can be solved via binary search, assuming
that the probabilities in (5.1) are easy to compute when θ and y and given.

Proposition 5.2 The coverage probability provided by the procedure just described is at least
1− α for any θ.

Proof. Let y∗(θ)
def
= min{y ∈ N : I1(y) ≥ θ} (an integer) and ν

def
= I1(y

∗(θ)) ≥ θ. One has
I1(y) ≥ θ if and only if y ≥ y∗(θ). The probability that the interval falls completely to the
right of θ is

Pθ[I1(Y ) ≥ θ] ≤ Pν [I1(Y ) ≥ θ] = Pν [Y ≥ y∗(θ)] = PI1(Y ∗(θ))[Y ≥ y∗(θ)] = α1.

One can show that Pθ[I2(Y ) ≤ θ] ≤ α2 in a similar way. Then, Pθ[θ ∈ (I1(Y ), I2(Y ))] ≥
1− α1 − α2 = 1− α.

1From Pierre: Move this to the exercises.
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The exact coverage probability of such a confidence interval is difficult to compute because
it generally depends on Fθ (and therefore on the true value of θ). For specific distributions,
the exact coverage probability as a function of θ could be estimated by simulation and
tabulated.

Example 5.2 As an important special case, suppose that X1, . . . , Xn are i.i.d. with P[Xi =
1] = 1− P[Xi = 0] = p, so that Y = nX̄n =

∑n
i=1Xi is Binomial(n, p), and that we want to

compute a confidence interval on p based on the observation of Y . For any given values of
θ ≡ p and of y, the probabilities in (5.1) can be computed by summing the exact binomial
probabilities if y is small. If n is large and p is small, Y is approximately a Poisson random
variable with mean np, so one can approximate the probabilities in (5.1) by summing the
appropriate Poisson probabilities. For p close to 1, we can simply replace p and Xi by 1− p
and 1−Xi. □

In the binomial and Poisson cases, we can avoid summing probabilities by exploiting the
relationship between the binomial and beta cdf’s, and between the Poisson and gamma cdf’s
(see Sections 2.8.13 and 2.8.12). If Y ∼ Binomial(n, p), then

P[Y ≥ y] = Fβ,y(p) (5.2)

where Fβ,y is the cdf of a beta random variable with parameters (y, n − y + 1). To satisfy
(5.1), we must find I1 and I2 such that α1 = Fβ,y(I1) and α2 = 1− Fβ,y+1(I2). These values
are given directly by I1 = F−1

β,y(α1) and I2 = F−1
β,y+1(1 − α2). They can be computed via a

good approximation of the inverse beta distribution function. Likewise, if Y ∼ Poisson(λ),
then P[Y ≥ y] = Fγ,y(λ) = P[X ≤ λ] where X ∼ Gamma(y, 1), so the same method can be
used with Fβ,y(p) replaced by Fγ,y(λ).

5.2.4 Distribution-free confidence intervals for the mean *

Suppose a random variable X is bounded with probability 1, i.e., P[A ≤ X ≤ B] = 1
for some constants A < B, and we want to compute a confidence interval on µ = E[X]
without making any further assumption about the distribution of X. This can be achieved
via Hoeffding inequalities, given in the next theorem.

To simplify the notation, we standardize the random variable so that A = 0 and B = 1.
That is, we consider Y = (X −A)/(B −A). Let ν = E[Y ] = (µ−A)/(B −A). A confidence
interval on ν readily gives a confidence interval on µ.

Theorem 5.3 (Hoeffding 1963). Let Y1, . . . , Yn be i.i.d. random variables such that P[0 ≤
Yi ≤ 1] = 1 and E[Yi] = ν. Then,

P[Ȳn − ν ≥ ϵ] ≤ e−ng(ν)ϵ2 ≤ e−2nϵ2 and

P[ν − Ȳn ≥ ϵ] ≤ e−ng(1−ν)ϵ2 ≤ e−2nϵ2 ,

where
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g(ν) =


1

1− 2ν
ln((1− ν)/ν) for 0 < ν < 1/2,

1

2ν(1− ν)
for 1/2 ≤ ν < 1.

Note that g(ν) is continuous, decreasing in (0, 1/2), increasing in (1/2, 1), and its mini-
mum is g(1/2) = 2.

A simple two-sided 100(1−α)% confidence interval on µ obtained from these inequalities
is (Ȳn − ϵ, Ȳn + ϵ) where ϵ2 = − ln(α/2)/(2n). Indeed, one then has

P[|Ȳn − ν| ≤ ϵ] ≥ 1− 2e−2nϵ2 = 1− α.

The bounds involving g(ν) and g(1 − ν) can be used with profit to compute a tighter
confidence interval when ν is known to lie in an interval that does not contain 1/2. For
example, suppose it is known that ν < ν1 for some known constant ν1 < 1/2, or that ν > ν1
for some ν1 > 1/2. By taking ϵ2 = − ln(α/2)/g∗n where

g∗ = min
ν≤ν1

min(g(ν), g(1− ν)) = min(g(ν1), g(1− ν1)),

we obtain that

P[|Ȳn − ν| ≤ ϵ] ≥ 1− e−ng(ν1)ϵ2 − e−ng(1−ν1)ϵ2 ≥ 1− α/2− α/2 = 1− α.

Fishman (1996), Theorem 2.4, provides a refined version of this type of confidence inter-
val. Hoeffding (1963) gives variants of his inequality for dependent random variables. Several
other inequalities of a similar flavor (for example, Chebyshev, Bernstein, and Bennett inequal-
ities) can also be used to obtain distribution-free confidence intervals; see, e.g., Hoeffding
(1963) and Devroye, Györfi, and Lugosi (1996). Chebyshev inequality typically yields wider
(more conservative) confidence intervals than those based on Hoeffding inequality.

5.2.5 Fixed sample size vs sequential estimation

So far we saw how to compute a confidence interval for a given confidence level 1 − α and
a fixed sample size n. Then, the width I2 − I1 of the interval is a random variable and the
interval may turn out to be much wider than desired. Alternatively, we may decide to fix α
and a maximal acceptable width w, hoping that the required sample size N (which is now
random) to obtain I2 − I1 ≤ w will be reasonable. How can we predict the required value of
N? We can estimate it from pilot runs or we can use sequential estimation.

Example 5.3 In Example 5.1, we obtained S2
n ≈ 0.1042 and a 95% confidence interval of

half-width (around) 0.020 with n = 1000 simulation runs. How many additional runs should
we perform if we want to reduce the half-width to 0.005? We seek a value of n such that
1.96Sn/

√
n ≤ 0.005. Assuming that S2

n will not change much (it converges to Var[X] when
n → ∞), this gives n ≥ (1.96 × Sn/0.005)

2 ≈ 0.1042 × (1.96 × 200)2 ≈ 16011.8. So our
prediction is that we need 15012 additional simulation runs. □
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For a confidence interval based on the normal distribution when the variance σ2 is known,
the minimal n that gives a half-width less than w/2 for a 100(1− α)% confidence interval is

n∗ = min
{
n > 1 : z1−α/2σ/

√
n ≤ w/2

}
. (5.3)

If σ2 is unknown, we can replace it in (5.3) by our current best variance estimator. Under
the assumption that the Xi are normally distributed, we may use the Student distribution
instead of the normal, and this gives the following heuristic to approximate n∗: Select some
integer n0, perform n0 simulation runs, compute the sample variance S2

n0
, and compute

N̂∗ = min
{
n ≥ n0 : tn−1,1−α/2Sn0/

√
n ≤ w/2

}
. (5.4)

This N̂∗ is our prediction of the total sample size needed. The rationale is that S2
n0

is our
best guess of S2

n.
A two-stage procedure based on this heuristic computes S2

n0
for a moderate value of n0

in the first stage, computes N̂∗ in (5.4), and then performs N̂∗ − n0 additional simulation
runs in the second stage. Finally, it computes a confidence interval based on all N̂∗ runs.
This procedure applies mutatis mutandis to other distributions than the Student. Of course,
since S2

n is a random variable whose value may change when n increases, the N̂∗ estimated
from the first stage may turn out to be too small or too large.

A different approach is sequential estimation: Compute the half-width of the confidence
interval after every run as soon as the sample size n exceeds some predetermined threshold
n0 (for example, n0 could be 1/4 of a rough initial guess of n∗). Stop when the half-width is
less than the desired value.

Note that this procedure is more likely to stop when S2
n is smaller than usual than to

stop when S2
n is larger than usual. Let N denote the sample size at which we stop (a random

variable). If S2
n is positively [negatively] correlated with X̄n for each n, X̄N will tend to

be smaller [larger] than µ = E[Xi]. Therefore, sequential estimation is generally biased for
the mean. If the Xi’s have the normal distribution, then X̄n and S2

n are independent (see
Theorem 5.1) and the procedure is unbiased for the mean, but S2

N is still a biased estimator
of the variance. Sequential estimation may thus provide biased estimators and confidence
intervals in general, and the bias for the mean is likely to be worse when the distribution of
the Xi’s is far from the normal (e.g., highly skewed).

A quite interesting result, on the other hand, is that when w → 0 and α is fixed, all this
bias goes away; everything becomes essentially the same as if we knew the variance σ2 exactly
beforehand and were using the exact minimal sample size n∗ with the normal distribution.
The next theorem states this asymptotic consistency property. For the result to hold even
if P[X1 = · · · = Xn] > 0 for small n, it is convenient to add 1/n to the variance estimator
S2
n. Otherwise, the method could stop prematurely with S2

n = 0. Note that n∗ → ∞ when
w → 0.

Theorem 5.4 (Chow and Robbins 1965) Suppose we use a sequential estimation procedure
with initial sample size n0 and stop at

N = min
{
n ≥ n0 : z1−α/2

√
(S2

n + 1)/n ≤ w/2
}
. (5.5)
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If α > 0 is fixed and w → 0, then we have N/n∗ w.p.1→ 1, E[N ]/n∗ → 1, and P[|X̄N − µ| ≤
w/2]→ 1− α.

This result implies that sequential estimation can be (approximately) reliable when the
target half-width w/2 is small enough. Based on extensive empirical experiments made by
Law, Kelton, and Koenig (1981), Law and Kelton (2000) argue that the procedure is usually
safe when the relative half-width w/|2µ| does not exceed 0.15 (as a rule of thumb) and
recommend that this condition should always be respected.

There is a similar version of the theorem for the case of a target relative half-width w′/2,
when the mean µ is simply estimated by the sample mean X̄n. In that case, we want the
interval width divided by |µ| to be no more than w′. The procedure stops at

N = min
{
n ≥ n0 : z1−α/2

√
(S2

n + 1)/n ≤ X̄nw/2
}
. (5.6)

Other theorems give more refined results where bounds on the coverage error are also pro-
vided for certain special cases (e.g., if the Xi’s are i.i.d. normal). An extensive coverage of
sequential estimation procedures can be found in Ghosh, Mukhopadhyay, and Sen (2001).

Sequential estimation implies more overhead than the two-stage procedure, because the
width of the confidence interval must be updated at each step. On the other hand, the
coverage is always less than the target and the half-width is typically less variable. To
reduce the overhead, one can update the confidence interval only at every k steps, i.e., at
steps n0, n0 + k, n0 + 2k, and so on, for some integer k > 0.

♣ Give a robust updating algorithm for the variance. See Chan, Golub, and LeVeque
(1983).

5.3 Confidence regions for vectors

Charnes (1991, 1995) provides an overview of this topic. Morrison (1990) is an excellent
reference on multivariate confidence intervals. Suppose that we want to estimate a vector
µ = (µ1, . . . , µd) of d real numbers (simultaneously), and that we can compute individual
confidence intervals I1, . . . , Id for these µj, with confidence level 1−αj, as usual. For each j,
we would have P[µj ∈ Ij] = 1− αj. Then, the probability that all intervals cover simultane-
ously their parameters, 1− α′ = P[µj ∈ Ij for each j], is generally very difficult to compute
when the Ij are correlated.

What we want is a confidence region I ⊂ Rd for the vector µ, with coverage probability
at least 1 − α, i.e., P[the random region I falls over µ] ≥ 1 − α, for some fixed value of α,
and such that the volume of I is not too large.

5.3.1 Bonferroni Inequality

The Bonferroni inequality (5.7) provides a simple but conservative lower bound on the cover-
age probability of a confidence box defined as the product of univariate confidence intervals.
Suppose that for each j, we have a confidence interval Ij with confidence level at least 1−αj
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for µj. Define the rectangular box I = {(µ1, . . . , µd) | µ1 ∈ I1, . . . , µd ∈ Id}, i.e., the cartesian
product of I1, . . . , Id, and let α =

∑d
j=1 αj < 1. Then

P[µ ∈ I] = P[µj ∈ Ij for each j]
= 1− P[µj ̸∈ Ij for some j]

≥ 1−
d∑

j=1

P[µj ̸∈ Ij]

≥ 1−
d∑

j=1

αj = 1− α. (5.7)

So I is a confidence region with confidence level at least 1− α. Several authors recommend
this procedure because it is simple. However, it could be overly conservative for large d.

5.3.2 Confidence ellipsoids

Suppose that X = (X1, . . . , Xd)
t is multinormal and that µ = E[X]. We estimate µ by

X̄n = (X̄n1, . . . , X̄nd)
t =

1

n

n∑
i=1

Xi,

where Xi is the ith replicate of X. We also estimate Σ, the covariance matrix of X, by

Σ̂n =
1

n− 1

n∑
i=1

(Xi − X̄n)(Xi − X̄n)
t.

The element σ̂2
jk of Σ̂n is the estimated covariance between Xj and Xk and ρ̂jk = σ̂2

jk/(σ̂iiσ̂kk)
is the estimated correlation.

When X is multinormal, the random variable

Fd,n−d =
n(n− d)
(n− 1)d

(X̄n − µ)tΣ̂n

−1
(X̄n − µ) (5.8)

has the F distribution with (d, n − d) degrees of freedom. To compute a confidence region
with confidence level 1 − α, one finds the constant x such that P[Fd,n−d > x] = α, and the
set of values of µ for which the quadratic form on the right side of (5.8) is less than x is the
confidence region. This region is a d-dimensional ellipsoid centered at the sample mean X̄n.
When n → ∞, dFd,n−d converges to a chi-square with d degrees of freedom, and one can
conveniently use this chi-square approximation when n is large.

In fact, when n→∞,X does not have to be multinormal. In general, we have Σ̂n
w.p.1→ Σ

and
n(X̄n − µ)tΣ̂n

−1
(X̄n − µ) ⇒ χ2(d)

when d → ∞. This can be used to construct a confidence ellipsoid for µ when n is large.
It generalizes CLT-based confidence intervals to the multivariate setting. The confidence

ellipsoid for confidence level 1−α is the set of vectors µ that satisfy n(X̄n−µ)tΣ̂n

−1
(X̄n−

µ) ≤ x, where x is the 1−α quantile of the chi-square distribution with d degrees of freedom.
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5.4 Confidence intervals for functions of expectations

Very frequently, the quantity to be estimated is not written directly as an expectation, but
can be written as a function of one or more expectations. This happens when we estimate a
variance, or a covariance, or the ratio of two expectations, for example. The delta method is
a general tool to handle this type of situation when the sample size n is large.

Example 5.4 For a simple one-dimensional case, suppose that Y1, . . . , Yn are i.i.d. with
mean µ and we want to compute a confidence interval on g(µ) for some increasing function
g. If n is large enough, we can use the CLT applied to Ȳn to obtain a confidence interval [I1, I2]
on µ. Then [g(I1), g(I2)] is a confidence interval on g(µ) with exactly the same confidence
level 1−α. This is true even though E[g(Ȳn)] ̸= g(µ) in general. For example, for g(y) = ln y,
ln(Ȳn) is a biased estimator of lnµ, but if [I1, I2] is a 95% confidence interval on µ, then
[ln I1, ln I2] is a 95% confidence interval on lnµ. □

Things become more complicated when g is a function of several expectations. A common
example is when we want a confidence interval on the ratio E[X]/E[Y ] from an i.i.d. sample
(X1, Y1), . . . , (Xn, Yn) of the pair (X, Y ). A reasonable (strongly consistent) estimator for the
ratio is X̄n/Ȳn, but how do we compute a confidence interval? The remainder of this section
will answer this type of question.

5.4.1 The delta method

If {Yn = (Y1n, . . . , Ydn), n ≥ 0} is a (deterministic) sequence of vectors converging to a vector
µ = (µ1, . . . , µd) and if g : Rd → R is a continuous function, then g(Yn) → g(µ). Suppose
now that the Yn’s are random vectors and that we are interested in the distribution of g(Yn)
for large n. More specifically, let us assume that r(n)(Yn − µ) converges in distribution
to some random variable Y , and that r(n) → ∞, when n → ∞. A special case frequently
encountered is when Yn is an average of n random vectors that obeys a central-limit theorem;
then r(n) =

√
n and Y has the d-dimensional normal distribution with mean 0 and some

covariance matrix Σy.
A key tool for studying the asymptotic distribution of g(Yn) is the delta theorem, stated

below, which is based simply on a first-order Taylor approximation of g around g(µ):

g(Yn)− g(µ) = ∇g(µ)(Yn − µ) + o(∥Yn − µ∥),

where ∇g(µ) = (∂g(µ)/∂µ1, . . . , ∂g(µ)/∂µd)
t is the gradient (vector of partial derivatives)

of g at µ, and g : Rd → R is assumed to be continuously differentiable in a neighborhood of

µ. 2 Multiplying both sides by r(n), we obtain:

Theorem 5.5 (The delta theorem). Under the above assumptions, if r(n)(Yn−µ) ⇒ Y
when n→∞, then

2From Pierre: Just differentiable might be enough provided that we have uniform integrability in a
neighborhood of g(µ). Check this.
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r(n)(g(Yn)− g(µ)) ⇒ (∇g(µ))tY as n→∞. (5.9)

More general versions of this theorem can be found, e.g., in King (1989) and Rubinstein
and Shapiro (1993).

Corollary 5.6 Suppose Yn obeys a CLT of the form
√
n(Yn−µ) ⇒ N(0,Σy) as n→∞.

This is the case, in particular, if Yn is the average of n i.i.d. random vectors with mean µ
and covariance matrix Σy. Then, the delta theorem yields the following CLT for g(Yn):

√
n(g(Yn)− g(µ))

σg
⇒ N(0, 1) as n→∞, (5.10)

where
σ2
g = (∇g(µ))tΣy∇g(µ). (5.11)

The CLT (5.10) also holds if σg is replaced by a strongly consistent estimator.

This CLT can be used to construct asymptotically valid confidence intervals for several
quantities of interest, as we will illustrate in the following subsections.

In principle, a more accurate estimate than g(Yn) could be obtained by taking another
term in the Taylor expansion of g, if g is twice continuously differentiable:

g(Yn)− g(µ) = (∇g(µ))t(Yn − µ) + (Yn − µ)tH(µ)(Yn − µ)/2 + o(∥Yn − µ∥2),

where H is the Hessian matrix of g at µ. If a good estimator of the correction term (Yn −
µ)tH(µ)(Yn − µ)/2 is available, then we can subtract it to reduce the bias.

For example, in the case where Yn = X̄n, the average of n i.i.d. random variables
X1, . . . ,Xn, then the correction term is

(X̄n − µ)tH(µ)(X̄n − µ)

2
=

1

2n2

n∑
i=1

n∑
j=1

(Xi − µ)tH(µ)(Xj − µ).

Given that E[(Xi −µ)tH(µ)(Xj −µ)] = 0 for i ̸= j, this correction term can be estimated
by

1

2n(n− 1)

n∑
i=1

(Xi − X̄n)
tH(X̄n)(Xi − X̄n).

This leads to the following estimator of g(µ), with (asymptotically) lower bias:

g(µ) ≈ g(X̄n)−
1

2n(n− 1)

n∑
i=1

(Xi − X̄n)
tH(X̄n)(Xi − X̄n). (5.12)

However, this estimator may have a larger variance and larger MSE than g(X̄n), because of
the variance of the correction, so it is not necessarily better. It also requires computation of
the Hessian, which often makes it more cumbersome to compute. Moreover, the correction
term does not change the CLT of Corollary 5.6, because it converges to zero typically as
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O(1/n), whereas the error converges as O(
√
n) in probability. That is, the correction becomes

negligible compared with the standard deviation when n is large. Thus, this correction should
be seen as a heuristic, and could be worthwhile only when n is not too large.

Example 5.5 In Example 5.4, we estimate g(µ) = log µ by log(Ȳn). Here µ has a sin-
gle dimension and we have ∇g(µ) = ∂ lnµ/∂µ = 1/µ and H contains the single ele-
ment ∂2 lnµ/∂µ2 = −1/µ2. If we assume that

√
n(Ȳn − µ)/Sn ⇒ N(0, 1) as n → ∞,

where S2
n is the empirical variance of the Yi’s, and we apply Corollary 5.6 to this situa-

tion, we obtain that
√
n(ln(Ȳn) − lnµ)/σg ⇒ N(0, 1) where σ2

g = Var[Yi]/µ
2. Given that

S2
n/(Ȳn)

2 w.p.1→ σ2
g , we also have that

√
n(ln(Ȳn) − lnµ)Ȳn/Sn ⇒ N(0, 1) when n → ∞. A

confidence interval on lnµ based on this approximation, with confidence level 1− α, would
be (ln(Ȳn) ± Φ−1(1 − α/2)Sn/(Ȳn

√
n)). This interval is based on a linear approximation of

the logarithm around Ȳn, and it differs from that of Example 5.4.
If we add the quadratic term in the Taylor expansion, then the corrected estimator

becomes

ln(Ȳn) +
1

2n(n− 1)(Ȳn)2

n∑
j=1

(Yj − Ȳn)2 = ln(Ȳn) +
1

2n(n− 1)

n∑
j=1

(Yj/Ȳn − 1)2,

and the confidence interval is simply shifted by the correction.

♣ Exercise: Try to construct a parameterized example (by selecting the distribution of
Yj in parametric form) where the variance of the correction term can be arbitrarily large.
Idea: Take µ = E[Yi] = 1, so Ȳn ≈ 1 and the correction term is approximately 1/n times the
empirical variance of the Yi’s. Then, observe that the variance of the empirical variance is
related to the fourth moment of Yi (see end of Section 5.4.3), and select a distribution of Yi
for which the second moment is 1 (say) and the fourth moment is arbitrarily large. □

5.4.2 Confidence interval for a ratio of expectations

Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. replicates of the random vector (X, Y ) and suppose we
estimate ν = E[X]/E[Y ] by

ν̂n =
X̄n

Ȳn
=

∑n
i=1Xi∑n
i=1 Yi

.

This estimator is biased, but it is easily seen to be strongly consistent by applying the strong
law of large numbers to X̄n and Ȳn.

Denote µ1 = E[X], µ2 = E[Y ], g(µ1, µ2) = µ1/µ2, σ
2
1 = Var[X], σ2

2 = Var[Y ], and
σ12 = Cov[X, Y ]. We assume that all these quantities are finite and that µ2 ̸= 0, 0 < σ2

1 <∞,
and 0 < σ2

2 < ∞. Write ν̂n = g(X̄n, Ȳn) where g(y1, y2) = y1/y2. The gradient of g is
∇g(µ1, µ2) = (1/µ2, −µ1/µ

2
2)

t.
We know from the ordinary CLT that

√
n(X̄n − µ1, Ȳn − µ2)

t ⇒ (W1,W2)
t ∼ N(0,Σ)

where
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Σ =

(
σ2
1 σ12

σ12 σ2
2

)
.

Then the delta theorem tells us that

√
n(ν̂n − ν) ⇒ (W1,W2) · ∇g(µ1, µ2) = W1/µ2 −W2µ1/µ

2
2 ∼ N(0, σ2

g) (5.13)

where

σ2
g = (∇g(µ1, µ2))

tΣ∇g(µ1, µ2)

= σ2
1/µ

2
2 + σ2

2µ
2
1/µ

4
2 − 2σ12µ1/µ

3
2

= (σ2
1 + σ2

2ν
2 − 2σ12ν)/µ

2
2. (5.14)

To compute a confidence interval for ν using this limit theorem, we need an estimator
of the variance constant σ2

g . Any consistent estimator will do and will yield an asymptot-
ically valid confidence interval for ν. An obvious candidate is the variance estimator σ̂2

g,n

obtained by replacing the mean, the variances, and the covariance in (5.14) by their sample
counterparts. That is,

σ̂2
g,n = (σ̂2

1 + σ̂2
2 ν̂

2
n − 2σ̂12ν̂n)/(Ȳn)

2, (5.15)

where

σ̂2
1 =

1

n− 1

n∑
j=1

(Xj − X̄n)
2,

σ̂2
2 =

1

n− 1

n∑
j=1

(Yj − Ȳn)2,

σ̂12 =
1

n− 1

n∑
j=1

(Xj − X̄n)(Yj − Ȳn).

Putting all of this together, we obtain the following CLT for ratios of expectations:

Theorem 5.7 Under the assumptions made in this example, we have that

√
n(ν̂n − ν)
σ̂g,n

⇒
√
n(ν̂n − ν)
σg

⇒ N(0, 1) as n→∞. (5.16)

The classical confidence interval for ν, with nominal confidence level 1 − α, is then the
interval centered at ν̂n and with half-width r = z1−α/2σ̂g,n/

√
n. More refined methods for

computing a confidence interval on a ratio are discussed in Example 5.8.
A more direct approach for deriving the CLT in (5.16), for the special case of a ratio of

expectation, is as follows. Define the random variables

Zj = Xj − νYj,

which are i.i.d. with mean 0 and variance
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σ2
z = Var[Zj] = Var[Xj] + ν2Var[Yj]− 2νCov(Xj, Yj). (5.17)

By applying the ordinary CLT to the Zj’s, we get

√
nȲn(ν̂n − ν)

σz
=

√
nZ̄n

σz
⇒ N(0, 1) as n→∞. (5.18)

This is equivalent to (5.16), because σz/Ȳn
w.p.1→ σz/µ2 = σg when n → ∞. The obvious

estimator of σ2
z is

σ̂2
z,n = σ̂2

1 + σ̂2
2 ν̂

2
n − 2σ̂12ν̂n. (5.19)

5.4.3 Confidence Interval on the Variance

Normal case. In the case where X1, . . . , Xn are i.i.d. normal with variance σ2, the classical
way of computing a confidence interval on σ2 is via Theorem 5.1, which says that (n−1)S2

n/σ
2

has the chi-square distribution with n− 1 degrees of freedom. To determine a 100(1− α)%
confidence interval for σ2, select two numbers x1 and x2 such that

P[x1 < χ2
n−1 < x2] = 1− α,

where χ2
n−1 is a chi-square random variable with n − 1 degrees of freedom. It is customary

(but not necessary) to select x1 and x2 so that

P[χ2
n−1 < x1] = P[χ2

n−1 > x2] = α/2.

Define the confidence interval as

[I1, I2] = [(n− 1)S2
n/x2, (n− 1)S2

n/x1]. (5.20)

One has

P[I1 ≤ σ2 ≤ I2] = P[(n− 1)S2
n/x2 ≤ σ2 ≤ (n− 1)S2

n/x1]

= P[x1 ≤ (n− 1)S2
n/σ

2 ≤ x2]

= 1− α,

so the interval has the correct coverage under the normality assumption.

♣ Make figure.
Table 5.1 provides the boundaries (n − 1)/x2 and (n − 1)/x1 of a confidence interval

on σ2/S2
n, for a few values of α and n. They indicate, for example, that for n = 1000, a

90% confidence interval on σ2 would be [0.930S2
n, 1.077S

2
n], whereas for n = 30 it would be

[0.66S2
n, 1.56S

2
n].

Large-sample case. If the distribution of the Xi’s differ significantly from the normal,
then (n− 1)S2

n/σ
2 no longer has the chi-square distribution, and a confidence interval based

on the chi-square may have poor coverage. If n is large, we can use the delta theorem to
construct a confidence interval as follows. Write
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Table 5.1. The boundaries (n − 1)/x2 and (n − 1)/x1 of a confidence interval on σ2/S2
n for some

values of α and n.

α = 0.02 α = 0.10
n (n− 1)/x2 (n− 1)/x1 (n− 1)/x2 (n− 1)/x1
10 0.388 3.518 0.492 2.284
30 0.570 1.939 0.663 1.568
100 0.729 1.413 0.796 1.270
300 0.831 1.216 0.876 1.146
1000 0.902 1.111 0.930 1.077

(n− 1)S2
n

nσ2
= g(Y1n, Y2n) =

(Y2n − Y 2
1n)

σ2

where Y1n = X̄n, Y2n = (1/n)
∑n

i=1X
2
i , and g(y1, y2) = (y2 − y21)/σ2. We have ∇g(y1, y2) =

(−2y1, 1)/σ2. Denoting µk = E[Xk
i ], this gives µ = (µ1, µ2)

t, g(µ) = (µ2 − µ2
1)/σ

2, ∇g(µ) =
(−2µ1, 1)/σ

2,

Σy =

(
Var[Xi] Cov[Xi, X

2
i ]

Cov[Xi, X
2
i ] Var[X2

i ]

)
=

(
µ2 − µ2

1 µ3 − µ1µ2

µ3 − µ1µ2 µ4 − µ2
2

)
,

and by computing (5.11), we find

σ2
g = E[(Xi − µ)4]/σ4.

If M4 = (1/n)
∑n

i=1(Xi − X̄n)
4 is the empirical fourth centered moment, 3 then we have

the CLT:
√
n(S2

n/σ
2 − 1)√

M4/S4
n

⇒
√
n(S2

n/σ
2 − 1)

σg
⇒ N(0, 1) as n→∞. (5.21)

In this CLT, M4/S
4
n can of course be replaced by any consistent estimator of the standard-

ized fourth moment E[(Xi − µ)4]/σ4 (the excess kurtosis plus 3). Unfortunately, however,
estimators of the fourth moment are sometimes very noisy.

5.4.4 Confidence Intervals for the Ratio of Two Variances

Normal case. The need to compute a confidence interval on the ratio of two variances
occurs, for example, in the context of analysis of variance and for comparing the efficiencies
of two different estimators. Suppose that X1, . . . , Xm are i.i.d. normal with variance σ2

x, that
Y1, . . . , Yn are i.i.d. normal with variance σ2

y , that the Xi’s are independent of the Yj’s, and
that the sample variances are S2

x,m and S2
y,n, respectively. Then

Fm−1,n−1 =
S2
x,m/σ

2
x

S2
y,n/σ

2
y

=
S2
x,mσ

2
y

S2
y,nσ

2
x

3From Pierre: We also need M4 to have finite expectation and perhaps some form of uniform integrability;
check this.
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has the F distribution with (m− 1, n− 1) degrees of freedom. This follows directly from the
fact that Fm−1,n−1 is a ratio of two independent chi-square random variables divide by their
degrees of freedom m − 1 and n − 1, respectively. To determine a 100(1 − α)% confidence
interval for σ2

x/σ
2
y, select x1 and x2 such that

P[x1 < Fm−1,n−1 < x2] = 1− α

and define the confidence interval as

[I1, I2] =

[
1

x2

S2
x,m

S2
y,n

,
1

x1

S2
x,m

S2
y,n

]
.

Example 5.6 Suppose that two unbiased estimators X and Y of a quantity µ have known
computing costs C(X) and C(Y ), respectively. Independent i.i.d. samples of size m for X
and size n for Y have sample variances S2

x,m and S2
y,n, respectively. If we suppose that X

and Y have the normal distribution, a confidence interval [I1, I2] of confidence level 1 − α
for σ2

x/σ
2
y can be computed as just explained, using the F distribution. This provides a

confidence interval for the ratio of efficiencies Eff[Y ]/Eff[X] = σ2
xC(X)/[σ2

yC(Y )], given by
[I1C(X)/C(Y ), I2C(X)/C(Y )]. □

Large-sample case. ♣ For large n, we can also use the delta theorem with µ =
(µx,1, µx,2, µy,1, µy,2)

t where µx,j = E[Xj], µy,j = E[Y j], g(µ) = [µx,2 − µ2
x,1]/[µy,2 − µ2

y,1].

5.4.5 Confidence intervals on the covariance and correlation

Sometimes, we might want to estimate the covariances or correlations between the perfor-
mance measures for their own sake. For example, the covariance between the average wait of
corporate customers and the average wait of private customers in a day (Charnes 1991), or
between the average waiting time and number of abandonments in the call center example.

♣ To compute a confidence interval on Cov[X, Y ] for large n, we can use the delta
theorem with µ = (µx, µx, µxy)

t where µx = E[X], µy = E[Y ], µxy = E[XY ], g(µ) =
µxy − µxµy.

♣ To test absence of correlation: von Newmann test; see Alexopoulos (1998), page 253.

5.5 Relative performance: comparing systems

5.5.1 Confidence intervals on the difference between two means

We have n1 i.i.d. observations X11, . . . , X1,n1 , with mean µ1, and n2 i.i.d. observations
X21, . . . , X2,n2 , with mean µ2. We want a confidence interval on the difference µ2 − µ1. The
paired-t method and the Welch method are two classical approaches for computing such an
interval, under the assumption that the Xji’s are normally distributed. In the Welch method,
the X1i’s must be independent of the X2i’s, whereas the paired-t method allows correlation
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but requires n1 = n2. Both methods are based on a normality assumption. Which of the
two methods is most appropriate depends on the situation, but in simulation, the paired-t
method is used much more frequently, because normally we prefer to use common random
numbers and it is easy to have n2 = n1.

The paired-t method. Let n1 = n2 = n. Define Zi = X2i −X1i for 1 ≤ i ≤ n,

Z̄n =
1

n

n∑
i=1

Zi, and S2
n =

1

n− 1

n∑
i=1

(Zi − Z̄)2.

Assume that the Zi are approximately i.i.d. normal. Then,
√
n[Z̄n − (µ2 − µ1)]/Sn follows

approximately the Student-t distribution with n − 1 degrees of freedom. It is then easy to
compute a confidence interval on µ2 − µ1, just as in Section 5.2.1.

The X1i’s need not be independent of the X2i’s in this setup. Regardless of the distribu-
tion, one has

Var[Zi] = Var[X2i] + Var[X1i]− 2Cov[X1i, X2i],

so it is better if Cov[X1i, X2i] > 0 than if (X1i, X2i) are independent, because this reduces the
variance of Z̄n. For this reason it is common practice to deliberately induce such a positive
correlation when estimating a difference (see Sections 1.7 and 6.4).

If we apply the delta theorem to the function g(µ1, µ2) = µ2−µ1, we find σ
2
g = Var[Zi] and√

n[Z̄n− (µ2−µ1)]/Sn ⇒ N(0, 1), which agrees with the fact that the Student distribution
converges to the standard normal when n→∞.

The Welch method. For this method, the X1i and X2i are assumed independent and
normally distributed, but one may have n1 ̸= n2. This setup can be useful, for example, to
compare a real-life system with a simulation model. Define

X̄(k) =
1

nk

nk∑
i=1

Xki and S2
(k) =

1

nk − 1

nk∑
i=1

(Xki − X̄(k))
2,

for k = 1, 2. Then,
X̄(2) − X̄(1) − (µ2 − µ1)

[S2
(1)/n1 + S2

(2)/n2]1/2

has approximately the Student distribution with a number of degrees of freedom approxi-
mately equal to

ℓ̂ =
[S2

(1)/n1 + S2
(2)/n2]

2

[S2
(1)/n1]2/(n1 − 1) + [S2

(2)/n2]2/(n2 − 1)
.

5.5.2 Comparing more than two systems

Suppose we want to compare d > 2 pairs of systems. To obtain simultaneous confidence
intervals for d differences, we can use the Bonferroni inequality (Section 5.3.1). With a
confidence level of 1 − α/d for each individual interval, the overall confidence that all the
intervals cover simultaneously the true differences is at least 1−α. Note that the d individual
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confidence intervals may be computed by different techniques, with different sample sizes,
etc.

♣ Add a section on Ranking and selection. References: Law and Kelton (2000),
Goldsman, Nelson, and Schmeiser (1991), Goldsman and Nelson (1998), Dudewicz (1995).

5.6 Estimating a root or a minimum of a function

Confidence intervals are often sought for quantities that are not expressed as the mean or
variance of a random variable. Estimating the root or the maximum of a function are prime
examples of this.

Suppose that we want to estimate a root θ = θ∗ ∈ R to the equation f(µ, θ) = 0, where
µ is unknown and estimated by Yn. We estimate θ∗ by θ̂n, a root of f(Yn, θ) = 0. Thus, we
have f(µ, θ∗) = f(Yn, θ̂n) = 0. If f is differentiable around (µ, θ∗) and if (Yn, θ̂n) is close
enough to (µ, θ∗), Taylor expansions around (µ, θ∗) and around (Yn, θ̂n) give

f(µ, θ̂n) = ∇θf(µ, θ
∗)(θ̂n − θ∗) + o(|θ̂n − θ∗|)

and

f(µ, θ̂n) = (∇µf(Yn, θ̂n))
t(Yn − µ) + o(∥Yn − µ∥),

respectively. If we assume that r(n)(Yn−µ) ⇒ Y as in the delta method, then by equaling
these two expressions and multiplying by r(n), we obtain

r(n)∇θf(µ, θ
∗)(θ̂n − θ∗) ⇒ r(n)(∇µf(Yn, θ̂n))

t(Yn − µ) ⇒ (∇µf(µ, θ
∗))tY

when n→∞.
In the common situation of Corollary 5.6, where

√
n(Yn − µ) ⇒ N(0,Σy) as n→∞,

then we obtain the following CLT for θ̂n:

√
n(θ̂n − θ∗)

σ̂θ
⇒ N(0, 1) as n→∞, (5.22)

where

σ2
θ =

(∇µf(µ, θ
∗))tΣy∇µf(µ, θ

∗))

∇θf(µ, θ∗)
(5.23)

as n→∞, and the same holds when σ2
θ is replaced by a strongly consistent estimator, say

σ̂2
θ =

(∇µf(Yn, θ̂n))
tΣ̂y∇µf(Yn, θ̂n))

∇θf(Yn, θ̂n)
(5.24)

if this estimator is strongly consistent.
Estimating the minimum of a smooth one-dimensional function f is equivalent to finding

a root of its derivative, if we assume that f is strictly decreasing on the left of the mini-
mum, and strictly increasing on the right. Estimating the maximum is similar if f is strictly
increasing on the left and strictly decreasing on the right.
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5.7 Estimating quantiles

A prime example of estimating the root of a function is quantile estimation, as we saw briefly
in Example 1.12. Consider a random variable X with distribution function F . For 0 ≤ q ≤ 1,
the qth quantile of this distribution is defined as

ξq = F−1(q) = inf{x : F (x) ≥ q}. (5.25)

To estimate ξq, the general idea is estimate F by some function F̃ , and estimate the quantile
ξq by F̃

−1(q). There is a wide variety of choices for F̃ .
Let X(1), . . . , X(n) be a sample of n i.i.d. replicates of X, sorted by increasing order, and

let F̂n be their empirical distribution, defined as in Eq. (2.18), with a jump of size 1/n at
each observation. Perhaps the most straightforward estimator of ξq is the empirical quantile

ξ̂q,n = F̂−1
n (q) = inf{x : F̂n(x) ≥ q} = X(⌈nq⌉). (5.26)

This estimator is biased in general, but it is strongly consistent and obeys a CLT:

Theorem 5.8 (e.g., Serfling 1980, pages 75 and 77, or David 1981, Theorem 9.2, or
Schervish 1995, Section 7.2).

(i) For each q, ξ̂q,n
w.p.1→ ξq when n→∞.

(ii) If X has a strictly positive and finite density f (the derivative of F ) in a neighborhood
of ξq, then √

n(ξ̂q,n − ξq)f(ξq)√
q(1− q)

⇒ N(0, 1) as n→∞. (5.27)

4

This CLT indicates that ξ̂q,n is a noisy estimator when the density is small around ξq. The
intuitive explanation is simple: when the derivative of F is small, a small change in u brings
a large change in x = F−1(u). In principle, we could use (5.27) to compute a confidence
interval on ξq; however this requires a good estimator of the density f(ξq), which is usually
not easy to obtain when X is the output of a complicated simulation model.

A non-asymptotic way of computing a confidence interval for ξq is based on the following
reasoning. Assume that P[X = ξq] = 0 (i.e., F is continuous at ξq). Then, since P[X < ξq] =
q, the number B of observations X(i) smaller than ξq is a binomial random variable with
parameters (n, q). If 1 ≤ j < k ≤ n, one has X(j) < ξq ≤ X(k) if and only if j ≤ B < k.
Thus,

P[X(j) < ξq ≤ X(k)] = P[j ≤ B < k] =
k−1∑
i=j

(
n

i

)
qi(1− q)n−i.

4From Pierre: This can be derived by using the Delta Theorem with g(µ) = F−1(q). See
freakonometrics.hypotheses.org/2352 or www.math.mcgill.ca/dstephens/OldCourses/556-2006/

Math556-Median.pdf.
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For given n, q, and α, if we want a two-sided confidence interval, we can select values of j
and k such that this probability is close to the desired confidence level 1−α, and (k+ j)/2 is
not too far from nq. The confidence interval is then (X(j), X(k)). For a one-sided confidence
interval, e.g., of the form [I1,∞), we can take (X(j), ∞), where j satistifes P[B < j] ≈ α.

When n is large and q is not too close to 0 or 1, we can approximate the binomial
distribution of B by the normal. That is, (B − nq)/

√
nq(1− q) ≈ Z where Z ∼ N(0, 1). In

this case, for a two-sided interval, we obtain j = ⌊nq + 1− δ⌋ and k = ⌊nq + 1 + δ⌋, where
δ =

√
nq(1− q)Φ−1(1− α/2). 5

To improve the quality of the quantile estimator, we may replace the step function F̂n

by a smoother estimator of F in (5.26). For example, one could think of using one of the
quasi-empirical distributions discussed in Section 2.9.1, or the distribution that corresponds
to a kernel density estimator. Then, the estimated quantile is not necessarily equal to one of
the observations. In all these cases, the quantile estimator remains biased.

Avramidis and Wilson (1998) consider for instance the quantile estimator ξ̃q,n ob-
tained when F is estimated by the piecewise-linear function F̃n that interpolates the points
{(X(i), (i − 1/2)/n), i = 1, . . . , n}, that is linear between these points, and has jumps of
size 1/2 at X(1) and at X(n). They show that the bias and the variance are in O(1/n) for

both ξ̂q,n and ξ̃q,n, so the squared bias becomes negligible compared with the variance (e.g.,
in the MSE expression) for large n. They also show both theoretically and empirically that
ξ̃q,n typically has less bias than ξ̂q,n, especially when ξq happens to be in an area where the
density is small (for example, in the tail of the distribution).

For more on quantile estimation, the reader may consult Conover (1980), David (1981),
Hogg and Craig (1995), Avramidis and Wilson (1998) and Weron (2004).

Example 5.7 Banks, mutual funds, pension funds, and insurance companies have huge
amounts of money to invest in different assets. Their investment portfolio is the vector giving
the number of units of each asset they have. It is good practice to diversify the portfolio,
i.e., avoid putting a large percentage of the fund on a single asset (or on highly-correlated
assets), to reduce the risk of a big loss in the event of a large drop in the value of this single
asset.

Managers and regulators of these institutions are very much interested in measuring the
risk of investment portfolios. One simple and widely used measure is the value-at-risk (VaR),
defined as the value xp such that P[L > xp] = p, for a fixed probability p, where L is the
decrease in the value of the portfolio over a given (fixed) time horizon. In other words, if V (ζ)
is the portfolio value at time ζ, and T is the time horizon, then the VaR xp is the (1− p)th
quantile of the distribution of L = V (0)−V (T ). A popular value of p is p = 0.01. Regulatory
agencies may require the banks to compute their VaR over a two-week horizon, for example.
For insurance companies and pension funds, the time horizon is typically much longer. The
widespread use of the VaR as the main measure of risk is certainly open to well-deserved
criticism: a single quantile only tells a small amount of information about the distribution
of L. For example, if x0.01 = 107 dollars, then all we know is that we have 1% chance of
loosing more than 10 million dollars. We may have 0.5% chance of loosing 10 billion dollars,
or maybe the maximum we can loose is 20 million dollars, we do not know. A complementary

5From Pierre: Add details here. Exercise? Why the +1 in both places?
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measure such as E[L | L > xp], the expected loss conditional on loosing more than the VaR,
for example, would provide more information.

To estimate the VaR, a stochastic model must be built to describe the evolution of the
vector of asset prices, whose coordinates are generally dependent. A portfolio may contain
several thousand assets. A common way of reducing the dimension is to define a model where
a stochastic process describes the evolution of a (smaller) vector of risk factors, and where
the value of each asset is a predefined function of the values of the risk factors, with some
added noise. Of course, reliable and accurate models for the evolution of asset prices are more
difficult to obtain for longer time horizons. See, e.g., Weron (2004) for further details. There
are models for which the VaR can be computed exactly or approximately by analytic formulas
or numerical methods. But in many cases, it has to be estimated by simulation. For small
p, this amounts to estimating a quantile in the tail of the distribution, and straightforward
Monte Carlo is rather inefficient for doing this because few observations will fall in the tail.
Importance sampling is an appropriate method for improving the efficiency in this context.
The idea is to change the probability laws of the model in a way that loosing more than xp
is no longer a rare event. We will return to this in Chapter 6. □

5.8 Functional estimation

One might be interested in estimating the entire distribution (or density) of a random variable
X instead of only its expectation or a specific quantile. For this, several form of quasi-
empirical distributions and density estimators are available (see Sections 2.9 and 2.9.4).
However, a confidence interval for the entire function is generally difficult to obtain.

♣ To be continued.
Another example of functional estimation is when the model depends on a parameter θ,

and we want to estimate µ(θ) = Eθ[X] as a function of θ, where Eθ is the expectation for
the given value of θ.

5.9 Bootstrap confidence intervals

A general class of approaches for constructing confidence intervals (and more generally for
estimating the distribution of some estimator) without assuming any particular distribution
for the observations are based on the bootstrap principle. These are in fact Monte Carlo
methods that resample from the original sample to estimate the distribution of interest.
This is a primary example of using simulation for statistics, as opposed to using statistics
for simulation (which is what most of this chapter is about).

Basic nonparametric bootstrap. Suppose we have an i.i.d. sample of random vectors
X1, . . . , Xn from distribution F in Rd and we use Y = g(X1, . . . , Xn) as an estimator of
some unknown real-valued quantity θ. For example, if d = 1, we may have Y = X̄n with
θ = µ, or Y = S2

n with θ = σ2, but there are many other possibilities. (The Xi’s are not in
boldface but they can be either scalars of vectors.) We do not assume that E[Y ] = θ. On the
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other hand, we assume that Y does not change when we permute the observations Xi, so we
may rewrite, for example, Y = g(X(1), . . . , X(n)) if the Xi are real-valued.

Let Kn(F, ·) be the distribution function of the error Y − θ :

Kn(F, z) = P[Y − θ ≤ z] for z ∈ R.

If we knew this distribution, an exact confidence interval for θ at level 1− α1 − α2 could be
computed as

(I1, I2) = (Y −K−1
n (F, 1− α1), Y −K−1

n (F, α2)), (5.28)

where K−1
n (F, q) is the qth quantile of the distribution Kn(F, ·). Indeed, one has P[I1 > θ] =

P[Y − θ > K−1
n (F, 1−α1)] = 1−Kn(F, K

−1
n (F, 1−α1)) = α1. Similarly, P[I2 < θ] = α2. For

a one-sided interval, it suffices to take α1 = 0 or α2 = 0.
But in most practical situations, the distribution function Kn(F, ·) of Y − θ is unknown

and often quite complicated. How can we have an idea of that distribution? Conceptually,
in the case where E[Y ] = θ, we could think of replicating the experiment to obtain m i.i.d.
copies of Y , say Y1, . . . , Ym, and look at the empirical distribution of Yj−Ȳm for j = 1, . . . ,m.
This solution is generally unacceptable, because if we could obtain an i.i.d. sample of size
mn, we would rather use it to compute an estimator Ymn based on all mn observations, and
we are back to the same problem, with n replaced by mn.

Let x1, . . . , xn be the values taken by the random variables X1, . . . , Xn and let y =
g(x1, . . . , xn). The idea of the bootstrap is to obtain “simulated” additional copies of Y by
resampling from the same observations x1, . . . , xn. The basic nonparametric bootstrap pro-
cedure works as follows. Draw n random observations X∗

1 , . . . , X
∗
n with replacement from

{x1, . . . , xn} (thus, X∗
1 , . . . , X

∗
n is an i.i.d. sample of size n taken from the empirical distri-

bution F̂n defined in Section 2.9) and compute Y ∗ = g(X∗
1 , . . . , X

∗
n). Repeat this m times

(with the same F̂n), independently, and let Y ∗
1 , . . . , Y

∗
m be the m copies of Y ∗ thus obtained.

What we are actually doing is replicating the experiment, but assuming that the observations
Xi have distribution F̂n instead of F . Resampling observations from F̂n is typically much
cheaper than making new simulation runs to generate observations from F , especially when
each simulation run involves a lot of computations.

Let K̂n,m denote the empirical distribution of Y ∗
1 − y, . . . , Y ∗

m − y. When m → ∞, this
distribution function converges w.p.1 to the distribution function of Y ∗−y, which happens to
be Kn(F̂n, ·). The procedure returns the confidence interval obtained after replacing Kn(F, ·)
by K̂n,m in (5.28), namely

(y − K̂−1
n,m(1− α1), y − K̂−1

n,m(α2)). (5.29)

This is equivalent to replacing F by F̂n in (5.28), and then approximating Kn(F̂n, ·) by
K̂n,m. Each of these two approximations is a source of error. The second error vanishes when
m→∞ and the first vanishes when n→∞.

Observe that the qth quantile of the empirical distribution K̂n,m is Y ∗
(⌈mq⌉) − y, where

Y ∗
(1), . . . , Y

∗
(m) are the Y ∗

j sorted by increasing order. Thus, the confidence interval in (5.29)
can be rewritten as

(2y − Y ∗
(⌈m(1−α1)⌉), 2y − Y

∗
(⌈mα2⌉)). (5.30)

There are situations where K−1
n (F̂n, ·) can be computed in closed form, so it can be used

in (5.29) in place of K̂−1
n,m and there is no need to perform the m bootstrap simulations. This
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eliminates one source of error. One example of this is when Xj has a continuous univariate
distribution and we want a two-sided confidence interval on its mean µ = E[Xj]. Explicit
formulas for the confidence interval boundaries in this case are given by Hall (1988), page
945. These formulas involve the first four empirical moments of the Xj (the mean, variance,
skewness, and kurtosis).

Nonparametric bootstrap-t. There are many other types of bootstrap procedures. The
nonparametric bootstrap-t is one variant that often works better than the basic bootstrap,
but it requires an estimator of the variance of Y . The difference is that it works with the
distribution Jn(F, ·) of the studentized statistic (Y − θ)/S, where S2 = h2(X1, . . . , Xn) is an
estimator of Var[Y ]. In this case, an exact confidence interval of level (1 − α1 − α2) for θ
would be

(I1, I2) = (Y − J−1
n (F, 1− α1)S, Y − J−1

n (F, α2)S). (5.31)

The nonparametric bootstrap-t algorithm generates n observations X∗
1 , . . . , X

∗
n for each of

the m bootstrap samples as before, but this time computes Y ∗ = g(X∗
1 , . . . , X

∗
n), S

∗ =
h(X∗

1 , . . . , X
∗
n), and Z

∗ = (Y ∗ − y)/S∗. Let Z∗
1 , . . . , Z

∗
m be the m replicates of Z∗ and Ĵn,m

their empirical distribution. To compute the confidence interval, we simply replace Jn(F, ·)
by Ĵn,m(·) in (5.31). This gives the interval

(I1, I2) = (y − Ĵ−1
n,m(1− α1)S, y − Ĵ−1

n,m(α2)S) (5.32)

= (y − Z∗
(⌈m(1−α1)⌉)S, y − Z

∗
(⌈mα2⌉)S).

Coverage and width. Suppose that m = ∞, θ = g(E[Xi]) and Y = g(X̄n) where g is a
smooth function, and the asymptotic variance of Y is σ2 = h2(E[Xi])/n for a fixed function
h. The fact that the variance must be a function of E[Xi] is not restrictive, because we
can add artificial components to the vector Xi as needed. For instance, if θ = E[Wi] and
σ2 = Var[Wi] for a univariate random variable Wi, then we can set Xi = (Wi,W

2
i ).

For the two types of bootstrap confidence intervals discussed so far, we may distinguish
the one-sided and two-sided intervals. For each of these four types of intervals, under the
above assumptions and additional regularity conditions on the distribution F detailed in his
paper, Hall (1988) has shown that the coverage error of a confidence interval of level 1− α
converges as

n−γp(z1−α)ϕ(z1−α) +O(n−γ−1/2),

where p is a polynomial, γ is a constant, and both depend only on the type of confidence
interval considered, ϕ is the standard normal density, and z1−α is the (1 − α)th quantile
of the standard normal distribution. One has γ = 1/2 for the one-sided basic bootstrap
confidence interval and γ = 1 for the other three types of intervals. Thus, in the one-
sided case, the bootstrap-t interval has a much better asymptotic behavior than the basic
bootstrap. Empirically, the bootstrap-t often performs better than the basic bootstrap even
for two-sided intervals. But it can be used only when a good variance estimator is available.

Hall (1986) has also shown that the choice of m has little impact on the coverage error,
but that a smallm gives a larger variance for the width of the confidence interval. In practice,
a typical value is m = 1000.
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Other types of bootstraps. The nonparametric basic bootstrap and bootstrap-t were
constructed by replacing F by F̂n. But as we have seen earlier, there can be better estimators
of F than F̂n. This includes, for example, the smoother quasi-empirical distributions, as well
as estimators of F based on density estimators. These estimators of F can be used in place of
F̂n to define improved variants of the bootstrap. On the other hand, the bootstrap sampling
may become significantly more expensive with these smoother distributions.

In parametric bootstrap procedures, F is assumed to belong to a class of distributions Fθ

parameterized by θ. Let θ̂n = Y = g(X1, . . . , Xn) be an estimator of θ computed from the
data. Each bootstrap sample is generated from the parametric distribution Fθ̂n

instead of

from F̂n, and is used to estimate the parameter θ by Y ∗ = g(X∗
1 , . . . , X

∗
n). The distribution

of these m bootstrap parameter estimates Y ∗
1 , . . . , Y

∗
m is used to make inference about the

distribution of the estimator θ̂n in the same way as for the nonparametric bootstrap. In
particular, a confidence interval on θ is obtained from (5.29) for the parametric basic bootstrap
and by (5.32) for the parametric bootstrap-t.

Other bootstrap confidence interval methods studied in the literature include the per-
centile method, its improvements the BC, BCa, and ABC methods, double bootstrap tech-
niques, etc. We refer the reader to Efron and Tibshirani (1994), Hall (1992), Léger, Politis,
and Romano (1992), and Chernick (1999) for more extensive coverages.

Example 5.8 Choquet, L’Ecuyer, and Léger (1999) have studied and experimented different
types of bootstrap methods for computing a confidence interval for a ratio of expectations.
They recommend a nonparametric bootstrap-t procedure in which they use the mean and
variance estimators ν̂n and σ̂g,n defined here. In their experiments, this bootstrap performed
at least as well as all the other methods they tried, and much better than the classical
confidence interval described in Section 5.4.2, especially for one-sided intervals. □

♣ Examples: (1) CI for highly non-normal case; (2) ratio of expectations; (3) P (X > Y ),
see Léger, Politis, and Romano (1992), page 379. (4) parametric: CI on λ for exponential dist.
(5) Estimating θ for a U(0, θ) distribution: nonparametric bootstrap fails, but parametric
bootstrap ok.

♣ See Schervish (1995), Section 5.3, for additional insight, examples, and exercises.

5.10 Estimation of Steady-State Performance: The Setup

In this section, we switch our attention to the problem of estimating a long-term average
over an infinite time horizon. Our analysis is for a discrete time model, although we briefly
outline how everything translates to the continuous-time setting. We start by assuming
(momentarily) that the process is stationary. The initial bias problem will be dealt with
later.
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5.10.1 Autocorrelation in stationary stochastic processes

Asymptotic variance constant. Consider a weakly stationary discrete-time process
{Ci, i ≥ 1}, where E[Ci] = µ, Var[Ci] = σ2 > 0, and ρk is the autocorrelation of lag
k, defined in Section 2.17. Suppose we estimate the mean µ by the average of the first n
observations,

C̄n =
1

n

n∑
i=1

Ci.

Then, E[C̄n] = µ and

Var[C̄n] =
1

n2

n∑
i=1

n∑
j=1

Cov[Ci, Cj] =
σ2(1 + γn)

n
=
σ2
n

n
(5.33)

where σ2
n = σ2(1 + γn) and

γn =
2

n

n∑
i=1

n∑
j=i+1

ρj−i =
2

n

n−1∑
k=1

(n− k)ρk. (5.34)

Let

γ
def
= lim

n→∞
γn = 2

∞∑
k=1

ρk (5.35)

if this limit exists. If γ <∞, then Var[C̄n] ∈ O(1/n), with asymptotic variance constant

σ2
∞

def
= lim

n→∞
σ2
n = lim

n→∞
nVar[C̄n] = σ2(1 + γ). (5.36)

The constant γ can be interpreted as an overall measure of autocorrelation between the Ci’s.
The ratio σ2

∞/σ
2 = 1 + γ is sometimes called the variance inflation factor. When the Ci’s

are i.i.d. one has γ = 0.
6

Central-limit theorems. If C̄n obeys a CLT and if a consistent estimator σ̂2
n is available

for σ2
∞, one can compute an asymptotically valid confidence interval for µ by exploiting the

fact that
√
n(C̄n − µ)/σ̂n ⇒ N(0, 1) when n → ∞. At this point, we need the following

two things: (a) conditions under which such a CLT holds and (b) a good estimator of σ2
∞.

Proposals for (b) are discussed later in this chapter. For (a), we will find it more convenient
to work with a functional CLT (FCLT), stated in Assumption 5.1.

We now drop the explicit assumption that the process {Cj, j ≥ 1} is stationary. The
FCLT assumption below implies a form of asymptotic stationarity. We will see later how
this assumption can be verified in practice. For arbitrary constants µ and σ∞ and for each
n, we define the continuous-time process

Wn(t) =
⌊nt⌋(C̄⌊nt⌋ − µ)

σ∞
√
n

, 0 ≤ t ≤ 1, (5.37)

6From Pierre: Here, perhaps we should start with an ergodic Markov chain over a finite number of states.
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where C̄0 = µ by convention, so Wn(0) = 0. Let D[0, 1] denote the space of right-continuous
real-valued functions over [0, 1], with left-hand limits.

Assumption 5.1 (FCLT) For some finite constants µ and σ∞ > 0, as n→∞, the process
Wn converges in distribution in D[0, 1] to a standard Brownian motion process W . □

This assumption implies of course that Wn(1) ⇒ W (1), which immediately implies the
ordinary CLT: √

n(C̄n − µ)
σ∞

= Wn(1) ⇒ W (1) ∼ N(0, 1). (5.38)

If a consistent estimator σ̂2
n of σ2

∞ is available, we also have

√
n(C̄n − µ)
σ̂n

⇒ N(0, 1) (5.39)

and this can be used to construct an asymptotically valid confidence interval for µ.
The FCLT assumption implies the following limit theorem (for a proof, see Foley and

Golsman 1999, Theorem 1). Define the process

Tn(t) =
⌊nt⌋(C̄n − C̄⌊nt⌋)

σ∞
√
n

, 0 ≤ t ≤ 1. (5.40)

Note that Tn(0) = Tn(1) = 0.

Theorem 5.9 Under Assumption 5.1, the process Tn converges in distribution to the process
B defined by B(t) = tW (1) − W (t), which is a standard Brownian bridge independent of
W (1).

Verifying the FCLT assumption. Assumption 5.1 and Theorem 5.9 give a lot of infor-
mation on the behavior of the average process {C̄j, j ≥ 1}, but how can we verify the FCLT
assumption? It turns out that this assumption holds under great generality, provided that
the Cj’s do not have strong long-range dependence. A classical sufficient condition that im-
plies Assumption 5.1 can be expressed in terms of the phi-mixing property, which we now
define. Roughly speaking, phi-mixing means that {Cj+n, Cj+n+1, . . . } becomes independent
of {C1, . . . , Cj} in the limit when n→∞.

Definition 5.1 For 1 ≤ i ≤ j ≤ ∞, let Fi,j denote the sigma-field generated by Ci, . . . , Cj,
which can be interpreted as the set of events whose occurence can be determined by observing
only Ci, . . . , Cj. The process {Cj, j ≥ 1} is called phi-mixing if there is a sequence of real
numbers {φn, n ≥ 1} decreasing to 0, such that for each j ≥ 1 and n ≥ 1, each E1 ∈ F1,j

with P[E1] > 0, and each E2 ∈ Fj+n,∞,

|P[E2 | E1]− P[E2]| ≤ φn.

□
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Theorem 5.10 (Billingsley 1968, Theorem 20.1) If {Cj, j ≥ 1} is strongly stationary and
phi-mixing with

∑∞
n=1

√
φn <∞, then

∑∞
k=1 |ρk| <∞, γ <∞, and Assumption 5.1 holds.

Assumption 5.1 can also hold under less restrictive conditions. For example, the process
{Cj, j ≥ 1} can be stationary only in the limit as n→∞. Other sets of sufficient conditions
for that FCLT are mentioned, e.g., in Glynn and Iglehart (1990).

Lyapunov test functions. Phi-mixing is one of the weakest conditions, but it is generally
hard to verify directly. We now introduce the stronger concept of v-uniform ergodicity for
Markov chains, which holds under conditions that can be checked via Lyapunov test func-
tions. The definitions are given in terms of a discrete-time Markov chain {Yj, j ≥ 0} evolving
over a general state space S. Usually, the cost process {Cj, j ≥ 1} is not a Markov chain but
it can be defined in terms of the Markov chain by Cj = h(Yj) for j ≥ 1, for some function
h, where Yj may represent the state of the system at step j.

For more details, see, e.g., Meyn and Tweedie (1993) and Henderson (2001).

Definition 5.2 A Markov chain {Yj, j ≥ 0} is v-uniformly ergodic for a function v : S →
[1,∞) if there is a probability measure π over S such that

lim
n→∞

sup
y∈S

sup
h:|h|≤v

(E[h(Yn) | Y0 = y]− Eπ[h(Y )]) = 0,

where h : S→ R and Eπ denotes the expectation when Y obeys π. □

The usual way of verifying v-uniformly ergodicity is to find a test function v that satisfies
the conditions of the following theorem.

Theorem 5.11 An aperiodic discrete-time Markov chain {Yj, j ≥ 0} is v-uniformly ergodic
if it satisfies the following (sufficient) Lyapunov conditions: There exists a set B ⊆ S, real
numbers 0 < a < 1, c > 0, δ > 0, an integer m ≥ 1, a probability measure Q on S, and a
function v : S→ [1,∞) such that

P[Ym ∈ · | Y0 = y] ≥ δQ(·) for all y ∈ B and (5.41)

E[v(Y1) | Y0 = y] ≤ av(y) + cI[y ∈ B] for all y ∈ S. (5.42)

Theorem 5.12 If the chain {Yj, j ≥ 0} is v-uniformly ergodic, then

(i) It has a unique stationary probability distribution π over S.

(ii) (Strong law of large numbers.) If h : S → R, Eπ[|h(Y )|] < ∞, µ = Eπ[h(Y )], and
Cj = h(Yj), then

lim
n→∞

C̄n
w.p.1→ µ.

(iii) (Functional central limit theorem.) Let σ∞ be defined as in (5.36). If |h(y)| ≤ v(y)
for all y ∈ S and σ∞ > 0, then the process {Cj, j ≥ 1} satisfies the FCLT in Assump-
tion 5.1 with µ = Eπ[h(Y )] and this σ∞.
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(iv) (Convergence of the bias as O(1/n).) Under the conditions of (iii), if the initial state
Y0 has probability distribution π0 over S and if Eπ0 [v(Y0)] <∞, then

∞∑
j=1

Eπ0 [Cj − µ] = κ

for some κ <∞, and
Eπ0

[
C̄n − µ

]
= κ/n+O(αn)

for some constant α < 1.

5.10.2 Continuous-time setup

The previous discussion, written in terms of a discrete-time process, can be reformulated in
terms of a continuous-time process {C(t), t ≥ 0} as follows (see also Billingsley 1968, page
178). We define

C̄(t) =
1

t

∫ t

0

C(s)ds, t ≥ 0,

Wn(t) =
nt(C̄(nt)− µ)

σ∞
√
n

, 0 ≤ t ≤ 1,

and Assumption 5.1 remains the same. In the phi-mixing condition, φn is replaced by φ(t),
t ≥ 0, and one must have |P[E2 | E1]−P[E2]| ≤ φ(t) whenever E1 depends only on {C(u), 0 ≤
u ≤ s} and E2 depends only on {C(u), s + t ≤ u < ∞}. The continuous-time version of
Theorem 5.10 requires that

∫∞
0

√
φ(t)dt <∞. In the stationary case, we have µ = E[C(t)],

σ2 = Var[C(t)], σ2(t) = tVar[C̄(t)], and

σ2
∞ = lim

t→∞
σ2(t) = 2

∫ ∞

0

Cov[C(0), C(t)]dt.

The discrete-time case is a special case of the continuous-time one: It suffices to define
C(t) = Ci for i − 1 ≤ t < i. On the other hand, the continuous-time process can be

approximated by a discrete-time process defined by Ci =
∫ i

i−1
C(t)dt for i ≥ 1. Billingsley

(1968) uses this approximation to show that the properties proved for the discrete-time
process transfer to the continuous-time case.

5.10.3 Average cost per unit of time

The discrete-time setup defined so far applies directly if Ci represents the cost at the ith step
of a discrete-time simulation, and if we are interested in the average cost per step. In the
more general case where the event times do not satisfy ti = i, and where µ is the steady-state
average cost per unit of time, things are more complicated, because the number of events in
a given time interval is random. However, if the time horizon t is deterministic, then under
fairly reasonable conditions that are satisfied for typical systems, there is a constant λ > 0
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such that N(t)/t → λ with probability 1 as t → ∞, where N(t) is the number of events
during [0, t]. This λ is the average number of events per unit of time. In this case, v̄ = λµ,
where v̄ is the average cost per unit of time, defined in (2.79), and µ is the average cost per
event. If we define

σ̃2
∞ = λσ2

∞, (5.43)

we have the following CLT, which is similar to (5.39) except that the number of steps n is
replaced by the time t (this rescales the time) and the variance constant is multiplied by λ
to take the change of time scale into account.

Theorem 5.13 Under Assumption 5.1, if N(t)/t→ λ with probability 1 where 0 < λ <∞,
and if some variance estimator σ̂2

t satisfies σ̂2
t → σ̃2

∞ in probability, when t→∞, then

√
t[VN(t)/t− v̄]

σ̂t
⇒ N(0, 1) when t→∞.

Proof. For large t, one has, a.s.,

√
t[VN(t)/t− v̄]

σ̂t
≈

√
N(t)/λ[λVN(t)/N(t)− λµ]

σ̃∞

=

√
N(t)[VN(t)/N(t)− µ]

σ∞
⇒ N(0, 1) as t→∞

from Theorem 5.10 and because N(t)→∞ when t→∞.

For more on event vs time averages for point process models, see, e.g., Brémaud, Kan-
nurpatti, and Mazumdar (1992).

5.10.4 Examples

Example 5.9 Let {Cj, j ≥ 0} be an autoregressive process of order 1 (AR(1) process)
defined by the recurrence

Cj+1 = µ+ a1(Cj − µ) + ϵj, j ≥ 0, (5.44)

where −1 < a1 < 1, the ϵj are i.i.d. N(0, σ2
ϵ ), and C0 ∼ N(µ, σ2) where σ2 = σ2

ϵ/(1 − a21).
This process is strictly stationary with Cj ∼ N(µ, σ2), ρj = aj1, and σ

2
∞ = σ2(1 + a1)/(1 −

a1). The ratio σ2
∞/σ

2 becomes arbitrarily large when a1 approaches 1. When a1 < 0, the
autocorrelation process alternates in sign and σ2

∞ < σ2. For a detailed analysis of this
process, see Box, Jenkins, and Reinsel (1994). The Lyapunov conditions of Theorem 5.11 are
not hard to verify for this example. □

Example 5.10 Consider an M/M/1 queue with arrival rate λ and service rate µ. It is
well-known (e.g., Taylor and Karlin 1998) that the equilibrium distribution of the process
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{Wj, j ≥ 1} of customer’s waiting times is given by Fw(x) = P[Wj ≤ x] = 1− ρe−(µ−λ)x for
x ≥ 0, where ρ = λ/µ. If W1 has this distribution, then eachWj has it as well so the process
is stationary. One can then easily deduce that

w = E[Wj] =
ρ

µ(1− ρ)
and σ2 = Var[Wj] =

ρ(2− ρ)
µ2(1− ρ)2

.

The autocorrelation function for the Wj’s is given by (see Blomqvist 1967, Song and
Schmeiser 1995, Whitt 1989)

ρj =
(1− ρ)3(1 + ρ)

ρ3(2− ρ)

∞∑
k=j+3

ρk

(1 + ρ)2k
(2k − 3)!

k!(k − 2)!
(k − j − 1)(k − j − 2)

=
(1− ρ)3(1 + ρ)

2πρ3(2− ρ)

∫ 4ρ/(1+ρ)2

0

xj+3/2[4ρ(1 + ρ)−2 − x]1/2

(1− x)3
dx

for j ≥ 1. One has limj→∞ ρj+1/ρj = 4ρ/(1 + ρ)2 < 1 and

σ2
∞ =

ρ(ρ3 − 4ρ2 + 5ρ+ 2)

µ2(1− ρ)4

(Daley 1968).
Here, ρj is (asymptotically) exponentially monotone decreasing in j, but when ρ is close

to 1, it decreases very slowly and σ2
∞ ≈ 4ρ/[µ2(1− ρ)4] ≈ 4σ2/(1− ρ)2 ≫ σ2 (i.e., the mean

process W̄n is very noisy). For example, if µ = 1 and ρ = 0.9, then ρj+1/ρj → 3.6/3.61 ≈
0.9972, ρ200 ≈ 0.30, σ2 = 99 and σ2

∞ = 39890. Whitt (1989) gives explicit expressions for
σ2
∞ for other processes such as the queue length, workload, and number of customers in the

system as a function of time, in a M/M/1 queue. He also gives approximations for M/G/1
queues. Such approximations of σ2

∞ permit one to estimate how much simulation time is
needed to obtain a confidence interval of a given width.

The equilibrium distribution of the number of customers in the system for the M/M/1
queue is the geometric distribution defined by P[L = ℓ] = ρ(1− ρ)ℓ for ℓ ≥ 0. If L(t) denotes
the number of customers in the system at time t and if L(0) follows this distribution, then
L(t) follows the same distribution for all t ≥ 0 andWi also follows its equilibrium distribution
for all i ≥ 1.

Note that starting this process deterministically at W1 = w does not yield a stationary
process; instead one has E[Wj] < µ for j ≥ 2, and E[Wj] converges to µ from below when
j →∞. For a fixed λ, the bias E[Wj − µ] increases with ρ. The intuitive explanation is that
in steady state, W1 has a chance of taking a huge value, in which case W2,W3, . . . will also
take huge values, and this possibility is ruled out when we fix W1. □

Example 5.11 Let {Yj, j ≥ 0} be an irreducible, discrete-time Markov chain evolving
over the finite state space {1, . . . , k}, with transition matrix P and equilibrium probability
vector π (see Section A.18). That is, π = (π1, . . . , πk) is a row vector such that π = πP ,
π1 + · · · + πk = 1, and πi ≥ 0 for each i. Assume that the initial state is selected from this
equilibrium distribution, i.e., P[Y0 = i] = πi. Suppose that a cost ci is incurred each time
the chain visits state i and let c = (c1, . . . , ck)

t. Let D be the diagonal matrix with diagonal
elements π1, . . . , πk and let Π be the square matrix with each line equal to the vector π.
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For j ≥ 1, the cost at step j is Cj = cXj
and µ = πc is the average cost per step in the

long run. It can be shown (see, e.g., Steiger and Wilson 2001a) that

σ2ρj = Cov[X0, Xj] = ctD(P j −Π)c

for j ≥ 0 and

σ2
∞ = ctD[I −Π + 2(I − PΠ)−1(P −Π)]c.

Here, ρj converges to 0 at rate O(β
j) where β < 1 is the second largest eigenvalue (in absolute

value) of the matrix P . This implies that nVar[C̄n] = O(1/(1− β)). ♣ Add details here. □

5.10.5 Generating the initial state from the equilibrium distribution

If one can generate the initial state of the simulation from the equilibrium distribution, as we
saw in Examples 5.9, 5.10, and 5.11, then the cost process of interest starts in steady-state
and there is no initial bias. For most complex models encountered in practice, generating a
state from the equilibrium distribution is extremely hard to achieve. However, recent progress
has been made in this direction by exploiting the concept of coupling of stochastic process
trajectories. Roughly speaking, coupling occurs when two of more sample paths that may
have started from different initial states reach the same state at a given point in time.

♣ Perfect simulation via coupling from the past: papers by Propp and Wilson, etc.
Permits one to generate a state exactly from the steady-state distribution. Add a section on
this in Chapter 4, and refer to it here. Give an example with a queueing system.

5.10.6 Initial Bias Detection and Reduction

Suppose that, as is often the case, the process is not stationary from the beginning but only in
the asymptotic sense, i.e., (µi, σ

2
i , ρi,i+j)→ (µ, σ2, ρj) as i→∞. One then faces the problem

of trying to detect and reduce the absolute bias |E[C̄n] − µ| or |E[VN(t)]/t − v̄| associated
with the choice of initial state. This problem does not have a satisfactory general solution.
It is typically addressed by heuristics and we discuss one of these heuristics in this section.
The regenerative approach studied in Section 5.12 circumvents this initial bias problem, but
does not remove the bias completely.

Discrete time. We start again with the special case of a discrete-time cost process {Ci, i ≥
1}, for which our aim is to estimate µ, the steady-state average cost per step. Typically,
when the initial state is not chosen according to the equilibrium distribution, the absolute
bias |E[Ci]− µ| is bounded by an exponentially decreasing function of i. Theorem 5.12 (iv),
for example, provides general ergodicity conditions under which this is true. In particular, if
the state evolves as an aperiodic discrete-time Markov chain with countable state space and
probability transition matrix P , and if the cost at step i is a bounded function of the state,
then |E[Ci]− µ| ∈ O(βi) where β < 1 is the second largest eigenvalue (in absolute value) of
the matrix P . This implies that |E[C̄n]− µ| ∈ O(1/(n(1− β))).
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Suppose that in order to reduce the bias of the steady-state mean estimator, we discard
the first n0 observations of the process and take the average of the next n−n0 observations.
The estimator becomes

C̄n0,n =
1

n− n0

n∑
j=n0+1

Cj. (5.45)

The discarded part of the process (the first n0 steps) is called the warm-up part. If we assume
that |E[Ci] − µ| ≤ κ0β

i for some constants κ0 < ∞ and β < 1, then the (absolute) bias of
the estimator (5.45) is bounded as follows:

|E[C̄n0,n]− µ| ≤
κ0

n− n0

n∑
i=n0+1

βi =
κ0β

n0+1(1− βn−n0)

(n− n0)(1− β)
.

Assuming that n≫ n0, this bias decreases as

O

(
βn0+1

(n− n0)(1− β)

)
≈ O

(
βn0

n(1− β)

)
as a function of n0 and n, i.e., exponentially in n0 and linearly in n. However, β may be
very close to 1, in which case n0 must be taken very large for the bias to be negligible.
On the other hand, for a given value of n, increasing n0 increases the variance of C̄n0,n.
Finding an n0 that approximately minimizes the MSE is generally too difficult. One must
settle with heuristics. Since the variance is in O(1/(n− n0)) whereas the squared bias is in
O(β2(n0+1)/[(n − n0)(1 − β)]2), the contribution of the squared bias to the MSE eventually
becomes negligible compared with that of the variance when n gets large. These asymptotics
cannot be used to find the optimal n0 in practical applications because the hidden constants
in the O(·) notation are unknown.

Continuous time. For the general case of an infinite-horizon average cost per unit of time,
v̄ in (2.79), we can simulate up to a fixed time horizon t (instead of a fixed number of obser-
vations n) and discard the observations up to a fixed warm-up time t0 < t. The truncated
time-average estimator is then

VN(t) − VN(t0)

t− t0
=

1

t− t0

N(t)∑
j=N(t0)+1

Cj. (5.46)

Under reasonable conditions (e.g., N(t)/t converges to a positive constant with probability 1
when t→∞), the bias typically behaves in a similar way as a function of t and t0 as it behaves
in the discrete-time case as a function of n and n0, i.e., it decreases as O(β̃

t0/[t(1− β̃)]) for
some constant β̃ < 1.

Heuristics. In practice, we need a concrete way of selecting n0 (or t0). Two questions arise:
(1) How should we choose n0? (2) For a given pair (n0, n), how can we test if the initial bias
that remains is negligible? All available methods that (partially) answer these questions are
heuristic. It seems impossible to design an efficient universal procedure.
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Example 5.12 Each day, our nuclear plant can blow up, with probability 10−15. As long
as it does not blow up, we pay 0 per day, but when it blows up, we pay 1 per day for all
the following days, forever. We simulate the plant in discrete-time, day by day. In this case,
most procedures will, with high probability, choose n0 and n less than the blowing-up time
and return 0 as an estimate of the steady-state average cost. □

We now describe an heuristic rule proposed by Welch (1983) to estimate a time n0 where
the effect of the initial bias seems to have dissipated. The basic idea is to evaluate, graphically,
when the average cost process appears to flat out as a function of time. This is typically
difficult to see by looking at a single sample path, because of the noise (or variability) in the
trajectory. The trick is to smooth out the process in two ways: (a) by averaging many sample
paths and (b) by taking a moving average of successive observations in time, and replacing
the process by this moving average. Averages tend to be much less noisy than individual
observations. We explain the procedure in the discrete-time setup. It is easy to generalize to
continuous time.

Welch heuristic for initialization bias 1. Make k independent simulation runs, each of length
n1. Let Cij be the observation (cost) at step j of replication i.

2. Define C̄j =
∑k

i=1Cij/k, the average for the cost at step j, over the k runs. Note that this
C̄j has the same expectation and less variance than Cij.
3. To smooth out high frequency oscillations (and keep low frequencies) in the process
{C̄j, j ≥ 1}, compute a moving average, with window size w:

C̄j(w) =
1

2w + 1

w∑
s=−w

C̄j+s, for j = w + 1, . . . , n1 − w.

4. Plot C̄j(w) versus j and let n0 be the value of j at which the process appears to have
(reasonably) converged. (This is of course a matter of subjective judgment.)

Recommendations: Take k at least 5 or 10, and a very large n1. Experiment with different
values of w (like for choosing the widths of the rectangles when drawing an histogram). If
the result is not satisfactory, increase k and/or n1 as needed. Numerical illustrations are give
by Law and Kelton (2000).

Statistical tests for detecting whether or not there remains significant bias due to the
initial state have been proposed in the literature. See, e.g., Cash et al. (1992) and other refer-
ences given there. The idea is to perform a formal test of hypothesis on H0 : “Cn0+1, . . . , Cn

all have the same expectation.” For example, certain tests compare the variability of the
process over its first portion, say from steps n0 to n′

0, to the variability over the second
portion, from n′

0 to n, using an F statistic. The null hypothesis H0 is rejected if the first
portion has significantly more variability. Different ways of measuring the variability give
rise to different tests.
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5.10.7 Truncated Horizon: One long run or multiple runs

After n0 (or t0) has been selected, one must perform the production runs per se. The general
framework is: Make k independent runs of lengths T1, . . . , Tk, where the time horizons Ti
are either deterministic or random. For run i, remove the warm-up part of length t0 and
compute the time-average over the remaining part,

Xi =
1

Ti − t0

N(Ti)∑
j=N(t0)+1

Cj.

An overall estimator of the steady-state mean is then X̄k = (1/k)
∑k

i=1Xi, and a confi-
dence interval can be computed by considering these Xi’s as i.i.d. observations. This is the
replication-deletion approach.

The remainder of the discussion is in terms of the discrete-time framework, where

Xi =
1

n− n0

n∑
j=n0+1

Cj

for some constants n0 < n. For a given computing budget kn, how should we choose k?
Typically, k = 1 gives the best deal, because there is only one warm-up piece to discard
(e.g., Exercise 1.32). It is more difficult to obtain a good variance estimator (for computing
a confidence interval) when k = 1 than when k ≫ 1, but this is feasible. We explain how in
Section 5.11.

There are cases where k > 1 wins due to the conjuncture of slowly diminishing positive
autocorrelations between the Cj’s and a quickly vanishing bias (see Whitt 1991). The intu-
itive explanation is that independent observations provide more information than positively
correlated ones, so multiple runs beat a single run in this situation as long as the bias is not
important enough to offset the variance reduction provided by the independence.

Example 5.13 As an extreme worst-case example, consider a process {Ci, i ≥ 1} for which
C1 = 1 with probability p and C1 = 0 with probability 1 − p, and Ci+1 = Ci for all i > 0.
The expected average cost is p and one has E[Ci] = p for all i (no bias). Here, for a total
computing budget of B observations, it is optimal to make k = B runs of length 1. □

Example 5.14 Suppose that |E[Cj]−µ| = κ0β
j and Cov[Ci, Ci+j] = σ2ρj = σ2αj for j ≥ 0,

where β < 1, 0 < α < 1, κ0 > 0, and σ2 > 0 are constants. Our computing budget B allows
for k runs of length n = B/k and we want to choose k to minimize

MSE[X̄k]

=

(
κ0(β

n0+1 − βn+1)

(n− n0)(1− β)

)2

+
σ2

(n− n0)k

(
1 + 2

n−n0−1∑
j=1

αj(n− n0 − j)
n− n0

)
.

The optimal k in this case can be larger than 1 if β and κ0 are small and if σ2 and α are
large. □
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When Assumption 5.1 is in force, the CLT guarantees that X1, . . . , Xk are i.i.d. normal
when n → ∞ for n0 fixed. The bias E[Xi] − µ also vanishes when n → ∞. On the other
hand, if n0 and n are fixed and k →∞, the bias remains and the CLT becomes:

√
k(X̄k − µ)
σn0,n

⇒ N(0, 1) +

√
kβn0,n

σn0,n

(5.47)

where βn0,n = E[Xi]− µ and σ2
n0,n

= Var[Xi]. Computing a confidence interval by assuming

that the Xi are i.i.d. normal with mean µ is asymptotically valid only if
√
kβn0,n/σn0,n → 0

when k → ∞. In other words, n must increase with k at a fast enough rate so that the
bias converges to zero faster than the standard deviation of X̄k (which is proportional to the
average width of a confidence interval).

Example 5.15 Consider again Example 5.14, where

βn0,n =
κ0(β

n0+1 − βn+1)

(n− n0)(1− β)
∈ O

(
βn0

n− n0

)
and

σ2
n0,n

k
=

σ2

(n− n0)k

(
1 + 2

n−n0−1∑
j=1

αj(n− n0 − j)
n− n0

)
∈ O

(
1

(n− n0)k

)
,

so that √
k βn0,n

σn0,n

∈ O
(√

k/(n− n0) β
n0

)
.

The latter converges to zero when k →∞ if and only if ln(k/(n− n0))/2 + n0 ln(β)→ −∞,
if and only if

ln[k/(n− n0)]

2 ln β
+ n0 →∞ (5.48)

(observe than ln β < 0). Fishman (2001), in his theorems 6.4 and 6.1 (ii), gives the sufficient
condition n0/ ln[k/(n− n0)]→∞, which is a bit stronger than needed. In the case where n0

is fixed, (5.48) holds if and only if k/n→ 0. □

It is common practice to use the same simulation runs for computing the Xi’s and for
determining n0. Formally, this is incorrect; the production runs that compute the Xi’s should
be independent of the pilot runs made to determine n0. Moreover, k > 1 is preferred in the
Welch procedure, whereas k = 1 is usually preferred for the production run(s). From a
practical viewpoint, however, using the same runs may be acceptable when n0 ≪ n.

5.11 Confidence intervals using a single long run

Suppose we perform a single long simulation run and the estimator V̄ of the average cost
v̄ has the form (5.45) or (5.46). Assuming that this estimator is approximately normally
distributed and that the initialization bias that remains can be neglected, we now need a
good estimator of Var[V̄ ]. The quality of this variance estimator can be measured by its MSE
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(i.e., variance plus squared bias), assuming that its computing cost is negligible compared
with the cost of performing the simulation. In this section, we shall assume that the cost
process {Cj, j ≥ 1} is stationary, with mean E[Cj] = µ. This should be approximately true
if we consider the process only after a sufficiently long warmup. The mean µ is estimated by
the empirical mean

C̄n =
1

n

n∑
i=1

Ci,

where n is the length of the truncated horizon.

5.11.1 Batch Means

The simplest and most popular approach for estimating the variance and computing a confi-
dence interval in the context of a single run is the batch means method. The idea is to regroup
the (correlated) observations into large batches so that the batch means (the averages within
the different batches) are approximately independent and normally distributed.

7 More specifically, in the discrete-time case, the n observations are divided into k
batches of size ℓ = n/k (we assume that k divides n). The average cost over the ith batch of
ℓ successive observations,

Xi =
1

ℓ

ℓi∑
j=ℓ(i−1)+1

Cj,

is called the ith batch mean, and the global average cost (the grand mean) is

X̄k =
1

k

k∑
i=1

Xi = C̄n.

If the average is with respect to (continuous) time, the costs are incurred at random
times, and the simulation ends at a deterministic time T , one divides the time interval (0, T ]
into k equal segments (Ti−1, Ti], where Ti = T/k, for i = 1, . . . , k. The average cost per unit
of time over the ith interval (the ith batch mean) is

Xi =
k

T

N(Ti)∑
j=N(Ti−1)+1

Cj

and the average cost over the entire interval (0, T ] is

X̄k =
1

k

k∑
i=1

Xi =
1

T

N(T )∑
j=1

Cj.

In its simplest form, the batch means method assumes that the Xi’s are i.i.d. normally
distributed with mean v̄, and computes a confidence interval for v̄ under this assumption.

7From Pierre: Should insist more on the fact that the batching is only to estimate the variance, not the
mean.
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Under reasonable conditions (see, e.g., Glynn and Iglehart 1990), this assumption is almost
true when the size of the intervals, ℓ = (T − t0)/k, is large enough. In practice, one often
expects that the Xi’s are slightly positively correlated, and that the coverage probability
of the confidence interval is somewhat less than the nominal value 1 − α. It is sometimes
recommended to choose T as large as possible and k no more than 30.

The estimator of Var[X̄k] under the batch means setting is

S2
k

k
=

1

k(k − 1)

k∑
i=1

(Xi − X̄k)
2,

i.e., the empirical variance of the Xi’s, divided by k. The confidence interval is computed by
assuming that

√
k(X̄k − µ)/Sk has the Student distribution with k − 1 degrees of freedom.

A smaller k (larger batches) typically implies less correlated batch means Xi, less bias in
the variance estimator, and a distribution of the Xi’s closer to the normal. But it also means
a larger variance of the variance estimator S2

k/k, giving more noisy confidence intervals for
v̄. There is thus a compromise to be made and the optimal k (which minimizes the MSE of
S2
k/k) depends on the simulation length T − t0 and also on the problem (via the correlation

structure between the successive observations). The optimal k as a function of T is hard to
find in practice. A number of heuristics have been proposed to determine k adaptively during
the simulation. Some are implemented in public-domain software (Fishman 2001, Steiger and
Wilson 2000).

To simplify things in what follows, we shall assume a discrete-time framework with t0 = 0,
T = n = kℓ, and no initial bias. Note that both k and ℓ must increase fast enough with
n if we want the variance estimator to be consistent. Rigorous theoretical analyzes of these
issues can be found in Glynn and Iglehart (1990) and Damerdji (1994), in the discrete-time
setup. Sufficient conditions on the growth rates of k and ℓ to guarantee that nS2

k/k → σ2
∞

with probability 1 when n→∞ are given by Damerdji (1994).
It is also shown in Song and Schmeiser (1995) and Chien, Goldsman, and Melamed

(1997) that under appropriate conditions (if the process {Cj, j ≥ 1} is ϕ-mixing), one has
E[nS2

k/k] − σ2
∞ ∈ O(1/ℓ) and Var[nS2

k/k] ∈ O(1/k). Based on an analysis of Chien et al.
(1989), Fishman (2001) suggests that both k and ℓ should grow as O(1/

√
n), because this

gives the fastest convergence rate of
√
k(X̄k − µ)/Sk to the N(0, 1) distribution.

Fishman (1998) proposes a public-domain software program called LABATCH.2 for
choosing k dynamically as a function of n using one of the two rules LBATCH and ABATCH.
The ABATCH rule starts by running the simulation with fixed values of n and k. At each
step, it tests the hypothesis H0 that X1, . . . , Xk are independent, then doubles the value of
n; if H0 is not rejected, k is multiplied by

√
2, otherwise k remains unchanged. The LBATCH

rule operates similarly, except that wheneverH0 is not rejected, k remains unchanged forever.
The independence of the batch averages are tested using the von Neumann ratio (Fishman
2001, page 260).

Steiger and Wilson (2001b) propose an alternative procedure called ASAP which differs
from ABATCH in the following way: when the independence test fails, ASAP applies the
Shapiro-Wilk test of multivariate normality to the batch means, and if the latter test passes
it delivers a confidence interval with a correlation correction based on an inverted Cornish-
Fisher expansion of the studentized statistic

√
k(X̄k − µ)/Sk to which an ARMA times



372 5. Output Analysis

series model is adjusted. This takes advantage of the fact that approximate normality is
sometimes achieved at smaller batch sizes than approximate independence. The correlation
adjustment improves the validity of the confidence interval when some remaining dependence
is detected. The procedure returns a confidence interval with the required precision if it can,
otherwise it returns the estimated number of additional batches that the user should collect.
An improved version of the procedure, called ASAP2, is described by Steiger et al. (2002). It
uses an enhanced version of the multivariate normality test and disregards correlation tests.
It starts with 256 batches, multiplies the batch size by

√
2 at each step until the normality

test is passed, then fits an AR(1) time series model to the batch means and computes a
correlation-adjusted confidence interval using an inverted Cornish-Fisher expansion as in
ASAP. Computational experiments in a variety of settings (Steiger and Wilson 2000, Steiger
et al. 2002) suggest that the method generally performs very well compared with other
algorithms, including LBATCH and ABATCH.

♣ Variants: Overlapping batch means, weighted batch means. For more on batch
means, including asymptotic analysis and automatic batching methods, see Alexopoulos
(1998), Alexopoulos and Kim (2002), Fishman (1998), Fishman (1996), Steiger and Wilson
(2000) and other references therein.
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5.11.2 Spectral Analysis

We explain this method in the discrete-time context. Suppose that the cost process {Ci, i ≥
0} is weakly stationary, with E[Ci] = µ for all i. This implies, in particular, that the initial
bias has been removed or is negligible, so we can forget about the warm-up (to simplify the
notation). As usual, we estimate µ by the grand mean

C̄n =
1

n

n∑
i=1

Ci,

where n is the length of the truncated horizon. The spectral method tries to estimate the
variance constant via the formulas (5.33) and (5.34).

A naive idea might be to just replace the variance σ2 and the autocorrelations ρk in these
formulas by their sample counterparts S2

n and

ρ̂k =
1

(n− k)S2
n

n−k∑
i=1

(Ci − C̄n)(Ci+k − C̄n),

to obtain the variance estimator

V̂ar[C̄n] =
S2
n

n

(
1 + 2

n−1∑
k=1

(n− k)ρ̂k

)
. (5.49)

Unfortunately, this does not work because this estimator is always equal to 0 (Exercise 5.17).
In fact, the ρ̂k’s are very bad estimators of the ρk’s for the large values of k, and they cancel
out the contribution of the earlier terms.

A second idea is to assume that the short-lag autocorrelations are really the most im-
portant and that the long-lag ones are 0. Then, replace the factors (n− k) that multiply the
ρ̂k’s in (5.49) by other weights wk and stop the sum at some m ≪ n. This gives the (more
general) estimator

V̂ar[C̄n] =
S2
n

n

(
1 + 2

m∑
k=1

wkρ̂k

)
. (5.50)

Then, under certain assumptions, (C̄n−µ)/(V̂ar[C̄n])
1/2 has approximately the Student dis-

tribution with (8/3)(n/m) degrees of freedom. A recommended choice for wk is the Tukey-
Hanning window, wk = (1+cos(πk/m))/2. For the details, see the references given in Bratley,
Fox, and Schrage (1987) and Alexopoulos (1998). This is related to the classical topic of spec-
tral analysis of stochastic processes.

Another idea might be to first batch the observations as in the batch means method, and
then apply the spectral method to the batch means instead of to the original observations.
It is highly likely that between the batches, only the autocorrelations of lag 1 will be non-
negligible, so one may just take m = 1. In this context, it could also make sense to take more
(i.e., smaller) batches than usual.

5.11.3 Standardized time series

♣ See Glynn and Iglehart (1990), Tokol et al. (1998), and Foley and Goldsman (2000).
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5.12 Regenerative Simulation

The theory of regenerative processes offers powerful tools to verify whether the limits (2.79)–
(2.82) exist and to express them as ratios of finite-horizon expectations. Our coverage here
is inspired by Sigman and Wolff (1993). We begin with classical regenerative processes and
their properties, then briefly discuss more general types of regenerative processes such as
Harris-recurrent processes.

5.12.1 Classical Regenerative Processes

Definition 5.3 A stochastic process {Y (t), t ≥ 0} is called regenerative (in the classical
sense) if there exists a random variable τ1 > 0 such that the process {Y (τ1 + t), t ≥ 0} is
stochastically equivalent to {Y (t), t ≥ 0}, and is independent of τ1 and of {Y (t), t < τ1}.
The random variable τ1 is called a regeneration epoch, and the time-interval (0, τ1], together
with the trajectory of the process over this interval, is called a regenerative cycle. These
definitions stand for the discrete case as well; t and τ1 are then restricted to the set of

integers. 8 □

The term stochastically equivalent means that its behavior is governed by the same
probability laws. It is intuitively clear that if {Y (t), t ≥ 0} is regenerative, then {Y (τ1 +
t), t ≥ 0} is also regenerative with some regeneration epoch τ2, and so on. We then have
an infinite sequence of regeneration epochs 0 = τ0 < τ1 < τ2 . . . and regenerative cycles. All
those regenerative cycles are i.i.d. in the sense that the trajectory of {Y (t), t ≥ 0} over any
such cycle is stochastically equivalent to that over any other cycle, and also independent. In
that sense, at each τj, the process starts afresh. These epochs τj need not be stopping times.
If E[τ1] <∞, the process is also called positive recurrent.

Sometimes, the cycles are independent and stochastically equivalent according to the
definition, except that the first cycle is not equivalent to the remaining ones. Then, the
process is regenerative only from time τ1, and we call it delayed regenerative. If the process
is positive recurrent, that little “defect” in the first cycle does not affect the time-average
properties, and can be neglected in the long run.

Proposition 5.14 Functions of regenerative processes are regenerative with the same regen-
eration epochs. That is, if {Y (t), t ≥ 0} is a regenerative process with regeneration points
τ1, τ2, . . . , and if {C(t), t ≥ 0} is another process defined by C(t) = f(Y (t)) for some (mea-
surable) function f , then this second process also regenerates at τ1, τ2, . . . .

Example 5.16 Let {Yi, i ≥ 0} be a (discrete) Markov chain defined over the finite state
space {1, . . . , K}, with transition probabilities P [j, k] = P[Yi = k | Yi−1 = j], and suppose
that all the states are accessible from each other. Let Y0 = j. Then this process is positive
recurrent regenerative, with regeneration at the epochs i for which Yi = j. If we start from
a different state, say Y0 = k, and keep the same definition for the regenerative epochs, we
have a delayed regenerative process.

8From Pierre: Give the definition for that case.
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Now, suppose that all the rows of the matrix P are the same, i.e., P [j, k] is independent
of j. Then, the process is regenerative with regeneration epochs at each step (τi = i for each
i). This illustrates the fact that the process need not visit a fixed state j at each regeneration

epoch. 9 □

Example 5.17 Consider again the GI/GI/1 example, assuming that the queue is stable.
Recall that the sequence of waiting times {Wi, i ≥ 0} obeys Lindley’s equation (1.39). It
follows that ifW1 = 0 and if the random variables Si−Ai are i.i.d., {Wi, i ≥ 0} is regenerative
with regeneration epochs at each index i such that Wi = 0. The process {Q(t), t ≥ 0},
giving the number of customers in the queue as a function of time, is also regenerative,
with regeneration epochs occuring at the times when a customers arrives while the system is
empty. At such times, a new interarrival time and a new service time are generated and the
process (stochastically) starts afresh. Observe that the times at which a customer leaves the
system empty cannot be taken as regeneration epochs in general, because at such an epoch,
the distribution of the time until the next arrival depends on the elapsed time since the
last arrival (unless the interarrival times are exponentially distributed); therefore the cycles
would not be independent nor stochastically equivalent with that choice. □

Example 5.18 In the call center example, suppose that the center operates for an unlimited
sequence of (independent and stochastically equivalent) days. If t denotes the total time
elapsed since 0:00 (midnight) the first day and if Q(t) is the number of calls in the queue
at time t, then {Q(t), t ≥ 0} regenerates at τj = t0 + 24j for j = 1, 2, . . . , if t is in hours,
where t0 can be any time outside the operating hours of the center (i.e, if the center opens
at 8 am and closes at 9 pm, t0 can be any number in [0, 8] ∪ [21, 24]). On the other hand,
if Xj and Zj denote the number of calls received and the number of abandonments on day
j, respectively, then the processes {Xj, j ≥ 0} and {Zj, j ≥ 0} are both i.i.d., so they are
both regenerative with τj = j for each j. □

5.12.2 Renewal Reward Theorem

In the general model of Section 2.19, let the cost process {Ci, i ≥ 0} be regenerative, where
τj denotes the simulation time at which the jth regeneration epoch occurs. For each j ≥ 1, let
Xj = VN(τj)−VN(τj−1), the cost incurred during the jth regenerative cycle, and Yj = τj−τj−1,
the duration of that cycle.

Theorem 5.15 (Renewal reward theorem.) Suppose that E[Yj] > 0 and E[|Xj|] <∞. Then,

v̄
def
= lim

t→∞

E[VN(t)]

t
=

E[Xj]

E[Yj]
; (5.51)

and

v̄
w.p.1
= lim

t→∞

VN(t)

t
. (5.52)

9From Pierre: Check this... with the definition given, we must have Xτi = x0.
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The proof can be found, e.g., in Wolff (1989). Eq. (5.51) is called the expected value
version of the renewal reward theorem, while (5.52) is the sample path version. The main
consequence of the theorem, in the simulation context, is that v̄ can be expressed as a ratio
of two expectations and that each of these expectations can be estimated by a simulation
over a finite (random) horizon.

5.12.3 Confidence Intervals

We saw in Section 5.4.2 how to obtain a confidence interval for a ratio of expectations. In the
case where the number n of regenerative cycles is fixed in advance, this can be used directly
to compute a confidence interval on v̄.

Often, we would rather decide on the total simulation time t, and let the number of
cycles be random. Define M(t) = sup{n ≥ 0 : τn ≤ t}, the number of regenerative cycles
completed by time t. When time t is reached, a first possibility is to discard the ongoing
cycle and use the formulas above with n = M(t). A second possibility is to complete the
ongoing cycle, so that n = M(t) + 1. Meketon and Heidelberger (1982) have shown (under
mild regularity conditions) that the bias is O(1/t) in the first case and O(1/t2) in the second
case, and that the variance is O(1/t) in both cases. Completing the ongoing cycle is thus

recommended in general. 10 This is one advantage of the regenerative method over using
a deterministic truncated horizon t.

Under the conditions of Section 5.4.2, we have M(t) → ∞, M(t)ȲM(t)/t → 1, and
(M(t) + 1)ȲM(t)+1/t → 1, with probability 1, as t → ∞. Therefore, we can replace n by
either M(t) or M(t) + 1, and n→∞ by t→∞, to obtain the following variant of the CLT:

Theorem 5.16 Under the conditions of Theorem 5.7,√
M(t)(µ̂M(t) − µ)

σ̂z,n
⇒

√
t/ȲM(t)(µ̂M(t) − µ)

σ̂z,n
⇒

√
t/E[Y1](µ̂M(t) − µ)

σ̂z,n
⇒ N(0, 1) (5.53)

as t→∞, where σ̂2
z,n is defined as in (5.19) with n =M(t), and similarly for M(t) replaced

by M(t) + 1.

♣ Should have exercises on this.
What if we replace the mean estimator µ̂M(t) by the total cost up to time t, divided by

t, where t is deterministic and is generally not a regeneration point? Under mild additional
conditions on the cost structure (e.g., it suffices that all the costs are non-negative), the
CLT still holds for t→∞. In the latter case, we obtain a re-expression of Theorem 5.13 in
Section 5.10.1, with σ̃2

∞ = λσ2
∞ = σ2

z/E[Y1]. In this context, the regenerative method can be
reinterpreted as a way of estimating the variance constant σ̃2

∞, via the estimator σ̂2
z,n/ȲM(t).

♣ Give more details and state a theorem.
11 There are a number of ways of reducing the bias of a ratio estimator from O(1/n) to

O(1/n2) when n (the number of cycles) is fixed. One of them is the jackknife (Efron 1982,

10From Pierre: Not quite sure if this is good... What about the MSE? The variance constant?
11From Pierre: The following should be moved to the section on ratio estimation and delta theorem.
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Shao and Tu 1995). ♣ Define and explain in a more general setting (earlier). Typically, it

gives rise to an estimator with less bias but more variance, so the MSE is not necessarily
reduced, and the natural variance estimator under jackknifing tends to underestimate the
variance. Bootstrap methods offer a good way of reducing the MSE and computing confidence
intervals having better coverage than those provided by the classical method (see Choquet,
L’Ecuyer, and Léger 1999).

♣ Add examples.

5.12.4 Discounted Costs

Suppose now that the costs are discounted at rate ρ > 0 and that we want to estimate v∞ρ ,
defined in (2.84), for some initial model state S0. If we assume that v∞ρ = E[V ∞

ρ ] and that
the process {Ci, i ≥ 0} is regenerative as above, we obtain

V ∞
ρ = Vρ,N(τ1) +

∞∑
i=N(τ1)+1

e−ρtiCi

= Vρ,N(τ1) + e−ρτ1

∞∑
i=N(τ1)+1

e−ρ(ti−τ1)Ci.

Taking expectations yields

E[V ∞
ρ ] = E[Vρ,N(τ1)] + E

[
e−ρτ1

]
E[V ∞

ρ ].

That is,

v∞ρ = E[V ∞
ρ ] =

E[Vρ,N(τ1)]

1− E [e−ρτ1 ]
.

Again, we are back to a ratio of two finite-horizon expectations. It should be pointed
out that these expectations, as well as the definition of the regeneration epochs, generally
depend on the initial state S0.
♣ Examples.

5.12.5 Harris-recurrent and m-dependent regenerative processes

A more general definition of regeneration removes the requirement that {Y (τ1 + t), t ≥ 0}
is independent of {Y (t), t < τ1}:

Definition 5.4 For an integer m ≥ 0, a process is called m-dependent regenerative if there
exists a sequence of random variables 0 ≤ τ1 ≤ τ2 · · · such that for each j ≥ 1, the process
{Y (τj + t), t ≥ 0} is stochastically equivalent to {Y (t), t ≥ 0}, and {Y (τj+m + t), t ≥ 0} is
independent of {Y (t), t < τj}. □

It turns out that by relaxing the independence assumption in this way, a much larger
class of applications can be covered, and most interesting properties of regenerative processes
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can still be derived. However, additional assumptions are required for some of the properties,
namely to make sure that the process is ergodic. We refer the reader to Asmussen (1987) and
Meyn and Tweedie (1993). Form = 0, we are back to the classical definition of a regenerative
process. The important class of processes called Harris recurrent, which covers essentially
all real-life situations for which it makes sense to consider steady-state measures, are one-
dependent regenerative processes. This can be shown by applying a splitting technique due
to Athreya and Ney (1978) (see also Meyn and Tweedie 1993).

♣ Properties of one-dependent regenerative processes: renewal reward theorem, etc.
Harris recurrent models and splitting technique. Coupling.

♣ Examples: GI/GI/c queue, storage process, etc.

♣ More general ergodic models (Meyn and Tweedie 1993). See Henderson and Glynn.
Links with Lyapunov.

5.13 Exercises

5.1 In Section 5.2.1, a 100(1− α)% confidence interval for µ is (I1, I2) = (X̄n + δ, X̄n − δ),
where δ = tn−1,1−α/2Sn/

√
n.

(a) Explain why it is correct to say that P[I1 < µ < I2] = 1 − α. Hint: What are the
random variables in that statement?

(b) Suppose we obtain the values I1 = 3.154 and I2 = 3.562. Explain why it is incorrect
to say that P[3.154 < µ < 3.562] = 1− α. Hint: Where is the random variable here?

5.2 In Example 1.29 (Section 1.4.4), suppose that µ is small but unknown, and is estimated
by X̄n, the average of X1, . . . , Xn, which are n i.i.d. copies of X. Let Y = X1+ · · ·+Xn. For
n = 10000, suppose that we have obtained Y = 2.

(a) Compute a 95% confidence interval on µ using the binomial distribution for Y .
(b) Same thing, using the Poisson approximation for the distribution of Y .
(c) Same thing, but using Hoeffding inequality, assuming that µ is known a priori to be

less than 1/1000.
(d) With such a large value of n, why not compute a confidence interval by assuming

that X̄n has approximately the normal distribution?

5.3 In the previous exercise, with the method of Section 5.2.3, the coverage probability is at
least 95% and its exact value depends on the value of µ. Explain how we could estimate this
coverage probability by simulation for different values of µ. Design a functional estimation
method along the lines of Exercise 1.39.

5.4 Suppose we have n i.i.d. observations Xn, . . . , Xn and want to compute a confidence
interval on the mean µ. We can regroup these observations into k batches of n/k observations
each, consider the batch means Y1, . . . , Yk as normally distributed, and compute a confidence
interval by assuming that Ȳk has a Student(k − 1) distribution.

Perform the following experiment. Generate n = 200 i.i.d. exponentials with mean 1, and
compute a 95% confidence interval as above with k = 10, 20, 100, 200. Repeat this experiment
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r = 1000 times. For each value of k, estimate from your data: (i) The coverage probability of
the confidence interval; (ii) the mean and the variance of the confidence interval half-width.
Make also an histogram of the distribution of half-widths, for each k, and compare. What
are your conclusions regarding the choice of k? Explain the advantages and disadvantages of
taking a small k.

5.5 Let X be a random variable with unknown distribution, taking its values in the interval
[0, 10]. Suppose we know for sure that µ = E[X] is less than ν1 < 1/2. We want to compute a
95% left-sided confidence interval on µ; that is, we seek ϵ > 0 such that P[µ ≤ Ȳn+ϵ] ≥ 1−α,
where Ȳn is the sample mean of n i.i.d. copies of Y .

(a) Give an expression for such an ϵ based on Theorem 5.3.

(b) What is the confidence interval if ν1 = 0.2, n = 1000, and Ȳn = 0.08?

5.6 The aim of this exercise is to experiment with the robustness of confidence intervals on
the variance based on the normal approximation as explained in Section 5.4.3.

(a) Repeat the following experiment 1000 times, independently:

1. Generate n = 100 i.i.d. random variables with the exponential distribution with mean
1.

2. Pretend that you don’t know the true variance σ2 of these observations, and compute
a confidence interval with confidence level 1− α = 0.95 for σ2 by assuming (wrongly)
that (n− 1)S2

n/σ
2 has the chi-square distribution with n− 1 degrees of freedom.

3. Check if the confidence interval covers the true value σ2 = 1 and compute its width
W .

The proportion p̂ of the 1000 confidence intervals that contain 1 is an estimator of the exact
coverage probability p of the confidence interval. Compute a 95% confidence interval for
p. Compute also a 95% confidence interval on the average width, E[W ], of the confidence
interval on σ2. Plot, on a single chart, the empirical cdf of (i) the left side of the confidence
interval, (ii) the right side of the interval, (iii) the variance estimator, and (iv) the cdf of
Y/(n− 1) where Y has the chi-square distribution with n− 1 degrees of freedom. Note that
if (n− 1)S2

n/σ
2 had exactly the χ2(n− 1) distribution, then S2

n would have exactly the same
distribution as Y/(n− 1). Discuss what you observe.

(b) Repeat the same exercise with n = 1000, and compare. Is the approximation improv-
ing when n increases? You may also try larger values of n.

(c) Redo the same experiment as in (a), but this time compute the 95% confidence
intervals on σ2 (in step 2) via the basic nonparametric bootstrap method, with m = 1000
resamples, and without the plots. Discuss you results.

5.7 We want to estimate the expected average cost per day for some system, assuming that
the days are independent. We have already simulated n = 1000 days and obtained the sample
mean X̄n = 1073.5 and the sample variance S2

n = 5890.0. How many additional simulation
runs should we make if we want a 95% confidence interval with half-width at most 2?
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5.8 You will perform a simple experiment with sequential estimation. Let X ∼ Weibull(α, 1)
and pretend you do not know µ = E[X] and want to estimate it by simulation, with sequential
estimation. The target confidence level and interval half-width are 1−δ and w/2, respectively.
Compute a 95% confidence interval for µ by sequential estimation, with n0 = 20, and check if
the interval covers µ. Repeat this m = 5000 times and estimate the true coverage probability
by the proportion of those m confidence intervals that cover µ. Give a confidence interval on
that proportion.

Repeat this experiment with all nine combinations of the following values: α = 0.2, 1.0,
3.0, and w/µ = 0.01, 0.1, and 0.3.

5.9 We have a portfolio of five assets whose values are assumed (somewhat simplistically)
to follow independent geometric Brownian motions with parameters σ = 0.3, r = 0.05, and
S(0) = 50. We have one unit of each asset and we want to estimate the value-at-risk (VaR)
xp for time T = 0.1, with p = 0.01. The loss in this case is L =

∑5
j=1(50 − Sj(T )). Recall

that xp is defined via P[L > xp] = p.

(a) Compute a 95% confidence interval on xp, based on a sample of n = 1000 independent
values of L generated by standard Monte Carlo, with each of the following three methods:
(i) the method based on the binomial distribution; (ii) the method in which the binomial
distribution is approximated by a normal; (iii) the basic nonparametric bootstrap.

(b) Redo the same experiment with n = 10000. Compare and discuss the results.

(c) What if you are asked to estimate it for p = 0.001 instead?

5.10 To compute a confidence interval for the difference between two means (Section 5.5.1),
one may decide to use the Welch and the paired-tmethods simultaneously (assuming that the
assumptions of both methods hold), and retain the shortest of the two confidence intervals.
This is cheating. Explain why one should expect the true coverage probability to be less than
the nominal coverage 1− α if one does this.

5.11 Suppose we estimate a mean µ by the sample mean X̄n of n identically distributed
observations X1, . . . , Xn, with E[Xi] = µ and Var[Xi] = σ2.

(a) If the Xi’s are positively correlated, does it give us more confidence or less confidence
in our estimator than if they are independent?

(b) Explain why it is not possible that all pairs (Xi, Xj), i ̸= j, are highly negatively
correlated if n ≥ 3.

(c) If some pairs are positively correlated and others are negatively correlated, give a
necessary and sufficient condition, in terms of the n(n− 1)/2 correlations, under which X̄n

has less variance than when the Xi’s are independent.

5.12 In Section 5.3.2, what happens with the confidence ellipsoid if σ̂jk = 0 for all j ̸= k?
What happens if d = 2 and σ̂12 = 1?

5.13 For Example 5.9, show that Cj ∼ N(µ, σ2), ρj = aj1, and σ
2
∞ = σ2(1 + a1)/(1 − a1).

Then, verify the Lyapunov conditions of Theorem 5.11.

5.14 For the M/M/1 queue in Example 5.10, compute γ for ρ = 0.2, 0.5, and 0.8.
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5.15 ♣ Construct a concrete example where γ < 0.

(e.g., inventory system as in Law and Kelton 2000.)

5.16 In the context of estimating the infinite-horizon average cost for a discrete-time process,
suppose we adopt the strategy described in Section 5.10.6, using a truncated horizon of n
steps, with a warm-up of n0 steps. Suppose that the variance and absolute bias of the mean
estimator thus obtained are bounded by κ1/(n − n0) and κ0β

n0/(n − n0), respectively, for
some constants κ0 and κ1. This gives an upper bound on the MSE.

How would you compute the n0 that minimizes this upper bound? What is the asymp-
totically optimal n0 as a function of n, as n→∞? (In practice, unfortunately, the constant
κ0 and κ1 are unknown. And even if they were known, this could be used only to minimize
the upper bound, not necessarily the MSE.)

5.17 Prove that V̂ar[Ȳn] in (5.49) is always 0.

5.18 The purpose of this exercise is to explore, with a simple model, different approaches
for computing a confidence interval for the steady-state mean. Consider an M/M/1 queue
with arrival rate λ = 1 and service rate µ > 1. The performance measure is the steady-
state average waiting time in the queue, w = E[Wi], assuming that W1 has the equilibrium
distribution given in Example 5.10. We simulate this system for n customers (via Lindley’s
recurrence) and estimate w by W̄n. To estimate the variance, we first use the batch means
method: regroup the Wi’s into k batches of n/k observations each and let X1, . . . , Xk be
the batch means. Then, two possible approaches are: (A) assume that the Xi’s are i.i.d.
normal; or (B) estimate the autocorrelation of lag 1 between the Xi’s, ♣ Explain how!

Instead of doing this, one should use the ASAP2 method of Steiner et al. assume that the
autocorrelations of lag > 1 are negligible, and use the spectral analysis estimator (5.50) with
m = w1 = 1.

(a) Implement these two approaches and try them with µ = 1.5, n = 104, and k =
20, 50, 100, 500, by repeating the following experiment 1000 times:

1. Simulate n customers.

2. Compute an estimate of Var[W̄n], and a confidence interval for w, using each of the
two method (A) and (B), and each value of k.

3. In each case, check if the confidence interval contains w.

For each case, compute the proportion p̂ of the 1000 confidence intervals that contain w
and compute a 95% confidence interval on the true coverage probability p of the confidence
intervals for w. Compute also a 95% confidence interval on the expected value of the variance
estimate computed in step 2. For case (B), compute a 95% confidence interval on the lag-1
correlation, for each value of k, using all the simulation runs.

(b) Compare the two methods (A) and (B), and compare the results with the true
variance of W̄n, which can be computed numerically (approximately) via (5.33), (5.34), and
the formula given in Example 5.10, or can be estimated with high precision by performing
an extremely long simulation run and taking k ≈ 50 with method (A) or (B).
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(c) What would be your conclusion and recommendation? Would it be safe to generalize
your conclusions to other types of models?

5.19 Consider aGI/GI/1 queue with constant interarrival times, always equal to 10 seconds,
and i.i.d. random service times with a mean of 8 seconds. Identify a sequence of epochs
that are regeneration points in this model. The times when the system empties are not
regeneration points. Why? What distribution of the interarrival times would give a model
that regenerates when the system empties?

5.20 Consider 3 FIFO queues in series, e.g., 3 different machines that some manufactured
parts must visit, in order. Customers (e.g., the parts) arrive to machine 1 according to a
stationary Poisson process with rate 1. After completing their service at machine 1, parts go
to machine 2, then to machine 3. Service times are mutually independent across machines
and across customers, with distribution functions G1, G2 and G3 at machines 1, 2, and 3,
respectively. We are interested in the infinite-horizon steady-state time-average workload
(i.e., average number of customers in the system).

(a) Is this a regenerative system? If yes, suggest one possibility for the regeneration
epochs. (Of course, one cannot define the regenerative cycles for each machine by considering
the 3 machines separately. Why?)

(b) Give a simple necessary condition on the Gi’s for the regenerative cycles to have
finite length. (Hint: the system cannot be regenerative if there is an infinite accumulation of
parts.)

(c) Suppose now that the interarrival times are i.i.d. U(1, 2), i.e., uniform over the con-
tinuous interval (1, 2), that each of the first two machines has constant service times equal
to 1, and that the service times at machine 3 are U(0.5, 1). Is your definition of regeneration
epoch suggested in (a) still valid with this new interarrival times distribution? If yes, what
is the expected length of a regenerative cycle in this case? Show that we can define the
regeneration epochs as the times when a part arrives to machine 2 while machine 3 is idle,
and that with this definition the length of a regenerative cycle has finite expectation.

(d) What if the interarrival times are constant, all equal to 1.5? Is the expected length
of a regenerative cycle still finite? If not, redefine the regeneration points so that it becomes
finite.

5.21 Detail the proof of Theorem 5.16.



6. Efficiency Improvement

6.1 Introduction

Recall our definition of efficiency of an estimator X, given in Section 1.4.4:

Eff[X] =
1

MSE[X]C(X)
. (6.1)

We pointed out the imperfectness of this (and any other) criterion at the beginning of
Chapter 5; yet it constitutes a reasonable compromise. Improving efficiency with this criterion
means reducing the bias, or the variance, or the computing cost. Often, several alternative
estimators are unbiased and have roughly the same computational costs. In that context,
improving the efficiency means reducing the variance. For that reason, we often talk of
variance reduction techniques (VRTs). However, efficiency can sometimes be improved by
increasing the variance (and reducing the computing cost); see Fishman and Kulkarni (1992)
and Glynn and Whitt (1992) for examples.

Other introductions to variance reduction can be found in Bratley, Fox, and Schrage
(1987), Hammersley and Handscomb (1964), Fishman (1996), and Law and Kelton (2000).
Surveys are given by Glynn (1994), Heidelberger (1995), and Wilson (1984).

Small case studies were already given in Sections 1.6 and 1.7 to introduce variance reduc-
tion concepts in an intuitive way. We start this chapter with more examples of that flavor.
The theory is developed in subsequent sections. We believe it is good for the uninitiated
reader to go through concrete illustrations to understand how variance can actually be re-
duced in simple situations before trying to digest the more general and abstract descriptions
of the methods and the relevant mathematical results. The readers who already know about
variance reduction and who are mostly interested in the theory can skip the next section.

6.2 Motivating Examples and Heuristics

6.2.1 Variance reduction for the call center example

We return to the call center example of Section 1.12, with the parameters given in Table 1.7,
but with the following modification: We assume here that the random busyness factor B is
a discrete random variable that takes the value bt with probability qt, for t = 1, . . . , 4, where
the qt’s and bt’s are as follows:
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t 1 2 3 4
bt 0.8 1.0 1.2 1.4
qt 0.25 0.55 0.15 0.05

We have E[B] = 1 and Var[B] = 0.024. This change is to simplify the stratification method
that we will apply in a moment. L’Ecuyer (2005) and L’Ecuyer and Buist (2008) explain how
to apply a similar stratification method to the original example, with a gamma-distributed
business factor Bi.

We simulate n days of operation of the center. Let Xi = Gi(s) the number of calls who
waited less than s seconds on day i and suppose we want to estimate µ = E[Gi(s)]. In this
section, we take s = 20. A straightforward unbiased estimator of µ is

X̄n =
1

n

n∑
i=1

Xi, (6.2)

with variance Var[X̄n] = Var[Xi]/n.
We ran a simulation experiment with n = 1000. The sample mean and sample variance

of the Xi’s were X̄n = 1518.3 and S2
n = 21615, respectively. The estimated variance of X̄n is

thus 21.6. How can we reduce this variance? In what follows, we motivate and try alternative
estimators, with empirical results summarized in Table 6.1. These alternatives are introduced
here as heuristics, but they are special cases of general methods to be studied later.

We note that these variance estimates are noisy; they differ from the exact variances.
To assess the probable error, we can compute a confidence interval for σ2 = nVar[X̄n] by
making the assumption that (n−1)S2

n/σ
2 has approximately the χ2

n−1 distribution. We have
seen in Section 5.4.3 that under this assumption, for n = 1000, a 90% confidence interval
on σ2 would be [0.930S2

n, 1.077S
2
n], i.e., the relative error on σ2 is less than 8% with 90%

confidence. This analysis applies to all sample variances S2
n in Table 6.1.

Indirect estimation. The total number of calls arriving on day i can be written asAi = Xi+Di

where Di is the number of calls who waited at least s seconds or were lost by abandonment.
We know that a = E[Ai] = 1660, so we can write µ = E[Xi] = E[Ai −Di] = a − E[Di] and
µ can be estimated as well by the indirect estimator

X̄i,n = E[Ai]− D̄n = a− 1

n

n∑
i=1

Di.

Since its computing time is essentially the same, this estimator is more efficient than (6.2) if
and only if Var[Di] < Var[Xi]. Proving the latter does not seem easy, but in our experiment
with n = 1000, we obtained a sample variance of 18389 for the Di’s, which is about 15%
smaller than for the Xi’s. Thus, X̄i,n seems to improve slightly over X̄n.

Control variable. Another idea is to exploit auxiliary information. For example if the total
number of calls Ai is much larger than usual on a given day, we may expect Xi and Di to
overestimate their expectations (or perhaps the opposite if the system is overloaded...). We
can make a “correction” to the estimator to take this information into account; for instance
replace Xi in (6.2) by
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Xc,i = Xi − β(Ai − a)

where β is an appropriate constant. Suppose for now that β ≥ 0. When Ai > a, the correction
term reduces the value of the estimator Xi to make up for the overestimation. When Ai < a,
it does the opposite. We have E[Xc,i] = E[Xi] since E[Ai−a] = 0, so Xc,i remains an unbiased
estimator.

In this context, Ai is called a control variable (CV). We obtain the new estimator

X̄c,n = X̄n − β(Ān − a), (6.3)

with variance
Var[X̄c,n] = (Var[Xi] + β2Var[Ai]− 2βCov[Ai, Xi])/n.

This variance is a quadratic function of β and is minimized by taking

β = β∗ = Cov[Ai, Xi]/Var[Ai].

If we take β = 0, we get the original estimator X̄n. By taking β = 1, we recover the
indirect estimator X̄i,n, because Xi − (Ai − a) = a −Di. Therefore, the CV estimator X̄c,n

with the optimal β must perform at least as well as any of these two estimators in terms
of variance. We do not know β∗ here, because the exact value of Cov[Ai, Xi] is unknown,
but it can be estimated. The variance of Ai can be computed exactly; conditional on Bi,
Ai ∼ Poisson(1660Bi), and therefore:

Var[Ai] = Var[E[Ai|Bi]] + E[Var[Ai|Bi]] = Var[1660Bi] + E[1660Bi]

= 16002Var[Bi] + 1660E[Bi] = 67794.4.

To estimate Cov[Ai, Xi] (and β
∗), one approach is to simulate (say) n0 days in a prelimi-

nary experiment. An estimator β̂∗ of β∗ computed from these n0 pilot runs can then be used
in place of β when performing the 1000 regular simulation runs (i.e., 1000 days) to estimate
µ.

A second approach is to use the same n = 1000 simulated days to estimate Cov[Ai, Xi]
and compute an estimator β̂∗

n = β∗, simultaneously with E[Xi]. This gives

X̄ce,n = X̄n −
1

n− 1

[
n∑

i=1

(Ai − Ān)(Xi − X̄n)

]
Ān − a
Var[Ai]

. (6.4)

as an estimator of µ. This estimator is biased for finite n, because the constant β has been
replaced by an estimator β̂∗

n that is correlated with Ān. However, the bias converges to 0
when n→∞.

For the results of Table 6.1, we tried both approaches and there was no significant
difference. We had β̂∗

n ≈ 0.52. The (empirical) variance was reduced to 3305 with 1000 pilot
runs and to 3310 without pilot runs, a reduction by a factor of about 6.5 in both cases, and
there was no apparent bias in the “no-pilot” case. If Var[Ai] was unknown as well, we could
estimate it in the same way as Cov[Ai, Xi]. We tried it and this gave essentially the same
result for this example.

Combining the CV with the indirect estimator gives
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X̄i,c,n = a− D̄n − β2(Ān − a)
= Ān − D̄n − (1 + β2)(Ān − a)
= X̄n − (1 + β2)(Ān − a)

for some constant β2. Thus, X̄i,c,n is exactly equivalent to X̄c,n with β = 1+β2. The optimal β2
is β∗

2 = −Cov[Ai, Di]/Var[Ai] = 1+ β∗. The results in Table 6.1 agree with this equivalence.
Other random variables in the model can be used as CVs, if we know their expectations.

One candidate is certainly Bi, the busyness factor. However, we do better with Bi in what
follows.

Stratified sampling. Clearly, the variability of Bi is an important source of variability for Xi

and Di. Intuitively, a large variance reduction seems possible if we can control that source
of variability.

Denoting µt = E[Xi | Bi = bt], we can write

µ = E[Xi] =
4∑

t=1

P[Bi = bt] · E[Xi | Bi = bt]

= .25E[Xi | Bi = 0.8] + .55E[Xi | Bi = 1.0]

+.15E[Xi | Bi = 1.2] + .05E[Xi | Bi = 1.4]

= .25µ1 + .55µ2 + .15µ3 + .05µ4.

The idea here is to estimate the conditional expectations µt separately for each t, i.e., for
each possible value of Bi. Suppose there are Nt days where Bi = bt and let Xt,1, . . . , Xt,Nt be
the values of Xi for those days. We can estimate µt by

µ̂t =
1

Nt

Nt∑
i=1

Xt,i

for each t, and µ by
X̄s,n = .25µ̂1 + .55µ̂2 + .15µ̂3 + .05µ̂4. (6.5)

We have Var[µ̂t|Nt] = σ2
t /Nt where σ

2
t = Var[Xi | Bi = bt]. Therefore,

Var[X̄s,n | N1, N2, N3, N4] = .252σ2
1/N1 + .552σ2

2/N2 + .152σ2
3/N3 + .052σ2

4/N4

The overall variance is reduced if the conditional variances σ2
t tend to be smaller than

Var[Xi]. If the Bi’s are generated independently according to their probabilities, as in a
straightforward simulation, then the Nt’s are random variables and this scheme is called
post-stratification.

We can also fix the Bi’s in advance, for example by taking Nt = nt ≈ nqt, so the number
of Bi’s of each kind is in proportion to the probabilities qt (the ≈ sign is because each nt

must be a positive integer). This is stratified sampling with proportional allocation.
The optimal allocation, which minimizes the variance of the estimator X̄s,n under the

constraint that n1 + n2 + n3 + n4 = n, is given by

nt =
σtqt∑4
t=1 σtqt

n (6.6)



6.2 Motivating Examples and Heuristics 387

if we allow nt to take any real value (this is proved in Section 6.8). The σt’s in (6.6) are
unknown, but they can be estimated from pilot runs. We did that with 800 pilot runs, 200
runs with each value of t, and obtained (n1, n2, n3, n4) = (219, 512, 182, 87) as approximate
optimal values (for n1, n2 and n3, we rounded the value of the expression (6.6), then we took
n4 = n− n1 − n2 − n3).

Stratification can be combined with other methods such as indirect estimation and esti-
mation with a CV. The optimal allocation is not the same with the combination than with
the stratification alone, because the σt’s are not the same. If we combine stratification with
the CV, things become a bit more complicated because we must estimate first the optimal
CV coefficient within each stratum (the CV can have a different coefficient for each value
of t), then the variance within each stratum with the optimal CV coefficient, and use this
to estimate the optimal allocation between the strata. The resulting estimator has the form
(6.5) with

µ̂t =
1

nt

nt∑
i=1

Xc,t,i =
1

nt

nt∑
i=1

[Xt,i − βt(At,i − a bt)].

The variance constant σ2
t = Var[Xc,t,i] is minimized by taking

βt = β∗
t =

Cov[At,i, Xt,i]

Var[At,i]
=

Cov[Ai, Xi|Bi = bt]

a bt
,

which gives a minimal variance of σ2
t = Var[Xt,i]− (β∗

t )
2abt. These covariances and minimal

variances can be estimated by pilot runs. Then the allocation that minimizes the overall
variance can be computed via (6.6). From our pilot runs, we obtained (β1, β2, β3, β4) =
(1.020, 0.648, 0.224,−0.202) as estimated optimal coefficients and then (n1, n2, n3, n4) =
(131, 503, 247, 119) as estimated optimal allocation. This optimal allocation is quite different
from the one without CV and also quite different from proportional allocation. It is interest-
ing to observe that β4 < 0, which means that Cov[A4,i, X4,i] < 0, i.e., when the call center is
very busy the number of customers with good service quality eventually becomes negatively
correlated with the number of arrivals. When there is too much traffic, everyone must wait
and almost no call can be served on time!

Table 6.1 summarizes our empirical results for various stratified estimators. The sub-
scripts “sp” and ‘so” refer to stratified sampling with proportional allocation and optimal
allocation, respectively. Combination of two different methods is denoted by double sub-
scripts. For example, the estimator X̄so,c,n uses the CV and stratified sampling with optimal
allocation. It has the smallest estimated variance among the methods we tried: approximately
4.2% of that of the crude estimator. In other words, it provides a precision equivalent to that
of the crude estimator with approximately 24 times fewer simulation runs (not counting the
pilot runs). In practice, we could reuse the pilot runs together with the additional runs in the
final estimator, despite the small bias due to the fact that the CV coefficients are estimated
in part from the same runs. Simpler schemes that do not require pilot runs, such as the CV
alone without the pilot runs, or stratification with proportional allocation without the CV,
also yield significant variance reductions.

The results in the first five rows of Table 6.1 have been obtained from the same 1000
independent simulation runs. The results for stratification with proportional allocation, and
those for optimal allocation, were obtained from two other (independent) sets of 1000 runs.
Both of them used the same set of 800 pilot runs.
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Table 6.1. Empirical comparison of various estimators for the call center example

Method Estimator Mean S2
n(±8%) Ratio

Crude estimator X̄n 1518.2 21615 1.000
Indirect X̄i,n 1502.5 18389 0.851
CV Ai, with pilot runs X̄c,n 1510.1 3305 0.153
CV Ai, no pilot runs X̄ce,n 1510.2 3310 0.153
Indirect + CV, no pilot runs X̄i,c,n 1510.1 3309 0.153
Stratification (propor.) X̄sp,n 1509.5 1778 0.082
Stratification (optimal) X̄so,n 1509.4 1568 0.073
Strat. (propor.) + CV X̄sp,c,n 1509.2 1140 0.053
Strat. (optimal) + CV X̄so,c,n 1508.3 900 0.042

This entire experiment was repeated with n = 105, using 1000 pilot runs for each t,
to assess the accuracy of the variance reduction factors given in Table 6.1. The empirical
variances were very similar; 21998 for the crude estimator, 17966 for the indirect estimator,
3043 (with β̂∗ = 0.530) for the estimator with a CV, and 885 for the stratified estimator
with the CV and optimal allocation. These variance estimates are accurate to about 1% with
95% confidence. The value of the best estimator of µ was X̄so,c,n = 1508.8. The half-width

of a 95% confidence interval on µ based on this estimator is w/2 ≈ 1.96
√
885/n ≈ 0.184. So

we obtain (1508.8± 0.2) as an approximate 95% confidence interval on µ.

♣ How to do the stratification when B has the gamma distribution (exercice).

6.2.2 Sensitivity to the service speed

The service times (call durations) in the call center model of the previous subsection are i.i.d.
exponential with mean θ = θ1 = 100 seconds. We now want to study the effect of changing
slightly the parameter θ (the mean service time) to θ2 = θ1 − δ for some small δ > 0.

The distribution of Xi = Gi(s) and its expectation, µ(θ) = Eθ[Xi], now depend on θ.
Suppose we want to estimate µ(θ2) − µ(θ1). For example, the call center managers might
consider increasing the speed of agents either by additional training or by asking them to
handle the calls faster, and would want to evaluate the impact on the waiting times.

We simulate n days at each server speed. Let X1,i and X2,i be the number of customers
who started their service after waiting less than s seconds on day i, with θ = θ1 and θ = θ2,
respectively. Define ∆i = X2,i −X1,i and let

∆̄n =
1

n

n∑
i=1

∆i

be the (crude) estimator of the difference µ(θ2)−µ(θ1). To compute X1,i and X2,i, we can use
either (i) independent random numbers (IRNs) or (ii) common random numbers (CRNs),
i.e., the same underlying uniform random numbers for the two values of θ, as we did in
Section 1.7 when we looked at the effect of adding one agent for two periods. We have
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Var[∆i] = Var[X1,i] + Var[X2,i]− 2Cov[X1,i, X2,i].

With IRNs, the covariance term is zero. The aim of CRNs is to make this covariance positive,
thus reducing the variance of ∆i. By using the same random numbers at the same places for
both systems as far as this is achievable, the responses X1,i and X2,i are expected (intuitively,
at least) to be strongly positively correlated, especially if θ1 and θ2 are close.

To see how the same random numbers can be used at approximately the same places
in this example, we distinguish four types of random numbers: Those used to generate (1)
the busyness factor in the morning; (2) the interarrival times; (3) the service times; and (4)
the patience times. To make sure that the same sequences of random numbers are employed
within each category, we have attached a different random number stream to each category
(see Section 1.12). We initialize these four generators to the same seeds for both server speeds
and we generate all random variates by inversion, including the service times.

In our attempt to use the same random numbers at exactly the same places for both
systems, we meet a difficulty with the synchronization: Due to the different service times,
the abandonments will eventually not be the same for θ1 and θ2. A given call may abandon
in one system and not in the other. For such a call, the service time must be generated in
the first case but does not have to be generated in the second case. In this context, we can
generate service times:

(a) for all calls (the abandoned calls will have dummy service times), or

(b) only for the calls that are actually answered.

The rationale for (a) is to make sure that the same calls have the same service times in
both configurations, regardless of abandonments. The argument for (b) is for the sequence
of service times that are effectively employed to be the same for both systems, even though
these service times may belong to different calls because of different abandonment decisions.
So if a call has a very long service time for parameter θ1, this very long service time will also
appear (perhaps for another call) for θ2 under (b). Under (a), this long service time could
be unused for θ2.

Likewise, the patience time does not need to be generated for each call, but only for
those whose service does not start immediately upon arrival. We can generate the patience
time:

(c) for all arriving calls, again to maintain synchronization, or

(d) only when needed.

By combining these choices, we obtain four different possibilities for the synchronization
strategy, and it is unclear a priori which one is best.

Table 6.2 reports empirical results for δ = 10, 1, and 0.1, with n = 104. This corresponds
to a reduction of the mean service time by 10%, 1%, and 0.1%, respectively. The table
gives the sample mean and the sample variance of the ∆i’s for simulations with independent
random numbers (IRNs), simulations with CRNs without synchronization, and simulations
with CRNs with the different types of synchronizations just described. For CRNs without
synchronization, we just took all the random numbers needed in the simulation sequentially
from a single stream instead of from four different streams, and we generated random variates
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Table 6.2. Effect of change in the mean service time for the call center, with CRNs, for n = 104

Method δ = 10 δ = 1 δ = 0.1

∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i]
IRN (a + c) 55.2 56913 4.98 45164 0.66 44046
IRN (a + d) 52.2 54696 7.22 45192 -1.82 45022
IRN (b + c) 50.3 56919 9.98 44241 1.50 45383
IRN (b + d) 53.7 55222 5.82 44659 1.36 44493
CRN, no sync. (a + c)
CRN, no sync. (b + d) 56.0 3187 5.90 1204 0.19 726
CRN (a + c) 56.4 2154 6.29 37 0.62 1.8
CRN (a + d) 55.9 2161 6.08 158 0.74 53.8
CRN (b + c) 55.8 2333 6.25 104 0.63 7.9
CRN (b + d) 55.5 2323 6.44 143 0.59 35.3

only when they were needed (strategy (b + d)). Thus, for example, an inter-arrival time for
one system configuration could be generated from the same random number as a service
time for the other configuration. All the pairs (∆̄n, V̂ar[∆i]) in the table were obtained by
independent simulations.

Our results indicate that the CRNs, with any of the four combinations of synchronization
approaches, reduce the variance by a huge factor. The smaller δ is, the more the variance
is reduced. With IRNs, we have Var[∆i] = Var[X1,i] + Var[X2,i] ≈ 2Var[Xi] because X1,i

and X2,i are independent, so the variance does not depend much on δ. (It is slightly larger
for δ = 10 because Var[X2,i] is significantly larger in that case.) With CRNs, however, the
variance diminishes rapidly when δ → 0. A theoretical analysis of the convergence rate will
be given in Section 6.4.2, Example 6.12.

The difference between the four IRN results is just noise. Note that as δ → 0, the
difference E[∆i] becomes closer to 0 and thus harder to estimate. When δ is very small, the
finite-difference estimators with IRNs are practically useless (too noisy), whereas those with
CRNs remain viable.

CRNs with (b + d) without synchronization reduces the variance much less than the
good synchronization schemes, but nevertheless improves over IRNs by a significant factor.
Understanding exactly why it works would require further investigation, but most of the
explanation might be that (i) it takes some time before the synchronization is lost and (ii)
the important variable Bi is always generated with the same random number, and thus takes
a common value for both systems. With strategy (a + c), on the other hand, it turns out that
for this particular example, synchronization is maintained across the two systems even with
a single stream, because the two systems get a common value of Bi and the same sequence of
arrival events, each call requires exactly three random numbers upon arrival, and no random
numbers are needed anywhere else. For this reason, CRNs with a single stream give the same
variance reduction as CRNs with the four different streams as described earlier. However,
such a situation is more the exception than the rule.
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Between the synchronization strategies for the CRNs, the (a + c) combination is the
best performer, followed by (b + c). So it is better in this example to generate service and
patience times for all calls, and simply discard the values that are not needed. The choice
of strategy makes a significant difference when δ is very small, but not much when δ is
larger (e.g., 10). We must underline that this observation should not be taken as a general
rule: there are similar situations where the best synchronization strategy would be (b + d)
instead. So in practice, one should try and compare.

To improve the performance further, we could combine the use of CRNs with stratifi-
cation and a CV as in Section 6.2.1, or with other variance reduction techniques. For the
stratification with “optimal” allocation, we would have to first make n0 pilot runs in each
stratum t to estimate the variance of ∆i conditional on Bi = bt, and the optimal allocation
(n̂1, . . . , n̂4) for n runs. Then we can make max(0, n̂t − n0) additional runs in stratum t for
each t (if this gives a total larger than n, we can readjust the numbers downwards, propor-
tionally or in any other reasonable way). The final estimator can be computed from all n
runs. When δ is very small, there is a good chance to see ∆i = 0 for all i in the stratum
with t = 1. This would give n̂1 = 0. By re-using the pilot runs, we are guaranteed that no
stratum will be empty, so the estimator is well-defined.

6.3 Correlation Induction: Theory

Several variance reduction methods rely on inducing correlation between two estimators. One
example is the use of CRNs to induce positive correlation when comparing similar systems
(as in Sections 1.7 and 6.2.2). A second example is to exploit the correlation with a control
variable. Other methods (e.g., antithetic variates and randomized quasi-Monte Carlo) try to
induce negative correlations. In this section, we study sufficient conditions that guarantee a
positive or negative correlation between estimators, and we look at how the correlation can
be maximized, or minimized, under certain constraints. We start with the simple case where
each of the two estimators is a function of a single uniform, and then generalize to more
complicated functions. These results will be used in subsequent sections.

6.3.1 Covariance between functions of a single uniform

For two random variables X and Y with given distributions functions F and G, the maximal
and minimal possible correlation between X and Y are the Fréchet bounds given by The-
orem 2.6. The theorem also tells us how to reach these bounds, at least theoretically. The
maximum correlation (or maximum covariance) is attained by generating both X and Y by
inversion from a single uniform U , i.e., X = F−1(U) and Y = G−1(U) where U ∼ U(0, 1).
To minimize the (negative) correlation, take X = F−1(U) and Y = G−1(1− U).

Theorem 2.6 does not imply that X and Y must be generated by explicit inversion
to maximize (or minimize) their correlation. It suffices to generate the pair from the joint
distribution indicated in the second part of the theorem. For example, we may generate X
by any method and then put Y = G−1(F (X)). From the correlation-induction point of view,
this is equivalent to inversion from U = F (X) = G(Y ). If F and G differ only by scale and
location parameters, we can generate X by any method, then multiply X by the ratio of the
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scale parameters of Y and X, and add the difference between the location parameters, to
obtain Y . When we assume that certain random variates are generated by inversion, in the
remainder of this chapter, we mean this general (or implicit) form of inversion.

Example 6.1 Let X ∼ N(µx, σ
2
x) and Y ∼ N(µy, σ

2
y), two normal random variables

with different parameters. To generate the pair (X, Y ) with the correct normal marginal
distributions while maximizing the correlation between X and Y , we can generate Z ∼
N(0, 1) by any method, then define X = µx + σxZ and Y = µy + σyZ. This is equivalent
to generating X and Y by inversion from the common uniform U = Φ(Z), where Φ is the
standard normal distribution function. Even if Z is not effectively generated by applying
Φ−1 to a uniform U , this can be considered as inversion for the purpose of the theorems in
this section. □

Theorem 2.6 can be used to optimize the correlation between simple random variables.
When X and Y are estimators computed via simulation, their distributions is usually un-
known and too complicated to generate them directly by inversion, so it is generally not
possible to maximize or minimize the correlation between them, e.g., if they represent the
performance measures of two systems that we want to compare. The usual approach is to
optimize the correlation between intermediate (simple) random variables such as service
times, lifetimes of components, random decisions, etc., hoping that a significant part of this
correlation will be transmitted to the final estimators, with the correct sign.

Example 6.2 For the call center example, in Section 6.2.2 we compared two systems that
differed only by a scale parameter of the service-time distribution. For that, we used CRNs
with inversion to generate the service times. This maximizes the correlation between the
service times of the corresponding customers in the two systems. Maximizing the correlation
between the values of Gi(s) (number of calls answered within s seconds) for the two systems
is another matter. We can only hope (and test empirically) that strong positive correlations
between the service times induce the desired positive correlations between the Gi(s)’s as
well. We saw in Section 6.2.2 that this is clearly the case for this example.

If we do not use inversion to generate the service times, then the correlation is not
necessarily maximized even between the service times, and this could reduce the effective-
ness of CRNs. As an illustration, we repeated the experiment of Section 6.2.2 but using an
acceptance-complement method to generate the service times (as in Figure 1.29) instead of
inversion. For δ = 0.001, with CRNs, we obtained empirical variances ranging from 665 to
770 instead of from 1.8 to 53.8 as in Table 6.2.

As an example of a situation where a non-inversion method is equivalent to inversion,
suppose the α parameter of the gamma service time distribution is an integer larger than 1.
Then this distribution is Erlang(k, θ) with k = α, so each service time can be generated by
generating k independent exponentials with parameter θ and adding them. This is not inver-
sion but turns out to be equivalent to inversion when combined with CRNs (Exercise 6.6).

□

If two random variables X and Y are both functions of the same stream of uniforms,
under what conditions are we guaranteed that Cov[X, Y ] ≥ 0? Or that Cov[X, Y ] ≤ 0? Such
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conditions are developed in what follows, based on the notion of quadrant dependence. They
will imply in particular that if X = f(U0, U1, · · · ) and Y = g(U0, U1, · · · ) where f and g
are both monotone in the same direction with respect to each Uj, and U0, U1, U2, . . . are
arbitrary independent random variables, then Cov[X, Y ] ≥ 0.

6.3.2 Quadrant dependence

Given two monotone functions f and g (nondecreasing or non-increasing) and a random
vector (U, V ), what are the minimal dependence conditions on the pair (U, V ) to guarantee
that f(U) and g(V ) are positively correlated (or negatively correlated)? Here, U and V are
not necessarily uniform, and may have different distributions. For example, U and V can
represent the waiting time of a particular customer for two slightly different configurations
of a system, and f(U) and g(V ) can be the estimators of some performance measure for
these two system configurations. The following concept of dependence answers our question.

Definition 6.1 The random variables U and V are positively quadrant dependent (PQD)
if for all real numbers u and v,

P[U ≤ u, V ≤ v] ≥ P[U ≤ u] · P[V ≤ v]. (6.7)

We also say that (U, V ) has a PQD distribution. If (6.7) holds with the sign of the inequality
reversed, we say that U and V are negatively quadrant dependent (NQD), or that (U, V )
has a NQD distribution. Let P+ and P− denote the families of all PQD and NQD random
variable pairs, respectively. □
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Fig. 6.1. The PQD property holds if for any (u, v), the probability that (U, V ) falls into the dark
area is at least as large as the product P[U ≤ u] · P[V ≤ v], i.e., as large as if U and V were
independent. The figure illustrates the case of positive random variables, but the definition is more
general.

The following summarizes useful properties of PQD and NQD distributions.

Theorem 6.1 (Lehmann 1966, Esary, Proschan, and Walkup 1967). Let (U, V ) be any pair
of random variables. Then:

(i) (U,U) ∈ P+;
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(ii) (U, V ) ∈ P+ if and only if (U,−V ) ∈ P−;

(iii) If (U, V ) ∈ P+, and f and g are two non-decreasing functions or two non-increasing
functions, then (f(U), g(V )) ∈ P+, and similarly for P−;

(iv) If (U, V ) ∈ P+ then Cov[U, V ] ≥ 0, provided that this covariance exists, and the
covariance can be zero only if U and V are independent. Similarly, if (U, V ) ∈ P−

then Cov[U, V ] ≤ 0.

(v) (U, V ) ∈ P+ if and only if Cov[f(U), g(V )] ≥ 0 for all nondecreasing functions f, g for
which that covariance exists.

6.3.3 Functions of several random variables

We now examine the dependence between two functions of several random variables. If Y1 is
a function f of a sequence of random variables, Y2 is a function g of another sequence, and
we manage to induce dependence between the two sequences, what kind of dependence can
be guaranteed between Y1 and Y2, and under what conditions? This question is important
because simulation programs are really transformations of this type. The next theorem gives a
partial answer. It is a key tool to obtain sufficient variance reduction conditions for estimators
of differences with common random numbers (Section 6.4).

Definition 6.2 Two functions f and g of a denumerable number of variables are comonotone
[countermonotone] in their argument j if they are both monotone in the same direction [in
opposite directions] as functions of their jth coordinate when the other coordinates are fixed.

□

Theorem 6.2 Let {(Uj, Vj), j ≥ 1} be independent pairs of random variables. Let Y1 =
f(U1, U2, . . . ) and Y2 = g(V1, V2, . . . ) be two random variables with finite variance, and sup-
pose that for each j ≥ 1, with probability 1, one of the following three conditions holds:

(i) (Uj, Vj) ∈ P+ and f and g are comonotone in argument j;

(ii) (Uj, Vj) ∈ P− and f and g are countermonotone in argument j;

(iii) Uj and Vj are independent.

Then, (Y1, Y2) ∈ P+. Similarly, if these conditions hold after interchanging P+ and P− in
(i)–(ii), then (Y1, Y2) ∈ P−.

Proof. This is proved in Lehmann (1966) for the special case where f and g are functions of
only the first n random variables, (U1, . . . , Un) and (V1, . . . , Vn), where n is fixed and finite.
Our proof for the infinite case is different and uses part (v) of Theorem 6.1. Let Z1 = f̃(Y1)
and Z2 = f̃(Y2) where f̃ and g̃ are two nondecreasing functions such that Cov[Z1, Z2] exists.
We need to show that Cov[Z1, Z2] ≥ 0.

Take an index j for which condition (i) of the current theorem holds. Let F (−j) be

the sigma-field generated by {(Ui, Vi), i ̸= j} and let (Z
(−j)
1 , Z

(−j)
2 ) be the random variable
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pair obtained when (Uj, Vj) is replaced, in the definition of (Z1, Z2), by a pair (Ũj, Ṽj) of
independent random variables with the same marginals as (Uj, Vj). Then, E[Z1 | F (−j)] =

E[Z
(−j)
1 | F (−j)], with probability 1, and similarly for Z2. Also, Cov[Z1, Z2 | F (−j)] ≥ 0 =

Cov[Z
(−j)
1 , Z

(−j)
2 | F (−j)], because when viewed as functions of (Uj, Vj) alone, for whatever

F (−j) (that is, when all other (Ui, Vi) are fixed), (Z1, Z2) are PQD and (Z
(−j)
1 , Z

(−j)
2 ) are

independent. Therefore,

Cov[Z1, Z2] = E[Cov[Z1, Z2 | F (−j)]] + Cov(E[Z1|F (−j)],E[Z2|F (−j)])

≥ E[Cov[Z(−j)
1 , Z

(−j)
2 | F (−j)]] + Cov(E[Z(−j)

1 |F (−j)],E[Z(−j)
2 |F (−j)])

= Cov[Z
(−j)
1 , Z

(−j)
2 ].

The same reasoning works if condition (ii) holds for the index j, yielding the same conclusion.
Since this holds whatever the distribution of the (Ui, Vi) for i ̸= j, and for each j that satisfies
(i) or (ii), it follows that Cov[Z1, Z2] ≥ Cov[Z̃1, Z̃2] = 0, where (Z̃1, Z̃2) is the random variable
pair obtained when each pair (Uj, Vj) is replaced, in the definition of (Z1, Z2), by a pair
(Ũj, Ṽj) of independent random variables with the same marginals as (Uj, Vj).

The random variables Y1 and Y2 in Theorem 6.2 may actually be functions of only a finite
(perhaps random) number of Uj’s and Vj’s, say Y1 = f(U1, . . . , UN1) and Y2 = g(V1, . . . , VN2),
where N1 and N2 are random variables. This is just a special case of the theorem where f
happens to be constant with respect to Uj for j > N1, and similarly for g. Here, N1 and N2

need not be stopping times or be observable. Often, if we compare two systems with proper
synchronization, N1 = N2.

6.4 Common Random Numbers

CRNs are normally used for estimating the difference between the expected performance
measures µ1 and µ2 of two different (but similar) systems, as in Sections 1.7 and 6.2.2). It
also makes sense when there are more than two systems to compare, although the analysis
is then more complicated.

Suppose we want to estimate µ2 − µ1 by ∆ = X2 −X1, where E[∆] = µ2 − µ1. Then,

Var[∆] = Var[X2] + Var[X1]− 2Cov[X1, X2].

If X1 and X2 are uncorrelated, the covariance term disappears. But if we manage to induce
a positive covariance between X1 and X2 without changing their individual distributions,
the variance (and MSE) of ∆ is reduced. The standard way of inducing such a positive
covariance is to use the same underlying uniform random numbers to drive the simulation
for both X1 and X2, and to make sure that these random numbers are used (as much as
possible) at exactly the same place for both systems. The latter is called synchronization.
To be explicit, let Xk = fk(Uk), for k = 1, 2, where Uk = (Uk,1, Uk,2, . . . ) represents the i.i.d.
sequence of uniforms used to drive the simulation of system k. Using CRNs means taking
U1 = U2. The rationale is that random noise (or “experimental conditions”) is then the
same for both systems; so the observed differences are due only to the differences between
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the systems, and not to the fact that one system has been more lucky than the other in
picking its random numbers. As an analogy, using CRNs is like comparing two fertilizers
[or drugs] by using each of them on the same piece of land [or the same patients], at the
same time. This is impossible in real life, but can be done with simulation. Using CRNs
usually does not increase significantly the computing time (it sometimes reduces it, e.g., if
we exploit the fact that some random variables need not be generated twice), so the efficiency
is increased whenever the variance is reduced.

6.4.1 Sufficient conditions for variance reduction

CRNs do not always work: U1 = U2 does not guarantee that Cov(X1, X2) > 0. Obviously,
this depends on how the functions f1 and f2 are defined; i.e., how the uniforms are trans-
formed to produce the estimators. These functions are usually very complicated, making
even the sign of the covariance hard to evaluate a priori . The best possible case is when X1

and X2 are perfectly linearly correlated: ρ(X1, X2) = 1; then Var[∆] is reduced to zero. In the
worst case, ρ(X1, X2) = −1 and Var[∆] is doubled compared with independent simulations.
In what follows, sufficient conditions for the covariance to be non-negative are derived from
the results of Section 6.3.3.

We assume that E[X2
1 ] < ∞ and E[X2

2 ] < ∞. Let Ψ+ be any subset of arguments j for
which f1 and f2 are comonotone with respect to their jth argument Uk,j, let Ψ

− be any subset
of arguments for which they are countermonotone, and let Ψ 0 be the complement of Ψ+∪Ψ−.
We construct U2 from U1 as follows: U2,j = U1,j for j ∈ Ψ+, U2,j = 1 − U1,j for j ∈ Ψ−,
and U2,j independent of U1,j for j ∈ Ψ 0. Thus, across the two systems, we take CRNs for
a subset of arguments for which the function is comonotone, complementary (or antithetic)
random numbers for a subset of arguments for which the function is countermonotone, and
independent random numbers for the other arguments. Here, CRN and antithetic can be
interpreted in a wide sense, as explained in Section 6.3.1 (see Example 6.1).

Definition 6.3 A sampling scheme constructed as we just described is called CRN-
concordant. If Ψ 0 is empty, it is called completely CRN-concordant. Similarly, if we permute
U1,j and 1 − U1,j in the description, that is, take CRNs for countermonotone coordinates
and complementary random numbers for comonotone ones, the resulting sampling scheme is
called CRN-discordant, and completely CRN-discordant if Ψ0 is empty. □

The following theorem is well-known in the simulation community for the special case
where Ψ+ contains all the arguments j; see Glasserman and Yao (1992).

Theorem 6.3 For any CRN-concordant sampling scheme, Cov[X1, X2] ≥ 0, whereas for
any CRN-discordant sampling scheme, Cov[X1, X2] ≤ 0. In both cases, the covariance can
be zero only if X1 and X2 are independent.

Proof. Note that (U1,j, U1,j) ∈ P+ and (U1,j, 1−U1,j) ∈ P−. By Theorem 6.2, for the CRN-
concordant scheme, (X1, X2) ∈ P+ and the result follows. The proof for the CRN-discordant
scheme is similar: by Theorem 6.2, (X1, X2) ∈ P− and the result follows.
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Example 6.3 For the stochastic activity network model of Example 1.4, consider two differ-
ent sets of distributions for the activity durations Yj, for the same network. The distribution
function of Yj is F1,j in the first configuration and F2,j in the second configuration. The
indicator function I[T > x], where T is the project completion time and x is a constant, is
monotone with respect to T , and T is monotone with respect to each Yj. Therefore, if the
Yj’s are generated by inversion with CRNs for the two configurations: Yk,j = F−1

k,j (Uj) where
the Uj’s are i.i.d. U(0, 1), and if Xk = fk(Uk) = I[Tk > x] where Tk is the project duration
for configuration k, for k = 1, 2, we have a completely CRN-concordant sampling scheme
and thus Cov[X1, X2] ≥ 0 by Theorem 6.3. □

Example 6.4 One class of models where the conditions of Theorem 6.3 can be verified from
the basic building blocks of the model is that of a stochastically monotone Markov chain
(Heidelberger and Iglehart 1979, Glasserman and Yao 1992). Recall that a partially ordered
set is a set X together with relation ≤ having the following properties, for any x, y, z ∈ X :
reflexivity (x ≤ x), antisymmetry (x ≤ y and y ≤ x implies x = y), and transitivity (x ≤ y
and y ≤ z implies x ≤ z). A subset Y of a partially ordered set X is nondecreasing if y ∈ Y
and y ≤ x ∈ X implies that x ∈ Y . Roughly, a Markov chain on a partially ordered state
space X is stochastically monotone if at any step, for any nondecreasing set Y ⊂ X , the
probability that the next state is in Y is a nondecreasing function of the current state.

Given a stochastically monotone Markov chain on X , we consider an additive cost X of
the form (2.74) where Ci is a nondecreasing function of the chain’s state at step i. Let X1

and X2 denote the random variable X for two versions of that chain, with different transition
probabilities, where the transitions at each step of the chain are simulated by inversion with
CRNs across the two versions. Then, Cov[X1, X2] ≥ 0. Heidelberger and Iglehart (1979)
show how this can be applied to steady-state average costs in regenerative models, and give
the example of a single GI/GI/1 queue. Glasserman and Yao (1992) give related conditions
on the basic building blocks of a generalized semi-Markov process. □

Example 6.5 The Lindley process {Wi, i ≥ 1}, where Wi+1 = max(0, Wi + Si − Ai) and
Si−Ai is independent ofWi, is a simple example of a stochastically monotone Markov chain.
Indeed, P[Wi+1 ≥ x | Wi = wi] is a non-decreasing function of wi for any wi. If X1 and X2

are two nondecreasing functions of the Wi’s, for two Lindley processes simulated with CRNs
(or for the same one), then Cov[X1, X2] ≥ 0. □

Example 6.6 As another simple example, consider the value of a financial option with
payoff g(S(t1), . . . , S(td)) for some function g, where {S(t), t ≥ 0} is a geometric Brownian
motion and 0 = t0 < t1 < · · · < td (Example 1.11). Here, {S(tj), j ≥ 0} is a stochas-
tically monotone Markov chain. Therefore, if two such options have payoffs defined by
X1 = g1(S1(t1), . . . , S1(td)) and X2 = g2(S2(t1), . . . , S2(td)), for some non-decreasing func-
tions g1 and g2, and if both are simulated with CRNs (i.e., using the same standard normals
Z1, . . . , Zd), then Cov[X1, X2] ≥ 0. □

The monotonicity conditions for the choice of Ψ+ and Ψ− are often hard to check. More-
over, there are generally different ways of defining f1 and f2 as functions of U1 and U2 in a
given simulation model; for example, the random numbers could be used in a different order
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or transformed differently. Which sets Ψ+ and Ψ− are allowed depends on those definitions.
The sign of Cov[X1, X2] may be positive for some of the definitions and negative for others.
It is rarely clear at the outset which definition is best, but proper synchronization seems
to be an important ingredient to make the sampling scheme as close to CRN-concordant as
possible (see the example in Section 6.2.2).

It is important to emphasize that concordance is not a necessary condition, only a suf-
ficient one. Even if the sampling scheme is known not to be CRN-concordant (or is not
provably CRN-concordant) with respect to a given j, taking CRNs for that j may still be
beneficial even though Theorem 6.3 no longer applies.

For given distributions of X1 and X2, there is always a way of defining f1 and f2 such
that the covariance is non-negative. Theorem 2.6 gives the optimal way: Use a single uniform
to generate both X1 and X2 via direct inversion of their distribution functions F1 and F2.
This is usually impossible to implement, however, because the distributions of X1 and X2

are generally unknown or too complicated.

Theorem 6.4 Suppose that f1 and f2 are fixed right-continuous functions that are either
comonotone or countermonotone with respect to each of their arguments (i.e., it is possible
to choose a completely CRN-concordant scheme). Then, among all sampling schemes such
that U1 and U2 are two sequences of i.i.d. U(0, 1) r.v.’s and for which non-zero correlation
can exist only between the corresponding elements U1j and U2j of U1 and U2, the com-
pletely CRN-concordant sampling scheme maximizes the correlation between X1 = f1(U1)
and X2 = f2(U2). Similarly, the completely CRN-discordant sampling scheme minimizes the
correlation.

Proof. This generalizes Proposition 2.2 of Glasserman and Yao (1992), whose proof is easily
extended.

Example 6.7 For the call center example, we obtained convincing variance reductions
empirically in Sections 1.7 and 6.2.2. Can we use Theorem 6.2 to formally prove that the
variance is actually reduced, i.e., that the covariance is positive? This seems difficult. Here,
each service time is an increasing function of the uniform used to generate it. However, the
number Gi(s) of calls answered within s seconds (or the number Di lost or not answered
within s seconds) in a day is not necessarily a monotone function of any given service time.
A slightly longer service time might cause abandonment of a future call that previously
had good service, and can thus decrease the number Gi(s). But if that abandoned call has
an exceptionally long service time, getting rid of it might decrease the workload enough
so that more than one subsequent call joins the group of calls answered within s seconds.
Thus, the overall result could be (exceptionally) a net increase of Gi(s). In other words, the
performance measure is not always monotone with respect to the service times. Similarly, it
is not monotone with respect to the patience times. In Example 6.12, we prove in a different
way that CRNs reduce the variance when δ is sufficiently small.

On the other hand, suppose we consider a simplified call center model with no aban-
donment and where the performance measure is the average number of calls in the queue
during the opening hours. This average is nondecreasing with respect to each service time,
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and non-increasing with respect to each interarrival time. CRNs then provably reduce the
variance, by Theorem 6.2. □

For complex real-life models, to assess whether CRNs would work, we can make a pilot
study: perform a number of replications with CRNs and check if Cov(X1, X2) > 0. If the
cost of using CRNs is significantly different than for independent random numbers, we can
compare the two estimators via their efficiencies. From the runs with CRNs, we can estimate
Var[X1], Var[X2], and Cov(X1, X2). These quantities suffice to compute the variance of ∆
with and without CRNs, so there is no need to actually perform simulation runs without
CRNs.

6.4.2 CRNs for very small differences

A situation where CRNs works extremely well, even without monotonicity, is when a system
is parameterized by a continuous parameter θ, reacts similarly to similar values of θ, and
we want to compare the performance under two values of θ that are close to each other.
More specifically, suppose that the response can be written as f(θ,U), where U represents
an underlying sequence of i.i.d. U(0, 1) r.v.’s, and θ ∈ Υ , an interval of the real line. Let
θ2 = θ1 + δ where δ is small, and suppose θ1, θ2 ∈ Υ . Let

X1 = f(θ1,U1), X2 = f(θ2,U2), and ∆ = X2 −X1.

Again, we want to estimate E[∆].
The parameter θ could be, for example, that of a service time distribution, or a conveyor

speed, or a (positive) routing probability, etc. The difference δ could become very small if
we are interested in estimating µ′(θ), the derivative of µ(θ) = E[f(θ,U)] at θ = θ1, by the
finite difference (X2 −X1)/(θ2 − θ1) = ∆/δ, as in Section 1.8. Here we have

Var[∆/δ] =
Var[X1] + Var[X2]− 2Cov[X1, X2]

δ2
.

When δ → 0 (for θ1 fixed), with independent random numbers, we have Var[∆/δ] ≈
2Var[X1]/δ

2 →∞. This is bad news: the variance blows up quickly!
With CRNs, however, if enough continuity is present in f , the correlation betweenX1 and

X2 will approach 1 and Var[∆/δ] may remain bounded as δ → 0. As we saw in Section 1.8,
under certain conditions things work so well that we can take the limit

f ′(θ1,U) = lim
δ→0

f(θ1 + δ,U)− f(θ1,U)

δ
= lim

δ→0

∆

δ

as an unbiased estimator of µ′(θ). This estimator can be computed from a single simulation
(if all goes well), whereas the finite difference estimator requires two simulations. Before
detailing this in greater generality, we start with an example.

Example 6.8 We return to the Asian call option problem of Examples 1.11 and 1.21,
under the GMB model, with observation times t1, . . . , td. Suppose we want to estimate the
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derivative of the expected discounted payoff, v(s0, T ), with respect to s0, for s0 > 0, using
finite differences. The payoff at time T when S(0) = s0 can be written as

Y (s0) = e−rT max (0, s0W −K) ,

where

W =
1

d

d∑
i=1

exp

[
(r − σ2/2)ti + σ

i∑
j=1

√
tj − tj−1Φ

−1(Uj)

]

and U1, . . . , Ud are i.i.d. U(0, 1). With CRNs, assuming that δ > 0, we have

∆ = Y (s0 + δ)− Y (s0) =


0 if Y (s0 + δ) = Y (s0) = 0;

e−rT δW if Y (s0) > 0;

e−rT [(s0 + δ)W −K] if Y (s0 + δ) > Y (s0) = 0,

and the finite difference estimator ∆/δ satisfies 0 ≤ ∆/δ ≤ e−rTW , because s0W −K ≤ 0
when Y (s0) = 0. Therefore, Var[∆/δ] ≤ E[∆2/δ2] ≤ e−2rTE[W 2], which is bounded uniformly
in δ, so we can take δ > 0 as small as we want and the variance remains bounded.

What is the best δ to use in practice? If we stick with the finite-difference estimator, we
have to be careful in the implementation because of the limited accuracy of computers: If δ
is too small, Y (s0) and Y (s0 + δ) may become almost indistinguishable (on the computer)
and this may cause a large error on ∆.

However, we can do much better by taking the estimator to the limit; that is, use the
sample derivative

Y ′(s0) = lim
δ→0

Y (s0 + δ)− Y (s0)

δ
=

{
0 if Y (s0) = 0;

e−rTW if Y (s0) > 0,

as an estimator of the derivative

v′(s0, T ) =
∂v(s0, T )

∂s0
=
∂E[Y (s0)]

∂s0
.

Since ∆/δ is bounded uniformly in δ by the integrable function e−rTW , the Lebesgue domi-
nated convergence theorem guarantees that we can interchange the limit and expectation in
the second equality here:

E[Y ′(s0)] = E
[
lim
δ→0

Y (s0 + δ)− Y (s0)

δ

]
= lim

δ→0
E
[
Y (s0 + δ)− Y (s0)

δ

]
= v′(s0, T ).

That is, we have an unbiased estimator of the derivative, whose variance is bounded by
e−2rTE[W 2]. □

Taking the sample derivative as a derivative estimator does not always work, as we saw
in Example 1.48. There are situations where the variance of ∆/δ with CRNs increases to
infinity when δ → 0, although often at a slower rate than O(δ−2).
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Example 6.9 Suppose we replace the payoff Y (s0) in the previous example by the indicator
function:

Ỹ (s0) = I[Y (s0) > 0] = I[s0W > K],

where K > 0. In this case, for a given realization of W , the payoff is 0 for s0 ≤ K/W , and 1
for s0 > K/W , so the sample derivative Ỹ ′(s0) is 0 with probability 1. On the other hand,
the derivative of E[Ỹ (s0)] = P[W > K/s0] with respect to s0 is strictly positive. Thus, we
no longer have an unbiased estimator.

If we use the finite-difference estimator, we have

∆ = I [s0 ≤ K/W < s0 + δ] = I
[

K

s0 + δ
< W <

K

s0

]
.

Observe that both W and K/W have a bounded and continuous density in a small enough
neighborhood of s0. Thus, P[∆ > 0] = κδ + o(δ) when δ is small, where κ is the density of
K/W at s0. Then,

Var[∆/δ] =
P[∆ > 0]− P2[∆ > 0]

δ2
=
κδ − (κδ)2 + o(δ)

δ2
=
κ

δ
− κ2 + o(1/δ).

The variance still blows up when δ → 0, but at a slower rate than with IRNs, namely as
Θ(1/δ) instead of Θ(1/δ2). Here, the finite-difference estimator can only take the values
0 and 1/δ. This second value is unbounded when δ → 0 and this is the reason why we
cannot apply the dominated convergence theorem. Note that we are in the same setting as
in Exercise 1.16(b). □

We now state and prove a general theorem that covers the previous examples and many
more. It is followed by a corollary that provides conditions for the sample derivative to be
an unbiased estimator of µ′(θ). The result of Example 6.8 is a special case of the corollary.
Example 6.9 is covered by Part (iv) with δα = 0 and β = 1 (since P[∆2 > 0] = O(1/δ) in
that example).

Part (iii) of the theorem is related to the results of Glasserman and Yao (1992) and
L’Ecuyer and Perron (1994) if we take α = 2 (see Corollary 6.6). Part (ii) is more complicated.
Its proof is based on (6.8) and on Holder’s inequality. The need for (6.8) stems from the fact
that the random variable ∆ is unbounded a priori. When ∆ is bounded, the result simplifies
substantially and is given in Part (iv). The usefulness of each part will be illustrated by
examples. The corollary is Proposition 3 of L’Ecuyer and Perron (1994). The second part is
a special case of Theorem 1 of L’Ecuyer (1990b) and is very similar to Lemma 1 of Glasserman
(1988).

Theorem 6.5 Let ∆ = X2 −X1 = f(θ2,U2)− f(θ1,U1).

(i) If U1 and U2 are independent and if

sup
θ∈Υ

Var[f(θ,U )] <∞,

then Var[∆] ∈ O(1) as δ → 0.
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(ii) Let U1 = U2 = U and suppose that

Kz(δ, q)
def
= sup

θ1,θ2∈Υ
E[∆2q] ≤ δνK0 (6.8)

for some q > 1, ν ≥ 0, and K0 < ∞. If there is a random variable Γ , independent of
θ1 and θ2, and some constants α, β, Kδ, and Kγ such that E[Γ 2] ≤ Kγ and

p(δ, α)
def
= sup

θ1,θ2∈Υ
P{∆2 > Γ 2δα} ≤ Kδδ

β, (6.9)

then
Var[∆] ≤ Kγδ

α +Kz(δ, q)
1/q(Kδδ

β)1−1/q ∈ O(δα + δ[ν+β(q−1)]/q).

As a special case, if (6.9) holds with Γ 2δα = 0, then we can replace δα by 0 in the result
(this could be seen as taking α =∞).

(iii) Let U1 = U2 = U . Suppose that there is a random variable Γ , independent of θ1 and
θ2, and a constant Kγ such that E[Γ 2] < Kγ. If p(δ, α) = 0 for some constant α, then

Var[∆] ≤ Kγδ
α ∈ O(δα).

(iv) Let U1 = U2 = U . Suppose that the random variable |∆| is bounded uniformly with
probability 1, i.e., there is a constant Kh such that P[|∆| ≤ Kh for all θ1, θ2 ∈ Υ ] = 1.
If (6.9) holds, then

Var[∆] ≤ Kγδ
α +K2

hKδδ
β ∈ O(δα + δβ).

As in (ii), this result also holds with α =∞ (i.e., δα = 0 everywhere).

Proof. For (i), we have Var[∆] = Var[X1] + Var[X2] ∈ O(1).
For (ii), using Holder’s inequality with 1/p = 1− 1/q, we derive:

Var[∆] ≤ E[∆2]

≤ E[Γ 2δαI[∆2 ≤ Γ 2δα]] + E[∆2I[∆2 > Γ 2δα]]

≤ E[Γ 2δα] + (E[∆2q])1/q(E[Ip[∆2 > Γ 2δα]])1/p

≤ Kγδ
α + (Kz(δ, q))

1/q(p(δ, α))1−1/q

≤ Kγδ
α + (δνK0)

1/q(Kδδ
β)(q−1)/q

∈ O(δα + δ[ν+β(q−1)]/q).

For the case where α =∞ (or δα = 0), we remove the first term after the second inequality,
and all the corresponding terms thereafter.

For (iii), if ∆2 ≤ Γ 2δα with probability 1,

Var[∆] ≤ E[∆2] ≤ E[Γ 2δα] ≤ Kγδ
α ∈ O(δα).

For (iv), we have
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Var[∆] ≤ E[∆2]

≤ E[Γ 2δαI[∆2 ≤ Γ 2δα]] + E[∆2I[Γ 2δα < ∆2 ≤ K2
h]]

≤ E[Γ 2δα] +K2
hp(δ, α)

≤ Kγδ
α +K2

hKδδ
β

∈ O(δα + δβ).

For the case α =∞, we put δα = 0 everywhere.

Corollary 6.6 Suppose that with probability 1, the function f(·,U) is continuous in Υ and
is differentiable in D(U) ⊆ Υ , where Υ \D(U ) is at most a denumerable set, and

sup
θ∈D(U)

|f ′(θ,U)| ≤ Γ (U), (6.10)

where Γ = Γ (U) is a random variable independent of θ such that E[Γ 2] ≤ Kγ < ∞. Then,
Var[∆] ≤ Kγδ

2.
If in addition, for a given θ, f ′(θ,U) exists w.p.1, then we can interchange the expectation

and derivative operators:

E[f ′(θ,U)] =
∂E[f(θ,U)]

∂θ
,

and therefore the sample derivative f ′(θ,U ) is an unbiased estimator of µ′(θ).

Proof. By a generalized version of the mean value theorem (e.g., Theorem 8.5.3 of Dieudonné
1969), with probability 1, we have

|∆| = |f(θ2,U)− f(θ1,U)| ≤ δ sup
θ∈[θ1,θ2]∩D(U)

|f ′(θ,U)| ≤ δΓ (U),

so ∆2 ≤ Γ 2δ2. Part (iii) of the theorem then applies with α = 2. For the second part, it
suffices to apply the dominated convergence theorem (Theorem A.2) to ∆/δ.

Suppose that Var[∆] = O(δα) for some α ≥ 0. Theorem 6.5 and Corollary 6.6 provide
conditions under which this happens. Then, the variance of the finite difference estimator
satisfies Var[∆/δ] = O(δα−2). If α = 2 (e.g., if Corollary 6.6 applies), ∆/δ has bounded
variance. If α = 1, the variance of ∆/δ increases toward infinity at rate O(1/δ) when δ → 0.
The case where U1 and U2 are independent is worse: we have α = 0 and the variance
increases as O(1/δ2) when δ → 0.

Using the sample derivative f ′(θ,U) as a derivative estimator is known in the discrete-
event simulation literature as infinitesimal perturbation analysis (IPA) (Suri 1987, L’Ecuyer
1990b, Glasserman 1991). Often, for discrete-event systems, the sample derivative is com-
puted via recurrence equations that are not always trivial to implement and require additional
work.

Example 6.10 Consider the GI/GI/1 queue introduced in Section 1.11. Suppose that the
service time distribution Gθ depends on a continuous parameter θ ∈ Υ . When the parameter
value is θ, the waiting time Wj(θ) of the jth customer obeys the Lindley equation
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Wj+1(θ) = max(0, Wj(θ) + Sj(θ)− Aj), (6.11)

where Sj(θ) is the service time of customer j and Aj is the time between the arrivals of
customers j and j+1. Let f(θ,U) = W̄t(θ), the average waiting time of the first t customers,
and µ(θ) = wt(θ) = E[W̄t(θ)]. Here we have ∆ = W̄t(θ2)− W̄t(θ1).

For a concrete illustration, suppose that the interarrival times and service times are
exponential with means 1 and θ, respectively, and that the service times are generated by
inversion: Sj(θ) = −θ ln(1−Uj) where the Uj are i.i.d. U(0, 1). Suppose also that Υ ⊂ (0, 1)
and that W1(θ) = 0. The derivative of f(θ,U) is

f ′(θ,U) =
1

t

t∑
j=1

W ′
j(θ),

where W ′
1(θ) = 0 and

W ′
j+1(θ) =

{
W ′

j(θ) + S ′
j(θ) if Wj(θ) + Sj(θ)− Aj > 0,

0 if Wj(θ) + Sj(θ)− Aj < 0,

and S ′
j(θ) = − ln(1 − Uj). For a fixed U , the derivative does not exist at the values of θ

where Wj(θ)+Sj(θ)−Aj = 0 for some j, but there exists only a finite number of such values
of θ. They form the set Υ \ D(U). For a fixed θ, on the other hand, the derivative exists
w.p.1. When it does not exist, we can just define f ′(θ,U) = 0. We then have

f ′(θ,U) ≤ 1

t

t∑
j=1

j−1∑
ℓ=1

− ln(1− Uℓ) ≤
t∑

j=1

− ln(1− Uj)
def
= Γ,

where Γ is an Erlang(t, 1) random variable, whose mean and variance are both equal to t.
Therefore E[Γ 2] <∞, so Corollary 6.6 applies and Var[∆] ∈ O(δ2).

We performed some experiments with t = 50, θ1 = 0.5, θ2 = θ1 + δ for δ =
0.01, 0.001, 0.0001, and sample size n = 10000. Our variance estimates V̂ar[∆] = S2

n (the
sample variance of the n i.i.d. copies of ∆) are given in Table 6.3, first for independent
random numbers (IRN), then for common random numbers (CRN) for W̄t(θ1) and W̄t(θ2),
with proper synchronization to make sure that the interarrival times are the same and that
the same Uj is used to generate Sj(θ) for each j, for both values of θ. The results agree with
the theory: The variance is approximately 0.22 ∈ O(1) for IRN and 4.8δ2 ∈ O(δ2) for CRN.
That is, derivative estimator ∆/δ with CRNs has a bounded variance of about 4.8 when
δ → 0. The sample derivative f ′(θ,U), also called the IPA estimator, has the same variance,
and no bias.

Similar results hold for more general interarrival time distributions and service time
distributions Gθ, under mild conditions on these distributions. Suppose that the service
time of customer j is generated by inversion for each j, in the sense that Sj(θ) = G−1

θ (Uj)
for Uj ∼ U(0, 1), and that proper synchronization is maintained so that the Aj’s and Uj’s
remain the same for all values of θ. Then, S ′

j(θ) = ∂G−1
θ (U)/∂θ, under the assumption that

this derivative exists. If there is a random variable Γ̃ = Γ̃ (U), with finite variance, such that
supθ∈Υ |∂G−1

θ (U)/∂θ| ≤ Γ̃ , where U ∼ U(0, 1), then Corollary 6.6 applies. □
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Table 6.3. Mean and variance estimates for the difference in average waiting times, for the M/M/1
queue with λ = 1 and θ1 = 0.5.

Method δ = 0.01 δ = 0.001 δ = 0.0001

∆̄n V̂ar[∆] ∆̄n V̂ar[∆] ∆̄n V̂ar[∆]
IRN 1.9E-1 2.3E-1 -4.7E-3 2.2E-1 -7.1E-3 2.2E-1
CRN 2.6E-2 5.3E-4 2.6E-3 4.8E-6 2.6E-4 4.8E-8

Example 6.11 We consider the same GI/GI/1 queue as in the previous example, but now
our cost function is

f(θ,U) =
t∑

j=1

I[Xj(θ) > K], (6.12)

where Xj(θ) = Wj(θ) + Sj(θ) is the sojourn time in the system for customer j and K is a
constant. This is the number of customers, among the first t, who spent more than K units
of time in the system. This performance measure f(θ,U) can only take integer values, so it
cannot be continuous with probability 1 as a function of θ (except in the uninteresting case
where its expectation is a constant), and we cannot apply Corollary 6.6. In fact, the sample
derivative is 0 w.p.1. On the other hand, f being bounded by t, we can apply Theorem 6.5(iv)
as follows.

When θ is changed from θ1 to θ1+ δ, the random variable I[Xj(θ) > K] changes its value
if and only if

Wj(θ1) + Sj(θ1) ≤ K < Wj(θ2) + Sj(θ2),

if and only if

Gθ2(K −Wj(θ2)) < Gθ2(Sj(θ2)) = Uj = Gθ1(Sj(θ1)) ≤ Gθ1(K −Wj(θ1)).

The probability that this event happens, conditional on Wj(θ1) and Wj(θ2), is

Pj(δ) = Gθ1(K −Wj(θ1))−Gθ2(K −Wj(θ2)).

Let pj(δ) = E[Pj(δ)], the unconditional probability that this event happens. The probability
that at least one of the indicators changes its value is bounded as follows:

P[∆ > 0] ≤
t∑

j=1

pj(δ).

If we can show that pj(δ) ∈ O(δβ) for some constant β, we will obtain p(δ, α) ≤ P[∆ >
0] ∈ O(δβ) for any α and, because ∆ is bounded by the constant t, it will follow from
Theorem 6.5(iv) that Var[∆] ∈ O(δβ).

We now show that pj(δ) ∈ O(δ) in the case of exponential service times with mean θ, i.e.,
if Sj(θ) = −θ ln(1−Uj). Denote Zj,1 = max(0, K−Wj(θ1)) and Zj,2 = max(0, K−Wj(θ2)).
Then
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Pj(δ) = Gθ1(Zj,1)−Gθ2(Zj,2)

= 1− e−Zj,1/θ1 −
(
1− e−Zj,2/θ2

)
= e−Zj,1/θ1

(
e−Zj,2/θ2+Zj,1/θ1 − 1

)
≤ e−Zj,2/θ2+Zj,1/θ1 − 1.

On the other hand,

Zj,1 − Zj,2 ≤ Wj(θ2)−Wj(θ1) ≤
j−1∑
ℓ=1

[Sℓ(θ1 + δ)− Sℓ(θ1)]

and thus

−Zj,2

θ2
+
Zj,1

θ1
=

Zj,1 − Zj,2θ1/(θ1 + δ)

θ1

=
Zj,1 − Zj,2 + Zj,2δ/(θ1 + δ)

θ1

≤ 1

θ1

j−1∑
ℓ=1

[Sℓ(θ1 + δ)− Sℓ(θ1)] +
δZj,2

θ1(θ1 + δ)

≤ 1

θ1

j−1∑
ℓ=1

(−δ ln(1− Uℓ)) + δK ′

where K ′ = K/[θ1(θ1 + δ)]. Then,

pj(δ) ≤ E [exp (−Zj,2/θ2 + Zj,1/θ1)]− 1

≤ E

[
exp

(
− δ

θ1

j−1∑
ℓ=1

ln(1− Uℓ) + δK ′

)]
− 1

≤ E

[
j−1∏
ℓ=1

(1− Uℓ)
−δ/θ1

]
eδK

′ − 1

≤ (E
[
(1− Uℓ)

−δ/θ1
]
)j−1eδK

′ − 1

≤ [θ1/(θ1 − δ)]j−1eδK
′ − 1

= δK ′ +O(δ2).

This implies that Var[∆] ∈ O(δ) by Theorem 6.5(iv).
This argument can be adapted to other service time distributions than the exponential

and more general queueing systems.
We performed the same experiments as in Example 6.10 for this new performance mea-

sure, with K = 2. The results are in Table 6.4, where we see that Var[∆] is approximately
proportional to δ. This agrees with our theoretical bound.

□

Example 6.12 In Section 6.2.2, we examined the impact of a slight change of the mean
service time θ in the call center example. In this case, f(θ,U) represents the number of calls
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Table 6.4. Mean and variance estimates for Example 6.11, for the M/M/1 queue with t = 50,
λ = 1, θ1 = 0.5, and K = 2.

Method δ = 0.01 δ = 0.001 δ = 0.0001

∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i] ∆̄n V̂ar[∆i]
IRN 0.40 66 -0.05 63 -0.09 63
CRN 4.9E-1 6.3E-1 4.9E-2 5.2E-2 5.4E-3 5.3E-3

answered within s seconds when the service time is exponential with mean θ. The service
times are generated by inversion. When changing θ while U is fixed (i.e., using CRNs), the
service times change continuously, but f(θ,U) can change only by jumps of integer sizes.
Therefore, the continuity condition of Corollary 6.6 does not hold.

We now show that condition (ii) of Theorem 6.5 holds with δα = 0, ν = 0, β = 1,
and any q > 1. This will imply that Var[∆] = O(δ1−ϵ) for any ϵ > 0. We do this by
allowing the business factor B, the patience times, and the service times, to have more
general distributions than those specified earlier. We assume that θ is a scale parameter
of the service time distribution, that the service time has finite expectation, that we use
inversion and CRNs, and that we generate a service time for every customer, including those
who abandon. The argument could be adapted to other types of parameters, under additional
conditions, but it may become more complicated. We also assume that the business factor
B has bounded moments of all orders. The main ingredient in our proof is a lemma that
provides an O(δ) bound on P[∆ ̸= 0] = P[X(δ) ̸= X(0)], as a function of δ.

Let Tj denote the arrival time of call j, Pj its patience time, andWj the time at which it is
answered. Under our assumptions, when we change θ from θ1 to θ1−δ, the service time Sj of
the jth customer (by order of arrival) becomes Sj(δ) = (1− δ/θ1)Sj. It waiting time changes
to Wj(δ), say. Let Dj = |Wj −Wj(δ)|. Call j has good service (receives an answer within
the time limit s) in the original model if and only if Wj ≤ Vj, where Vj = Tj + min(Pj, s)
is its virtual threshold time. Note that the Vj’s are independent of the Sj’s and of δ. Call j
switches from bad to good service with θ2 if and only if

Wj(δ) ≤ Vj < Wj, (6.13)

and it switches from good to bad service if and only if

Wj ≤ Vj < Wj(δ). (6.14)

In general, the status of call j changes if and only if

min{Wj,Wj(δ)} ≤ Vj < max{Wj,Wj(δ)}. (6.15)

Let λ̄(b) be the maximum arrival rate during the day conditional on B = b. Let Pb and
Eb denote the corresponding conditional probability and conditional expectation. Recall that
A is the total number of arrivals during the day.

Lemma 6.7 Conditional on B = b, we have
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Pb[X(δ) ̸= X(0)] ≤ λ̄(b)(δ/θ1)E[S1]Eb[A
2] = O(δb3).

Proof. For a small ϵ > 0, a given time interval [t, t + ϵ) can contain one (or more) of the
Vj’s only if a call arrives in the time interval [t− s, t− s+ ϵ) and reaches its virtual threshold
time before abandoning, or if a call arrives at time x for t − s ≤ x ≤ t + ϵ and abandons
during the interval [t, t+ ϵ). The probability that one of these two events occurs is bounded
by

λ(t− s) ϵ (1− FP(s)) +

∫ t+ϵ

t−s

λ(x) ϵdFP(x) + o(ϵ) ≤ ϵ λ̄(u) + o(ϵ)

where FP is the distribution function of the patience time. This gives an upper bound on
the probability that [t, t+ ϵ] contains Vj for any fixed j. By integrating this with respect to t
over [min{Wj,Wj(δ)},max{Wj,Wj(δ)}], and taking ϵ→ 0, we find that the probability that
(6.15) occurs cannot exceed λ̄(b)Dj.

Let J∗ be the smallest integer j > 0 for which (6.15) holds, i.e, the index of the first call
that switches status. If there is none, put J∗ =∞. For j ≤ J∗, we have

Dj = |Wj −Wj(δ)| ≤
j−1∑
ℓ=1

(Sℓ − Sℓ(δ)) =
δ

θ1

j−1∑
ℓ=1

Sℓ.

Combining the last two bounds, we obtain that

Pb[J
∗ = j | Wj,Wj(δ)]

≤ Pb[min{Wj,Wj(δ)} ≤ Vj < max{Wj,Wj(δ)} | Wj,Wj(δ)]

≤ λ̄(b)Dj

≤ λ̄(b)δ

θ1

j−1∑
ℓ=1

Sℓ.

By summing on j, and exploiting the fact that the Sℓ’s are independent of A, we obtain
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Pb[X(δ) ̸= X(0)] ≤ Pb[J
∗ <∞]

=
∞∑
j=1

Eb [I[j ≤ A]Pb[J
∗ = j | Wj,Wj(δ)]]

≤
∞∑
j=1

Eb

[
I[j ≤ A]λ̄(b)(δ/θ1)

j−1∑
ℓ=1

Sℓ

]

=
∞∑
j=1

Pb[j ≤ A]λ̄(b)Eb

[
(δ/θ1)

j−1∑
ℓ=1

Sℓ

]

=
∞∑
j=1

Pb[j ≤ A](j − 1)λ̄(b)(δ/θ1)E[Sj]

= λ̄(b)(δ/θ1)E[S1]
∞∑
j=1

Pb[A = j]j(j − 1)/2

≤ λ̄(b)(δ/θ1)E[S1]Eb[A
2]

= O(δb3).

This completes the proof of the lemma.

Since B has a bounded moments, we can conclude from this lemma that

P[∆ ̸= 0] = E[P[∆ ̸= 0 | B]] = O(δ)E[B3] = O(δ),

so (6.9) is satisfied with β = 1 and α =∞. The crude bound

E[∆2q] ≤ E[A2q] = E[E[A2q | B]] = E[B2q]E[A2q | B = 1] <∞,

which is finite because both B, and A conditional on B (which is Poisson), have bounded
moments of all orders, implies that (6.8) holds with ν = 1 for any q ≥ 1. It then follows
from Part (ii) of Theorem 6.5 that Var[∆] = O(δ(q−1)/q) = O(δ1−ϵ) for any ϵ > 0, by taking
(q − 1)/q < ϵ, with a hidden constant that may increase with q. This is almost O(δ). The
empirical results of Section 6.2.2 indicate that Var[∆] ∈ O(δ) (and perhaps better), at least
for the (a + c) and (b + c) synchronization strategies and for the specific distributions used
in our numerical experiment.

If ∆ = X2 −X1 was bounded by a constant, then it would follow from Theorem 6.5(iv)
that Var[∆] = O(δ). Formally speaking, ∆ is not bounded, but when δ is small, the proba-
bility than ∆ exceeds a few units is so small that ∆ can be considered as bounded, from a
practical viewpoint.

□

♣ Add other examples.

6.4.3 Comparing regenerative models

Suppose we want to estimate the difference µ2 − µ1 between the steady-state performance
measures of two regenerative systems. Under mild conditions, the regenerative approach
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(Section 5.12) can be used to compute a confidence interval for µ1, and similarly for µ2.
To apply regenerative output analysis to µ2 − µ1 when the two systems are simulated with
CRNs, we need the paired process induced by the parallel evolution of the two systems to be
positive recurrent regenerative. Heidelberger and Iglehart (1979) give details and provide suf-
ficient (stochastic monotonicity) conditions for a positive covariance when the two processes
are Markov chains (see also Example 6.4). Glynn (1985) shows that the joint regeneration
property always hold if the two systems are positive recurrent Markov chains with countable
state spaces, but can fail to hold if they have more general state spaces.

6.4.4 Generalizations and related techniques

CRNs are not only useful for estimating a difference such as µ2 − µ1, they could be effec-
tive more generally for estimating a continuously differentiable function of several means,
say g(µ1, . . . , µd). If X1, . . . ,Xn are i.i.d. random vectors with mean µ = (µ1, . . . , µd) and
positive definite covariance matrix Σx, then

√
n(X̄n − µ) ⇒ N(0,Σx) and

√
n(g(X̄n) −

g(µ))/σg ⇒ N(0, 1) as n → ∞, from the delta theorem, where σ2
g = (∇g(µ))tΣx∇g(µ).

This means that nVar[g(X̄n)] ⇒ σ2
g when n→∞.

If the coordinates of Xi are independent, then Σx is a diagonal matrix Σ
(d)
x whose jth

diagonal element is the variance of the jth coordinate of Xi. Inducing correlations between
the components of each Xi (e.g., by using CRNs) reduces the variance of the estimator

g(X̄n), asymptotically, if and only if σ2
g becomes smaller than (σ

(d)
g )2 = (∇g(µ))tΣ(d)

x ∇g(µ),
i.e., if and only if

(∇g(µ))t(Σx −Σ(d)
x )∇g(µ) < 0. (6.16)

Example 6.13 Consider the estimation of a ratio of expectations, ν = g(µ1, µ2) = µ1/µ2,
by the empirical ratio ν̂n = X̄n/Ȳn, where (X1, Y1), . . . , (Xn, Yn) are i.i.d. vectors with mean
(µ1, µ2). This was studied in Section 5.4.2. Asymptotically,

√
n(ν̂n − ν) has mean zero and

variance

σ2
g =

Var[Xi] + ν2Var[Yi]− 2νCov[Xi, Yi]

µ2
2

.

Thus, if ν > 0, inducing a positive correlation between Xi and Yi without changing their
variance will reduce the variance of the ratio estimator (for large enough n). If ν < 0, the
induced correlation must be negative.

When we estimate a steady-state average using the classical regenerative approach (for
a single system), we effectively use the same simulations to estimate (simultaneously) both
the numerator and the denominator of such a ratio. This is exactly equivalent to using CRNs
with perfect synchronization. It reduces the variance if and only if the performance measure
Xi is positively correlated with the cycle length Yi if ν > 0, and negatively correlated if
ν < 0. If there is a slight correlation of the wrong sign (of a different sign than ν), using
the same simulations increases the variance but might still be more efficient than doing
independent simulations, because the reduction in computational costs can make up for the
variance increase. If there is a strong correlation of the wrong sign between Xi and Yi when
they come from the same simulation (or realization), then it might be better to simulate
them independently, or perhaps with antithetic variates (see Section 6.9). □
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Besides the variance reduction, there are situations where the CRNs also make the com-
putations less costly. The idea is that the random numbers need to be generated only once.
When comparing similar related systems, the lower-level transformations (e.g., the genera-
tion of interarrival and service times in a queue) are sometimes exactly (or almost) the same
for all systems of interest, and the systems differ only at a higher level. Then, a significant
amount of computation may be common to all systems and could be performed only once.
L’Ecuyer and Vázquez-Abad (1997) show how this idea can be exploited to efficiently esti-
mate an entire function of a univariate continuous parameter. On the other hand, it may also
happen that CRNs make the computations more costly, for example if all random numbers
need to be generated twice, because doing otherwise would be too complicated, and if the
need for synchronization brings additional overhead.

.

6.5 Control Variables

6.5.1 Setting and optimal coefficients

The control variables (CV) idea exploits auxiliary information to figure out whether the
random events have been more favorable or less favorable than usual in influencing the
sample performance, and to make an appropriate correction to the estimator. Here, we
consider linear corrections, i.e., linear CVs. Let X be the default performance estimator and
C = (C(1), . . . , C(q))t be a vector of q other random variables, presumably correlated with
X, with known expectation E[C] = ν = (ν(1), . . . , ν(q))t. This C is called the CV vector.
Define the controlled estimator

Xc = X − βt(C − ν) = X −
q∑

ℓ=1

βℓ(C
(ℓ) − ν(ℓ)),

where β = (β1, . . . , βq)
t is a vector of constants. Then, E[Xc] = E[X] = µ.

We now find an expression for the optimal vector β. Later, we deal with the fact that
this optimal β depends on unknown covariances that must be estimated. Let ΣC = Cov[C],
a matrix whose element (i, j) is the value of Cov[C(i), C(j)], and let ΣCX = (Cov(X,C(1)),
. . . ,Cov(X,C(q)))t be the covariance (vector) between C and X. Throughout this section,
we make the following assumption:

Assumption 6.1 Var[X] = σ2 < ∞, ΣC and ΣCX are finite, and ΣC is positive definite.
□

Under Assumption 6.1,

Var[Xc] = Var[X] + βtΣCβ − 2βtΣCX.

This variance is minimized by taking

β = β∗ = Σ−1
C ΣCX,
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in which case

Var[Xc] = (1−R2
CX)Var[X]

def
= σ2

c , (6.17)

where

R2
CX =

Σt
CXΣ

−1
C ΣCX

Var[X]

is the coefficient of determination (the square of the multiple correlation coefficient) between
C and X. If d = 1 and C(1) = C, then R2

CX = ρ2(C,X), the square of the usual Pearson
correlation coefficient. The variance can be reduced by either positive or negative correlation,
and R2

CX indicates the fraction of the variance that is reduced with the optimal β. The factor
1−R2

CX = σ2
c/σ

2 is called the minimum variance ratio. It represents the variance reduction
factor with the optimal β. In the best possible case, if the multiple correlation is ±1, the
variance is reduced to zero. In the worst case, there is no correlation and the variance is
unchanged (with the optimal β). With an arbitrary (wrong) β, the variance may increase
without bounds.

6.5.2 Types of control variables

Among the control variates frequently used, we may distinguish the three following types
(Bratley, Fox, and Schrage 1987):

(a) internal CVs,

(b) external CVs, and

(c) CVs obtained by weighted averages.

The internal CVs are those derived from quantities generated during the simulation.
Examples include average interarrival times or average service times in a queue with i.i.d.
interarrival and service times with known means, or average actual lifetimes of components
in a reliability system whose lifetimes are i.i.d. with known means, and so on. These CVs
come almost for free: there is no need to perform additional simulations to compute their
values.

External CVs are obtained by performing additional simulations on the side, such as
simulating, with CRNs, a similar (simpler) system than the one of interest and for which
the expected performance is known (say, = ν(ℓ)). The observed performance of the similar
system is the CV. Particularly in this case, variance reduction is not equivalent to efficiency
improvement, because of the added work for simulating the other system. For example, if
we want to estimate the average waiting time in a queue with complicated service-time
distribution and if we know how to compute the exact average for i.i.d. exponential service
times, we may use the latter as the simpler system. Here the synchronization (for the CRNs)
is crucial.

CVs are obtained via weighted averages as follows. Suppose we have q + 1 unbiased
estimators for µ, say X(0), . . . , X(q). We can construct a weighted average of those estimators,
yielding the estimator
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Xc =

q∑
ℓ=0

βℓX
(ℓ) = X(0) −

q∑
ℓ=1

βℓ(X
(0) −X(ℓ))

where
∑q

ℓ=0 βℓ = 1. Interpret C(ℓ) = X(0)−X(ℓ), ℓ = 1, . . . , q, as CVs for X(0). Then, we are
back to our linear CV model and we can use the standard CV machinery to estimate the
optimal weights βℓ. The classical setting of antithetic variates (Section 6.9) is a special case
of this.

6.5.3 Estimating the optimal coefficients: asymptotic theory

Typically, we cannot use β∗ in Xc because it is unknown (sometimes ΣC may be known, but
practically never ΣCX). Suppose a weakly consistent estimator β̂n of β∗ is computed from
the sample (X1,C1), . . . , (Xn,Cn). Define

Xce,i = Xi − β̂t
n(Ci − ν)

and replace X̄c,n by the estimator

X̄ce,n = X̄n − β̂t
n(C̄n − ν). (6.18)

Glynn and Szechtman (2002) prove the following, which generalizes a result of Nelson (1990):

Theorem 6.8 Suppose Assumption 6.1 holds. When n→∞, if β̂n ⇒ β∗, then

√
n(X̄c,n − X̄ce,n) ⇒ 0, (6.19)

S2
ce,n

def
=

1

n

n∑
i=1

(Xce,i − X̄ce,n)
2 ⇒ σ2

c , (6.20)

√
n(X̄ce,n − µ)
Sce,n

⇒
√
n(X̄c,n − µ)

σc
⇒ N(0, 1), (6.21)

where σ2
c is defined in Eq. (6.17).

Furthermore, if β̂n → β∗ with probability 1, we also have that S2
ce,n → σ2

c and X̄ce,n → µ
with probability 1, by the strong law of large numbers and a continuity argument.

A confidence interval for µ can be constructed in the usual way by assuming that√
n(X̄ce,n − µ)/Sce,n has the N(0, 1) distribution. Theorem 6.8 asserts that asymptotically,

as n→∞, such a confidence interval is valid and there is no loss in having to estimate β∗,
in the sense that X̄ce,n and X̄c,n have the same asymptotic variance.

There are often many possibilities for β̂n, and S2
ce,n can also be replaced by any other

consistent variance estimator (e.g., we can replace 1/n by 1/(n− q − 1) in front of the sum
in (6.20) or we can adopt (6.22)).

Perhaps the most natural way of estimating β∗ is by β̂n = Σ̂−1
C Σ̂CX, where Σ̂C and Σ̂CX

are the sample counterparts of ΣC and ΣCX. That is, the element (ℓ, k) of Σ̂C is the sample

covariance σ̂
(ℓ,k)
C between C(ℓ) and C(k), defined by
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σ̂
(ℓ,k)
C =

1

n− 1

n∑
i=1

(C
(ℓ)
i − C̄(ℓ)

n )(C
(k)
i − C̄(k)

n ).

However, C̄
(ℓ)
n can be replaced by ν(ℓ) in this estimator, or C̄

(k)
n can be replaced by ν(k), or

both (perhaps replacing 1/(n − 1) by 1/n in the latter case), and the estimator remains
consistent. This holds for every pair (ℓ, k), giving rise to a whole bunch of variants for
Σ̂C. It is often the case that some (or all) elements of ΣC are known. We could then use

their exact values instead of the estimators σ̂
(ℓ,k)
C , although this is not necessarily better; see

Section 6.5.7. Similarly, the ℓth element of ΣCX is usually estimated by

σ̂
(ℓ)
CX =

1

n− 1

n∑
i=1

(Xi − X̄n)(C
(ℓ)
i − C̄(ℓ)

n ),

in which C̄
(ℓ)
n could also be replaced by ν(ℓ). In all these cases, we have β̂n → β∗ with

probability 1 and Theorem 6.8 applies.

6.5.4 A multinormal setting

Theorem 6.8 holds under very broad generality, but gives only asymptotic results. The next
theorem, based on standard linear regression theory, provides exact expressions for finite n,
for the case where the vectors (Xi,C

t
i )

t are normally distributed. It follows from the fact that
estimating µ and β∗ simultaneously is equivalent to fitting a least-squares linear regression
model of the form

X = µ+ βt(C − ν) + ϵ

to the simulation data, where ϵ is normally distributed with mean zero. It uses the following
refined estimator of nVar[X̄ce,n]:

S̃2
ce,n =

n

n− q − 1

(
1

n
+

(C̄n − ν)tΣ̂−1
C (C̄n − ν)

n− 1

)
n∑

i=1

(Xce,i − X̄ce,n)
2, (6.22)

and the estimator β̂n uses the standard sample covariances. Clearly, S̃2
ce,n → σ2

c with proba-
bility 1 when n→∞.

Theorem 6.9 (Lavenberg and Welch 1981) Suppose that the (q + 1)-dimensional vectors
(Xi,C

t
i )

t are i.i.d. normal. Then,

E[X̄ce,n] = µ,

E[S̃2
ce,n/n] = Var[X̄ce,n] =

n− 2

n− q − 2
(1−R2

CX)Var[X̄n], (6.23)

and
√
n(X̄ce,n − µ)/S̃ce,n has a Student-t(n− q − 1) distribution.

Hence, under the normality assumption, the CV estimator is unbiased and we obtain a
perfectly valid confidence interval for µ from the Student distribution (it is easily constructed
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because only µ is unknown in
√
n(X̄ce,n − µ)/S̃ce,n) The factor (n− 2)/(n− q − 2) in (6.23)

is the loss factor due to the estimation of β∗ by the method of least squares. We have
Var[X̄ce,n] < Var[X̄n] if and only if q < (n − 2)R2

CX. This indicates that the number q
of control variables must remain small relative to n and that adding control variates is
worthwhile only as long as it increases R2

CX significantly. This is in analogy with classical
regression, where the CVs C(ℓ) are the analogs of the regression variables. More precisely, if
we currently have q control variables, adding a new one will reduce the overall variance if
and only if it reduces the current value of (1−R2

CX) by a proportion larger than 1/(n−q−2).
Alternative CV estimators can be compared via the mean or mean square of their cor-

responding confidence-interval half-width (Nelson 1989). Minimizing the mean-square half-
width gives a different criterion for when to stop adding control variates than minimizing
Var[X̄ce,n], because the mean and (especially) the variance of the half-width (for a given level)
depends also on the number of degrees of freedom n− q − 1 of the Student distribution.

The multinormality assumption is not always realistic. Without that assumption, the
CV estimator is generally biased, because β̂n is correlated with C̄n, and may have a variance
larger than the expression given in (6.23). But for large enough n, even if there is significant
departure from normality, we may rely on Theorem 6.8 to compute an asymptotically valid
confidence interval.

When n is small or q is not very small relative to n and (in addition) there is significant
departure from normality, something else must be done to control the bias and construct
more reliable confidence intervals. Among possible remedies, we mention batching, jackknif-
ing, bootstrapping, splitting, and making a preliminary (pilot) sample to estimate β∗ (see
Avramidis and Wilson 1993, Bratley, Fox, and Schrage 1987, Nelson 1990). According to
Nelson (1990), the jackknife estimator appears dominated by the splitting one and the boot-
strap may be computationally too costly in this context. We examine two splitting schemes
in Section 6.5.5.

To improve the normality by taking advantage of the central-limit effect, Nelson (1989,
1990) recommends batching the observations in, say, close to 60 batches when n > 60 and
q ≤ 5 (more batches for larger q). For example, if n = 300, regroup the observations into
60 batches of 5 observations each, take the average within each batch, and consider these
“batch means” as i.i.d. normal observations for which Theorem 6.9 can be applied. If the
observations are already normal, there is a small penalty in terms of increasing the loss
factor (n − 2)/(n − q − 2) and loosing degrees of freedom (thereby inflating the size of the
confidence interval). Otherwise, batching tends to improve normality and thus to reduce the
bias of both the mean and variance estimators X̄ce,n and S̃2

ce,n.

♣ Add examples and exercises.

6.5.5 Splitting for control variates

Here we divide the sample into two or more groups, and use, within each group, an estimator
of β∗ based only on the observations outside of that group. This gives an unbiased estimator,
but there remains the difficulty of estimating the variance. A special case often considered
is to split into n groups: Let β̂−i

n be the estimator of β∗ based on n − 1 observations, with
observation i removed; let
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Xcs,i = Xi − (β̂−i
n )t(Ci − ν),

X̄cs,n =
1

n

n∑
i=1

Xcs,i, (6.24)

S2
cs,n =

1

(n− 1)

n∑
i=1

(Xcs,i − X̄cs,n)
2.

Then E[X̄cs,n] = µ (because β̂−i
n is independent of Ci) and S2

cs,n/n is a (biased) estimator
of Var[X̄cs,n]. The latter estimator would be unbiased if the Xcs,i’s where independent, but
they are not. Nelson (1990) shows that the properties stated in Theorem 6.8 apply to
this splitting estimator. He then shows, under conditions slightly more general than those
of Theorem 6.9, that splitting inflates the variance: 0 ≤ Var[X̄cs,n] − Var[X̄ce,n] ∈ O(n−3).
Jackknifing has the same properties, but empirical studies suggest that splitting is usually
better for small sample sizes. Under normality assumptions, S2

cs,n/n tends to underestimate
Var[X̄cs,n] when n is small. For small n (say near 30) Nelson (1990) nevertheless prefers the
splitting estimator X̄cs,n over X̄ce,n, because it is unbiased. Note that X̄cs,n is more costly to
compute than X̄ce,n, because a different coefficient must be computed for each Ci.

Avramidis and Wilson (1993) devised a different splitting scheme that provides an unbi-
ased CV estimator X̄ca,n as well as an unbiased estimator S2

ca,n/n for the variance of X̄ca,n.
It operates as follows. Split the observations into m groups of k = n/m observations each.
For each group j, let β̂n,j be the estimator of β∗ (the analog of β̂n) computed solely from
the k observations of group j. For each observation i, define

τ(i) = ⌈i/k⌉+ 1 =



2 if 0 < i ≤ k;

3 if k < i ≤ 2k;
...

m if n− 2k < i ≤ n− k;
1 if n− k < i ≤ n,

which represents the group that follows the one to which observation i belongs, and use
β̂n,τ(i) as a CV coefficient. This gives the ith controlled observation:

Xca,i = Xi − β̂t
n,τ(i)(Ci − ν).

The split-CV estimator of µ is then

X̄ca,n =
1

n

n∑
i=1

Xca,i (6.25)

and the associated variance estimator is

S2
ca,n =

1

(n− 1)

n∑
i=1

(Xca,i − X̄ca,n)
2.

Note that β̂n,τ(i)
w.p.1→ β∗ when n→∞ for fixed m, so Theorem 6.8 applies to this estimator.

Avramidis and Wilson (1993) prove more:
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Theorem 6.10

(i) For m ≥ 2 (m fixed), E[X̄ca,n] = µ. Also, as n→∞, X̄ca,n
w.p.1→ µ, S2

ca,n

w.p.1→ σ2
c , and

√
n(X̄ca,n − µ)
Sca,n

⇒
√
n(X̄ca,n − µ)

σ2
c

⇒ N(0, 1).

(ii) For m ≥ 3 (m fixed), the Xca,i’s are pairwise uncorrelated and E[S2
ca,n/n] = Var[X̄ca,n].

(iii) If m ≥ 1 and the vector (Xi,C
t
i )

t is multivariate normal,

Var[X̄ca,n] =
n− 2m

n− qm− 2m
(1−R2

CX)Var[X̄n]. (6.26)

The loss factor (n− 2m)/(n− qm− 2m) = (k− 2)/(k− q− 2) in (6.26) is minimized by
taking m as small as possible, but the variance estimator is unbiased without the normality
assumption only for m ≥ 3. The estimator X̄ce,n in Theorem 6.9 corresponds to m = 1,
which is the best choice when we have normality. Based on these results and supported by
some experimental evaluation, Avramidis and Wilson (1993) recommend m = 3. They also
propose an approximate confidence interval based on the Student distribution for moderate
n. This scheme provides unbiased estimators for both the mean and the variance. On the
other hand, the estimator is more costly to compute than the straightforward X̄ce,n.

♣ Add examples.

6.5.6 Pilot runs are often inefficient

Making a pilot sample is a simple way of getting unbiased CV estimators. Suppose n0 pilot
observations are used to compute an estimator β̂0 of β

∗ and that β̂0 is used as a coefficient of
the CVs for the remaining (independent) n−n0 observations, yielding the mean and variance
estimators:

X̄cp,n =
1

n− n0

n∑
i=n0+1

(Xi − β̂t
0(Ci − ν)) and

S2
cp,n =

1

(n− n0 − 1)

n∑
i=n0+1

(Xi − β̂t
0(Ci − ν)− X̄cp,n)

2.

Here, E[X̄cp,n] = µ and E[S2
cp,n/(n−n0)] = Var[X̄cp,n]. Under the assumptions of Theorem 6.9,

Var[X̄cp,n]

Var[X̄ce,n]
=

n(n− q − 2)(n0 − 2)

(n− n0)(n− 2)(n0 − q − 2)
> 1

whenever n > n0 > q + 2 (see Section 5.3 of Ripley 1987); that is, X̄cp,n has a loss factor
worst than X̄ce,n. If there is significant departure from normality, pilot runs yield unbiased
estimators, as does the splitting scheme of Avramidis and Wilson (1993), but confidence
intervals based on the normal or Student distribution are still invalid for small n.
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6.5.7 Known variance of the controls

Sometimes, ΣC (or part of it) is known. Suppose ΣC is known entirely and that the es-
timator β̂n is replaced in (6.18) by β̈n = Σ−1

C Σ̂CX, leading to an estimator of µ that we
denote by X̄ck,n. Bauer Jr. (1987) gives an estimator of Var[X̄ck,n]. Under the assumptions of
Theorem 6.9, the latter estimator is unbiased and it turns out that Var[X̄ce,n] < Var[X̄ck,n] <
Var[X̄n] whenever Var[X̄ce,n] < Var[X̄n] (see Nelson 1990). So, perhaps counter-intuitively,

replacing β̂n by β̈n is not recommended when we believe in normality. The explanation is
that Σ̂C acts as a nonlinear control variate (see Section 6.5.10) that improves the estimator of
β∗. In absence of normality, however, X̄ck,n could be less biased and the associate confidence
interval could have a better coverage than for X̄ce,n.

6.5.8 Multiresponse estimation

What we have discussed can be generalized to the multiresponse case, where µ and X become
(say) p-dimensional vectors µ and X. The variance can then be replaced by the generalized
variance (the determinant of the covariance matrix) or by the trace of the covariance matrix
(Rubinstein and Marcus 1985, Venkatraman and Wilson 1986, Yang and Nelson 1992). Both
the determinant and the trace of the covariance matrix of Xc in this case are minimized by
setting β equal to the matrix β∗ = ΣCXΣ

−1
C , where ΣCX is the covariance matrix between

C and X. The minimal generalized variance is then

det(Cov[Xc]) = (1−R2
CX) · det(Cov[X]),

where
R2

CX = det(Σt
CXΣ

−1
C ΣCX)/det(ΣX). (6.27)

In practice, β∗ could be replaced by its sample estimator β̂ = Σ̂CXΣ̂
−1
C as in the single-

response case, and a similar analysis can be made. Under the assumption that (X t,Ct)t is
multivariate normal, a generalization of Theorem 6.9 says that E[X̄ce,n] = µ,

det(Cov[X̄ce,n])

det(Cov[X̄n])
=

(
n− 2

n− q − 2

)p

(1−R2
CX),

so the loss factor is now [(n− 2)/(n− q − 2)]p, and the random variable

(X̄ce,n − µ)tG−1(X̄ce,n − µ)(n− p− q)
(1 + (C̄ − ν)tΣ̂−1

C (C̄ − ν)n/(n− 1))p

has the F(p, n − p − q) distribution, where G = (Σ̂X − Σ̂−1
C Σ̂CXΣ̂CX)(n − 1)/n. The latter

permits us to construct a valid confidence region for µ. Yang and Nelson (1992) study the
effect of batching to improve normality, and the penalty incurred by batching when not
necessary, in the multiresponse context. Roughly, if the observations are batched into k
groups and the batch means are i.i.d. multinormal, the above holds with n replaced by k in
the loss factor and in the F statistic. It is then easily concluded that, as a general principle,
the larger are q and p, the larger the number of batches should be for the loss factor not to
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be significantly affected. For p ≤ 5 and q ≤ 5, Yang and Nelson (1992) recommend k ≤ 100.
They also analyze the behavior of the mean and mean square error of the confidence region
volume as functions of p, q, k, and the confidence level.

In the multiresponse context, Bauer Jr. and Wilson (1992) have proposed a procedure
for selecting a “good” subset of controls from a pool of candidates, with the objective of
minimizing the mean-square volume of the confidence region. The procedure makes a tradeoff
between the variance inflation due to the estimation of β∗ with more controls, and the
variance reduction due to a larger R2

CX. Bauer Jr. andWilson (1992) also empirically observed
a better coverage for the confidence regions based on minimizing the mean-square volume
with the estimator X̄ck,n rather than with X̄ce,n.

6.5.9 Linear metamodel

An even more general framework is that of a CV scheme for estimating a linear multiresponse
simulation metamodel of the form

X = ΘZ + ξ

where Z is an m-dimensional vector of design variables, Θ is a p×m matrix of (unknown)
metamodel coefficients, X is the p-dimensional response, and ξ is a vector of random noise.
The idea is to “explain” part of the noise by a q-dimensional control vector C of known
mean ν. This yields the metamodel

X = ΘZ + βt(C − ν) + ϵ.

Porta Nova and Wilson (1989, 1993) analyze such a model; they provide least square esti-
mators and expressions for their generalized variance, and they study special cases. Under
appropriate normality assumptions, the minimum variance ratio and loss factor with total
sample size n (i.e., a total of n design points, counting all replications) are

(1−R2
CX)

m and

(
n−m− 1

n−m− q − 1

)mp

,

respectively. The case of estimating the mean µ of a single multiresponse (previously dis-
cussed) corresponds to m = 1.

6.5.10 Nonlinear functions of means and nonlinear controls

So far, we used control variates to apply linear corrections to mean estimators. Following
Glynn and Whitt (1989) and Glynn (1994), we now consider a more general setting where
the goal is to estimate a nonlinear function of a mean vector µ = (µ1, . . . , µd)

t, say g(µ),
where µ is estimated by X̄n, as in Section 5.4.1.

6.5.10.1 Linear controls for a function of means Adding a linear control variate in
this case gives the estimator

h(X̄n, C̄n) = g(X̄n)− βt(C̄n − ν), (6.28)
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where C̄n) and ν have the same interpretation as before. By applying the delta theorem, we
obtain that

g(X̄n)− βt(C̄n − ν) ⇒ N(0, σ2
h)

when n→∞, with the asymptotic variance constant

σ2
h = ∇g(µ)tΣX∇g(µ)− 2∇g(µ)tΣt

CXβ + βtΣCβ. (6.29)

This result is actually a special case of Theorem 6.11 below. It can be used to construct an
asymptotically valid confidence interval for g(µ), based on the normal distribution.

The variance constant σ2
h is minimized by taking

β = β∗ = Σ−1
C ΣCX∇g(µ) (6.30)

and the minimal variance σ2
c in (6.17) becomes

σ2
c = ∇g(µ)t(ΣX −Σt

CXΣ
−1
C ΣCX)∇g(µ) = (1−R2

CX)σ
2
g (6.31)

where R2
CX is the same as in Eq. (6.27), andσ2

g = ∇g(µ)tΣX∇g(µ) is the variance constant
without the CV, exactly as in Corollary 5.6. The nonlinear CV reduces the variance if and
only if σ2

h < σ2
g, if and only if

[2∇g(µ)tΣt
CX +∇νh(µ,ν)

tΣC]∇νh(µ,ν) < 0.

In practice, β∗ can be replaced by any consistent estimator β̂n and the analogue of Theo-
rem 6.8 remains valid, so there is no loss of asymptotic efficiency by having to estimate β∗.
For instance, we can take

β̂n = Σ̂−1
C Σ̂CX∇g(X̄n).

To compute a confidence interval, σ2
h also needs to be replaced by an estimator.

Example 6.14 For a ratio estimation, we have g(µ) = µ1/µ2 where µ = (µ1, µ2)
t and

∇g(µ) = (1/µ2,−µ1/µ
2
2)

t. An estimator of µ1/µ2 with linear control variables can be defined
as

µ̂1

µ̂2

− β̂t
n(C̄n − ν) =

µ̂1

µ̂2

− (1/µ̂2,−µ̂1/µ̂
2
2)

tΣ̂t
CXΣ̂

−1
C (C̄n − ν)

where Σ̂CX is the matrix of empirical covariances between the components of C and (µ̂1, µ̂2).
□

6.5.10.2 A more general setting with nonlinear controls We now extend the previous
setting to a framework where the estimator has the general form h(X̄n, C̄n) for some function
h, where X̄n can be interpreted as a natural estimator of µ (usually an average), and C̄n can
be interpreted as an “average” of control variate vectors, both for a computing budget of n
simulation runs. The estimator is not necessarily a linear function of the control variates as
in (6.28). We will assume that (X̄n, C̄n) converges to (µ,ν) and obeys a CLT when n→∞
(see Assumption 6.2), and that the function h : Rd+q → R satisfies h(x,ν) = g(x) and is
continuously differentiable in a neighborhood of (µ,ν). We do not assume that C̄n is the
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average of i.i.d. random variables nor that E[C̄n] = ν for finite n. We replace Assumption 6.1
by the following:

Assumption 6.2 We have

√
n

(
X̄n − µ
C̄n − ν

)
⇒ N(0, Σ)

where

Σ =

(
ΣX Σt

CX

ΣCX ΣC

)
is a finite and positive definite covariance matrix, ΣX is d× d, and ΣC is q × q. □

Theorem 6.11 Under Assumption 6.2, when n→∞, we have

√
n[h(X̄n, C̄n)− g(µ)]

⇒
√
n∇h(µ,ν)t

(
X̄n − µ
C̄n − ν

)
(6.32)

=
√
n[∇g(µ)t(X̄n − µ) +∇νh(µ,ν)

t(C̄n − ν)] (6.33)

⇒ N(0, σ2
h) (6.34)

where ∇νh is the gradient of h with respect to its last q coordinates and

σ2
h = ∇h(µ,ν)tΣ∇h(µ,ν) (6.35)

= ∇g(µ)tΣX∇g(µ) + 2∇g(µ)tΣt
CX∇νh(µ,ν)

+∇νh(µ,ν)
tΣC∇νh(µ,ν).

Proof. Eq. (6.32) comes by doing a first-order Taylor expansion of h(X̄n, C̄n) around
h(µ,ν) = g(µ) and invoking the continuous differentiability of h, Assumption 6.2, and the
continuous mapping theorem (Theorem A.10). Eq. (6.33) holds because∇µh(µ,ν) = ∇g(µ),
where ∇µh is the gradient of h with respect to its first d components. The CLT (6.34) follows
by combining (6.33) with Assumption 6.2. The result is also a direct consequence of the delta
theorem together with Assumption 6.2.

From (6.33) and Corollary 5.6, we have that

h(X̄n, C̄n) = g(X̄n) +∇νh(µ,ν)
t(C̄n − ν) + op(n

−1/2), (6.36)

which means that the nonlinear CV scheme is asymptotically equivalent (for large n) to
the linear CV scheme with β = −∇νh(µ,ν). This choice of coefficient β is not necessarily
optimal for the linear CV (and can be far from it). In general, we can do better with β∗.
Thus, every nonlinear CV scheme that satisfies Assumption 6.2 is asymptotically dominated
by a linear scheme that uses its optimal coefficient β∗. This shows that from the asymp-
totic standpoint, there is no loss in restricting ourselves to linear CVs. On the other hand,
asymptotics tell only part of the story. For finite n, nonlinear controls may sometimes beat
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the corresponding linear ones in terms of MSE and efficiency. This is further discussed in
Section 6.5.12.

In the present setting, C̄n is not necessarily the average of i.i.d. random variables and
E[C̄n] is not necessarily equal to ν; we require only the weaker condition that

√
n(C̄n −

ν) ⇒ N(0,Σc). This additional freedom can be useful. For example, while estimating a
ratio of expectations by a ratio of sample means, Fleming, Schaeffer, and Simon (1995) use
other ratios of samples means as linear CVs for the first ratio. These CVs are consistent but
biased. In this context, the components of the vector C̄n are the ratios used as CVs and the
components of ν are the corresponding ratios of expectations. For an application involving
the estimation of blocking probabilities in a digital cellular phone system, these authors
obtain large efficiency improvements with those CVs, and even more so when combining
their CV approach with importance sampling, when the blocking probabilities are small. By
using the individual sample means as linear CVs instead of the ratios, the variance of the
CV estimator would be approximately the same (for large enough n), but there would be
twice as many CVs, so twice as many parameters to estimate.

Examples of estimators with a one-dimensional nonlinear CV include

h(X̄n, C̄n) = g(X̄n)C̄n/ν (6.37)

h(X̄n, C̄n) = g(X̄n)ν/C̄n (6.38)

h(X̄n, C̄n) = g(X̄n)
C̄n/ν (6.39)

h(X̄n, C̄n) = g(X̄n)
ν/C̄n , (6.40)

where E[Cn] = ν. The ratio CV estimators (6.37) and (6.38) were studied by Cochran (1977)
and Kleijnen (1974), while the power CV estimators (6.39) and (6.40) have been suggested
by Nelson (1987). Those nonlinear CV estimator are clearly biased, but in some special
situations they may decrease the variance enough to reduce the MSE.

♣ Give concrete numerical illustrations.

Example 6.15 Replacing β∗ by β̂n as in Eq. (6.18) and replacing ΣC by Σ̂C (or vice-versa)
as discussed in Section 6.5.7 can be interpreted as special cases of nonlinear control variates.
We already saw in Theorem 6.8 that this makes no difference in the asymptotic variance
constant, but there can be a significant difference for finite n. □

The framework of Glynn (1994) is slightly more general than what we have dis-
cussed so far; the process {(X̄n, C̄n), n ≥ 1} is replaced by a continuous-time process
{(X(t),C(t)), t ≥ 0} there, and it covers the case where µ and ν are limits of continuous-
time averages. In that context, if µ is to be estimated by a single (long) simulation run,
different methods could be used to estimate the variance, including batch means and a re-
generative approach. The latter transforms the problem into one of ratio estimation, while
the former is studied in Yang and Nelson (1992).

6.5.11 Moments matching

The moment matching methods surveyed by Boyle, Broadie, and Glasserman (1997b), Sec-
tion 2.4, are strongly related to the use of nonlinear control variates. One such method was
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proposed by Barraquand (1995) under the name of quadratic resampling, in the context of
financial simulations. These methods are biased and it is generally difficult to control the bias
and assess the error. They are also asymptotically dominated by using the corresponding
control variates, as explained below.

Suppose that i.i.d. random variables Z1, . . . , Zn with known first moments (e.g., known
mean µz = E[Zi], known variance σ2

z = Var[Zi], etc.) are generated during the simulation.
The idea of moment matching is to modify the Zi slightly so that the empirical moments
match the theoretical ones. For example, to match the first moment, it suffices to replace
each Zi by Z̃i = Zi+µz− Z̄n. The average of the Z̃i’s is then equal to the theoretical average
µz. To match the first two moments (mean and variance), we would replace each Zi by

Z̃i = µz + (Zi − Z̄n)σz/Sz,n (6.41)

where S2
z,n is the sample variance of the Zi’s (Exercise 6.12). We can also match the covari-

ances when more than one type of random variable is considered, etc.
Sometimes, we can choose the level at which the moments are matched. For example, if

n i.i.d. replicates of the value S(T ) of a geometric Brownian motion at time T are generated
as

Yi = S(0) exp
[
(r − σ2/2)T + σ

√
TZi

]
i = 1, . . . , n,

where the Zi are i.i.d. N(0, 1), then we can apply moment matching either to the Zi’s or to
the Yi’s. Boyle, Broadie, and Glasserman (1997b), page 1279, report numerical experiments
for an option pricing example involving this particular setting.

1

Suppose that the quantity of interest is µ = E[h(Zi)] where h is twice continuously
differentiable at Zi with probability 1. Let Xi = h(Zi) and Xmm,i = h(Z̃i), where Z̃i is
defined by (6.41) (the first two moments are matched). The moment matching estimator

X̄mm,n
def
=

1

n

n∑
i=1

Xmm,i (6.42)

does not fit the nonlinear CV framework of Section 6.5.10, because it is not a function of
(X̄n, Z̄n, σz/Sz,n) only. However, we can show directly (see Exercise 6.12 and Boyle, Broadie,
and Glasserman 1997b) that

√
n(X̄mm,n − µ) ⇒

√
n(X̄n − β1C(1) − β2C(2) − µ) (6.43)

as n→∞, where C(1) = 1−σz/Sz,n, C
(2) = Z̄nσz/Sz,n−µz, β1 = E[Zih

′(Zi)], β2 = E[h′(Zi)],
and h′(Zi) is the derivative of h evaluated at Zi. This is asymptotically equivalent to using
C(1) and C(2) as control variates with coefficients β1 and β2. But these coefficients are not
necessarily optimal. Using these control variates with their optimal coefficients is at least
as good (and usually better) than matching moments, at least for large n. Furthermore, in
general, E[C(1)] ̸= 0, E[C(1)] ̸= 0, and these expectations are unknown. So even with constant
coefficients, these control variates are biased. It would seem more natural to use the control
variates Z̄n − µz and S

2
z,n − σ2

z instead; their mean is zero. It is also unclear how to estimate

1From Pierre: We should compare the MSE’s for some numerical examples.
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Var[X̄mm,n] for computing confidence intervals. An easy way is to replicate the entire scheme,
say, m times, compute the empirical variance of the m i.i.d. copies of X̄mm,n, and compute
a confidence interval by assuming that X̄mm,n is normally distributed and using the Student
distribution with m− 1 degrees of freedom.

6.5.12 Biased control variates

The nonlinear control variates studied in Section 6.5.10 are examples of biased control vari-
ates. More generally, allowing bias sometimes permit one to consider control variates C whose
expectation is known only approximately, but whose correlation with X is so large that using
them reduces the MSE significantly (and improves the efficiency) despite the introduction
of some bias. Schmeiser, Taafe, and Wang (2001) study this type of situation and provide
examples.

6.5.13 Examples

Example 6.16 ♣ Try all that CV stuff on a call center example. □

Example 6.17 For the Asian call option model of Example 1.11, we can derive an explicit
pricing formula for the option if the arithmetic average is replaced by a geometric average,
i.e., if the payoff discounted to time 0 is

C = e−rT max (0, Y −K) . (6.44)

where Y =
∏d

j=1 S(tj)
1/d. Here,

lnY =
1

d

d∑
j=1

ln(S(tj))

= ln(S(0)) +
1

d

d∑
j=1

(
(r − σ2/2)tj + σB(tj)

)
has the normal distribution with mean

my = lnS(0) +
(r − σ2/2)

d

d∑
j=1

tj

and variance

s2y =
σ2

d2
Var

[
d∑

j=1

B(tj)

]

=
σ2

d2
Var

[
d∑

j=1

(d− j + 1)(B(tj)−B(tj−1))

]

=
σ2

d2

d∑
j=1

(tj − tj−1)(d− j + 1)2,
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where t0 = 0. By exploiting the fact that Y has the lognormal distribution and using the
same approach as for deriving the Black-Scholes formula (see, e.g., Hull 1997, page 466), we
obtain that

E[C] = e−rT
[
exp(my + s2y/2)Φ(z0 + sy)−KΦ(z0)

]
,

where z0 = (− lnK +my)/sy.
2

Knowing the expectation of C, we can use it as a control variable for estimating E[X],
where X is the discounted payoff of the option based on the arithmetic average, given by

X = e−rT max

(
0,

1

d

d∑
j=1

S(tj)−K

)
. (6.45)

This was suggested by Kemna and Vorst (1990). When C and X are computed from the same
simulation of the process {S(t), t ≥ 0}, they are highly correlated, especially if σ2(td − t1)
is relatively small (roughly). The resulting estimator is Xc = X − β(C − E[C]) for an
appropriate constant β. With this method, Lemieux and L’Ecuyer (1998) have observed
variance reductions by factors of up to 106 for some examples. A similar approach can be
used for pricing Asian put options.

Another potential control variate for this example is
∑d

j=1 S(tj). Recall that each

S(tj)/S(0) is lognormal with parameters ((r− σ2/2)tj, σ
2tj), so its mean is E[S(tj)/S(0)] =

ertj and the CV has expectation S(0)
∑d

j=1 e
rtj .

You are asked to experiment with these control variates in Exercise 6.9. Other control
variates for this problem, based on Laplace transforms, have been explored by Fu, Madan,
and Wang (1998). □

Example 6.18 In a down-and-out call option with barrier ℓ effective in discrete time, the
discounted payoff is

X = e−rT max (0, S(T )−K) I[min(S(t1), . . . , S(td)) > ℓ], (6.46)

for some observation dates 0 ≤ t1 < · · · < td ≤ T , where ℓ is a constant (the barrier). In
other words, the payoff is the same as in the standard Black-Scholes model but the option
is knocked out whenever S(t) ≤ ℓ at one of the observation dates tj. Boyle, Broadie, and
Glasserman (1997b), page 1282, suggest using as a control variate the payoff of the standard
European option, C = e−rT max (0, S(T )−K) (i.e., with ℓ = −∞), whose expectation is
given by Black-Scholes formula (1.9). This CV is especially effective when the knock-out
probability is small.

A closed-form formula is available for E[X] in the case where the asset is monitored in
continuous time, i.e., if min(S(t1), . . . , S(td)) is replaced by min0≤t≤T S(t). This suggests that
the payoff of the continuously monitored option could be used as another control variate. □

Example 6.19 Hsu and Nelson (1990) introduce CV estimators for quantiles of a distribu-
tion and study their properties without the multinormality assumption. See also Avramidis
and Wilson (1998). □

2From Pierre: The ordinary Black-Scholes formula is only a special case of this. Explain.
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Example 6.20 (Glynn and Szechtman 2002) Let C1, C2, · · · be i.i.d. random variables
with known mean ν. If τ is a random variable, in general it is not true that (1/τ)

∑τ
j=1Cj

has expectation ν, so we cannot use this average as a control variate.
However, if τ is a stopping time with respect to some filtration {Fj, j ≥ 1} to which

{Cj, j ≥ 1} is adapted (i.e., each Cj is Fj-measurable), then Wald’s first-order identity
ensures that C =

∑τ
j=1(Cj−ν) has expectation E[C] = E[τ ]E[Cj−ν] = 0. This C can then be

used as a control variate. Wald’s second-order identity also tells us that Var[C] = E[τ ]Var[Cj].
This can be easily generalized to the case where the Cj’s are random vectors. □

6.6 Conditional Monte Carlo

The idea of conditional Monte Carlo (CMC) is to replace the estimator X by its conditional
expectation given another random variable Z, or more generally a collection of information G
(a σ-field, to be mathematically precise), that contains too little information to compute the
value of X (i.e., such that X is not G-measurable), but enough to compute (or approximate)
its conditional expectation. Here, G can be interpreted as partial information from the sample
path of the simulation model. (Some writers reserve the expression conditional Monte Carlo
for the situation where Monte Carlo simulation is used to estimate a conditional expectation
for its own sake, but its use to refer to the efficiency improvement techniques described in
this section is now well spread.) The CMC estimator can be written as

Xe
def
= E[X | G]. (6.47)

Clearly, E[Xe] = E[E[X | G]] = E[X]. Using the well-known general variance decomposition
(Proposition A.5 in the Appendix)

Var[X] = E[Var[X | G]] + Var[E[X | G]], (6.48)

we find that
Var[Xe] = Var[X]− E[Var[X | G]] ≤ Var[X]. (6.49)

This inequality is a special case of the Rao-Blackwell theorem (see, e.g., Lehmann and
Casella 1998, page 47), in which the variance can be replaced by a more general convex loss
(or penalty) function of X.

We can interpret the first term on the right side of (6.48) as the (expected) residual
variability once the information in G is known, and the second term as the variability due
to the randomness of G. Replacing X by Xe erases the first term. In contrast, stratification
with deterministic allocation (Section 6.8) zeros out the second term by determining G a
priori (in that context, G represents the choice of stratum).

If a σ-field G1 contains less pertinent information to guess the value of X than another σ-
field G2 (e.g., if G1 ⊂ G2), then E[Var[X | G1]] ≥ E[Var[X | G2]] (Exercise 6.14) and therefore,
by (6.49), E[X | G1] has less variance than E[X | G2]. Generally speaking, the lesser the
information in G, the smaller the variance of Xe = E[X | G], but the harder it is to compute
this conditional expectation, because it requires integrating out more. If G contains too little
information, Xe may become too expensive or impossible to compute. There is a trade-off
in terms of efficiency. It may also happen that Xe is less expensive to compute than X, a
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win-win situation. Two extreme cases: If G gives no information at all on X, the variance of
Xe is reduced to 0, because Xe = E[X | G] = E[X], but computing Xe amounts to computing
E[X] analytically. On the other hand, if X is G-measurable (i.e., it can be computed when
the information in G is know), Var[Xe] = Var[X].

Remark. Since X − Xe has zero expectation, it may come to mind to use it as a control
variate jointly with the CMC estimator. However, the fact that the difference X − Xe is
uncorrelated with Xe, i.e.,

Cov[X −Xe, Xe] = E[(X −Xe)Xe] = 0 (6.50)

(see Exercise 6.13), knocks off this idea. In other words, this difference can be seen as inde-
pendent noise added to Xe.

Example 6.21 We return to the stochastic activity network model of Example 1.4, where
we want to estimate µ = P[T > x], the probability that the project completion time T
exceeds x. The naive estimator is the indicator I[T > x]. A CMC estimator can be defined as
follows (Avramidis and Wilson 1996 and references therein). Select a set of activities L ⊆ A
such that each directed path from the source to the sink contains exactly one activity from
L. This L is called a uniformly directed cutset. Now let G represent the durations of the
activities in B = A \ L. The CMC estimator is then

Xe = P[T > x | {Yj, j ∈ B}].

This estimator can be computed as follows. Each l ∈ L is an arc that goes, say, from node al
to node bl. Given the values of Yj for j ∈ B, let αl be the length of the longest path from the
source to al, and βl the length of the longest path from bl to the sink. There is no path longer
than x that passes through l if and only if αl + Yl + βl ≤ x. Conditional on {Yj, j ∈ B},
the probability that this happens is P[Yl ≤ x− αl − βl] = Fl[x− αl − βl]. Since the Yl’s are
independent, the conditional probability that T ≤ x is the product of these probabilities for
all l ∈ L, and therefore

Xe = 1−
∏
l∈L

Fl[x− αl − βl].

In addition to reducing the variance, this estimator reduces the number of random variates
Yk that need to be generated.

We performed experiments with the network shown in Figure 1.3, with x = 90 and the
same cdfs Fj as in Example 1.4, and the same set L as in Avramidis and Wilson (1998),
Section 4.1. The set L contains the 5 arcs that separate the nodes {0, 1, 2, 3, 4} from the
nodes {5, 6, 7, 8}. We observed that the variance of the CMC estimator was approximately
0.25 times that of the naive estimator. □

Example 6.22 Consider a simplified version of the call center example where ν = 0, i.e., an
arriving call abandons immediately with probability p if all agents are busy and otherwise
has infinite patience. Suppose we want to estimate the expected number of abandonments
(lost calls) in a day. The naive estimator just counts the number L of abandonments.

Now think of an observer who has information only on the calls handled by the agents
and cannot see the abandonments. His available information is the number of busy agents
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and the number of available agents at each time of the day, and the arrival times, answering
times, and service times of all answered calls. Let G represent this information (formally, G
is the σ-field generated by this information), and consider the CMC estimator Le = E[L | G].

To compute this conditional expectation, notice that if the arrival rate is λ(t) at time
t, then the (conditional) arrival process of lost calls is a hidden Poisson process with rate
λ̃(t) = P (t)λ(t), where P (t) = p if all agents are busy at time t and P (t) = 0 otherwise.
Thus, conditional on G, the total number of abandonments L is a Poisson random variable
with mean equal to the integral of λ̃(t) over the entire day. This conditional mean is an
unbiased CMC estimator which can be written as

Le = E[L | G] =
∫ m

0

P (t)λ(t)dt (6.51)

if time is in hours and the center operates for m hours. This estimator is easy to compute
during the simulation and we have the guarantee that Var[Le] < Var[L]. Exercise 6.15 asks
you to experiment with Le and its extensions. □

Example 6.23 In Example 1.11, suppose that the constant volatility parameter σ is replaced
by a stochastic process {σ(t), t ≥ 0}. The underlying asset is then said to evolve according
to a model with stochastic volatility.

To price an European call or put option under such a model, in the case where σ and
B are two independent processes, we can simulate the volatility process, and then compute
the expectation of the price conditional on the trajectory of the volatility process, via the
Black-Scholes formula.

♣ See Ben Ameur, Breton, and L’Ecuyer (1999), Boyle, Broadie, and Glasserman
(1997b), Willard (1997) for specific volatility models, more details, and results. □

Example 6.24 (Boyle, Broadie, and Glasserman 1997b, page 1288.) The price of a down-
and-in call option with discretely monitored barrier can be written as the mathematical
expectation of

X = e−rT max(0, S(T )−K) · I[Tℓ ≤ T ],

where ℓ is a constant, 0 = t0 < t1 < · · · < td = T are the observation dates, and Tℓ = inf{tj :
S(tj) < ℓ} (Tℓ =∞ if this set is empty). A CMC estimator observes the sample path of the
process {S(t), t ≥ 0} only up to time min(Tℓ, T ), and estimates E[X] by the expectation of
X conditional on this information, i.e., by

Xe = E[X | Tℓ, S(Tℓ)] · I[Tℓ ≤ T ].

For Tℓ ≤ T , if we assume that the asset price follows a geometric Brownian motion as in
Example 1.11, Xe can be computed by the Black-Scholes formula for a model over a time
horizon T − Tℓ and with initial value S(Tℓ) (see Exercise 6.16). Exercise 6.17 discusses an
alternative CMC estimator. □

Example 6.25 Consider a continuous-time Markov chain for which the response X can be
expressed as the integral, from time 0 to time T , of a cost rate whose value is a function of
the current state of the chain (only), and that T is the hitting time of a particular set of
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states. Then, we can condition on the sequence of states visited by the chain, i.e., replace
the exponential holding times in the different states by their conditional expectations. This
can also be generalized to semi-Markov processes. Fox and Glynn (1986, 1990) study this
and call it discrete-time conversion.

♣ Detail a specific example. □

♣ See Bratley, Fox, and Schrage (1983), Problems 4.9.9–4.9.11 and 3.6.17–3.6.20.

Example 6.26 A situation where control variates are guaranteed to work cooperatively with
CMC is when the control variates are G-measurable (Glynn and Szechtman 2002). Suppose
for instance that the conditioning is on some random variable Z, i.e., Xe = E[X | Z], that
E[|Z|j] < ∞ for j ≥ 1, that the moments E[Z], E[Z2], . . . , E[Zq] are known, and that
we use them as control variates with X. The CV estimator is then Xc = X − βt(C − ν)
where C − ν = (Z − E[Z], . . . , Zq − E[Zq])t. Let β∗ = Σ−1

C ΣCX be the optimal value of β.
Consider also the combined CMC-CV estimator Xe,c = Xe−βt(C−ν). It is easy to see that
Cov[C, Xe] = Cov[C, X] = ΣCX because E[E[X | Z]Zj] = E[E[X | Z]E[Zj | Z]] = E[XZj],
so Cov[E[X | Z], Zj] = Cov[X,Zj] for each j. Therefore, the optimal β is the same for
both Xc and Xe,c. Glynn and Szechtman (2002), prove that with this optimal β, Var[Xc]→
E[Var[X | Z]] and Var[Xe,c]→ 0 when q →∞.

As an illustration, in Example 6.21, we could use {Yj, j ∈ B} (and perhaps some of their
higher moments) as control variates, jointly with the CMC scheme proposed there. Since
these CVs are obviously G-measurable in this case, the combination is guaranteed to reduce
the variance at least as much as the CMC scheme alone. □

6.6.1 Extended CMC and filtered Monte Carlo

Suppose the naive estimator X can be written as

X = C1 + · · ·+ CT (6.52)

where T can be a random variable. The standard CMC estimator has the form Xe = E[C1+
· · · + CT | G] for some σ-field G. An extended conditional Monte Carlo (ECMC) estimator
has the form

Xee = E[C1 | G1] + · · ·+ E[CT | GT ], (6.53)

where G1, . . . ,GT are different σ-fields. Such an estimator can be simpler to compute than
Xe.

Assuming for the moment that T = t (a constant), we have

E[Xee] = E

[
t∑

j=1

E[Cj | Gj]

]
=

t∑
j=1

E[Cj] = E

[
t∑

j=1

Cj

]
= E[X]

and

Var[Xee] =
t∑

j=1

Var[E[Cj | Gj]] + 2
t∑

j=1

j−1∑
i=1

Cov[E[Cj | Gj], E[Ci | Gi]] (6.54)
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whereas

Var[X] =
t∑

j=1

Var[Cj] + 2
t∑

j=1

j−1∑
i=1

Cov[Cj, Ci]. (6.55)

Clearly, the first sum in (6.54) is smaller or equal to the first sum in (6.55), because Var[E[Ct |
Gt]] ≤ Var[Ct]. However, the sum of covariances can be either smaller or larger in (6.54) than
in (6.55). For this reason, Xee does not always have less variance than X (in fact, one can
construct examples where Xee has more variance). There are situations where one can prove
that Var[Xee] < Var[X]; see, e.g., Glasserman (1993a, 1993b) and Glynn and Iglehart (1988).
Otherwise, the variances can be compared empirically.

When T is a random variable possibly correlated with the Cj’s, things get even more
complicated, because we cannot always interchange the sums and expectations as we did
above.

The σ-fields in (6.53) are often nested: Gj ⊂ Gj+1 for j ≥ 1; i.e., the sequence {Gj, j ≥ 1}
is a filtration. Glasserman (1993) calls this filtered Monte Carlo (FMC) and he also considers
continuous-time analogs. A natural way this nesting occurs is when Cj is an Fj-measurable
cost incurred at the time tj of the jth simulation event and Fj represents the information
available up to time tj. For each j, let Gj ⊂ Fj be a σ-field that contains too little information
to compute Cj, but enough so we can easily compute E[Cj | Gj]. Glasserman (1993) provides
sufficient conditions for having Var[Xee] ≤ Var[X] in this context.

Example 6.27 In the call center example, when we pick a call from the queue to start its
service, suppose we look at its waiting time but not its patience time. Conditional on the
waiting time, we can easily compute the probability that this call was lost by abandonment.
So instead of counting the number L of abandonments during the day, we can add up these
conditional probabilities over all calls having a nonzero waiting time. Since we condition on
different information for each call, this is an ECMC estimator. There is no guarantee that
the variance will be reduced. If the variance is not reduced, a tentative (partial) explanation
could be that when a given call is lost by abandonment, this reduces the chance that the next
one does, and this induces a negative component to the covariance between the successive
abandonment indicators. □

6.6.2 Filtered Monte Carlo for Poisson input

Suppose that we have a (possibly time-inhomogeneous) Poisson input to our model, with
rate function {λ(t), t ≥ 0}. Let T1 ≤ T2 ≤ · · · be the times of the Poisson arrivals. Suppose
that costs are incurred only at those arrival times. Let {G(t), t ≥ 0} be a filtration that
contains less information than {F(t), t ≥ 0} (the one generated by the model evolution;
see Chapter 2), i.e., G(t) ⊆ F(t) for all t. Let C(t) ≥ 0 be the cost that would be incurred
by a Poisson arrival occurring at time t. We assume that C(t) is F(t)-measurable, but not
G(t)-measurable. The naive estimator just adds the costs up to some time horizon T :

X =
∞∑
j=1

I[Tj ≤ T ]C(Tj). (6.56)
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An ECMC estimator is

Xee =
∞∑
j=1

I[Tj ≤ T ]E[C(Tj) | Gj]. (6.57)

A continuously-filtered Monte Carlo estimator has the form

Xep =

∫ T

0

λ(t)E[C(t) | G(t)] dt. (6.58)

♣ This would need more elaboration. See “Filtered Monte Carlo” by Glasserman. Should

make links with PASTA, event vs time averages, etc.

Example 6.28 The ECMC scheme of Example 6.27 is an instance of filtered Monte Carlo
as in (6.57), where Gj contains all the information known up to the instant Tj when call j
is answered, except for the patience time of call j (so we do not know if it is still waiting).
However, the times Tj here are not the arrival times of a Poisson process. On the other hand,
the scheme of Example 6.22 is an instance of a continuously-filtered estimator with Poisson
input, where E[C(t) | G(t)] in (6.58) is the conditional probability that a call arriving at time
t would abandon immediately, given the number of customers in the system at time t. □

♣ See Ross (1993), Probability Models, Example 11.17, and the reference given there.

6.6.3 Conditional expectation for smoothing small differences

An important application of conditional Monte Carlo is for smoothing the estimator when
estimating small differences, as in Section 6.4.2. In the context of Theorem 6.5, it happens
frequently that the conditions in part (iii) of the theorem, or the continuity condition in
Corollary 6.6, are not satisfied for the original estimator, but they are satisfied if we replace
the estimator by an appropriate conditional expectation. The book of Fu and Hu (1997) is
devoted to this topic and its use for gradient estimation and optimization.

Example 6.29 (L’Ecuyer and Perron 1994, Section 5.2.) In Example 6.11, we studied

Y (A) =
t∑

j=1

(I[Xj(θ + δ) > K]− I[Xj(θ) > K]). (6.59)

as an estimator of the difference µ(θ + δ) − µ(θ), where µ(θ) is the expected number of
customers, among the first t, whose sojourn time exceeds K. We saw that the indicator
I[Xj(θ) > K] is a discontinuous function of θ for a fixed U . To construct an estimator that
obeys Corollary 6.6, we now replace the indicators I[Xj(θ) > K] in (6.12) by conditional
expectations.

A first candidate is the conditional expectation

E[I[Xj(θ) > K] | Wj(θ)] = P[Xj(θ) > K | Wj(θ)]

= P[Sj(θ) > K −Wj(θ) | Wj(θ)]

= 1−Gθ(K −Wj(θ)).
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The corresponding difference estimator is

Y (B) =
t∑

j=1

[Gθ(K −Wj(θ))−Gθ+δ(K −Wj(θ + δ))]. (6.60)

Under reasonable conditions on the interarrival and service time distributions, one can show
that the conditions of Corollary 6.6 are satisfied (Exercise 6.20). Then, Var[Y (B)/δ] remains

bounded when δ → 0. 3

We could be more ambitious and condition on less. In Exercise 6.21, the reader is asked
to construct an estimator Y (C) that replaces the conditioning on Wj(θ) by a conditioning on
Xj−1(θ), the sojourn time of the previous customer.

Table 6.5. Sample MSE for the estimators of Example 6.29, with t = 20, K = 2, and θ0 = 1/2.

δ = 10−3 δ = 10−4 δ = 10−5 δ = 10−6

Y (A) 1.47× 10−2 2.09× 10−3 1.99× 10−4 1.50× 10−5

Y (B) 2.96× 10−4 3.05× 10−6 2.94× 10−8 2.92× 10−10

Y (C) 1.75× 10−4 1.66× 10−6 1.65× 10−8 1.63× 10−10

We performed numerical experiments for this example by taking F and Gθ as the ex-
ponential distributions with means 1 and θ = 1/2, respectively, K = 2, and t = 20. We
estimated the variances of the three difference estimators Y (A), Y (B), and Y (C), based on
n = 10000 i.i.d. copies of each of them, for δ = 10−3, 10−4, 10−5, and 10−6. We used the same
n pairs of runs for all three estimators. Table 6.5 reports the variance estimates that we
obtained. They are accurate to within (approximately) 3% with 95% confidence. The MSE
is approximately 18δ for Y (A), 300δ2 for Y (B), and 165δ2 for Y (C). Thus, for this particular
example, smoothing the estimator by conditioning changes the convergence rate of the MSE
from O(δ) to O(δ2), and Y (C) improves upon Y (B) only by a small factor. □

6.7 Indirect Estimation

♣ Should start with a simpler special case.
Suppose we want to estimate h(µ, ν), where µ ∈ Rd and ν ∈ Rq are vectors of constants

for which consistent estimators (X̄n, C̄n) are available; that is, (X̄n, C̄n) ⇒ (µ, ν) when
n → ∞. These estimators are not necessarily averages of i.i.d. observations and could be
biased for finite n. The direct estimator of h(µ, ν) is h(X̄n, C̄n). In the case where ν is known,
we can replace C̄n by ν in this estimator. This yields the indirect estimator

g(X̄n)
def
= h(X̄n, ν). (6.61)

As pointed out by Glynn and Whitt (1989), these two estimators correspond exactly to the
estimators studied in Section 6.5.10, with and without the nonlinear CV, respectively, so
they can be analyzed by a direct application of the results developed in that section.

3From Pierre: Should add details here.
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Specifically, if h : Rd+q → R is continuously differentiable and Assumption 6.2 holds,
Theorem 6.11 tells us that

√
n(h(X̄n, C̄n)− g(µ)) ⇒ N(0, σ2

h) (6.62)

and

√
n(h(X̄n, ν)− g(µ)) ⇒ N(0, σ2

g) (6.63)

when n → ∞, where σ2
h and σ2

g are defined as in Section 6.5.10 and correspond to the
asymptotic variance constants of the direct and indirect estimators, respectively. The direct
estimator has smaller asymptotic variance if and only if σ2

h < σ2
g, i.e., if and only if the

nonlinear CV C̄n reduces the asymptotic variance.

Example 6.30 Consider an arbitrary queue where customer j has waiting time Wj, service
time Sj, and sojourn time Xj = Wj + Sj. Suppose that these quantities obey the CLT√
n(W̄n−w, S̄n−ν) ⇒ N(0,Σ) where w and ν are finite constants and Σ is a 2×2 matrix

with elements σij. We do not assume that the Sj’s are i.i.d., but if they are, then ν = E[Sj]
and σ22 = Var[Sj]. We want to estimate the mean sojourn time µ = w+ ν from a simulation
(or observation) of the first n customers. If ν is known, an indirect estimator of µ is

g(W̄n) = h(W̄n, ν) = W̄n + ν (6.64)

whereas the corresponding direct estimator is

h(W̄n, S̄n) = X̄n = W̄n + S̄n = g(W̄n) + (S̄n − ν). (6.65)

We have

n(Var[h(W̄n, S̄n)]− Var[g(W̄n)]) = n(Var[S̄n] + 2Cov[W̄n, S̄n]) ⇒ σ22 + 2σ12

as n→∞, so the indirect estimator has smaller asymptotic variance if and only if σ22+2σ12 >
0, which is typical of most queuing systems (the contrary may occur only if the average
waiting time is negatively correlated with the average service time).

However, both the direct and indirect estimators are generally beaten by the estimator
g(W̄n)−β(S̄n−ν), which uses S̄n as a control variate, with asymptotically optimal coefficient
β = β∗ = σ12/σ22. The direct and indirect estimators correspond to taking β = −1 and β = 0,
respectively, rather than β∗.

For the case of a GI/GI/s queue, ν = E[Sj] so (6.64) is an unbiased estimator of E[X̄n],
and Law (1974) has shown that this indirect estimator has less variance than (6.65) for any
n. □

Example 6.31 Consider a queuing system as in the previous example, where Aj is the
jth interarrival time, Wj is the waiting time of the jth customer, and Q(t) the queue length
at time t. We want to estimate the infinite-horizon average waiting time w and average
queue length q. Following Glynn and Whitt (1989), we make the following functional CLT
assumption, which is a two-dimensional version of Assumption 5.1.
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Define the family of processes Yn(t) =
√
n(W̄⌊nt⌋ − wt, Ā⌊nt⌋ − t/λ) for 0 ≤ t ≤ 1 and

n = 1, 2, . . . . We assume that Yn ⇒ (B1, B2)L
t in D[0, 1] × D[0, 1], where L is a 2 × 2

matrix, B1 and B2 are two independent standard Brownian motions, and D[0, 1] is the space
of right-continuous real-valued functions over [0, 1] with left-hand limits (as in Section 5.10.1).
Putting t = 1 in this assumption yields the CLT:

√
n(W̄n − w, Ān − 1/λ)t ⇒ N(0,Σ) (6.66)

where Σ = LtL is a covariance matrix with elements σij. In the special case where the Aj’s
are i.i.d., we have λ = 1/E[Aj] and σ22 = Var[Aj]. This CLT implies in turn that

√
n

(
N(t)

t
− λ, 1

t

∫ t

0

Q(ζ)dζ − q
)t

⇒ N(0, Σ̃) (6.67)

for some covariance matrix Σ̃, where N(t) is the number of arrivals during the time interval
(0, t] (see Glynn and Whitt 1989, page 87).

To estimate q, a natural estimator is (1/t)
∫ t

0
Q(ζ)dζ, the sample average queue length

over some time horizon t, as explained in Section 1.11.5. An alternative indirect estimator
can be based on Little’s law

q = λw,

where λ is the arrival rate: if λ is known, take

g(W̄n) = λW̄n

as an indirect estimator of q, for some large n. The corresponding direct estimator of q is
h(W̄n, Ān) = W̄n/Ān. We can easily verify (see Glynn and Whitt 1989, Theorem 2) that
under (6.66),

√
n(h(W̄n, Ān)− q) ⇒ N(0, σ2

h) where σ
2
h = λ2(σ11 − 2qσ12 + q2σ22), whereas√

n(g(W̄n)− q) ⇒ N(0, σ2
g) where σ

2
g = λ2σ11. Therefore, we have

Proposition 6.12 The indirect estimator λW̄n has smaller asymptotic variance than the
direct estimator W̄n/Ān if and only if

2σ12 < qσ22. (6.68)

In most queues, the average waiting times and interarrival times are negatively correlated,
which is sufficient for (6.68) to hold. The indirect estimator is therefore preferable. This was
shown by Carson and Law (1980) for GI/GI/s queues. Glynn and Whitt (1989) prove that
a sufficient condition for such a negative correlation is that E[Wi | Aj = a] is a nondecreasing
function of a for each (i, j), plus some mild additional uniform integrability condition.

Glynn and Whitt (1989) also show that under the functional CLT assumption, the direct

estimator W̄n/Ān and the natural estimator (1/Tn)
∫ Tn

0
Q(ζ)dζ, where Tn is the nth departure

time, converge at the same rate and with the same variance constant σ2
h when n → ∞.

Likewise, λ
√
t((1/t)

∫ t

0
Q(ζ)dζ − q) ⇒ N(0, σ2

h), where the additional factor λ is to take
into account the change in time scale between counting in number of customers n and
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counting in intrinsic time t. These three estimators have the same asymptotic variance and
are all dominated by the indirect estimator when (6.68) holds.

Suppose now that the aim is to estimate w = q/λ rather than q. Under the same
conditions, it can be proved that the natural estimator W̄n has smaller asymptotic variance
than the direct and natural estimators of q defined in the previous paragraph, divided by
λ. So if λ is known and (6.68) holds, it is better to estimate both w and q via W̄n rather
than via the natural or direct estimators of q. However, interpreting the indirect estimator
as a nonlinear CV scheme also shows that we can do even better by using Ān as a control
variate with its optimal coefficient. For example, to estimate q, we can use the CV estimator
λW̄n + β(Ān − 1/λ). The optimal value of β is β∗ = −λσ12/σ22 and the corresponding

asymptotic variance constant is λ2(σ11 − σ12/σ22) < σ2
g.

4

On the other hand, if λ is unknown and estimated by 1/Ān, the natural, direct, and
indirect estimators all have the same asymptotic variance, for both w and q. See Glynn and
Whitt (1989) for the details.

The same analysis applies to the general case where w is the average sojourn time per
customer in some system and q is the time-average of the number of customers in that
system, in the long run. If the average service time ν is known, this can be combined with
the indirect estimator (6.64). This would yield λ(W̄n + ν) as an estimator of the average
number in the system, where W̄n is the average waiting time of the first n customers in the
queue. □

Example 6.32 As a special case of Example 6.31, consider an M/M/1 queue with arrival
rate λ and service rate µ. Let ρ = λ/µ, the traffic intensity. We saw in Example 5.10 that

σ11 =
ρ(ρ3 − 4ρ2 + 5ρ+ 2)

µ2(1− ρ)4

We also have σ22 = Var[Aj] = 1/λ2 and it can be shown that σ12 = −1/(µ(1 − ρ))2 < 0.
Thus, Condition (6.68) is satisfied. The asymptotic variance constants are σ2

h = 2ρ3(ρ3 −
4ρ2+4ρ+1)/(1− ρ)4 and σ2

g = ρ3(ρ3− 4ρ2+5ρ+2)/(1− ρ)4. The variance reduction factor
σ2
g/σ

2
h converges to 1 (no variance reduction) when ρ → 0 or ρ → 1, and is approximately

0.85 and 0.92 (modest reductions of 15% and 8%) for ρ = 0.5 and ρ = 0.8, respectively.
To estimate q via the CV estimator λW̄n−β(Ān−1/λ), the optimal β is β∗ = −λρ2/(1−

ρ)2 and the corresponding asymptotic variance constant is σ2
c = λ2(σ11−σ12/σ22) = ρ3(−ρ3−

4ρ2 + 4ρ + 2)/(1 − ρ)4. The variance reduction ratio σ2
c/σ

2
h converges to 1 (no reduction)

when ρ → 0, to 1/4 when ρ → 1, and equals 23/34 when ρ = 0.5. This is better than the
indirect estimator alone, especially when ρ is large (heavy-traffic).

The method tends to be more effective when there is high variability in the interarrival
times compared with the variability of the service times, as illustrated by the next example.

□

Example 6.33 A GI/D/1 queue with very “bursty” arrival process and constant service
times.... See Srikant andWhitt (1999). Consider a single-server queue with ON/OFFMarkov-
modulated arrival process and constant service time ν = 1. .. □

4From Pierre: Add an exercise on this. E.g., the call center with fixed B.
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6.8 Stratification

Stratification, in its standard form, partitions a population into S strata, ideally so that
the variance within the individual strata tends to be smaller than the overall population
variance, and allocates a fixed fraction of the sample to each stratum (Cochran 1977 is the
classical reference). The call center example in Section 6.2.1 illustrates the concept. To be
more specific, suppose the stratification is based on a random variable S taking its values in
the finite set {1, . . . , k}. We can decompose:

µ = E[X] =
k∑

s=1

psµs (6.69)

where ps = P{S = s} and µs = E[X | S = s]. If the ps are known, µ can be estimated via
(6.69) by estimating each µs separately. We distinguish the following cases:

(a) We can decide the value of S (as for Bi in the call center example of Section 6.2.1);

(b) we have no direct control over S.

In case (a), the number of observations in each strata can be decided either deterministi-
cally (fixed in advance) or dynamically, trying to increase the efficiency by readjusting the
allocation as new information is collected. Case (b) occurs when it is too hard to generate a
random variable from the conditional distribution of X given that S = s.

6.8.1 Deterministic allocation to strata

Suppose we can choose the value of S and then generate X according to its distribution
conditional on S. Let ns be the number of observations (or runs) with S = s, so n =
n1 + · · ·+ nk is the total sample size, and let Xs,1, . . . , Xs,ns denote the ns i.i.d. observations
within stratum s. We assume here that each ns is positive and deterministic. A stratified
(unbiased) estimator of µ is

X̄s,n =
k∑

s=1

psµ̂s (6.70)

where

µ̂s =
1

ns

ns∑
i=1

Xs,i (6.71)

is the sample mean within stratum s. Let σ2
s = Var[X | S = s], the conditional variance of

X given that we are in stratum s. Then,

Var[X̄s,n] =
k∑

s=1

p2sσ
2
s/ns. (6.72)

An unbiased estimator of Var[X̄s,n] is
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S2
s,n =

k∑
s=1

p2sσ̂
2
s/ns, (6.73)

where σ̂2
s is the sample variance of Xs,1, . . . , Xs,ns , assuming that ns ≥ 2.

Proportional allocation allocates the observations to strata in proportion to their expected
frequencies ps; that is, ns = nps (if we neglect the integrality condition on ns). Call X̄sp,n

the corresponding version of X̄s,n. Then, (6.72) simplifies to

Var[X̄sp,n] =
1

n

k∑
s=1

psσ
2
s . (6.74)

The so-called optimal allocation, which minimizes the variance (6.72) for a given sample
size n, can be found by solving a nonlinear optimization problem with variables n1, . . . , nk,
to minimize (6.72) under the constraints that ns > 0 for each s and n1 + · · · + nk = n.
Using a Lagrange multiplier, it is easily shown (Exercise 6.22) that the solution is to take ns

proportional to psσs; that is
n∗
s = npsσs/σ̄

where

σ̄ =
k∑

s=1

psσs

is the weighted average of the standard deviations within strata. Again, we neglect the
rounding of n∗

s. Note that we must have each ns ≥ 1 for (6.70) to be well defined and each
ns ≥ 2 for (6.73) to be defined. If X̄so,n denotes X̄s,n with optimal allocation,

Var[X̄so,n] = σ̄2/n.

We now compare the variances of X̄n, X̄sp,n, and X̄so,n. From variance decomposition
(6.48), we obtain

Var[X̄n] =
1

n
(E[Var[X|S]] + Var[E[X|S]])

=
1

n

(
k∑

s=1

psσ
2
s +

k∑
s=1

ps(µs − µ)2
)

= Var[X̄sp,n] +
1

n

k∑
s=1

ps(µs − µ)2 (6.75)

= Var[X̄so,n] +
1

n

k∑
s=1

ps(σs − σ̄)2 +
1

n

k∑
s=1

ps(µs − µ)2. (6.76)

The two sums in (6.76) represent the variability due to the different standard deviations
among strata and the variability due to the differences between stratum means, respectively.
Proportional allocation eliminates the last sum while optimal allocation also eliminates the
first. So, the improvement of stratification with proportional allocation over straightforward
random sampling is significant if the µs’s differ greatly, while that of optimal allocation over
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proportional allocation is significant if the σs’s differ greatly. Equation (6.76) also tells how
the variance reduction with respect to the naive estimator (the sum of the last two terms)
depends on the design of the strata. Ideally, we should design the strata to maximize the
sum of the last two terms. Thus, there are two things to optimize: first, the design of the
strata and, second, the allocation among the strata. To maximize the last term in (6.76), we
maximize inhomogeneity across strata (or, equivalently, minimize the weighted sum of the
internal variances σ2

s). The middle term in (6.76) shows that optimal allocation improves
over proportional allocation to the extent that the internal variances differ across strata.

The optimal allocation discussed above is optimal only under the assumption that sam-
pling costs the same from all strata. More generally, if the expected sampling cost from
stratum s is cs, it is easily shown (again using a Lagrange multiplier) that we should take ns

proportional to psσs/
√
cs to maximize the efficiency. From this relationship, we can find the

optimal allocation of observations to strata to minimize the variance for a fixed computing
budget, or to minimize the computing cost for a fixed target variance.

This analysis of optimal allocation is idealized. Usually, σs is unknown and must be
replaced by an estimate σ̂

(0)
s in the expression for n∗

s. We address this issue in the next
subsection.

Note that a CMC estimator that conditions on S would erase the term E[Var[X | S]] =
Var[X̄sp,n] in (6.75). The expectation of X conditional on S = s is µs. Usually, if we can
compute this expectation exactly, then we do not know the ps’s, otherwise we could compute
µ exactly via (6.69).

Example 6.34 For any simulation problem, stratification can be applied directly to one (or
more) of the underlying uniforms. To illustrate how to do this, we start with the (simplistic)

one-dimensional case: Suppose we want to estimate the integral µ = E[f(U)] =
∫ 1

0
f(u)du

by Monte Carlo.

An obvious way to stratify is to partition the interval (0, 1) into k subintervals of length
1/k, to generate Us uniformly over the sth subinterval for each s, and to estimate µ by

Xs =
1

k

k∑
s=1

f(Us).

This can be repeated m times, independently. The total number of function evaluations (or
simulation runs) is then n = mk. An unbiased estimator of µ is the sample mean X̄s,n of the
m i.i.d. copies of Xs, while an unbiased estimator of Var[Xs] is given by (6.73), which is this
case becomes (1/n)

∑k
s=1 σ̂

2
s . Another unbiased variance estimator, but with fewer degrees

of freedom, is given by the sample variance of the m i.i.d. copies of Xs. The latter estimator
does not exploit the knowledge that the observations are independent across the different
strata, whereas the estimator based on (6.73) exploits this information.

By (6.75), we have

Var[X̄n] = Var[X̄s,n] +
1

nk

k∑
s=1

(µs − µ)2
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where µs = k
∫ s/k

(s−1)/k
f(u)du, the average of f(u) over the sth subinterval. So, X̄s,n has less

variance than the usual Monte Carlo estimator based on n independent runs, X̄n. The more
the average value of f differs between the subintervals, the more the variance is reduced.

In principle, this stratification scheme works in any number of dimensions: In t dimen-
sions, partition the unit hypercube into kt cubic boxes by partitioning the interval (0, 1) into
k subintervals, generate a point uniformly over each of the kt boxes, and repeat the entire
process m times, independently. This type of partitioning quickly becomes impractical when
t increases, because kt becomes too large. But for large t, the unit hypercube [0, 1)t can
also be partitioned in a different way into k non-cubic pieces of equal volume. One way of
doing that, for instance, is by taking the k parallelepipeds determined by the points of an
integration lattice of density k, modulo 1 (L’Ecuyer and Lemieux 2000).

Even for high-dimensional problems, applying this type of stratification to only a few of
the uniforms (e.g., the one or two coordinates deemed the most important) can be effective
in some situations. The call center example is a vivid illustration: the stratification scheme
applied to this example in Section 6.2.1, with proportional allocation, is equivalent to ap-
plying the scheme considered here to the single uniform used for generating the number of
tellers in the morning.

Section 6.9.3 generalizes this scheme to t dimensions in a different way. □

6.8.2 Dynamic allocation

We now discuss situations where the allocation of observations to strata is made dynamically
during the experiment, e.g., in attempt to minimize the variance or maximize the efficiency.
Thus, ns is now the value of a random variable Ns. We still suppose here that the stratum
of each run can be decided before the run. In Section 6.8.3, we relax this assumption and
consider the situation in which the stratum of a run is a random variable generated during
the run.

Two-stage sampling and sequential estimation. Assuming that the σs are unknown, we want
to replace them, in the expression for n∗

s, by estimates σ̂
(0)
s . Suppose these estimates σ̂

(0)
s

are obtained from independent simulations (e.g., pilot runs) used only for the purpose of
estimating n∗

s in a first stage sampling of size n0, and the latter estimates determine the
allocation for a second stage sampling of size n. Suppose for now that the mean and variance
estimators X̄s,n and S2

s,n are computed from the second stage only. Assuming n∗
s ≥ 2 for all s,

this X̄s,n is unbiased and has larger variance than X̄so,n for the same n (due to the variability

of the σ̂
(0)
s ), while S2

s,n is an unbiased estimator of the conditional variance of X̄s,n given the
allocation selected for stage 2.

To improve efficiency, we could re-use the observations from the first stage in computing
X̄s,n in the second stage. This yields the following two-stage sampling scheme:

(1) Perform n
(0)
s i.i.d. runs in stratum s for each s, for some predetermined values of n

(0)
s ,

and compute the empirical standard deviation σ̂
(0)
s in each stratum.

(2) Use these σ̂
(0)
s ’s to estimate the optimal ns, for each s, by:
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n̂∗
s = npsσ̂

(0)
s /ˆ̄σ

where

ˆ̄σ =
k∑

s=1

psσ̂
(0)
s .

For each s, if n̂∗
s > n

(0)
s , perform an additional n̂∗

s − n
(0)
s i.i.d. runs in stratum s, and

use all the runs from both stages to compute X̄s,n and its variance estimator S2
s,n from

(6.70) and (6.73), with ns replaced by the random variable Ns = max(n
(0)
s , n̂∗

s).

Of course, the n̂∗
s’s must be adjusted to integers (e.g., by rounding). The total number

of runs with this scheme may exceed n if n̂∗
s < n

(0)
s for some strata.

If we insists on not exceeding n, we can redefine the number of additional runs to perform
in stratum s as

n(1)
s = max

(
0, n̂∗

s/κ− n(0)
s

)
(6.77)

where κ is the unique normalization constant for which
∑k

s=1(n
(0)
s + n

(1)
s ) = n. Exercise 6.23

justifies this formula. The constant κ can be found via binary search or other root finding
algorithms (see Section 4.1.2).

An alternative to two-stage sampling is a sequential estimation scheme: Perform stage
one as above, but in the second stage, update the variance estimators σ̂2

s and the n̂∗
s after

each run and use them to decide the stratum of the next run. After any given run, if Ñs is
the number of observations already taken from stratum s, the next stratum is the one with
the largest current value of n̂∗

s − Ñs. At the end, compute X̄s,n and S2
s,n as before, where Ns

is the final value of Ñs.
With both sampling schemes, the mean and variance estimators X̄s,n and S2

s,n are gen-
erally biased, because Ns = n̂∗

s is a random variable correlated with the σ̂2
s ’s and (generally)

with the µ̂s’s. This is essentially the same problem as for sequential estimation (Section 5.2.5).
For instance, with the two-stage sampling, we have

E[µ̂s] = E

[
1

Ns

Ns∑
i=1

Xs,i

]

= E

[
E

[
1

Ns

Ns∑
i=1

Xs,i | Ns

]]

= E

E
 1

Ns

n
(0)
s∑

i=1

Xs,i +
1

Ns

Ns∑
i=n

(0)
s +1

Xs,i

∣∣∣∣∣∣Ns


= E

[
n
(0)
s

Ns

E[Xs,1 | Ns]

]
+ E

[
Ns − n(0)

s

Ns

]
µs

because E[Xs,i|Ns] = E[Xs,i] = µs for i > n
(0)
s . However, E[Xs,i|Ns] ̸= E[Xs,i] = µs for

i ≤ n
(0)
s in general, because the value of Ns depends on the variance of the Xs,i’s for i ≤ n

(0)
s .

So the estimator is generally biased. However, if the sample mean and sample variance of
the Xs,i’s are uncorrelated, then E[Xs,i|Ns] = E[Xs,i], so E[µ̂s] = µs and X̄s,n is an unbiased
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estimator of µ. This happens (in particular) if the Xs,i are normally distributed. We should
then expect the bias on X̄s,n to be small if the distribution of the Xs,i is not too far from
normal. This is likely when the observations Xs,i are themselves averages.

The sample variance S2
s,n generally underestimates the variance of the two-stage or se-

quential estimation estimator, because Ns being an increasing function of σ̂2
s , we have that

(roughly speaking) when σ̂2
s is smaller than usual, Ns is also smaller than usual, and this

overemphasizes the contribution of σ̂2
s to the variance estimator, whereas when σ̂2

s is larger
than usual, its contribution tends to be reduced. Variance underestimation is likely to be
more severe in the sequential alternative than in the two-stage case.

Estimated proportions. Sometimes, the ps’s are unknown but estimates p̂s’s from previous
experiments or other data are available. Suppose the estimators p̂s’s are sample averages from
a first stage with n0 (non-stratified) observations. The estimators µ̂s are computed from a
second stage with sample size n, with ns observations in stratum s. Then (see Cochran 1977):

X̄sep,n =
k∑

s=1

p̂sµ̂s

is an unbiased estimator for µ, with variance

Var[X̄sep,n] =
k∑

s=1

p2sσ
2
s

ns

+
1

n0

k∑
s=1

ps

[
(1− ps)σ2

s

ns

+ (µs − µ)2
]

if the ns are fixed independently of the p̂s’s. If Ns = ns is proportional to λsp̂s for fixed
constants λs, s = 1, . . . , S, then

Var[X̄sep,n] =
k∑

s=1

ps

[
σ2
s

n

(
Ks +

1

n0

(1−Ks)

)
+
ps(µs − µ)2

n0

]
where Ks = (1/λs)

∑k
j=1 pjλj. This covers proportional allocation. If p̂s and µ̂s are sample

means both from the same set of observations, then X̄sep,n = X̄n. Stratified sampling with
estimated proportions achieves nothing in this case.

6.8.3 Random allocation with poststratification

Any allocation of fixed numbers of observations to respective strata is invasive, as Glynn
(1994) points out. It may make the simulation harder to carry out, or may be just impossible
to implement because the distribution conditional on S is too complicated. In contrast, we
may put observations into strata as they occur naturally during the simulation, and then
compute (6.70), where ns is the value of a random variable Ns. This is poststratification.

If C is a random variable correlated with X and with known distribution, we can post-
stratify according to the value of C. Wilson and Pritsker (1984a, 1984b) compare that with
using C as a control variable. In their numerical experiments, they obtain lower variance
when using C as a control than when stratifying on it, but the opposite can certainly occur,
for example if the relationship between X and C is strongly nonlinear (as for for the CV Bi

in the call center example).
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Using the random allocations as control variates. The fraction of observations that random
allocation gives to stratum s (when the observations are allocated to strata as they occur
naturally) is Ns/n and has expectation ps. So, (Ns/n)− ps, s = 1, . . . , k − 1, can be used as
control variables as in Section 6.5 (we discard (Nk/n)− pk since it is a linear combination of
the others). Glynn and Szechtman (2002) prove that the optimal coefficients on (Ns/n)− ps
are β∗

s = µs, for all s. Therefore, taking β̂s = µ̂s is asymptotically optimal in the sense of
Theorem 6.8, for n→∞. Using these coefficients is actually equivalent to poststratification.

Empty strata. With poststratification, we must make sure that either Ns > 0 for all s, or
that µ̂s is well-defined when Ns = 0. Most authors, including Cochran (1977), simply ignore
the latter possibility. It may be practically neglected, for example, if N is fixed at n and
P{Ns = 0 | N = n} = (1 − ps)n is negligibly small for all s. Otherwise, one possibility may
be to continue sampling until Ns ≥ 1 for all s, or until Ns ≥ 2 for all s if we want to use
(6.73) as a variance estimator. For the case where this is impractical (e.g., because it may
take an excessive number of runs), we now consider two estimators that allow Ns = 0. These
estimators also allow poststratification with an infinite number of strata. They both perform
a kind of a posteriori aggregation. The first candidate (estimator A) estimates the means µs

within strata using the local sample mean for the non-empty strata, and the general sample
mean for the empty strata. Exercise 6.24 show that this estimator is biased, but that the
bias vanishes exponentially with n. The second candidate (estimator B) is

X̄sr,n =
k∑

s=1

p̃s,nµ̂s, (6.78)

where µ̂s = 0 when Ns = 0, and

p̃s,n =
ps

P{Ns > 0 | N = n}
=

ps
1− (1− ps)n

.

Since E[µ̂s | Ns > 0, N = n] = µs, we get E[X̄sr,n] = µ (unbiasedness). In Exercise 6.25, we
analyze the variance of this estimator and show that we may have Var[X̄sr,n] > Var[X̄n] if,
for some s, nps ≪ 1 and ps(µs − µ)2 is large.

Example 6.35 ♣ Consider again the call center example.... Give numerical results with

different variants of stratification... □

6.9 Antithetic Variates

6.9.1 A General Antithetic Variates Framework

The idea of antithetic variates (AV) resembles that of CRNs. Now, we want to estimate
a single mathematical expectation µ, using the average of a set of k unbiased estimators
(X(1), . . . , X(k)). Assuming that Var[X(1)] = · · · = Var[X(k)], the average

Xa =
1

k

k∑
j=1

X(j)
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is an unbiased estimator of µ with variance

Var[Xa] =
1

k2

k∑
j=1

k∑
ℓ=1

Cov[X(j), X(ℓ)]

=
Var[X(1)]

k
+

2

k2

∑
j<ℓ

Cov[X(j), X(ℓ)]. (6.79)

If the X(ℓ)’s are independent, the last sum is zero. The variance is reduced if and only if the
sum of covariances in (6.79) is negative, and increased if and only if this sum is positive.
Since we are doing k simulations, we compare Var[Xa] with the variance of the average from
k independent simulation runs, Var[X(1)]/k.

If n = mk for some integer m, an AV estimator of µ based on n runs is obtained by
getting m independent copies of (X(1), . . . , X(k)), say (X

(1)
1 , . . . , X

(k)
1 ), . . . , (X

(1)
m , . . . , X

(k)
m ),

whose respective averages are Xa,1, . . . , Xa,m. The AV estimator is then defined by

X̄a,n =
1

m

m∑
i=1

Xa,i =
1

n

m∑
i=1

k∑
ℓ=1

X
(ℓ)
i . (6.80)

An unbiased estimator of Var[Xa] is given by the empirical variance of these m independent
copies of Xa:

S2
a,m =

1

m− 1

m∑
i=1

(
Xa,i − X̄a,n

)2
. (6.81)

In fact, for this variance estimator to be unbiased, it suffices that the Xa,i be pairwise
uncorrelated.

We can now compute a confidence interval for µ in a standard way, if we assume that the
Xa,i are approximately normally distributed. Under this assumption,

√
m(X̄a,m−µ)/Sa,m has

approximately the Student distribution with m − 1 degrees of freedom, and a 100(1 − α)%
confidence interval is given by (X̄a,n±tm−1,1−α/2Sa,m/

√
m), where tm−1,1−α/2 is the (1−α/2)-

quantile of the Student(m− 1) distribution (Section 5.2.1).
The variance estimator (6.81) is generally more noisy than the regular variance estimator

S2
n, because it has m−1 degrees of freedom instead of n−1. In particular, if we assume that
X and Xa are normally distributed, then (m − 1)S2

a,m/Var[Xa] and (n − 1)S2
n/Var[X] have

chi-square distributions with m− 1 and n− 1 degrees of freedom, respectively, and

Var[S2
a,m]

Var[Xa]
≈ n

m

Var[S2
n]

Var[X]
(6.82)

for large n (see Section 5.4.3). Then the variance estimator S2
a,m has approximately n/m

times more relative variance than S2
n, so a confidence interval on the variance will be roughly√

n/m times wider relative to the exact variance.
In general, even if X and Xa are not normally distributed, if we assume that sufficient

uniform integrability is present, Eq. (5.21) in Section 5.4.3 implies that the factor n/m in
(6.82) must be multiplied by the ratio of fourth moments of the standardized versions of Xa

and X:



444 6. Efficiency Improvement

Var[S2
a,m]

Var[Xa]
≈ n

m

E
[
((Xa − µ)/Var[Xa])

4]
E
[
((X − µ)/Var[X])4

] Var[S2
n]

Var[X]
. (6.83)

for large n. In the normal case, the fourth moments cancel one another.
Thus, confidence intervals for µ based on the AV estimator usually have more variable

widths than confidence intervals based on the regular estimator X̄n. They have a smaller
average width if AV reduces the variance.

Most methods induce the negative dependence directly between the streams of uniforms
that drive the simulation runs and fit the following general antithetic variates (GAV) frame-
work (Wilson 1983). We start from an unbiased estimator of µ written as X = f(U), where
U = (U1, U2, . . . ) is a sequence of independent U(0, 1) random variables. For ℓ = 1, . . . , k, we
define X(ℓ) = f(Uℓ) where each Uℓ = (Uℓ,1, Uℓ,2, . . . ) is a sequence of i.i.d. uniforms. The goal
of GAV is to induce a dependence structure across the Uℓ’s so that the sum of covariances in
(6.79) becomes negative. How do we construct those Uℓ’s? We will see various methods for
doing that, among which we find Latin hypercube sampling and randomized quasi-Monte
Carlo.

Under what conditions can we have a guarantee that this works? The success certainly
depends on the function f . The following theorem, adapted from Avramidis and Wilson
(1996), gives sufficient conditions for each covariance in the sum to be non-positive. These
are rather strong conditions. It is obviously not necessary that each covariance be negative
for the sum to be negative.

Let Ψ ⊆ {1, 2, . . . } be a subset of arguments such that f(U1, U2, . . . ) is monotone with
respect to Uj for each j ∈ Ψ . A sampling scheme such that each Uℓ,j is U(0, 1), each pair
(Uℓ,j, Us,j) is negatively quadrant dependent when j ∈ Ψ , and the Uℓ,j’s for j ̸∈ Ψ are
generated independently as in the standard MC method, is called GAV-concordant, and

completely GAV-concordant if Ψ contains all the arguments of f . 5

Theorem 6.13 If U1, . . . ,Uk are generated from a GAV-concordant sampling scheme, then
Var[Xa] ≤ Var[X̄k] = Var[X(1)]/k. Moreover, one can have Var[Xa] = Var[X̄k] only if the
X(ℓ)’s are pairwise independent.

Proof. GAV-concordant is equivalent to CRN-discordant for all pairs (X(ℓ), X(s)) with ℓ ̸= s
if we take f1 = f2 = f in the definition of CRN-discordant. It then follows from Theorem 6.3
that Cov[X(ℓ), X(s)] ≤ 0 for all ℓ ̸= s, and that this covariance can be zero only if X(ℓ) and
X(s) are independent. This implies the result.

6.9.2 Antithetic pairs.

In the classical AV method, we have k = 2, U1 = U = (U1, U2, . . . ), and we define the
antithetic sequence U2 = 1−U = (1− U1, 1− U2, . . . ). In this case, Xa = [X(1) +X(2)]/2,

Var[Xa] = (Var[X(1)] + Var[X(2)] + 2Cov[X(1), X(2)])/4

= (Var[X(1)] + Cov[X(1), X(2)])/2,

5From Pierre: It should be sufficient to have (Uℓ,j , Uζ,j) negatively quadrant dependent where ζ is a
random index in {1, . . . , k} \ {ℓ}. To be verified. Also add examples where this is useful. Can we exploit this
for RQMC?
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and Var[Xa] < Var[X]/2 if and only if Cov[X(1), X(2)] < 0. The rationale is that by choosing
the antithetic sequence for X(2), disastrous events occurring in the first simulation are likely
to be compensated by “antithetic” lucky events in the second one, thus reducing the variance
of the average. For example, in a queuing system, if the service times are generated by
inversion and if a particular service time is very long in the simulation for X(1), this means
that the uniform Uj used to generate this service time is close to 1. Then, 1− Uj is close to
0, so this service time will be very short in the simulation for X(2).

Noting that the pair (U, 1−U) is always negatively quadrant dependent, we get a GAV-
concordant sampling scheme by taking U2,j = 1 − U1,j for j ∈ Ψ , and U2,j independent of
U1,j otherwise. We call it an AV-concordant sampling scheme, and completely AV-concordant
when Ψ contains all the arguments of f . We immediately get the following corollary of
Theorem 6.13. It provides sufficient variance-reduction conditions which are folklore in the
case where Ψ contains all arguments.

Corollary 6.14 For any AV-concordant sampling scheme, Cov[X(1), X(2)] ≤ 0 and the
covariance can be zero only if X(1) and X(2) are independent.

Theorem 6.4 also implies that a completely AV-concordant sampling scheme minimizes
the covariance if f is fixed and if correlation induction is allowed only between its correspond-
ing arguments. As with CRNs, the AVs could “backfire” (increase the variance) if they are
used for arguments for which f is not monotone. Proper synchronization is again important.
The best possible situation occurs when the response is a linear function of all underlying
uniforms. Then, ρ(X(1), X(2)) = −1 and the variance is reduced to zero. The worst case is
when X(1) and X(2) are perfectly correlated, i.e., ρ(X(1), X(2)) = 1. The AV method then
doubles the variance. For an example of this, take f(U) = |U1 − 1/2|.

To minimize the covariance, we could in theory use Theorem 2.6: If F is the distribution
function of X(1), the covariance is minimized by taking X(1) = F−1(U) and X(2) = F−1(1−
U), where U ∼ U(0, 1) (or any equivalent sampling scheme, as indicated by the last part of
Theorem 2.6). However, the latter is usually impractical because F is too complicated. As
with CRNs, inversion is typically used at a lower level.

Other variants of the AV method are analyzed in Cheng (1982), Cheng (1984), Fishman
and Wang (1983), Wilson (1983), Wilson (1984). For applications to finance models, see
Boyle (1977), Boyle, Broadie, and Glasserman (1997b), Clewlow and Carverhill (1994), Hull
and White (1987).

Example 6.36 In the stochastic activity network model of Example 1.4, we want to estimate
µ = P[T > x], where T is the project completion time and x is a constant. Suppose we
generate each activity duration Yj by inversion: Yj = F−1

j (Uj), where the Uj’s are i.i.d.
U(0, 1). To compute an AV estimator based on one pair of runs, we need one vector of
i.i.d. uniforms (U1, . . . , Ut), where t is the number of activities with random duration in the
project. Let X(1) be the value of the indicator I[T > x] when Yj = F−1

j (Uj) for each j, and

X(2) be the value of I[T > x] when Yj = F−1
j (1−Uj) for each j. This can be repeatedm times,

independently, to obtain the pairs (X
(1)
1 , X

(2)
1 ), . . . , (X

(1)
m , X

(2)
m ). Then, the AV estimator of

µ and the corresponding variance estimator are computed by (6.80) and (6.81).
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Here, T is an increasing function of each Yj, which is in turn an increasing function of Uj

when Yj = F−1
j (Uj). So, the indicator I[T > x] is a monotone (increasing) function of each

Uj. Therefore, the AV sampling scheme that we just described is completely AV-concordant
and provides a guaranteed variance reduction: Var[X̄a,n] ≤ Var[X̄n] by Corollary 6.14.

We performed experiments with the same network as in Example 1.4, with n = 10000.
The empirical variance of the AV estimator was approximately 0.46 times that of the naive
estimator. □

Example 6.37 We return to the Asian option pricing model considered in Example 1.11.
The price of the underlying asset at time t satisfies Eq. (1.8). Suppose that the values
of the standard Brownian motion B(·) in (1.8), at the observation dates tj, are B(tj) =
B(tj−1) +

√
tj − tj−1Zj, where t0 = 0 and Z1, . . . , Zd are i.i.d. N(0, 1). Here, it is clear

that S(tj) is nondecreasing with respect to Zℓ for each j and ℓ, so the payoff (1.10) is a
nondecreasing function of the Zℓ’s. If the Zℓ’s are generated by inversion, Corollary 6.14
guarantees a variance reduction if we take antithetic variates for all t coordinates (i.e.,
Ψ = {1, . . . , t}).

Again, “inversion” here can be interpreted in a wide sense, as in Example 6.1. We can
generate the Zj’s by any method, and take −Zj as the antithetic variate to Zj. If we define
Uj = Φ(Zj), then Uj ∼ U(0, 1) and 1− Uj = 1− Φ(Zj) = Φ(−Zj), so by using (Zj,−Zj) as
an antithetic pair of normals, we obtain the same result as if we had used inversion with the
antithetic pair of uniforms (Uj, 1− Uj).

If the Brownian motion is simulated using the Brownian bridge approach instead, then
the payoff remains nondecreasing, and the antithetic variates are also guaranteed to reduce
the variance (Exercise 6.28). □

♣ Stratification with locally antithetic pairs: Haber 1967.

6.9.3 Latin Hypercube Sampling

Latin hypercube sampling (LHS) is a special case of GAV that can also be interpreted as
a form of stratified sampling with proportional allocation. It was introduced by McKay,
Beckman, and Conover (1979) and has been studied and extended by Stein (1987), Owen
(1992), and Avramidis and Wilson (1996).

In Example 6.34, we saw how to stratify on a single uniform and argued that a straight-
forward t-dimensional generalization that stratifies the hypercube into kt cubic boxes and
generates one point in each of these boxes quickly becomes impractical when t increases.

LHS works with the same partition of the unit hypercube, but instead of generating
one point in each of the kt boxes, it generates a total of k points in a way that for each
coordinate (dimension) j in a selected set Ψ , and for each of the k subintervals [(i−1)/k, i/k),
for i = 1, . . . , k, there is exactly one point whose jth coordinate takes its value in the
subinterval. Figure 6.2 gives an illustration. For the coordinates j ̸∈ Ψ , the uniforms are
generated independently (no LHS). The k points
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Fig. 6.2. An illustration of LHS for t = 2 and k = 8, for two different realizations of the permu-
tations. In each case, one point will be generated at random in each of the eight darkly-shaded
cubic boxes. The choice of those boxes depends on the randomly generated permutations. There is
always one box per row and one box per column.

U1 = (U1,1, . . . , U1,j, . . . , U1,t),

U2 = (U2,1, . . . , U2,j, . . . , U2,t),
...

Uk = (Uk,1, . . . , Uk,j, . . . , Uk,t),

are generated as follows:

1. Select a subset of coordinates Ψ ⊆ {1, . . . , t}. LHS will be applied only for the coordi-
nates in Ψ .

2. For each coordinate j ∈ Ψ , generate a random permutation (π1,j, . . . , πk,j) of the inte-
gers {1, . . . , k}

3. For each (s, j), generate Us,j, the jth coordinate of the sth point, uniformly over the
interval ((πs,j − 1)/k, πs,j/k) if j ∈ Ψ , and generate Us,j ∼ U(0, 1) independently of
the other uniforms if j ̸∈ Ψ .

4. Compute Xlh = [f(U1) + · · ·+ f(Uk)]/k.

It is easily seen that each vector Us produced by this scheme is uniformly distributed
over [0, 1]t. On the other hand, for each j ∈ Ψ , U1,j, . . . , Uk,j are a stratified sample over the
interval (0, 1), as in Example 6.34.

To estimate the variance and compute a confidence interval, we can replicate the algo-
rithmm times to generatem i.i.d. copies of Xlh, estimate µ by their sample mean X̄lh,n where
n = mk, and estimate Var[Xlh] by their sample variance, as explained in Section 6.9.1.
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Fig. 6.3. The function f in Example 6.38 takes the value 1 in the darkly-shaded area and 0 in the
lightly-shaded area.

The next example shows that LHS does not guarantee a variance reduction in general.
However, the theorem that follows gives conditions under which LHS cannot increase the
variance.

Example 6.38 Let t = 2 and k = 2. Take f(u1, u2) = 1 if u1 < 1/2 and u2 < 1/2, or if
u1 > 1/2 and u2 > 1/2, and f(u1, u2) = 0 otherwise (Figure 6.3). Then, LHS will always
choose two points where the value of f is the same, i.e., Xlh is either 0 or 1. As a result,
Var[Xlh] = Var[X1] = 2Var[X̄2]. LHS doubles the variance compared with crude Monte
Carlo. □

Theorem 6.15 If f(U1, . . . , Ut) is monotone with respect to Uj for each j ∈ Ψ , then
Var[Xlh] ≤ Var[X̄k].

Proof. It is easily seen that for j ∈ Ψ , each pair (Us,j, Uℓ,j) is negatively quadrant dependent.
Then the result follows from Theorem 6.13.

Example 6.39 (Avramidis and Wilson 1996) The stochastic activity network model con-
sidered in Example 1.4 satisfies the condition of Theorem 6.15 (see Example 6.3), so LHS is
guaranteed to reduce the variance for this example. □

6.10 Quasi-Monte Carlo Point Sets and Sequences

Classical QMC methods replace the uniform random points of the MC method by carefully
designed deterministic point sets, as explained briefly in Section 1.5.3. In particular, these
point sets can be the first n points of an infinite sequence, where the points are enumerated
in a specific order. In this section, we explain the main construction methods for these
highly-uniform (or QMC) point sets and sequences. Complementary coverages can be found
in Niederreiter (1992), Sloan and Joe (1994), L’Ecuyer (2009), for example. One limitation
of these deterministic QMC methods is that reliable error estimates are difficult to obtain.
Asymptotic error bounds can be obtained under certain assumptions on f , but these bounds
are generally too hard to compute explicitly (see Section 1.5.3). In Section 6.11, we will see
how the deterministic point sets can be randomized to provide unbiased mean estimators
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that fit the GAV framework of Section 6.9.1, with k equal to the cardinality of the QMC
point set. This is randomized QMC (RQMC).

We already said in Section 1.5.3 that filling the unit hypercube very evenly with a
reasonable number of points becomes practically impossible when the dimension is large. But
many high-dimensional integrands can be well-approximated by a sum of low-dimensional
functions, and the integration error can be made very small if these low-dimensional functions
are well integrated by the QMC or RQMC method. Recall that for any point set Pn and
any set of indices I = {i1, . . . , id} ⊆ {1, . . . , t}, Pn(I) denotes the projection of Pn over
the d-dimensional subspace determined by I. A key idea underlying the construction of a
QMC point set Pn is, roughly speaking, to make sure that the low-dimensional projections
Pn(I) over the sets of coordinates I deemed important are very uniform in the corresponding
lower-dimensional unit hypercubes.

One natural requirement in this context is that all projections Pn(I) contain as many
distinct points as the original point set Pn. This rules out rectangular grids, for example. A
point set Pn in [0, 1)s is called fully projection-regular (Sloan and Joe 1994, L’Ecuyer and
Lemieux 2000) if for each non-empty I ⊆ {1, . . . , s}, Pn(I) has n distinct points.

Constructions for which several projections are identical also make the analysis easier.
Pn is called dimension-stationary (Lemieux and L’Ecuyer 2001) if whenever 1 ≤ i1 < . . . <
id < s and 1 ≤ j ≤ s− id, Pn({i1, . . . , id}) = Pn({i1 + j, . . . , id + j}). This means that Pn(I)
depends only on the spacings between the indices in I.

The main classes of construction methods are digital nets and sequences, digital point
sets with a different basis for each coordinate, and integration lattices.

In this section and the next, the points of Pn are enumerated from 0 to n− 1, for consis-
tency with the usual notation in the QMC literature and with the software implementations.
Note that in the GAV setting, they are enumerated from 1 to k.

6.10.1 Digital nets and sequences: definitions

In Section 1.5.3, we considered the point set Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n} as a
reasonable possibility when s = 1 and n is fixed. For s > 1, we suggested point sets Pn for
which each one-dimensional projection is Zn/n. That is to say, for each dimension j, the
jth coordinate of the points ui will visit all n values in Zn/n, but in a different order for
the different coordinates. Such a point set is defined by selecting a different permutation of
Zn/n (or equivalently, of the integers in Zn) for each coordinate j. The permutations must be
different, because otherwise all the points would lie on a diagonal line in the unit hypercube.
We want to select these permutations so that Pn is highly uniform over [0, 1)s.

The Latin hypercube sampling of Section 6.9.3 is a first step in that direction: It selects
the permutations at random, independently for the different coordinates. It then adds a
random Vi to each point ui, where the Vi’s are independent and uniformly distributed over
[0, 1/n)s. A good uniformity is guaranteed for each one-dimensional projection of the point
set, but not necessarily for its projections in more than one dimension. If the permutations are
selected carelessly or just generated at random, it may happen for example that two of them
are the same (or are very similar), in which case the projection of Pn on the corresponding
two coordinates will be aligned (or nearly aligned) on the main diagonal of the unit square.
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Example 6.40 Let s = 3 and n = 8. To construct Pn, we need three permutations of the
integers {0, 1, . . . , 8}, say πj = (π0,j, . . . , π7,j) for j = 1, 2, 3. After applying the permutations,
suppose we place the 8 pairs (Ui,1, Ui,3) (the projection of Pn on its first and third coordinates)
on the unit square. If it turns out that π3 = π1, then all these pairs are on the main diagonal,
as in the right panel of Figure 6.2. If we have π3 = (π7,1, . . . , π0,1) (π1 in reverse order), then
all the points are on the diagonal line between (0, 1) and (1, 0). □

Digital nets (Niederreiter 1992) are general construction methods that permit one to
select the permutations so that Pn itself, as well as its projections in more than one dimension,
are highly uniform in a sense that can be measured, e.g., by the equidistribution criteria
introduced in Section 3.3.4.

We start with a simplified version of their definition, which covers the most popular
constructions. Let b ≥ 2 be an arbitrary integer, usually a prime, called the base. To define a
net of n = bk points in s dimensions, we select s generator matrices C1, . . . ,Cs, which are (in
theory)∞×k matrices whose elements are in Zb = {0, . . . , b−1}. The matrix Cj determines
coordinate j of all the points, for j ≥ 1. To define the ith point ui, for i = 0, . . . , bk − 1,
write the digital expansion of i in base b and multiply the vector of its digits by Cj, modulo
b, to obtain the digits of the expansion of ui,j, the jth coordinate of ui. That is,

i =
k−1∑
ℓ=0

ai,ℓb
ℓ,

ui,j,1ui,j,2
...

 = Cj


ai,0
ai,1
...

ai,k−1

 mod b, (6.84)

ui,j =
∞∑
ℓ=1

ui,j,ℓb
−ℓ, (6.85)

ui = (ui,1, . . . , ui,s).

The point set thus obtained is a digital net in base b. In practice, the expansion (6.85) is
truncated to r digits for some r, so each Cj becomes a r× k matrix. Typically, r is equal to
k, or is slightly larger, or is selected so that br is near 231. If the first k rows of each Cj form
a nonsingular k × k matrix (which we shall assume henceforth), then the n output values
for coordinate j, truncated to their first k fractional digits in base b, are a permutation of
Zn/n = {0, 1/n, . . . , (n− 1)/n}.

The setting of Niederreiter (1992) is more general: one can apply bijections (or permu-
tations) to the digits of Zb before and after the multiplication by Cj. To do this, we take an
arbitrary ring R of cardinality b, then define bijections ψℓ : Zb → R for ℓ = 0, . . . , k− 1, and
ηj,ℓ : R → Zb for ℓ = 1, . . . , r and j = 1, . . . , s. In Eq. (6.84), each digit ai,ℓ is replaced by
ψℓ(ai,ℓ), and the multiplications by Cj are done in the ring R. After that, in Eq. (6.85), each
ui,j,ℓ is replaced by ηj,ℓ(ui,j,ℓ). These bijections provide additional flexibility for improving
the uniformity. If R = Zb, they are equivalent to permuting the digits of Zb. If b is a power
of a prime, then R can be taken as a finite field, so the multiplications by Cj are performed
in the finite field.
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An infinite sequence of points can be obtained by defining an infinite number of columns
for each Cj. This gives a digital sequence in base b. Only the first k columns are needed to
get the first bk points, for any k. Likewise, an infinite-dimensional point set is obtained with
an infinite sequence of matrices Cj. In both cases, the sequence of columns and matrices
can be defined via recurrences (each column and matrix being a function of the previous
ones). Concrete constructions will be explained in forthcoming subsections; they include the
sequences of Sobol’ (1967), in base 2, of Faure (1982), in prime base b, of Niederreiter (1987),
and of Niederreiter and Xing (1998).

Definition 6.4 The expression digital net in base b refers to a construction defined as above,
potentially with the bijections, and also to the point set Pn produced by such a construction.
When the matrices Cj have an infinite number of columns, we have a digital sequence in
base b. □

If Pn is a digital net, then its projection Pn(I) over the subspace determined by a subset
of indices I = {i1, . . . , id} ⊆ {1, . . . , s} is a d-dimensional digital net, and similarly for a
digital sequence. The matrix Cij becomes the matrix Cj for the new net.

6.10.2 Equidistribution

The uniformity of Pn for digital nets is most often measured by the equidistribution criteria
defined in Section 3.3.4. We recall that Pn is (q1, . . . , qs)-equidistributed in base b if each of
the bk−t rectangular boxes determined by the first qj b-ary digits for each j, where k − t =
q1 + · · · + qs, contains exactly bk−t points. Note that (q1, . . . , qs)-equidistribution implies
(q′1, . . . , q

′
s)-equidistribution whenever (q′1, . . . , q

′
s) ≤ (q1, . . . , qs). The following definitions

are equivalent to those of Niederreiter (1992).

Definition 6.5 Pn is a (t, k, s)-net in base b if it is (q1, . . . , qt)-equidistributed in base b for
all non-negative integers q1, . . . , qt whose sum does not exceed k − t (or equivalently, whose
sum equals k − t). The smallest such t is the t-value of Pn.

6 □

Definition 6.6 An infinite sequence of s-dimensional points {u0,u1, . . . , } is called a (t, s)-
sequence in base b if for all integers k > 0 and ν ≥ 0, the point set Q(k, ν) = {ui : i =
νbk, . . . , (ν + 1)bk − 1}, of cardinality bk, is a (t, k, s)-net in base b. □

Ideally, we want the t-value to be as small as possible, but there are theoretical bounds on
the best that can be achieved. These bounds, and the best values achieved so far by known
constructions, have been tabulated by Schmid and Schürer (2005). There cannot exist a
(0, k, s) unless b ≥ s− 1, and a (0, s)-sequence in base b is not possible unless b ≥ s.

♣ Should add a small table here, giving some bounds on t-values for b = 2.
The next result shows how we can verify the equidistribution properties directly from the

matricesCj. These properties do not depend on the bijections. Note that this equidistribution
is possible only if q1 + · · ·+ qs ≤ k.

6From Pierre: The (t, k, s)-net is often called (t,m, s)-net using a different notation (Niederreiter 1992).
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Theorem 6.16 A digital net is (q1, . . . , qs)-equidistributed if and only if the set of k − t =
q1+· · ·+qs rows that comprise the first q1 rows of C1, the first q2 rows of C2, . . . , and the first
qs rows of Cs, is linearly independent in the finite ring R (i.e., there is no nontrivial linear
combination of these rows that gives zero). This holds regardless of the bijections ψℓ and ηj,ℓ.
In particular, we have a (t, k, s)-net if and only if this set of rows is linearly independent
over R whenever q1 + · · ·+ qs = k − t.

Proof. The proof is a direct adaptation of that of Theorem 4.26 of Niederreiter (1992).
The matrix M defines a linear mapping from Rk to Rk−t, which maps the same number of
points to each element of Rk−t if and only if the dimension of its kernel is zero. This gives
the result when all the bijections are the identity. But the ψℓ’s define a bijection between
Zk

b and Rk on one side (changing them only change the order in which the points of Rk are
enumerated), and the bijections ηj,ℓ define bijections between Rk−t and Zk−t

b on the other
side (they permute the bk−t boxes of the equidissection). Thus, the bijections preserve the
equidistribution. (When R = Zb, these bijections just reshuffle the elements of Zk

b and of
Zk−t

b ). The last part follows directly from the definition of (t, k, s)-net.

If R is a field, then the condition of Theorem 6.16 holds if and only if the matrix M
formed by these rows has rank k − t = q1 + · · · + qs. But this is not necessarily true if R is
not a field.

Example 6.41 Suppose s = k = 1, b = 6, R = Z6, and C1 is the 1× 1 matrix whose single
element is 2. Then this matrix has rank 1, but its single row vector is not linearly independent
over Z6. The corresponding one-dimensional net contains only the points {0, 2/6, 4/6}, each
repeated twice. When we partition the interval [0, 1) into b = 6 equal subintervals, half of
the subintervals contain two (identical) points, and the other half are empty. □

6.10.3 Digital shift and matrix scramble

A useful type of transformation often applied to digital nets is a digital shift. We will use it
in Section 6.11 to obtain unbiased RQMC estimators. It is defined as follows, for an arbitrary
point set Pn. Select a single vector v = (v1, . . . , vs) in [0, 1)s, and write the digital expansion
in base b of each of its coordinates, say vj =

∑∞
ℓ=1 vj,ℓb

−ℓ. Add vj,ℓ modulo b to the ℓth digit
of the digital expansion in base b of the jth coordinate of each point ui ∈ Pn, for each j and
ℓ. For b = 2, the digit-wise addition modulo b becomes a bitwise exclusive-or, which is fast
to perform on a computer.

Definition 6.7 This transformation of Pn is called a digital shift in base b. □

If Pn is a digital net, the digital shift corresponds to replacing ηj,ℓ(ui,j,ℓ) by η̃j,ℓ(ui,j,ℓ) =
(ηj,ℓ(ui,j,ℓ) + vj,ℓ) mod b, which defines a new bijection η̃j,ℓ. That is, the digital shift just
changes the bijections ηj,ℓ. As a consequence, we have:

Corollary 6.17 Any digital shift modulo b preserves all the equidistribution properties of a
digital net in base b.
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Example 6.42 As a baby example, consider the two-dimensional Hammersley net with
k = 4 and r = 4, for which n = 16, C1 is the reflected identity, and C2 is the identity. We
apply a digital shift in base 2 with the vector v = (3/16, 5/16) = (0.00112, 0.01102), where
the last representation is in base 2. Table 6.6 gives the 16 points before and after the shift.
Those points are illustrated in Figure 6.4. They form a (0, 4, 2)-net in base 2 both before
and after the shift. A similar example is given in Figure 1.15. □

Table 6.6. The 16 points of a two-dimensional Hammersley net (left) and the same points after a
digital shift by v = (0.00112, 0.01102) (right). The coordinates are in base 2.

i (ui,1, ui,1) (ui,1, ui,1)⊕ v
0 (.0000, .0000) (.0011, .0110)
1 (.0001, .1000) (.0010, .1110)
2 (.0010, .0100) (.0001, .0010)
3 (.0011, .1100) (.0000, .1010)
4 (.0100, .0010) (.0111, .0100)
5 (.0101, .1010) (.0110, .1100)
6 (.0110, .0110) (.0101, .0000)
7 (.0111, .1110) (.0100, .1000)
8 (.1000, .0001) (.1011, .0111)
9 (.1001, .1001) (.1010, .1111)
10 (.1010, .0101) (.1001, .0011)
11 (.1011, .1101) (.1000, .1011)
12 (.1100, .0011) (.1111, .0101)
13 (.1101, .1011) (.1110, .1101)
14 (.1110, .0111) (.1101, .0001)
15 (.1111, .1111) (.1100, .1001)

The matricesCj in popular digital net constructions are typically defined by some general
rule that might not take into account the uniformity of all the important projections of Pn.
So one could try to further improve (or perhaps optimize) their behavior by modifying the
Cj’s. One type of transformation multiplies Cj on the left (in R) by a k×k lower-triangular
matrix Mj with elements in R, and whose diagonal elements are invertible in R, for each j.
If R is a field, then any lower-triangular matrix with nonzero diagonal elements satisfies this
property. Replacing Cj by MjCj for each j is called a matrix scramble or linear scramble of
the net (Matoušek 1999, Owen 2003).

The Mj’s can be carefully constructed to optimize some uniformity criterion, or may
be just generated at random, e.g., if the average uniformity measure with random Mj’s is
likely to be better than for the original Cj’s. Of course, Mj can be taken as the identity
(no scramble) for some of the coordinates. This linear scramble has the following important
property.



454 6. Efficiency Improvement

0 1

1

un+1

un
0 1

1

un+1

un

Fig. 6.4. The 16 points of an Hammersley net (left) and the same points after a digital shift by
v = (3/16, 5/16) = (0.00112, 0.01102) (right).

Theorem 6.18 If a digital net in base b is (q1, . . . , qs)-equidistributed, then applying a
matrix scramble with invertible lower-triangular matrices Mj, as defined above, preserves
the (q1, . . . , qs)-equidistribution.

Proof. Let M be the matrix defined in Theorem 6.16, before applying the scramble. We
suppose that this matrix has full rank t = q1 + · · ·+ qs. The impact of the matrix scramble
on M is as follows. The first q1 rows of M are replaced by q1 nonzero linear combinations
of the original q1 first rows. These new q1 rows are linearly independent, because for each
ℓ ≤ q1, the new row ℓ is a nonzero multiple of the old row ℓ, plus a linear combination of the
previous rows, which are linearly independent from row ℓ (because M is lower-triangular
and its diagonal elements are invertible). The next q2 rows are replaced by q2 nonzero linear
combinations of the original next q2 rows, which are also linearly independent for the same
reason. Moreover, these new q2 rows are linearly independent from the first q1 rows, because
the original ones had that property. Then the next q3 rows are replaced in the same way by
q3 new rows so that the first q1 + q2 + q3 new rows form a linearly independent set over R,
and so on. In the end, all the new rows of M are linearly independent, and the result follows
from Theorem 6.16.

6.10.4 The van der Corput sequence and (0, k, 2) nets

Let b ≥ 2 be an arbitrary integer and R = Zb. If the first k rows ofCj form the identity matrix
and the other rows are zero, then the first n output values are the first n elements of the
van der Corput sequence in base b, defined as ψb(0), ψb(1), ψb(2), . . . , where ψb : N→ [0, 1) is
the radical inverse function in base b, defined as follows: if i is an integer with digital b-ary
expansion

i = a0 + a1b+ · · ·+ ak−1b
k−1,
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then

ψb(i) = a0b
−1 + a1b

−2 + · · ·+ ak−1b
−k.

The first n numbers of a van der Corput sequence fill up the unit interval quite uniformly
for any large enough n. For n = bk, the first n numbers are {0, 1/n, . . . , (n− 1)/n}.

Example 6.43 ♣ Tabulate the van der Corput sequence in base 3. □

If the first k rows of Cj form the reflected identity matrix (that is, the identity matrix
but with its columns taken in reverse order):

Cj =

 1
. . .

1

 ,

then coordinate j runs through the values 0, 1/n, . . . , (n− 1)/n in this order.

Example 6.44 Suppose the generator matrices C1 and C2 are the reflected identity and the
identity, respectively, so the first coordinate of each point i is i/n and the second coordinate
follows the van der Corput sequence. For b = 2, this is the two-dimensional Hammersley net.
If q1 + q2 = k, then the matrix M in Theorem 6.16 contains the last q1 rows of the k × k
identity matrix, followed by the first q2 = k− q1 rows of this identity matrix. Obviously, this
matrix has full rank. Therefore, this digital net is always a (0, k, 2)-net in base b.

In Section 1.5.3, we saw an example of this type of net, in base b = 2, with k = 8 (so
n = 256). The corresponding point set is a (0, 8, 2)-net in base 2.

♣ Prove that this is also a (0, 2)-sequence? □

For digital sequences, it is customary to take C1 as the identity, so the first coordinate
follows the van der Corput sequence. But when the number of points n is fixed in advance,
we can always enumerate them by order of their first coordinate, which corresponds to taking
C1 as the reflected identity. Then one can take the van der Corput sequence for the second
coordinate, and for the other coordinates, we may use the same construction as for the
infinite sequence, shifted by one coordinate. That is, the matrix Cj of the digital sequence
becomes Cj+1 for 1 ≤ j < s. In this sense, we “gain” one dimension compared with the
infinite sequence.

♣ Using Gray code to enumerate the points. Without changing first coordinate, equiv.
to applying a permutation.

6.10.5 Sobol’ sequences and nets

Sobol’ (1967) introduced digital sequences in base b = 2, defined as follows. The generator
matrices Cj are upper triangular binary matrices with 1’s on the diagonal:
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Cj =


1 vj,1,2 . . . vj,1,c . . .
0 1 . . . vj,2,c . . .
... 0

. . .
...

... 1

 .

For each integer k > 0, the first k rows and k columns of each Cj form a non-singular matrix.
The bits in column c of Cj can be represented as an odd integer smaller than 2c:

mj,1 = 1,

mj,2 = 2 vj,1,2 + 1,
...

mj,c = 2c−1vj,1,c + · · ·+ 2vj,c−1,c + 1 =
c∑

l=1

2c−1vj,l,c,

where vj,c,c = 1. Column c thus contain the c digits of the binary expansion of mj,c, from the
most to the least significant, followed by zeros. Sobol’ calls the real numbers vj,c = 2−cmj,c,
for c = 1, . . . , k and j = 1, . . . , s, the direction numbers. These numbers completely define
the matrices Cj.

To determine the integers mj,c, for each j, we first select a primitive polynomial over F2,
say

fj(z) = zdj + aj,1z
dj−1 + · · ·+ aj,dj ,

of degree dj, and choose the first dj integers mj,1, . . . ,mj,dj . The integers mj,dj ,mj,dj+1, . . .
are then determined by the recurrence

mj,c = 2aj,1mj,c−1 ⊕ · · · ⊕ 2dj−1aj,dj−1mj,c−dj+1 ⊕ 2djmj,c−dj ⊕mj,c−dj

for c ≥ dj, or equivalently,

vj,l,c = aj,1vj,l,c−1 ⊕ · · · ⊕ aj,dj−1vj,l,c−dj+1 ⊕ vj,l,c−dj ⊕ vj,l+dj ,c−dj

for l ≥ 1, where ⊕ means bitwise exclusive-or (i.e., bitwise addition modulo 2).

♣ Should add a small example of this, eventually.

Sobol’ (1967) has shown that with this construction, if the primitive polynomials fj(z)
are all distinct, one obtains a (t, s)-sequence for some t ≤ d1 + · · · + ds + 1 − s. He then
suggested to list the set of all primitive polynomials over F2 by increasing order of degree,
starting with f1(z) ≡ 1 (whose corresponding matrix C1 is the identity), and take fj(z)
as the jth polynomial in the list, for j ≥ 1. Such lists of primitive polynomials are easily
available, e.g., at http://fchabaud.free.fr/.

For the initial direction numbers mj,1, . . . ,mj,dj , there are several possibilities, based on
different selection criteria. The original values proposed by Sobol’ were selected in terms of
the (1, . . . , 1)- and (2, . . . , 2)-equidistribution only (i.e., by looking only at the first two bits
of each coordinate). Lemieux, Cieslak, and Luttmer (2004) suggest different ones, based on
stronger equidistribution properties.
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If n = 2k is fixed in advance, we can gain one dimension as explained earlier: set the
first coordinate of point i to i/n, so C1 becomes the reflected identity, and move all previous
coordinates by one position to the right. In two dimensions, this gives the Hammersley net
(see Example 6.44).

6.10.6 Faure sequences and nets in prime base b.

Faure (1982) proposed digital sequences with generator matrices

Cj = Pj−1 mod b (6.86)

for j = 1, . . . , s, where b is prime and P is a k× k upper triangular matrix whose entry (l, c)
is (

c− 1

l − 1

)
=

(c− 1)!

(l − 1)!(c− l)!
for l ≤ c and is 0 for l > c. This gives C1 = I (the identity) and the other matrices Cj

are defined recursively via Cj = PCj−1 mod b. We thus have an infinite sequence of points
(because we can increase k as much as we want) and an unbounded number of dimensions.

Faure (1982) proved that if b is prime and b ≥ s, this sequence is a (0, s)-sequence
in base b. That is, for any integers k > 0 and ν ≥ 0, the point set Q(k, ν) = {ui : i =
νbk, . . . , (ν + 1)bk − 1}, is a (0, k, s)-net in base b. If we pick a coordinate j, truncate its
expansion to its first k digits, and go through the n = bk points of the set Q(k, ν), we
obtain a permutation of {0, 1/n, . . . , (n − 1)/n}. By taking ν = 0, this says that the first
n = bk points of the sequence form a (0, k, s)-net in base b. These point sets Q(k, ν) are thus
projection-regular. The point sets Q(k, 0) are also dimension-stationary.

Again, if n = bk is fixed in advance, we can gain one dimension by setting the first
coordinate of point i to i/n and moving all other coordinates by one position, as for the
Sobol’ nets. Faure (1982) has shown that for b ≥ s − 1, the s-dimensional point set thus
obtained is also a (0, k, s)-net in base b.

Unfortunately, the condition b ≥ s (or b ≥ s− 1 when n is fixed) is a practical limitation
for the use of Faure sequences when the dimension s is large.

Example 6.45 If s = 100, the minimal prime base b that gives a (0, k, s)-net is b = 101,
so n = bk must be a power of 101, which leaves little freedom. With k = 1, the (0, 1, s)-net
property only guarantees that each of the 100 one-dimensional projections has exactly one
point in each interval of the form [i/101, (i+1)/101) for i = 0, . . . , 100. It says nothing about
the two-dimensional (or more) projections. For k = 2, we already have n = 1012 = 10201
points and the (0, 2, s)-net property means that each one-dimensional projection has one
point in each interval [i/10201, (i + 1)/10201) for i = 0, . . . , 10200, and that each two-
dimensional projection has one point in each square box of the form [i/101, (i + 1)/101) ×
[j/101, (j + 1)/101) for i, j = 0, . . . , 100. □

♣ To motivate the following: plot some projections.
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In the generalized Faure sequence (Tezuka 1995, Faure and Tezuka 2002), one applies a
matrix scramble (see Section 6.10.3) to improve the uniformity without loosing the (0, s)-
sequence and (0,m, s)-net properties.

6.10.7 Niederreiter and Niederreiter-Xing sequences.

♣ Niederreiter’s seq. are defined for any prime power b. Can choose b < s and still get
reasonably good t-values. In base 2, the Niederreiter-Xing sequences have a better t-value
than Sobol’ sequences.

6.10.8 Hammersley Point Sets and Halton Sequence

Digital nets and sequences can be “generalized” by allowing different bases for the different
coordinates, say bj for coordinate j. For example, the point sets introduced long ago by
Hammersley (1960) have

ui = (i/n, ψb1(i), ψb2(i), . . . , ψbs−1(i)),

for i = 0, . . . , n−1, where the basis bj used for coordinate j+1 is the jth smallest prime num-
ber. Here, C1 is the reflected identity and Cj is the identity for all j > 1. The corresponding
infinite sequence, proposed by Halton (1960), takes

ui = (ψb1(i), ψb2(i), . . . , ψbs(i))

for all i ≥ 0, where bj is again the jth smallest prime. One drawback is that bj becomes
quite large for large j. In any case, the identity matrices Cj could also be replaced by more
general generating matrices, which may give room to further improvement.

♣ Permutations and scrambles for improvement: See Faure and Lemieux (2009).

6.10.9 Integration Lattices

An interesting special case of a digital net is when k = r = 1. Then, n = b, all coordinates
are multiples of 1/n, each matrix Cj contains a single integer aj ∈ Zb ≡ Zn, and the ith
point can be written as

ui = iv mod 1 = (ia mod n)/n,

where a = (a1, a2, . . . , as) and v = a/n. We recover the s-dimensional point set Pn used by
a lattice rule of rank 1, introduced in Section 1.5.3. The vector a is called the generating
vector. To make sure that each coordinate goes through all multiples of 1/n, we will suppose
that gcd(aj, n) = 1 for all j. In this case, Pn is fully projection-regular, and there is no loss
of generality in assuming that a1 = 1.

As an important special case, if aj = aj−1 mod n for all j, so a = (1, a, a2, . . . , as−1),
for some a ∈ Zn, we have a Korobov rule, introduced by Korobov (1959). The corresponding
point set can also be written as
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Pn = {(x0/n, . . . , xs−1/n) : x0 ∈ Zn and xj = axj−1 mod n for all j > 0}.

This is the set of all vectors of successive values produced by a LCG with modulus n and
multiplier a, from all possible initial states (including 0), i.e., exactly the same as the set Ψt

defined in Section 3.2.7. A Korobov rule is fully projection-regular and dimension-stationary
if and only if gcd(n, a) = 1 (L’Ecuyer and Lemieux 2000).

The LCG recurrence offers a convenient way to enumerate the points: for point i, start
with x0 = i and apply the recurrence to get the successive coordinates, then divide by n.
As an alternative, one can start with u0 = i/n and apply the recurrence uj = auj−1 mod 1
to obtain the successive coordinates of the ith point ui. Korobov point sets are a special
case of recurrence-based point sets, discussed in Section 6.10.11, where we describe another
implementation method that precomputes and stores the output values uj over all cycles
of the LCG. These types of point sets have the advantage of being infinite-dimensional.
one can generate as many coordinates as needed, from the recurrence. It is true that the
coordinates of each point are periodic (with period at most n − 1), but the random shift
discussed in Section 6.11 can easily remove this periodicity. On the other hand, having a
single parameter a (for a given n) has the disadvantage of offering less room to optimize the
uniformity compared with the more general rank-1 lattice.

In general, an integration lattice is a lattice of the form

Ls =

{
v =

t∑
j=1

hjvj such that each hj ∈ Z

}
,

as in (3.19), where the vectors v1, . . . ,vs ∈ Rs are linearly independent over R, and such
that Ls contains Zs, the set of all integer vectors. The QMC approximation of µ obtained
by taking Pn = Ls ∩ [0, 1)s as a point set is a lattice rule (Sloan and Joe 1994). The dual
lattice L∗

s, the generator matrix V , and its inverse W = V −1, are defined as in Sections 3.2.7
and 3.2.8. The lattice Ls contains Zs if and only if L∗

s ⊆ Zs, if and only if all entries of W
are integers. When this holds, n = det(W ) and all entries of V are multiples of 1/n. The
projection of Ls over the subspace determined by the set of coordinates I = {i1, . . . , iη} is
also a lattice, with point set Pn(I).

The rank of Ls is defined as the smallest r such that one can find a basis of the form
v1, . . . ,vr, er+1, · · · , es, where ej is the jth unit vector in s-dimensions. The point set of a
lattice rule of rank r can be written as

Pn = {i1v1 + · · ·+ irvr : 0 ≤ ij < nj for 1 ≤ j ≤ r},

where n = n1 · · ·nr, the nj’s are (unique) integers such that nj+1 divides nj for j = 2, . . . , r,
vj = aj/n, and the aj are linearly independent integer vectors (Sloan and Joe 1994). When
r > 1, the point set Pn is not fully projection-regular. This is one of the reasons why lattices
rules of rank 1 are by far the most popular.

Lattice rules normally have a fixed number of points, n. What if we want to add new
points, to improve the accuracy, after having seen the evaluations at these n points, and
without throwing them away? It is actually possible to construct a sequence of embedded
lattices L1

s ⊂ L2
s ⊂ L3

s ⊂ . . . , so that each lattice contains the previous one (Cranley
and Patterson 1976, Joe and Sloan 1992, Hickernell et al. 2001). This type of construction
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permit one to increase the cardinality of Pn sequentially, until the desired accuracy has been
achieved. If Lξ

s∩ [0, 1)s contains nξ points, then nξ−1 must divide nξ, for each ξ. For example,
the ξth rule can be a Korobov rule with n = nξ points and multiplier a = aξ, where aξ mod
nξ−1 = aξ−1, for each ξ. The simplest (and usual) case is to take nξ = 2ξ. Then, for each ξ,
we have aξ = aξ−1 or aξ = aξ−1 + nξ−1.

Example 6.46 ♣ Take an example from Hickernell et al. (2001). Give a table of a vs 2ξ.

□

An explicit expression for the integration error with a lattice rule is available when the
integrand f has a Fourier series expansion that converges absolutely. That is, if f can be
expanded as

f(u) =
∑
h∈Zs

f̂(h) exp(2π
√
−1h · u), (6.87)

with Fourier coefficients

f̂(h) =

∫
[0,1)s

f(u) exp(−2π
√
−1h · u)du

such that
∑

h∈Zs |f̂(h)| <∞, then the integration error is (Sloan and Joe 1994):

En =
∑

0̸=h∈L∗
s

f̂(h). (6.88)

Each term in (6.87) represents a periodic function whose frequency is determined by the
vector h. For a smooth function, the coefficients |f̂(h)| tend to decrease quickly with the size
of h, because the large [small] h’s correspond to high [low] frequency oscillations. In view of
(6.88), this suggests that ideally, the dual lattice L∗

s should not contain short nonzero vectors
h.

The assumption that the series converges absolutely is very restrictive, however. It can
hold only if f is continuous in the unit torus [0, 1)s, i.e., the function f : Rs → R defined by
f(x) = f(x mod 1) must be continuous. This holds in a minority of situations in simulation
settings. But we will see in Section 6.11.3 that when the lattice is randomly shifted, the
variance of the RQMC estimator can be written as in (6.88), but with the Fourier coefficients
squared, under the only condition that the variance is finite. This confirms the need to avoid
short nonzero vectors in the dual lattice. This immediately suggests the following simple
selection criterion: maximize the length of the shortest nonzero vector in the dual lattice.
We recover the same criterion as we had in Section 3.2.7 for MRGs! We can also define a
criterion that takes into account the lower-dimensional projections, as in Equations (3.28)
and (3.29).

Based on these observations, a general class of figures of merit can be defined by

Mw(Pn) =
∑

0 ̸=h∈L∗
s

w(h) or M′
w(Pn) = sup

0̸=h∈L∗
s

w(h) (6.89)

where w : Zs → R is a weight function such that w(h) decreases with ∥h∥ in a way that may
try to mimic how we anticipate |f̂(h)| to decrease with ∥h∥, where ∥ · ∥ is an arbitrary norm.
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In practice, the norm and the weights are chosen somewhat arbitrarily. These expressions
measure (in a different way) the discrepancy between the empirical distribution of the point
set and the uniform distribution, and we want them to be as small as possible. These figures
of merit are equivalent to the generalized spectral test and the weighted spectral test defined
by Hellekalek (1998), if we assume that w(h) > 0 for each h and

∑
h∈Zt w(h) < ∞. Here,

we allow w(h) = 0.

Let ∥h∥2 denote the Euclidean norm of h. If we takeMw in (6.89), with w(h) = max{ℓ∗|I| :
I ∈ J , 0 ̸= h ∈ L∗

I}/∥h∥2 when this set is nonempty, and w(h) = 0 otherwise, we recover
the criterion defined in (3.28), inverted (so we want to minimize it, instead of maximize).
L’Ecuyer and Lemieux (2000) provide a table of parameters selected on the basis of this
criterion.

If we put w(h) = β2
I(h)∥h∥−α for some integer α ≥ 2 and some coefficients βI for each

I ⊆ {1, . . . , s}, where I(h) = {j : hj ̸= 0}, and takeM′
w (the sum), we obtain the weighted

p-alpha defined by Hickernell (1998a). In the case where α an even integer, thisM′
w can be

computed in O(ns) time via the formula

P̃α = β2
0

[
−1 + 1

n

∑
u∈Pn

s∏
j=1

(
1− (−1)α/2(2πβj)α

α!
Bα(uj)

)]
, (6.90)

where u = (u1, . . . , us) and Bα is the Bernoulli polynomial of degree α. This criterion is
not practical for large LCGs and MRGs, because it would be too long to compute (n is
too large), but it is appropriate for QMC point sets. The criterion (3.28), in contrast, has
a computing cost that does not depend much on n, but increases much faster than linearly
with s. For the special case where βj = 1 for all j, this criterion is known as Pα (Sloan and
Joe 1994). Other criteria can be found in Sloan and Joe (1994), Hickernell (1998b), Heinrich,
Hickernell, and Yue (2004), for example.

Under a variety of settings, classes of functions can be defined so that the worst-case
integration error for functions in the class is bounded by the variation of the function (in
some sense) multiplied by the discrepancy. The weighted p-alpha comes up as the appropriate
discrepancy when we consider classes of periodic smooth functions (with period 1 with respect
to each coordinate) whose mixed partial derivatives up to order α are all square integrable.
In that case, it is known that there exist integration lattices for which the discrepancy (and
the worst-case integration error) are O(n−α+δ) for an arbitrarily small δ > 0. See L’Ecuyer
(2009) for the details.

♣ To be detailed later.

♣ Give tables of parameters later on.

It is interesting to note that the oldest QMC method for an arbitrary dimension (to
our knowledge), proposed by Niedermeyer (1951), was based on a rank-1 lattice whose
generating vector v has all irrational coordinates. This construction provides an infinite
sequence of points, whose ith point is ui = iv mod 1. For any fixed n, one can take
Pn = {uν , . . . ,uν+n−1} for an arbitrary ν (usually ν = 0). The error and variance expressions
given earlier for integration lattices are not valid for this type of point set.
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6.10.10 Polynomial Integration Lattices

See Lemieux and L’Ecuyer (2003), L’Ecuyer (2004).

6.10.11 Recurrence-based point sets

The usual way of defining an infinite-dimensional QMC point set is via a recurrence over the
coordinates, in exactly the same way as we did in Section 3.1.2 to define an RNG. We have
a finite state space S, a transition function f : S → S, an output function g : S → [0, 1),
and we define

Pn = {u = (u0, u1, . . . ) : s0 ∈ S, sj = f(sj−1), and uj = g(sj) for all j}. (6.91)

This is the set of all vectors of successive output values produced by the RNG, from all
possible initial states. The recurrence is assumed to be purely periodic, i.e., for each s0 ∈ S,
there is a positive integer ν such that sν = f ν(s0) = s0. Then the successive coordinates of
each point are purely periodic. In general, there could be several disjoint cycles. The sum
of the lengths of all cycles equals n, which is also the cardinality of S (duplicate points
are counted as many times as they appear). The dimension t is infinite. The points are
easy to enumerate simply by using the recurrence, even if the required dimension is random
and unbounded. All recurrence-based point sets are fully projection-regular and dimension-
stationary.

If the generator is an LCG, we obtain a Korobov lattice point set. In the case where the
generator is linear over F2, as in Section 3.3, then it is equivalent to an infinite dimensional
digital net in base 2, which can be truncated to the number of dimensions we want. This
means, for example, that we can use small LFSR generators to construct digital nets.

One way of implementing such a point set is to precompute all cycles of the recurrence
and store them in a list of cycles. This precomputation makes sense in the (frequent) case
where the same point set is reused several times with independent randomizations, or if
the required dimension is large. It implies the storage of n numbers only, compared with
ns numbers for a general QMC point set. The points can be enumerated easily by going
through all the cycles, using each value of each cycle as a staring point. In the case where
the randomization is a random shift modulo 1, one can store the (non-randomized) real
numbers uj’s directly, store the coordinates of the random shift in a separate vector, and
apply the randomization (by addition modulo 1) on-the-fly when generating the points. If
the randomization involves manipulations of the digits, as in digital random shifts or random
matrix scrambles, it is better to store the blocks of digits in base b instead. For example,
in the case of a digital net in base 2 defined via an LFRS generator, one would store the
successive k-bit blocks over all the cycles, store the random shift in the same format, in
a separate vector, and transform the coordinates into real numbers (on-the-fly) only after
applying the digital shift.

♣ Example...
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6.11 Randomized Quasi-Monte Carlo

6.11.1 General Setting

QMC methods give deterministic approximations for which error estimation is difficult.
RQMC, which is actually a special type of GAV technique, provides one way of estimat-
ing the error (Owen 1998, L’Ecuyer and Lemieux 2002). RQMC starts with a QMC point
set Pn = {u0, . . . ,un−1}, that cover the unit hypercube [0, 1)s in a very uniform way, and
randomizes Pn so that after the randomization:

(R1) it retains its high uniformity when taken as a set and
(R2) each individual point has the uniform distribution over [0, 1)s.

(The n here corresponds to the k of Section 6.9; we use n for compatibility with standard
QMC notation.) Let P̃n = {U0, . . . ,Un−1} denote the randomized points. The estimator of
µ = E[f(U)] based on one copy of the randomization is

Xrqmc = Qn =
1

n

n−1∑
i=0

f(Ui). (6.92)

This randomization is repeated m times, independently, for some positive integer m,
with the same Pn. Assume that any points taken from different randomizations are pairwise
independent, in the sense that if U

(j)
i is the ith point from the jth randomization, then

(R3) for every i1, i2 and j1 ̸= j2, U
(j1)
i1

and U
(j2)
i2

are independent.

Let Xrqmc,1, . . . , Xrqmc,m denote the m copies of Xrqmc obtained by these randomizations, and
let X̄rqmc,mn and S2

rqmc,m be their sample mean and sample variance.

Proposition 6.19 Under Conditions (R1) to (R3), E[X̄rqmc,mn] = µ and

E[S2
rqmc,m] = Var[Xrqmc] = mVar[X̄rqmc,mn].

Proof. 7 Property (R2) implies that E[f(Ui)] = µ for each i. Therefore, E[Xrqmc] = µ and
this implies unbiasedness of the average (the first part). For the second part, it suffices to
show that the m copies of Xrqmc are pairwise uncorrelated. Condition (R3) implies that for

j1 ̸= j2, f(U
(j1)
i1

) and f(U
(j2)
i2

) are independent, so Cov[f(U
(j1)
i ), f(U

(j2)
ℓ )] = 0. Then,

Cov[Xrqmc,j1 , Xrqmc,j2 ] = Cov

[
1

n

n∑
i=1

f(U
(j1)
i ),

1

n

n∑
i=1

f(U
(j2)
i )

]

=
1

n2

n∑
i=1

n∑
ℓ=1

Cov[f(U
(j1)
i ), f(U

(j2)
ℓ )]

= 0.

7From Pierre: The proof is the same as parts (c) and (d) of Exercise 1.26. This proposition should probably
be stated as a corollary of a general result on GAV.
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With this result in hand, we can compute a confidence interval for µ exactly as in
Section 6.9.1, if we assume that Xrqmc is approximately normally distributed. For a given
computing budget mn, a larger m gives a more accurate variance estimator, but a larger n is
likely to provide a more accurate estimator of µ because of a better uniformity of the point
set. If the main goal is to estimate µ, we would usually take m somewhere from 5 to 25. But
if our aim is really to estimate the variance (e.g., to compare the efficiencies of RQMC and
MC), we should take a larger m.

6.11.2 Randomizations

6.11.2.1 Random shifts. Two simple randomizations that satisfy Conditions (R1) to (R3)
of Section 6.11.1 with a small amount of change in the point set, for an arbitrary point set
Pn, are the random shift modulo 1 and the random digital shift. They are defined as follows.

For the random shift modulo 1, we simply generate a single point U uniformly over [0, 1)s

and add it to each point of Pn, coordinate-wise, modulo 1. In the case of a lattice rule, the
lattice structure of the points is preserved by the shift.

♣ Should add figure.

♣ Applying a random shift to a digital net does not give a net, but a shifted net. This
is equivalent to randomly shifting the function f .

The random digital shift in base b is a digital version of this method. We generate again
a single vector U = (U1, . . . , Us) uniformly over [0, 1)s, write the digital expansion in base b
of each of its coordinates, say Uj =

∑∞
ℓ=1Dj,ℓb

−ℓ, then add Dj,ℓ modulo b to the ℓth digit of
the digital expansion in base b of the jth coordinate of each point ui ∈ Pn. For b = 2, the
digit-wise addition modulo b becomes a bitwise exclusive-or, which is fast to perform on a
computer. We already saw in Section 6.10.3 that for digital nets in base b, the digital shift

in base b preserves the q-equidistribution properties for all vectors q. 8 In particular, it
preserves the (t, k, s)-net properties of the point set.

For well-designed point sets, with good uniformity properties, these random shifts are
usually sufficient. But for certain types of point sets, we can obtain a better upper bound on
the variance with a deeper scramble (more randomization). This usually happens because a
point set taken at random from the class in which we randomize can have better uniformity
on average in the larger class (with more randomization) than in the restricted class (with
a random shift only). These more involved randomizations are examined next.

6.11.2.2 Random matrix scrambles. For digital nets, additional randomization can be
obtained by applying a random matrix scramble before the digital shift (Matoušek 1999,
Faure and Tezuka 2002, Hong and Hickernell 2003, Owen 2003). That is, we left-multiply
each matrix Cj by a random r × r lower triangular matrix Mj, in the ring R. In the usual
case where R = Zb, the standard approach is to generate the diagonal entries uniformly
over {1, . . . , b − 1}, and the entries below the diagonal uniformly over {0, . . . , b − 1}, all
independently. Just by itself, this random scramble does not satisfy (R1) (for example,
the point 0 remains unchanged), so it must be followed by some type of random shift. Its

8From Pierre: This is actually true for any point set. Prove it.
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combination with a digital random shift gives an affine matrix scramble. This was proposed
by Matoušek (1999) and implemented by Hong and Hickernell (2003).

Some variants further restrict the class of matrices from which the Mj’s are generated.
The i-binomial matrix scramble of Tezuka and Faure (2002) adds the constraint that all
entries on any given diagonal or subdiagonal of Mj are identical. The striped matrix scramble
proposed by Owen (2003) adds the constraint that in any given column, all entries below the
diagonal are equal to the diagonal entry, which is generated randomly over {1, . . . , b− 1}.

♣ Local properties of striped scramble...

6.11.2.3 A deeper scramble. Owen (1995) proposed a nested uniform scramble, as ran-
domization method for digital nets. It randomly permutes the values {0, . . . , b− 1} used for
the digits ui,j,ℓ, independently across the coordinates and across the digits. For each coor-
dinate j, this randomization acts as follows: Partition the interval [0, 1) into b intervals of
length 1/b, and permute them randomly, moving the points along with the intervals. Then
partition each interval [(ℓ − 1)/b, ℓ/b) into b subintervals of length 1/b2 and permute them
randomly, using b independent permutations for the b different intervals. Repeat this recur-
sively ad infinitum. Do it for each coordinate j, independently across coordinates. Each level
of recursivity scrambles one digit in the base-b expansion of the points Ui. In practice, the
recursivity must be stopped at some level ℓ, which means that only the first ℓ output digits
are scrambled. For example, if b = 2, ℓ = 31 or so is usually sufficient. But still, we need
(1 + b+ · · ·+ bℓ−1)s independent permutations to scramble the first ℓ digits. This method is
therefore very time-consuming.

– CLT with this scramble. See Loh (1996).

6.11.2.4 Asymptotic variance bounds. Suppose Pn is a (t, k, s)-net in base b, random-
ized by either a nested uniform scramble or a linear matrix scramble. Let σ2 = Var[X] and
Xrqmc be the RQMC estimator based on averaging over the n randomized points. In this
setting, we have (Owen 1997, Owen 1998, Hong and Hickernell 2003, Owen 2003):

Proposition 6.20 (a) If f is square integrable, then

Var[Xrqmc] ≤ bq
(
b+ 1

b− 1

)s
σ2

n
.

(b) If all the mixed partial derivatives of f satisfy a Lipschitz condition (see Owen 1997,

Owen 1998) 9 , then

Var[Xrqmc] = O(n−3(log n)s).

Part (a) says that the variance can never be much worse than with standard MC, for
which the variance is σ2/n; it cannot be worse by more than a constant factor that does not
depend on n. Part (b) says that when f is sufficiently smooth, the variance converges to 0

9From Pierre: Add details
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at a much faster rate with this type of RQMC estimator than with MC. Unfortunately, such
smoothness holds only in a minority of typical simulation applications.

♣ Counter-example showing that these properties do not hold if we are only using the
random shift?

6.11.3 Randomly-shifted lattice rules

6.11.3.1 Variance expression. Applying a random shift modulo 1 to an integration lattice
was first proposed by Cranley and Patterson (1976). For a randomly-shifted lattice rule, we
have an exact expression for the variance in terms of the square Fourier coefficients of f :

Proposition 6.21 (L’Ecuyer and Lemieux 2000) If f : [0, 1)s → R and Var[f(U )] = σ2 <
∞, then the variance with a randomly-shifted lattice rule is

Var[Xrqmc] =
∑

0 ̸=h∈L∗
s

|f̂(h)|2, (6.93)

where L∗
s is the dual lattice.

Observe that the standard MC estimator is equivalent to using a randomly-shifted lattice
rule that contains a single point. In that case, we have L∗

s = Zs, i.e., the dual lattice contains
all integer vectors. Therefore, with n independent replications, we obtain

Var[X̄n] =
σ2

n
=

1

n

∑
0̸=h∈Zs

|f̂(h)|2.

Comparing this expression with (6.93), and noticing that L∗
s in (6.93) contains a fraction

1/n of the points of Zs, we find that the RQMC method does better than MC if and only if
the squared Fourier coefficients are smaller on the average over the dual lattice than over Zs.
In other words, the lattice should be constructed so that the vectors h for which |f̂(h)|2 is
important do not belong to L∗

s. The most important vectors h are typically among the small
ones, which correspond to the low-frequency terms in the Fourier expansion (the main trends
of f). This agrees with our discussion of Section 6.10.9, leading to the criteria in (6.89).

6.11.3.2 Adding a baker transformation. For a randomly-shifted lattice rule, a simple
technique that often reduces the variance significantly is the baker transformation, which
replaces each coordinate u (after the shift) by 2u if u ≤ 1/2 and by 2(1 − u) if u > 1/2.
This corresponds to stretching everything by a factor of two and folding back, along each
coordinate. Hickernell (2002) has shown that this technique reduces the variance to O(n−4+ϵ)
for non-periodic smooth functions.

6.11.4 Digital nets with a random digital shift

For a digital net, the counterpart of a random shift modulo 1 turns out to be a random
digital shift in base b. It preserves all equidistribution properties. We also have an analogue
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of Proposition 6.21, where the variance expression is in terms of a Walsh expansion of f
instead of a Fourier expansion. This Walsh expansion has been used earlier by Larcher,
Niederreiter, and Schmid (1996), Larcher et al. (1996), and Larcher and Pirsic (1999) to
study the integration error for non-randomized digital nets, under the (strong) condition
that the sum of Walsh coefficients converges absolutely.

Suppose b is a prime, so Zb is the finite field Fb. For vectors h = (h1, . . . , hs) ∈ Ns
0

def
=

{0, 1, 2, . . . } and u = (u1, . . . , us) ∈ [0, 1)s, let hj =
∑∞

ℓ=1 hj,ℓb
ℓ−1 and uj =

∑∞
ℓ=1 uj,ℓb

−ℓ for
each j, where all the digits hj,ℓ and uj,ℓ are in Zb, and define

h · u =
s∑

j=1

hj · uj =
s∑

j=1

∞∑
l=1

hj,luj,l

The Walsh basis function that corresponds to h, evaluated at u, is

ϕh(u) = e2πιh·u/b.

We can write the Walsh expansion of f as

f(u) =
∑
h∈Ns

0

f̃(h)ϕh(u),

where

f̃(h) =

∫
[0,1)s

f(u)e−2πιh·u/bdu. (6.94)

is the Walsh coefficient of f in h.

Define the dual space of the net Pn as

C∗s = {h ∈ Ns
0 : h · u = 0 for all points u ∈ Pn}.

♣ Explain the meaning of this. See L’Ecuyer (2004).

Proposition 6.22 (L’Ecuyer and Lemieux 2002) If f : [0, 1)s → R and Var[f(U )] = σ2 <
∞, then the RQMC variance for a digital net with a random digital shift is

Var[Xrqmc] =
∑

0 ̸=h∈C∗
s

|f̃(h)|2, (6.95)

where C∗s is the dual space of the net.

This result has an analogous interpretation as Proposition 6.21. It suggests that we
should avoid small vectors h in the dual space C∗s , where the length of h can be defined
(loosely) as the total number of digits hj,ℓ required to write its components.
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6.11.5 Randomizing the Halton sequence

Wang and Hickernell (2000) randomize the Halton sequence simply by selecting the starting
point u0 randomly over [0, 1)s, and exploiting the fact that there is a simple way of getting
ψb(i + 1) directly from ψb(i), so the successive points can be generated without knowing
their indices i in the original sequence. They show that this method satisfies conditions (R1)
and (R2) of Section 6.11. In their numerical experiments, it performs better than randomly
shifting (modulo 1) the Halton sequence.

♣ Nice recent overview by Faure and Lemieux (2009).

6.11.6 Variance Decomposition and Effective Dimension

We now describe a general way of decomposing the variance of f(U), independently of any
point set. This decomposition gives an heuristic justification of why RQMC often works well
even in a large number of dimensions.

As we pointed out in Section 1.5.3, filling up the unit hypercube [0, 1)s very uniformly is
practically impossible when the dimension s is large. However, in many practical settings, the
s-dimensional function f can be well approximated by a sum of lower-dimensional function,
that depend only on a small number of coordinates of u. Then, a sufficient condition for
QMC to be efficient is that these low-dimensional functions are integrated with small error.
For example, if s = 1000, a direct application of Eq. (??) is useless, but if f can be written
approximately as a sum of three-dimensional functions (i.e., where each function depends
only on three coordinates of u or less), then (??), with Pn replaced by its appropriate
three-dimensional projection in each case, can be used to show that the integration error
for each of these three-dimensional functions converges rapidly, provided that all important
three-dimensional projections of Pn have fast-converging discrepancy.

For RQMC, this can be studied generally and rigorously using a functional ANOVA
decomposition of f (Hoeffding 1948, Owen 1998, Liu and Owen 2006). The idea is to write
f as

f(u) = µ+
∑

I⊆{1,...,s}, I ̸=ϕ

fI(u)

where each fI : (0, 1)s → R depends only on {ui, i ∈ I}, the fI ’s integrate to zero and are
orthogonal, and the variance decomposes as σ2 =

∑
I⊆{1,...,s} σ

2
I where σ2

I = Var[fI(U)] for

U uniformly distributed over [0, 1)s. The fI are defined recursively by fϕ = µ (a constant)
and

fI(u) =

∫
(0,1)s−|I|

f(u) duĪ −
∑
I′⊂I

fI′(u)

for ϕ ̸= I ⊆ S, where the first integral is with respect to the coordinates of u whose indexes
are not in I, denoted by uĪ .

For a given function f , if
∑

I∈J σ
2
I ≈ σ2, for some “small” class J of subsets of {1, . . . , s},

then it suffices to construct Pn so that the projections Pn(I) are highly uniform for all I ∈ J ,
in order to reduce the important variance terms σ2

I .
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In this context, f is said to have effective dimension d in proportion ρ in the superposition
sense (Owen 1998) if ∑

|I|≤d

σ2
I ≥ ρσ2.

If ρ is close to 1, this means that f is well approximated by a sum of d-dimensional (or less)
functions. The following definitions reduce even further the number of projections that have
to be considered.

Sometimes,
∑

I∈J σ
2
I is close to σ2 if J contains all the sets I formed by indices that are

not too far apart, and it suffices to have good uniformity for the corresponding projections.
For example, if we simulate a single queue over a long time horizon, the random numbers
used to generate the interarrival times and service times of customers that are close to each
other in time have a much more important interaction than those that are far away. We say
that f has effective dimension d in proportion ρ in the successive-dimensions sense (L’Ecuyer
and Lemieux 2000) if ∑

I⊆{i,...,i+d−1}, 0≤i≤s−d

σ2
I ≥ ρσ2

There are cases where the first few random numbers of the simulation are much more
important than the others. If ∑

I⊆{1,...,d}

σ2
I ≥ ρσ2,

then f has effective dimension d in proportion ρ in the truncation sense (Caflisch, Morokoff,
and Owen 1997). Low effective dimension in the truncation sense can sometimes be achieved
by redesigning the simulation program (i.e., the function f) in a way that the first few
uniforms account for most of the variance in f (Morokoff 1998, Caflisch, Morokoff, and
Owen 1997, Fox 1999).

6.11.7 Transforming the Function f

We saw that RQMC is generally more effective when the function f is smoother (has less
variability) and/or has lower effective dimension in some sense. One can often improve effec-
tiveness by a large factor by transforming the function f so that the integral (the expectation)
remains the same, but the variability and/or effective dimension are reduced. Sometimes,
one can reduce the effective dimension simply by generating the random variates in a dif-
ferent order (Moskowitz and Caflisch 1996, Fox 1999). Several standard variance reduction
techniques such as control variates, conditional Monte Carlo, and importance sampling, for
example, can be applied to smooth out the integrand f before applying RQMC. Certain
RQMC schemes also converge faster (with n) when the function f is periodic with period
1 in each coordinate, so it may be profitable to apply a transformation that makes the
function periodic (Hickernell 2002, Sloan and Joe 1994). We now discuss different ways of
transforming f .

6.11.7.1 Change of variables. The primary technique for reducing the variability of f is
a change of variable. We select a differentiable one-to-one function φ : [0, 1]s → [0, 1]s, where
φ(v) = (φ1(v), . . . , φs(v)) for v = (v1, . . . , vs) ∈ [0, 1]s, and write
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µ =

∫
(0,1)s

f(u) du =

∫
(0,1)s

f(φ(v))J(v) dv =

∫
(0,1)s

g(v) dv,

where J(v) is the Jacobian of the transformation φ at v, defined as the determinant of the
s × s matrix whose element (i, j) is ∂φi(u)/∂uj (see Section 4.5.1). To estimate µ by MC
or RQMC, we compute the function g (instead of f) at each sample point, and average.
This is in fact equivalent to applying a change of measure as in importance sampling: the
uniform density of u is replaced by the density 1/J(v) obtained for u = φ(v) when v is
uniform. The purpose is also the same as in importance sampling. The aim is to select φ so
that g has smaller variation than f . In the case of rare-event simulation, for example, f has
a high narrow peak somewhere in the space (where the rare event occurs) and it is essential
to smooth out that peak first (e.g., via a change of measure) before considering RQMC.

In theory, there is always a way of reducing the effective dimension to 1, as follows:
replace f by g where g(u) = g(u1) = G−1(u1), where G is the distribution function of the
random variable f(U ), i.e., G(x) = P[f(U) ≤ x] where U is uniform over (0, 1)s. Finding
this g is usually much too difficult, but there are special cases where it can be approximated
(for example, if f(U) can be approximated by a function of a linear combination of normal
random variables).

6.11.7.2 Periodizing the function. For convenience, the transformations that periodize
the function usually take the form of a one-dimensional change of variable applied to each
coordinate. A general class of such transformations change the integrand f(u1, . . . , us) into
f(φ(u1), . . . , φ(us))|φ′(u1) · · ·φ′(us)|, for some smooth one-to-one transformation φ : [0, 1]→
[0, 1] such that φℓ(0) = φ(ℓ)(1) = 0 for ℓ = 1, . . . , α. This transformation does not change
the value of the integral. Specific choices of φ proposed in the literature include polynomial
and trigonometric functions whose degrees or frequencies increase with α (Boyle, Lai, and
Tan 2005, Hua and Wang 1981, Sloan and Joe 1994). A major difficulty is that while making
the function periodic, this type of transformation can also increase its variation V (f). In
particular, we must be careful that |φ′(u)| does not become too large.

A variant of this is to select a continuous transformation φ : [0, 1]→ [0, 1] (not necessarily

one-to-one) with the property that
∫ b

a
φ(u) du = b − a for every interval [a, b] ⊆ [0, 1], and

φ(0) = φ(1). Then, ∫
[0,1]s

f(u) du =

∫
[0,1]s

f(φ(u)) du,

where φ(u) = (φ(u1), . . . , φ(us)). This can be conveniently (and equivalently) implemented
by transforming the points Pn by applying φ to each coordinate, and keeping f unchanged
(so the simulation program that computes f can remain the same). This applies to either
deterministic or randomized points. When the points are randomized (RQMC), the trans-
formation must be applied after the randomization.

A simple instance of this is the baker’s transformation, which takes φ(u) = 2u for u ≤
1/2 and φ(u) = 2(1 − u) for u > 1/2. It stretches each coordinate of each point ui by a
factor of two, then fold back the coordinates that become larger than 1. Equivalently, this
transformation can be visualized as contracting the graph of f (for any given coordinate)
horizontally by a factor of two, so the function is now defined over the interval [0, 1/2] only,



6.11 Randomized Quasi-Monte Carlo 471

and then making a mirror copy over the interval [1/2, 1], so the transformed function is now
symmetric with respect to 1/2, and its periodic continuation of period 1 is continuous.

Hickernell (2002) shows that there exist lattice rules for which adding the baker’s transfor-
mation to the random shift reduces the variance from O(n−2+δ) to O(n−4+δ) for non-periodic
smooth functions. A similar result applies to a digital net with a random digital shift (Cristea
et al. 2007). Empirical results showing significant variance reductions provided by the baker’s
transformation can be found in L’Ecuyer, Lécot, and Tuffin (2008), for example.

6.11.7.3 Reducing the effective dimension. The effective dimension of f can often be
reduced by changing the way the random variates or the sample paths are generated. We
will illustrate this by the situation where f(U) can be written as a function of a multinormal
vector. These ideas can be applied more generally, for example to generate a Lévy process.

Example 6.47 Functions of a Multinormal Vector. Suppose that our integrand of interest
can be written as a function of the multinormal vector Y = (Y1, . . . , Ys), say with mean zero
(without loss of generality) and covariance matrix Σ. That is, µ = E[g(Y )] for a known
function g, and g(Y ) is the estimator. For example, we may have a basket of c financial
assets whose values evolve as (potentially correlated) geometric Brownian motions (GMBs).
If the net payoff at time T is a function g of the c assets values at fixed observation times
0 < t1 < · · · < td = T , then we have s = cd. This covers a wide range of option types.

To generate Y , we decompose the covariance matrix as Σ = AAt for some matrix A,
generate a vector Z = (Z1, . . . , Zs) ∼ N(0, I), and return Y = AZ (see Section 2.10.3).
There are many possibilities for the choice of A. The most common method, the Cholesky
factorization, takes A to be lower triangular.

A second possibility is an eigen-decomposition of Σ, which takes A = PD1/2 where
D is a diagonal matrix that contains the eigenvalues of Σ in decreasing order and P is an
orthogonal matrix whose columns are the corresponding unit-length eigenvectors. This is the
decomposition used in principal component analysis (PCA). It was suggested by Acworth,
Broadie, and Glasserman (1998) as a way to reduce the effective dimension in the truncation
sense, when simulating GBMs for option pricing via QMC. This decomposition selects the
matrix A so that the maximum amount of variance of Y comes from Z1, then the maximum
amount of residual variance conditional on Z1 comes from Z2, then the maximum amount
of residual variance conditional on (Z1, Z2) comes from Z3, and so on. Thus, the method
concentrates the variance in the first coordinates of Z as much as possible. If Z1, Z2, . . . , Zs

are generated by inversion, in this order, then this method minimizes the effective dimension
in the truncation sense if we consider the variance of Y .

This PCA technique, on the other hand, does not take into account the function g. It may
turn out that with the PCA sampling scheme, g(Y ) depends very little on Z1 and very much
on Z25, for example, even if Z1 has more influence on the variance of Y . In such a situation,
PCA will miss its target. Ideally, one would like to find a decomposition AAt that minimizes
the effective dimension of the integrand f(U) = g(Y ) in a given sense. This minimization
depends on g. The objective could be to maximize the fraction of Var[g(Y )] that comes from
Z1, then maximize the fraction of the residual variance of g(Y ) that comes from Z2 given Z1,
and so on. For nonlinear functions g, this is difficult. Imai and Tan (2002, 2004, 2006) suggest
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making a linear approximation g̃ of g, obtained via a first-order Taylor expansion around a
representative point in the unit cube, and use it to compute the first column of A so that Z1

accounts for the maximal amount of variance of the linear approximation. This procedure
is repeated for each new column of A, which is computed so that the corresponding Zj

accounts for the maximal amount of residual variance of the linear approximation, given the
previous columns. A distinct representative point must be selected for each new column of
A. The main difficulty is to find a good linear approximation at each step. This can easily
be impractical, especially if g is highly nonlinear. On the other hand, using this technique
for just a few steps (a few columns of A) can be worthwhile.

In the special case where Y corresponds to the realization of a c-dimensional BM
{W (t) = (W1(t), . . . ,Wc(t)), t ≥ 0} observed at times 0 = t0 < t1 < · · · < td, then
s = cd, and the vector Y = (W1(t1), . . . ,Wc(t1), . . . ,W1(td), . . . ,Wc(td))

t has a covariance
matrix Σ that can be written as a Kronecker product; this can be exploited to speed up
the computations, especially for PCA (Glasserman 2004). In this special case, Y can also
be generated by Brownian bridge sampling, as explained in Section 2.14.4. When c > 1, this
method requires the decomposition of a (c × c) conditional covariance matrix at each step
to generate W (t) from its conditional distribution. These decompositions are usually com-
puted beforehand, via either Cholesky, or PCA, or another method. When the observation
points are equally spaced, many of these covariance matrices are the same. Brownian bridge
sampling typically reduces the effective dimension in the truncation sense. But like for PCA,
its overall impact depends on the function g. It is possible to construct instances of g for
which it actually increases the effective dimension and the RQMC variance (Papageorgiou
2002, Wang and Sloan 2008). □

♣ Extensions to Lévy processes.

6.11.8 Examples of applications to option pricing

The following examples are inspired from Glasserman (2004), Section 5.5.1, and from Imai
and Tan (2002). They are also used in L’Ecuyer (2009). Consider a set of c GMB processes,
{Si(t), t ≥ 0}, 1 ≤ i ≤ c, where Si has drift parameter r and volatility parameter σi. That is,

Si(t) = Si(0) exp
[
(r − σ2

i /2)t+ σiBi(t)
]

where Bi is a standard Brownian motion (Section 2.14.1). Moreover, we assume that the Bi’s
are correlated as follows: Cov[Bi(t + δ) − Bi(t), Bj(t + δ) − Bj(t)] = ρi,jδ for all δ > 0. We
have an option whose discounted payoff is e−rT max[S̄ − K, 0], where S̄ can be either the
geometric average

S̄(G) =
c∏

i=1

d∏
j=1

Si(tj)
1/cd (6.96)

or the arithmetic average

S̄(A) =
1

cd

c∑
i=1

d∑
j=1

Si(tj), (6.97)
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for fixed observation times 0 < t1 < · · · < td = T . In all our examples, we take tj = jT/d.
Denoting Y = (B1(t1), . . . , Bc(t1), B1(t2), . . . , Bc(t2), . . . , B1(td), . . . , Bc(td))

t, the element
((i− 1)c+ j), (i′ − 1)c+ j′) of Σ = Cov(Y ) is ρi,i′ min(tj, tj′).

The price of the option based on the geometric average is known exactly (Glasserman
2004), so we can take the payoff S̄(G) as a CV to reduce the variance.

We use the following point sets:

(a) Sobol’ nets with a random digital shift only (Sob-S),
(b) Sobol’ nets with a left matrix scramble followed by a digital shift (Sob-LMS-

S),
(c) Korobov lattice rules with a random shift modulo 1 (Kor-S), and
(d) Korobov lattice rules with a random shift modulo 1 followed by a baker

transformation (Kor-S-B).

The primitive polynomials and the direction numbers for the Sobol’ sequence were taken from
Lemieux, Cieslak, and Luttmer (2004). The lattice rule parameters are from L’Ecuyer and
Lemieux (2000). The parameters of these point sets are definitely not optimal. All standard
normal random variables were generated by inversion.

The variance reduction factor (VRF) is defined as the Monte Carlo variance (per obser-
vation) divided by n times the variance of Qn for the randomized QMC method. The RQMC
variance was estimated by making m = 100 independent replications of the randomization.
These VRFs are noisy, with a standard error of about 20 percent or more. The simulations
were written in Java using SSJ.

Example 6.48 For our first numerical illustration, we take c independent assets with a
single observation time, with the following parameters borrowed from Glasserman (2004):
d = 1, ρi,j = 0, T = 1, σ = 0.5, r = 0.05, Si(0) = 100, and K = 100. We first take c = 5,
then c = 10. We consider the payoff based on the arithmetic average (6.97). The exact values
and the MC variance per observation (the values of µ and σ2) are approximately 11.72 and
305 for c = 5, and 9.207 and 145 for c = 10.

Table 6.7. Variance Reduction Factors for Example 6.48, without correlation, for c = 5 (Left
Number) and c = 10 (Right Number)

Sobol’ Nets

n = 214 n = 216 n = 218

Sob+S 953, 168 2363, 162 7156, 180

Sob+LMS+S 733, 112 2265, 174 7058, 253

Korobov Lattice Rules

n = 16381 n = 65521 n = 262139

a = 5693 a = 944 a = 21876

Kor+S 178, 74 312, 21 416, 117

Kor+S+B 376, 77 440, 89 3434, 425
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Table 6.7 gives the empirical variance reduction factors observed for the selected point
sets. We see that the VRFs (i.e., efficiency gains) increase rapidly with n for the 5-dimensional
problem, especially for the Sobol’ net, but much less rapidly in the 10-dimensional case. For
the Korobov rules, the baker transformation helps significantly, but the Sobol’ nets are doing
even better, with or without LMS. For c = 5 and n = 218, they reduce the variance by a
factor of 7000 compared with ordinary MC. All methods require approximately the same
CPU time for a given value of n. This means that they require (at least) 7000 less CPU time
than MC to compute an estimator of comparable precision. □

Example 6.49 Wemodify the previous example so that ρi,j = 0 is now replaced by ρi,j = 0.4
for i ̸= j. Table 6.8 gives the VRFs. All values are for c = 10, for which we have µ ≈ 15.77 and
σ2 ≈ 674. We compare two ways of sampling the vector Y by transforming a 10-dimensional
vector of independent standard normals: (a) the Cholesky factorization (left number in each
table entry) and (b) PCA (right number in each table entry). PCA definitely outperforms
the Cholesky factorization, and the combination of PCA with randomized Sobol’ nets gives
the largest VRFs. The left matrix scramble brings some variance improvement. □

Table 6.8. Variance Reduction Factors for Example 6.49, with c = 10 and positive correlation, for
Cholesky (Left Number) and PCA (Right Number).

Sobol’ Nets

n = 214 n = 216 n = 218

Sob+S 289 882 508 3567 1033 10299

Sob+LMS+S 381 4931 491 11452 593 39831

Korobov Lattice Rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 106 737 30 1614 193 4218

Kor+S+B 185 6820 217 6864 684 20984

Example 6.50 For our next illustration, we modify an example from Imai and Tan (2002):
we take c = 10, d = 25, ρi,j = 0.4 for all i ̸= j, T = 1, r = 0.04, σi = 0.1 + 0.4(i − 1)/9
for all i, Si(0) = 100, and K = 100. This gives a 250-dimensional integration problem. The
exact value and the MC variance are µ ≈ 5.818 and σ2 ≈ 72.3 (these values are accurate up
to the given digits).

The results are in Table 6.9, in the same format as for Table 6.8. They are similar. The
main difference is that here we have a 250-dimensional problem instead of a 10-dimensional
one, so PCA has more room to reduce the effective dimension compared with Cholesky. The
VRFs are smaller than in Table 6.8 with Cholesky, but the improvement provided by PCA
over Cholesky is larger. □

Example 6.51 Here we consider an Asian option on a single asset (c = 1) whose price
follows a GBM process. The payoff is based on the arithmetic average (6.97). In this context,
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Table 6.9. Variance Reduction Factors for Example 6.50 (250 Dimensions) with Cholesky (Left)
and PCA (Right)

Sobol’ Nets

n = 214 n = 216 n = 218

Sob+S 10 1299 17 3184 32 6046

Sob+LMS+S 6 4232 4 9219 35 16557

Korobov Lattice Rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 18 878 18 1504 9 2643

Kor+S+B 50 4553 46 3657 43 7553

as seen in Example 6.17, we can use the payoff based on the geometric average (6.96) as a
control variate (CV) to reduce the variance. Here, we look at the improvement of RQMC over
MC with and without the CV, with sequential sampling (SEQ), Brownian bridge sampling
(BBS), and PCA, for an example with S(0) = 100, r = ln(1.09), σi = 0.2, T = 120/365,
tj = D1/365 + (T − D1/365)(j − 1)/(d − 1) for j = 1, . . . , d, for combinations of values
of (D1, d,K) given in Table 6.10. This table provides estimates of the exact value µ, the
MC variance σ2 without the CV, and the VRF σ2/σ2

cv, where σ
2
cv is the MC variance with

the CV. These values are accurate at least to the digit given. We see that the CV alone
(without RQMC) can reduce the variance by a huge factor, especially when d is small and
the observation times are close to each other. This is because the geometric and arithmetic
averages are almost the same in this case.

Table 6.10. Estimates of µ, σ2, and the VRF σ2/σ2
cv, for Example 6.51

d D1 K µ σ2 VRF

10 111 90 13.008 105 1.53× 106

10 111 100 5.863 61 1.07× 106

10 12 90 11.367 46 5400

10 12 100 3.617 23 3950

120 1 90 11.207 41 5050

120 1 100 3.367 20 4100

Table 6.11 gives the VRFs of RQMC over MC, with and without the CV, with approxi-
mately n = 216 points. We recall that the optimal CV coefficient depends on the RQMC point
set and on the sampling method, because it depends on the estimator’s variance and its co-
variance with the CV, which may vary significantly across the methods (Hickernell, Lemieux,
and Owen 2005). In our experiments, these variances and covariances were estimated from
the same simulation runs used to compute the estimators of µ.
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Table 6.11. VRFs for Example 6.51 with and without CV, for Sequential Sampling (SEQ), Brow-
nian bridge sampling (BBS), and PCA sampling. The Sobol’ point sets with a random digital shift
(Sob+DS) have 216 = 65536 points, and the Korobov rules with a random shift (Kor+S) and with
a random shift followed by a baker’s transformation (Kor+S+B) have n = 65521 and a = 944.

d D1 K Pn without CV with CV

SEQ BBS PCA SEQ BBS PCA

10 111 90 Sob+DS 9572 12549 14279 63 183 4436

10 111 90 Kor+S 5943 6014 13751 18 29 291

10 111 90 Kor+S+B 88927 256355 563665 90 177 668

10 111 100 Sob+DS 5764 6638 10309 42 82 1913

10 111 100 Kor+S 2224 3682 8782 12 31 397

10 111 100 Kor+S+B 27214 29042 313724 29 61 635

10 12 90 Sob+DS 2205 9053 12175 27 67 434

10 12 90 Kor+S 442 1720 13790 13 50 71

10 12 90 Kor+S+B 1394 26883 446423 31 66 200

10 12 100 Sob+DS 368 2025 9506 21 42 274

10 12 100 Kor+S 63 909 5039 8 26 47

10 12 100 Kor+S+B 133 1317 123650 18 54 119

120 1 90 Sob+DS 325 7079 15101 3 48 483

120 1 90 Kor+S 192 2025 984 5 47 75

120 1 90 Kor+S+B 394 15575 474314 13 55 280

120 1 100 Sob+DS 39 1776 10244 3 48 217

120 1 100 Kor+S 24 672 5538 3 23 29

120 1 100 Kor+S+B 29 1101 162531 9 29 144
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Without the CV, RQMC reduces the variance by a large factor, especially when combined
with BBS or PCA. The Korobov rule with the random shift and the baker’s transformation
provides the largest variance reduction. With the CV, significant additional VRFs are ob-
tained by the RQMC methods on top of those obtained by the CV alone. In this case, the
Sobol’ net with a random digital shift is the best performer. As an illustration, in the first
row of Table 6.11, for PCA, the additional VRF over MC+CV is around 4436, whereas the
CV alone was already providing a VRF of around 1.53× 106. The combined VRF with both
methods is approximately 6.8×109. The CPU times per run are about 20% larger with PCA
in this case (in our implementation), so plain (naive) MC would take about 5.6× 109 times
more CPU time to yield an estimator with equivalent precision. For d = 120, the CPU time
for PCA sampling is about three times that of SEQ. With SEQ, our implementation needs
about 2.7 seconds to make one million simulation runs and compute the estimators with and
without CV for d = 10, and about 29 seconds for d = 120. These timings are for an AMD
Athlon 64-bit processor running at 2.4 GHz. □

Example 6.52 An Asian Option Under a Variance Gamma Process. We consider an asset
price that evolves according to a geometric variance-gamma (VG) process S defined as follows
(Avramidis, L’Ecuyer, and Tremblay 2003, Avramidis and L’Ecuyer 2006, Madan, Carr, and
Chang 1998):

S(t) = S(0) exp [rt+X(G(t)) + ωt] ,

where X is a BM with drift and variance parameters θ and σ, G is a gamma process with
mean and variance parameters 1 and ν, X and G are independent, and ω = ln(1 − θν −
σ2ν/2)/ν. The process Y defined by Y (t) = X(G(t)) is a VG process (see Section 2.16.6).
We want to estimate the value of E[e−rT max(S̄ − K, 0)] where S̄ = (1/d)

∑d
j=1 S(tj) and

tj = jT/d for 0 ≤ j ≤ d. To generate (S(t1), . . . , S(td)), we use (and compare) the following
methods described in Section 2.16.6: sequential sampling (BGSS), Brownian and gamma
bridge sampling (BGBS), and the difference of gammas bridge sampling (DGBS).

We ran simulations with the following parameters, taken from Avramidis, L’Ecuyer, and
Tremblay (2003): θ = −0.1436, σ = 0.12136, ν = 0.3, r = 0.1, T = 1, d = 16, K = 101, and
S(0) = 100. The exact value and the MC variance are µ ≈ 5.725 and σ2 ≈ 29.89. Table 6.12
gives the variance reduction factors of QMC compared with MC. The gain is large and DGBS
provides the best improvement.

□

Example 6.53 Boyle et al. Boyle, Lai, and Tan (2005) consider a spread option, where
d = 1, c = 2, and the payoff is e−rT max[S2(T ) − S1(T ) − K, 0], which is again a
function of a bivariate normal with known covariance matrix Σ. To generate the pay-
off, they use importance sampling as follows: generate S1(T ) from its original distribu-
tion, then generate S2(T ) from its conditional distribution given that the payoff is nonzero,
and multiply the estimator by the appropriate likelihood ratio. This reduces the variabil-
ity of the integrand and makes it smoother. For RQMC, they use a two-dimensional lat-
tice rule, and they periodize the function with polynomial and sine transformations. Their
best results are with the transformations φpoly,4(u) = u4(35 − 84u + 70u2 − 20u3) and
φsin,3(u) = (12πu− 8 sin(2πu)+ sin(4πu))/12π, which are special cases of well-known classes
of transformations. We ran some experiments to compare their proposed transformation with
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Table 6.12. Variance Reduction Factors for Example 6.52 with BGSS (Left), BGBS (middle), and
DGBS (right)

Sobol’ Nets

n = 214 n = 216 n = 218

Sob+S 37 359 585 41 421 1077 75 510 1154

Sob+LMS+S 29 530 557 49 565 995 77 735 1642

Korobov Lattice Rules

n = 16381, a = 5693 n = 65521, a = 944 n = 262139, a = 21876

Kor+S 17 54 119 24 138 263 22 285 557

Kor+S+B 52 53 57 44 44 433 92 93 1688

the baker’s transformation, which also periodizes the function, and found that φpoly,4 and
φsin,3 gave much larger variance reductions than the baker’s transformation, for n ≈ 216 and
with the same lattices, for this two-dimensional example. We also tried an Asian option with
d = 2, t1 = 1/2, t2 = 1, S(0) = 100, K = 90, r = ln(1.09), and σ1 = 0.2, with sequential
sampling combined with importance sampling, and the proposed transformations did slightly
better than the baker’s transformation (approximately by a factor of 2).

However, for higher dimensional problems, we observed the opposite: these transforma-
tions give much higher variance than the baker’s transformation. For Example 3 with d = 10,
K = 90, and n ≈ 216, for instance, with sequential sampling, the higher-order transforma-
tions gave a larger variance than plain Monte Carlo. In other words, they annihilate all
the RQMC gain. The explanation is that the higher-order transformations also increase the
variation of the function, and the impact of this higher variation increases with s. □

6.12 Importance Sampling

6.12.1 Basics

Importance sampling (IS), introduced in Section 1.6, changes the input distributions that
drive the model in order to concentrate the sampling effort in the most important areas of the
sample space. Its primary use as an efficiency improvement tool is for dealing with important
rare events. In this context, the input distributions are modified so that these rare events
become more likely to happen. To recover an unbiased estimator of the original quantity
of interest, the original (naive) estimator is multiplied by an appropriate likelihood ratio.
Examples of applications include estimating the reliability of highly dependable systems,
the fraction of losses in a queuing system with finite buffers, the fraction of long waiting
times in a queue, the probability of bankruptcy of an insurance company, etc. (see the
references in Section 6.12.11). In these application settings, standard MC estimators are
highly inefficient because of the huge amount of simulation time that is typically required to
observe a sufficient number of these rare events (viz. Examples 1.29 and 1.44).

We recall the basic ideas of IS, already outlined in Section 1.6. If the original estimator
is X = h(Y ), where h : Rd → R and Y ∈ Rd is a random vector with density π, the IS
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estimator is
Xis = h(Y )π(Y )/g(Y )

where g is another density over Rd such that g(y) > 0 for all y for which h(y)π(y) ̸= 0. We
have µ = Eπ[X] = Eg[Xis].

If the function h satisfies either h(y) ≥ 0 for all y or h(y) ≤ 0 for all y, then we can
(in theory) choose g so that g(y) is proportional to |h(y)|π(y), i.e., h(y)π(y)/g(y) is a
constant, say µ̃. Then, the estimator becomes Xis = µ̃, a constant, so its variance is reduced
to 0. The fact that the probability density function g must integrate to 1 immediately yields
µ̃ =

∫
Rd h(y)π(y)dy = µ. In other words, the normalizing constant in the definition of the

optimal g is exactly the same quantity that we want to estimate. If we knew it, there would
be no need to do the simulation in the first place! As a result, this zero-variance scheme
is usually impractical to implement. Nevertheless, knowing the general form of the optimal
g often gives insight on how to modify the input distributions in practice to reduce the
variance.

In the general case where h(y) can take both positive and negative values, the optimal
density is g(y) = |h(y)|π(y)/µ̃, where µ̃ =

∫
Rd |h(y)|π(y)dy. Thus the goal is to inflate the

density (or likelihood) π(y) of every outcome y by a factor proportional to the absolute cost
|h(y)|, and normalize. In particular, the IS density should be 0 in the areas where h(y) = 0.

For the case of a discrete random variable Y , say with probability mass function given by
P[Y = yk] = p(yk) for k = 0, 1, . . . , the method works as follows. In fact, Y can be a random
vector, or any other type of random object with discrete distribution, and h a function that
assigns a real number to each possible realization of Y , and the following applies in just the
same way. We can change the probabilities p(yk) into another set of probabilities q(yk) such
that q(yk) > 0 whenever h(yk)p(yk) ̸= 0. Then,

µ = Ep[h(Y )] =
∞∑
k=0

h(yk)p(yk) =
∞∑
k=0

[h(yk)p(yk)/q(yk)]q(yk)

= Eq[h(Y )p(Y )/q(Y )] (6.98)

where Ep and Eq are the expectations when Y has the probability mass functions p and q,
respectively. The (unbiased) IS estimator of µ is Xis = h(Y )p(Y )/q(Y ) where the random
variable Y satisfies P{Y = yk} = q(yk). Here, the likelihood ratio is L(Y ) = p(Y )/q(Y ).
The probabilities q that minimize the variance are defined by q(yk) = |h(yk)|p(yk)/µ̃ where
µ̃ =

∑∞
k=0 |h(yk)|p(yk).

6.12.2 General formulation and key properties

Let ω denote the randomness that drives the simulation and suppose we want to estimate

µ = EP[X] = EP[h(ω)] =

∫
Ω

h(ω)P(dω)

where P is a probability measure over the sample space Ω (i.e., P[ω ∈ A] = P[A] =
∫
A
P(dω)

for every measurable subset A of Ω) and EP is the corresponding mathematical expectation.
We can replace P by another probability measure Q such that Q dominates P in the region



480 6. Efficiency Improvement

where h(ω) ̸= 0; that is, for all measurable sets A ⊆ Ω,
∫
A
h(ω)P(dω) > 0 implies that

Q(A) > 0. Under this assumption, the likelihood ratio L(P,Q, ω) = (dP/dQ)(ω), which is
the Radon-Nikodym derivative of P with respect to Q, exists whenever h(ω) ̸= 0, and we
can write:

µ = EP[h(ω)] =

∫
Ω

h(ω)dP(ω) =

∫
Ω

[h(ω)(dP/dQ)(ω)] dQ(ω)

= EQ [h(ω)L(P,Q, ω)] ,

where EQ is the expectation that corresponds to Q, and L(P,Q, ω) is defined as 0 when
(dP/dQ)(ω) does not exist. This means that Xis = h(ω)L(P,Q, ω) is an unbiased IS esti-
mator for µ when ω is generated from Q. This setting encompasses the cases discussed in
Section 6.12.1. When P and Q have densities with respect to the Lebesgue measure, then
(dP/dQ) is the ratio of these densities, as we saw earlier. When they correspond to discrete
distributions, then the likelihood ratio becomes a ratio of probabilities. In general, ω may
represent a complicated object, such as the sample path of a stochastic process, for example.

Theorem 6.23 Taking Q = Q∗ defined by

Q∗(dω) = P(dω)|h(ω)|/µ̃,

where µ̃ =
∫
Ω
|h(ω)|dP(ω), minimizes the variance of the IS estimator. The IS estimator

with this Q∗ becomes X∗
is = µ̃ when h(ω) > 0, X∗

is = −µ̃ when h(ω) < 0, and we have
Q∗[h(ω) = 0] = 0. If P[h(ω) ≥ 0] = 1 or P[h(ω) ≤ 0] = 1, then this minimal variance is
zero.

Proof. The likelihood ratio in this case is L(P,Q∗, ω) = µ̃/|h(ω)| and the estimator is X∗
is =

µ̃h(ω)/|h(ω)|. The second and third sentences of the statement then follow immediately. For
the case where h(ω) can take both positive and negative values, for an arbitrary admissible
measure Q and corresponding estimator Xis, we obtain from the Cauchy-Schwartz inequality:

EQ∗ [(X∗
is)

2] = µ̃2 = E2
P[|h(ω)|] = E2

Q[|h(ω)|L(P,Q, ω)]
≤ EQ[h

2(ω)L2(P,Q, ω)] = EQ[(Xis)
2].

By minimizing the second moment, we minimize the variance as well.

As we already said, this Q∗ is usually impractical to compute and use because the
normalization constant µ̃ is as hard to compute as µ and because sampling from Q∗ (if it
was known) would be too difficult anyway. But the knowledge of its shape can provide insight
on how to select a good Q.

We know that the likelihood ratio is never negative. It is sometimes taken for granted
that its expectation under Q equals 1. Proposition 6.24 reminds us that this is true only
if P[A] > 0 implies Q[A] > 0 for every measurable set A, a condition often not verified in
practice. For the changes of measure used in Examples 1.43, 1.41, and 1.44, for instance, this
condition does not hold and the expected value of the likelihood ratio is less than 1.

Proposition 6.24 If the Radon-Nikodym derivative (dP/dQ)(ω) exists on a measurable set
B such that Q[B] = 1, then EQ[L(P,Q, ω)] = P[B].
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Proof. We have

EQ[L(P,Q, ω)] =
∫
B

[(dP/dQ)(ω)]dQ(ω) =

∫
B

dP(ω) = P[B].

The following propositions give a necessary and sufficient condition for the IS estimator
to have smaller variance than the standard MC estimator. It indicates that the likelihood
ratio should be small when h2(ω) is large.

Proposition 6.25 Var[Xis] < Var[X] if and only if EP[h
2(ω)(1− L(P,Q, ω))] ≥ 0.

Proof. Note that

EQ[X
2
is] = EQ[h

2(ω)L2(P,Q, ω)] = EP[h
2(ω)L(P,Q, ω)].

Therefore, Var[X]− Var[Xis] = EP[X
2]− EQ[X

2
is] = EP[h

2(ω)(1− L(P,Q, ω))].

The next proposition provides a simple sufficient condition under which the variance is
guaranteed to be reduced at least by a factor ρ ≤ 1.

Proposition 6.26 Suppose that L(P,Q, ω) ≤ ρ whenever h(ω) ̸= 0, for some constant ρ ≤ 1.
Then,

VarQ[Xis] ≤ ρVarP[X]− (1− ρ)µ2 ≤ ρVarP[X]. (6.99)

Moreover, the equality may occur only if for any ϵ > 0, Q[h2(ω)(L(P,Q, ω)− ρ) > ϵ] = 0,

Proof. We have

EQ[X
2
is] = EQ[h

2(ω)L2(P,Q, ω)]
≤ ρEQ[h

2(ω)L(P,Q, ω)] (6.100)

= ρEP[h
2(ω)] = ρEP[X

2].

Therefore VarQ[Xis] = EQ[X
2
is] − µ2 ≤ ρEP[X

2] − µ2 ≤ ρ(EP[X
2] − µ2) − (1 − ρ)µ2 =

ρVarP[X] − (1 − ρ)µ2. Moreover, if the set {ω : h2(ω)(L(P,Q, ω) − ρ) > ϵ} has a positive
probability Q, it is easy to see that the inequality in (6.100) must be strict. Note that for
ρ > 1, the first inequality in (6.99) holds, but not the second one.

The above results provide insight on what to do and what to avoid when applying IS. We
must change the measure in a way that L(P,Q, ω) remains small when h2(ω) is large. This
means that these ω should become more likely under Q than under P. To avoid disaster (huge
variance), one should make sure that L(P,Q, ω) cannot take huge values when h(ω) ̸= 0.
These huge values occur when a realization ω having a given probability [or density] under P
has a much smaller probability [or density] under Q. This is exactly what causes the infinite
variance in Example 1.38 when λ0 is too large: for λ0 > λ the likelihood ratio increases
exponentially with Y , so it takes huge values when Y is large.
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Example 6.54 To generalize Example 1.43, we can replace the random variable Y by the
sample point ω, and write p = P[A] = EP[h(ω)] where h(ω) = I[ω ∈ A]. The zero-variance
measure Q∗ is defined by Q∗(B) = I[A]P[B]/P[A] = P[B | A]. This Q∗ reallocates all of the
sampling effort to the area where A occurs. In practice, we should seek a Q that is easy to
sample from and that resembles Q∗, or at least for which the likelihood ratio tends to be
small when A occurs. □

Example 6.55 Suppose our unbiased estimator of µ is h(Y1, . . . , YT ), where T is a stopping
time with respect to the sigma-field generated by {Yj, j ≥ 1}, and P[T < ∞] = 1. Suppose
also that Y1 has density π1, and the density of Yj conditional on (Y1, . . . , Yj−1) = (y1, . . . , yj−1)
is πj(· | y1, . . . , yj−1). If we replace these conditional densities πj by other conditional densities
gj, the IS estimator becomes Xis = h(Y1, . . . , YT )L(Y1, . . . , YT ) where

L(y1, . . . , yT ) =
π1(y1)π2(y2 | y1) · · · πT (yT | y1, . . . , yT−1)

g1(y1)g2(y2 | y1) · · · gT (yT | y1, . . . , yT−1)

when T <∞. The densities gj must satisfy the requirement that this likelihood ratio is well-
defined (finite) whenever h(y1, . . . , yT )π1(y1)π2(y2 | y1) · · · πT (yT | y1, . . . , yT−1) ̸= 0. Then
we can verify that Xis is unbiased:

µ = Eπ[h(Y1, . . . , YT )]

=
∞∑
n=1

Eπ[I[T = n]h(Y1, . . . , Yn)]

=
∞∑
n=1

Eg[I[T = n]h(Y1, . . . , Yn)L(Y1, . . . , Yn)]

= Eg[h(Y1, . . . , YT )L(Y1, . . . , YT )].

Suppose that in addition to the above assumptions, we can also write

h(Y1, . . . , YT ) =
T∑

j=1

cj(Yj)

for some real-valued functions cj. In this case, since cj(Yj) depends only on Y1, . . . , Yj, it
suffices to multiply it by the partial likelihood ratio L(Y1, . . . , Yj). This gives the (unbiased)
IS estimator

Xis =
T∑

j=1

cj(Yj)L(y1, . . . , yj).

□

Example 6.56 Suppose Y1, . . . , Yd are i.i.d. with density π, and we change π to a new
density g such that g(y) > 0 whenever π(y) > 0. We then apply IS by generating Y1, . . . , Yd
i.i.d. from this new density. Suppose also that Eg [| ln(π(Y1)/g(Y1))|] <∞ (a mild condition).
The likelihood ratio is

L(Y1, . . . , Yd) =
d∏

j=1

π(Yj)/g(Yj).
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In this situation, it is shown in Exercise 6.35 that when d → ∞, L(Y1, . . . , Yd) → 0 with
probability 1 and Var[L(Y1, . . . , Yd)]→∞, despite the fact that E[L(Y1, . . . , Yd)] = 1 for all
d. This suggests that we should keep d reasonably small, or/and choose Q closer to P when d
increases. On the other hand, many IS schemes in practice are designed so that the random
variates that are generated are not i.i.d. and several terms of the likelihood ratio cancel one
another when d is large. We will see many examples of that. □

6.12.3 Zero-variance simulation of a Markov chain

♣ This has been moved from the intro.
A zero-variance IS sampling scheme also exists in the more general situation where

the model is a discrete-time Markov chain (DTMC). To explain how it works, we take a
DTMC {Yj, j ≥ 0} with denumerable state space Y = {0, 1, 2, . . . }, transition probabilities
p(y, y′) = P[Yj = y′ | Yj−1 = y], and nonnegative one-step cost function c : Y2 → [0,∞),
so that a cost c(Yj−1, Yj) is incurred at step j. We assume that the chain stops whenever it
reaches a given set of absorbing states ∆ ⊂ Y . We may put p(y, y) = 1 and c(y, y) = 0 for
all y ∈ ∆. Let T = inf{j : Yj ∈ ∆},

X =
T∑

j=1

c(Yj−1, Yj),

the total cost until absorption, and

v(y) = E[X | Y0 = y],

the expected total cost when starting in state y. We assume that E[T | Y0 = y] < ∞ and
v(y) <∞ for all y ∈ Y . Theorem A.22 tells us that the function v : Y → [0,∞) satisfies the
recurrence

v(y) =
∞∑

y′=0

p(y, y′)[c(y, y′) + I(y′ ̸∈ ∆) v(y′)], y = 0, 1, . . .

Suppose we change the transition probabilities p(y, y′) to the new probabilities

q(y, y′) = p(y, y′)
c(y, y′) + I(y′ ̸∈ ∆) v(y′)

v(y)
.

The IS estimator of v(y) is then

Xis =
T∑

j=1

c(Yj−1, Yj)

j∏
i=1

L(Yi−1, Yi)

=
T∑

j=1

c(Yj−1, Yj)

j∏
i=1

v(Yi−1)

c(Yi−1, Yi) + I(Yi ̸∈ ∆) v(Yi)

= v(Y0), (6.101)
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where the last equality is obtained by expanding the sum and products and simplifying the
terms (see Exercise 1.29 and Kollman et al. 1999). This IS estimator is a constant, so it has
zero variance. This zero-variance scheme applies in principle to Markov chains with more
general (non-denumerable and high-dimensional) state spaces as well. Again, we cannot
implement it exactly, because it requires knowledge of the entire function v, but a crude
approximation may already bring a substantial variance reduction.

Example 6.57 A gambler (or an investor, as you prefer) starts with y > 0 dollars (an
integer) and at each step, he gains one dollar win probability p and looses one dollar with
probability 1− p. We want to estimate his ruin probability, which is the probability that the
amount he owns ever reaches 0. For p ≤ 1/2, this probability is 1, so let us assume that
p > 1/2. To simulate this process with IS, suppose we change p to q = 1−p. Then, under the
new probabilities, ruin occurs with probability 1, because q < 1/2. Moreover, the likelihood
ratio is a product of terms where each term is p/q = p/(1 − p) when the gambler wins one
dollar and (1 − p)/(1 − q) = (1 − p)/p when the gambler looses one dollar. Note that the
product of two terms that correspond to one win and one loss is 1, so two such terms cancel
out in the likelihood ratio. As a result, when ruin occurs, the estimator Xis (which is equal to
the likelihood ratio at the end) is always equal to [(1− p)/p]y, because there must have been
y more losses than gains. Thus, we have found a zero-variance estimator for this process. □

6.12.4 Zero-variance for a general Markov chain

In the previous subsection, we saw how to define a zero-variance sampling for a finite-state
DTMC with a non-negative cost function. We now generalize it to a Markov chain with a
general state space. The setting is taken from L’Ecuyer and Tuffin (2007).

We have DTMC {Yj, j ≥ 0} with general state space Y , transition kernel P, and non-
negative one-step cost function c : Y2 → [0,∞). When the chain is in state Yj−1 = y ∈ Y ,
the next state Yj obeys a probability law defined by P(B | y) = P[Yj ∈ B | Yj−1 = y) for
all (measurable) B ⊆ Y , and a transition cost c(y, Yj) is incurred. The state space contains
a set of absorbing states ∆ ⊂ Y from which the transition cost is zero: P({y} | y) = 1 and
c(y, y) = 0 for all y ∈ ∆. Let τ = inf{j : Yj ∈ ∆}, the number of steps until absorption,

X =
τ∑

j=1

c(Yj−1, Yj),

the total cost until absorption, and

µ(y) = E[X | Y0 = y],

the expected total cost when starting in state y. We assume that E[τ | Y0 = y] < ∞ and
µ(y) <∞ for all y ∈ Y .

The function µ : Y → [0,∞) satisfies the recurrence

µ(y) = E[c(y, Y1) + µ(Y1) | Y0 = y]

=

∫
Y
[c(y, y1) + µ(y1)]dP(y1 | y)
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for all y ∈ Y .
We consider changing the transition kernel P for another kernel Q such that Q(B | y) > 0

whenever
∫
B
[c(y, y1) + µ(y1)]dP(y1 | y) > 0. The estimator X is then replaced by

Xis =
τ∑

j=1

c(Yj−1, Yj)

j∏
i=1

L(Yi−1, Yi), (6.102)

where L(Yi−1, Yi) = (dP/dQ)(Yi | Yi−1). Let EQ,y and VarQ,y denote the expectation and
variance operators under Q, from initial state Y0 = y. We have EQ,y[Xis] = µ(y).

Suppose that we choose Q = Q∗ defined by

Q∗(dy1 | y) = P(dy1 | y)
c(y, y1) + µ(y1)

µ(y)
(6.103)

when µ(y) > 0 (this measure integrates to 1), and Q∗(· | y) = P(· | y) when µ(y) = 0. This
measure gives zero variance:

Proposition 6.27
VarQ∗,y[Xis] = 0.

Proof. See L’Ecuyer and Tuffin (2007).

♣ Example: Suppose µ(y) is the probability of hitting a given set of absorbing states.
Then Q∗ becomes the h-transform of Doob.

♣ Note that this zero-variance strategy does not take the work into account.

♣ Proposition: Balance equations: under the zero-variance IS, over any cycle of positive
probability, the LR must be equal to 1.

♣ Show how we can obtain variance bounds via Lyapunov functions, or sub-solutions
to the Bellman equations.

6.12.5 Examples

Example 6.58 The Asian option. We consider again the Asian call option as in Exam-
ples 1.11 and 1.21, under the GMB model, with observation times t1, . . . , td = T . We want
to estimate v(s0, T ) = E[Y (s0)], where

Y (s0) = e−rT max (0, s0W −K) ,

W =
1

d

d∑
i=1

exp

[
(r − σ2/2)ti + σ

i∑
j=1

√
tj − tj−1Zj

]

and Z1, . . . , Zd are i.i.d. N(0, 1). When K is large compared with s0 exp[r − σ2/2], we
may want to increase the mean of the Zj’s to make Y (s0) positive more frequently.
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Suppose we change the mean of Zj from 0 to νj for each j. This adds the constant
δi = σ

∑i
j=1 νj

√
tj − tj−1 to the exponent of the exponential. We may want to select the

νj’s so that this exponent becomes equal to ln(K/s0), for example. The likelihood ratio that
corresponds to this change of means is

L(ω) =
d∏

j=1

exp
(
−Z2

j /2
)

exp (−(Zj − νj)2/2)
= exp

(
d∑

j=1

(ν2j /2− νjZj)

)
.

One simple way of applying this type of IS is to generate the Zj’s N(0, 1) as usual, add the
constant δi to the exponent of the exponential for each i, then multiply Y (s0) by L(ω) to
obtain an unbiased IS estimator. □

Example 6.59 A discrete-time Markov chain. We consider a discrete-time stationary
Markov chain {Yj, j ≥ 0} evolving over the finite state space {0, 1, . . . , K}, where K ≥ 2.
The initial state is Y0 = 0. If the chain is in state y at any given step, the probability that
it jumps to state y′ for the next step is py,y′ = P[Yj = y′ | Yj−1 = y]. We want to estimate,
by simulation, the probability µ that the chain visits the state K before returning to state
0 for the first time. Here the absorbing set is ∆ = {0, K}.

Define T = inf{j ≥ 1 : Yj ∈ {0, K}}. The naive estimator of µ is the indicator I[YT = K].
To apply IS while still having a stationary Markov chain, we replace the probabilities py,y′ by
another set of probabilities qy,y′ , selected so as to increase the chances of reaching K before
returning to 0.

A simple (naive) idea is to simply cut off all the paths that return to 0, by setting
qy,0 = 0 for all y > 0, and then rescale by inflating the other probabilities appropriately:
qy,y′ = py,y′/(1− py,0) for y, y′ > 0, and q0,y′ = p0,y′ for all y

′. Under these new probabilities,
YT = K with probability 1 and the likelihood ratio is

L(ω) = L(Y1, . . . , YT ) =
T∏

j=1

pYj−1,Yj

qYj−1,Yj

=
T∏

j=2

(1− pYj−1,0) ≤ 1.

By Proposition 6.26, the variance per run is guaranteed to be reduced. On the other hand,
it is unclear if the efficiency is improved, because this IS scheme may increase the average
computing time per run, especially if the chain has a tendency to drift toward 0 and away
from K. In any case, this change of measure is far from optimal in general.

The zero-variance change of measure for this example can be written as follows. Let
µ(y) = P[YT = K | Y0 = y] under the original probabilities. These µ(y) satisfy the system of
linear equations

µ(y) =
K−1∑
y′=1

py,y′µ(y
′)

for y < K, and µ(K) = 1. The zero-variance IS changes each py,y′ to

qy,y′ = py,y′
µ(y′)

µ(y)
. (6.104)

When K is not too large, it can be computed exactly by solving the linear system, but for
applications that require simulation, K is too large to do that, and we must rely on some



6.12 Importance Sampling 487

form of approximation or heuristic to select the qy,y′ ’s. The next example examines a special
case with more structure. □

Example 6.60 A discrete birth-and-death process over {0, 1, . . . , K}. As a special case
of the preceding example, suppose that when in state y, the chain can only move to one of
the two neighboring states y − 1 and y + 1. We assume that py,y+1 = py and py,y−1 = 1− py
where 0 < py < 1, for 1 ≤ y ≤ K − 1, and p0,1 = pK,K−1 = 1. If the py’s are small and K is
large, the chain is drifted toward 0 and µ can be very small. A good IS scheme should turn
this drift around, toward K.

Fig. 6.5. A random walk over {0, 1, . . . ,K}

0 1 2 · · · · · · K − 1 K

1

1− p1

p1

1− p2

p2

1− pK−1

pK−1

1

Here we have µ(1) = p1µ(2), µ(y) = pyµ(y + 1) + (1− py)µ(y − 1) for y = 2, . . . , K − 1,
and µ(K) = 1. In theory, we can compute the zero-variance IS by solving these equations.
Alternatively, we can derive the zero-variance IS from the following observations. First,
we note that under zero-variance IS, any sample path for which YT = 0 must have zero
probability, while any sample path for which YT = K must have positive probability, and
the likelihood ratio must take the same value for any of these paths with YT = K. Since a
path leading to K may have a random number of cycles of the form y → y + 1 → y, for
1 ≤ y ≤ K − 2, the likelihood ratio over each such cycle must therefore be 1. This leads to
the equations:

py(1− py+1)

qy(1− qy+1)
= 1,

i.e.,

qy+1 = 1− py(1− py+1)/qy,

for y = 1, . . . , K − 2, with q1 = 1. Using the fact that py(1 − py) ≤ 1/4, it is easily seen
by induction on y that the solution satisfies qy > 1/2 for all y. Interestingly, these new
probabilities do not depend on K. They are also unchanged if we replace py by 1− py for all
y. Of course, solving the equations for the µ(y) and using (6.104) yields the same solution.

In the special case where py = p for all y, we obtain q2 = 1 − p(1 − p) and qy+1 =
1− p(1− p)/qy for y ≥ 2. For p = 1/2, this gives qy = (y + 1)/(2y) for y ≥ 2. For p = 1/4,
this gives q2 = 13/16, q3 = 10/13, q4 = 121/160, and so on. Since (1− qy+1)qy = p(1− p) for
all y ≥ 2, and q1 = 1, we find by induction on y that 1 > qy > qy+1 > 1/2 for all y, so qy must
converge to a limit q∗ = limy→∞ qy ≥ 1/2. Then, (1− q∗)q∗ = limy→∞(1− qy+1)qy = p(1− p),
which implies that q∗ = max(p, 1− p). This means that when we get far from 0, it becomes
approximately optimal to replace the original probabilities p by q = 1− p if p < 1/2, and to
keep the original probabilities otherwise.
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The optimal qy does not depend on K but it depends on the current state y, even if the
original probabilities do not depend on y. Suppose now that we insist on using the same
probability qy = q for all states y ≥ 1. This is sometimes called state-independent IS. If K is
large, the obvious choice of q = q∗ should do well, even though it is not optimal.

We now show how to arrive at this choice from different argument. Suppose that p < 1/2
(the interesting case). We replace p by some q. Observe that on any sample path that leads
to K before returning to 0, there must be a single transition from 0 to 1, no transition from
1 to 0, and the total number of transitions to the right from states y ≥ 1 must exceed the
total number of transitions to the left by exactly K − 1. The likelihood ratio is then

L(ω) =
T∏

j=1

pYj−1,Yj

qYj−1,Yj

=

(
p

q

)K−1(
p(1− p)
q(1− q)

)(T−K)/2

.

We have L(ω) < 1 for any sample path ω if and only if q > p and q(1− q) ≥ p(1− p), i.e.,
p < q ≤ 1− p (because q(1− q) is a concave function of q which equals p(1− p) when q = p
or q = 1 − p). Maximizing q under this constraint, i.e., taking q = q∗ = 1 − p, maximizes
the drift to the right and the probability of the event {YT = K}. Conditional on this event,
q = 1 − p also minimizes the average simulation time and simplifies the likelihood ratio to
the constant

L(ω) = (p/q)K−1 = [p/(1− p)]K−1.

Proposition 6.26 then implies that the variance per run is divided at least by the factor
[(1− p)/p]K−1. This variance reduction factor can be arbitrarily large if p is small and/or K
is large. For example, if p = 1/3 and K = 101, the variance is divided by 2100 ≈ 1.2× 1030.

□

Example 6.61 Suppose we have an M/M/s queue that starts empty, and we want to
estimate the probability that queue length builds up to size K before the system returns
to the empty state. This system can be modeled as a Markov chain whose transitions are a
customer arrival or departure. Here, py represents the probability that the next event is an
arrival when there are y customers in the system. If λ is the arrival rate and µ is the service
rate, we have py = λ/(λ+min(s, y)µ). We are exactly in the setting of Example 6.60. In the
case of an M/M/1 queue, we have py = p = λ/(λ+ µ) for all states y > 0. In this case, the
state-independent strategy that replaces p by q = 1− p is equivalent to permuting λ and µ
when simulating the M/M/1 queue. □

♣ Other variants:
– the process does not stop at zero but can go toward −∞ and is drifted in that direction.
Want to estimate the probability of ever reaching K.
– Fixed number of steps, n. Want to estimate the probability that Yn ≥ K.
– Fixed number of steps. Want to estimate the probability of reaching either 0 or K in n
steps or less, starting from y such that 0 < y < K.

Example 6.62 Maximum of a random walk with negative drift over the real line. This
simple model generalizes Example 6.60. It has several applications to be discussed later. The
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state of a random walk at step n is 10

Dn = D0 +
n∑

j=1

Yj, for n ≥ 0, (6.105)

where D0 is fixed and the Yj’s are i.i.d. with density π and with E[Yj] < 0. By the strong
law of large numbers, limn→∞Dn → −∞ with probability 1. So, the walk starts at D0 and
wanders around for a while before eventually drifting toward −∞. For a given constant ℓ > 0,
let Tℓ = inf{n ≥ 0 : Dn ≥ ℓ}, the time when the walk first crosses level ℓ, with Tℓ =∞ if it
never crosses. Define

µℓ(x) = P[Tℓ <∞ | D0 = x] = P[max{Dn, n > 0} ≥ ℓ | D0 = x]

and note that µℓ(x) = 1 for x ≥ ℓ. We want to estimate µℓ(0) by simulation. The naive
estimator I[Tℓ < ∞] is basically useless, because we can never be sure that Tℓ = ∞ unless
we simulate the system for an infinite number of steps. Moreover, {Tℓ <∞} is a rare event
when ℓ is large.

To apply IS, we can replace the density π by another density g = g(· | x) that may depend
on the current state x. That is, when in state Dn = x, we generate Yn+1 from g(· | x). The
zero-variance change of measure takes g = g∗, where

g∗(y | x) = π(y)µℓ(x+ y)/µℓ(x). (6.106)

One approach to approximate this g∗ is to find a reasonable approximation for the function
µℓ and plug it into (6.106).

In the case where ℓ is large and Yj has a finite and well-behaved moment generating
function, it turns out that

µℓ(x) ≈ e−θ∗(ℓ−x) (6.107)

for some constant θ∗ defined as follows. The moment generating function of Yj is a function
M(θ) defined by

M(θ) = E
[
eθYj

]
=

∫ ∞

−∞
eθyπ(y)dy.

Here, we assume that M(θ) < ∞ in some neighborhood of θ = 0. This is equivalent to
assuming that Yj has finite moments of all orders. The function M is convex, with M(0) = 1

and M ′(0) = E[Yj] < 0. Let θ∗
def
= sup{θ > 0 : M(θ) ≤ 1} and assume that θ∗ < ∞

(typically, we have M(θ)→∞ when θ →∞, so θ∗ <∞). The function M(θ) then behaves
as in Figure 6.6: It first decreases below 1, then increases, and we have M(θ∗) = 1.

In risk theory, θ∗ is called the Lundberg parameter and Eq. (6.107) is the Lundberg
approximation (Asmussen 1987, Chapter XII).

Plugging this approximation of µℓ in (6.106) gives

g(y | x) = π(y)e−θ∗y. (6.108)

The integral of this density is M(θ∗), which equals 1 by construction. This g does not
depend on x, so it gives a state-independent IS scheme. Under this new density, we have

10From Pierre: Should change D for Y , and n for j, and Y for ...
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Fig. 6.6. The moment-generating function M(θ)

Eθ∗ [Yj] = M ′(θ∗) > 0, so the walk drifts to the right and the event {Tℓ < ∞} occurs with
probability 1. We also have

L(ω) = e−θ∗ℓe−θ∗(DTℓ
−ℓ) ≤ e−θ∗ℓ, (6.109)

which implies that the variance of the IS estimator is no more than e−θ∗ℓ that of the naive
estimator. Thus, the desired probability can be written as

µℓ = e−θ∗ℓEθ∗ [exp(−θ∗(DTℓ
− ℓ))]

and this IS scheme estimates the latter expectation instead of estimating µℓ directly. When ℓ
gets large, under IS, the variance of exp(−θ∗(DTℓ

− ℓ)) does not blow up and its expectation
does not converge to 0, so its relative error remains “reasonable.”

To view this from a different angle, suppose we consider replacing θ∗ in (6.108) by an ar-
bitrary parameter θ > 0, and normalizing. That is, suppose we replace π by the exponentially
twisted density

πθ(y) = eθyπ(y)/M(θ) = eθy−Ψ(θ)π(y), y ∈ R,

whereM(θ) turns out to be the normalization constant required to ensure that πθ integrates
to 1, and Ψ(θ) = lnM(θ) is the cumulant generating function of Yj. This function has the
property that Eθ[Yj] = Ψ ′(θ) = M ′(θ)/M(θ), Varθ[Yj] = Ψ ′′(θ), and similarly for higher
moments, where Eθ and Varθ are the expectation and the variance associated with the new
density πθ.

On the event {Tℓ <∞}, the likelihood ratio is

L(ω) =

Tℓ∏
j=1

π(Yj)

πθ(Yj)
= [M(θ)]Tℓ exp

(
−θ

Tℓ∑
j=1

Yj

)
= [M(θ)]Tℓ exp (−θDTℓ

) .

So with exponential twisting, the likelihood ratio depends on the Yj’s only through Tℓ and
DTℓ

. To control this likelihood ratio and keep it as small as possible, we would like to take θ
as large as possible, but keep M(θ) ≤ 1, because otherwise L(ω) could blow up due to large
values of Tℓ. This immediately suggests taking θ = θ∗.
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This example generalizes to the situations where the distributions of the Yj’s are not
necessarily continuous and may differ for different values of j. If Yj has distribution Fj, we
replace this distribution by the twisted distribution Fθ,j such that

dFθ,j

dFj

(y) =
eθy

Mj(θ)
, (6.110)

whereMj is the moment generating function of Yj. The family of distributions {Fθ,j, θ ∈ Θ},
where Θ is the set of values of θ for which M(θ) < ∞ and Fθ,j exists, is called a conjugate
family of distributions.

♣ Exercise: Fill up the details for the case where the Yj’s have different densities πj,
with MGF Mj(θ).

□

Example 6.63 Probability of large waiting times in a GI/GI/1 queue. Consider a GI/GI/1
queue as in Section 1.11, where Aj is the interarrival time between customers j and j + 1,
while Sj andWj are the service time and waiting time of customer j, respectively. We suppose
that the Aj and Sj are mutually independent continuous random variables with densities h
and g, respectively, and that E[Sj] < E[Aj], so the queue is stable. The first customer arrives
to an empty queue at time 0. We are interested in estimating

µℓ = P[W > ℓ],

where ℓ is a constant and W is the waiting time of a customer in the queue, in steady-state.
It is known from random walk theory (e.g., Asmussen 1987, Gut 1988) that W has the same
distribution as sup{Dn, n ≥ 0} where Dn =

∑n
j=1(Sj − Aj). Defining Yj = Sj − Aj, we are

in the framework of Example 6.62.
The density of Yj is a convolution of g and h, namely

π(y) =

∫ ∞

0

g(x)h(x− y)dx, y ∈ R,

and the exponentially twisted density

eθyπ(y) =

∫ ∞

0

eθxg(x)e−θ(x−y)h(x− y)dx, y ∈ R

is obtained by applying an exponential twist to the densities h and g as follows:

hθ(x) = e−θxh(x)/Mh(−θ)

and
gθ(x) = eθxg(x)/Mg(θ)

where

Mh(−θ) =
∫ ∞

0

e−θxh(x)dx = E
[
e−θAj

]
< 1

and
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Mg(θ) =

∫ ∞

0

eθxg(x)dx = E
[
eθSj

]
> 1.

Here, Mh and Mg are the moment generating functions of Aj and Sj, and the moment
generating function of Yj isM(θ) =Mg(θ)Mh(−θ). We assume that these moment generating
functions are finite in some neighborhood of θ = 0 (i.e., that Sj and Aj have finite moments
of all orders). The change of measure inflates the service times density g(x) by a factor that
increases exponentially with x, and deflates the interarrival times density h(x) by a factor
that decreases exponentially with x. This makes the arrivals more frequent and the service
times longer, thus increasing the likelihood that some Dn exceeds ℓ.

Sadowsky (1991) shows that θ∗ <∞ if P[Sj > Aj] > 0, which we assume (otherwise, no
queue can build up and the problem becomes trivial). The function M(θ) then behaves as
shown in Figure 6.6: It first decreases below 1, then increases, and we have M(θ∗) = 1. As in
Example 6.62, by taking θ = θ∗, we obtain P[Tℓ < ∞] = 1 and (6.109) holds. We also have
Eθ∗ [Sj − Aj] =M ′(θ∗) > 0, which means that the queue is unstable under IS with θ∗.

□

Example 6.64 Time to overflow in a GI/GI/1/K queue. (Parekh and Walrand 1989,
Sadowsky 1991) We consider again a stable GI/GI/1 queue as in Example 6.63, except
that we are now interested in estimating E[TK ], where TK is the first time when there are K
customers in the system. This may be interpreted as buffer overflow if the queue is maintained
in a finite-size buffer. The customers could be packets in a telecommunication network, for
instance, and the number K − 1 to exceed could be the size of a buffer used to store the
packets waiting to be transfered at a communication switch, viewed as the queueing system.

We will use the regenerative property of this system: The regeneration times are the
instants at which a new customer arrives while the system is empty. Define T0 as the first
positive time when this happens, and T = min(T0, TK). We have TK = T+(TK−T )I[T = T0]
and E[TK − T | T = T0] = E[TK ], because the system regenerates at T0. This gives the
recurrence

E[TK ] = E[T ] + E[TK ]P[T = T0],

which implies

E[TK ] = E[T ]/(1− P[T = T0]) = E[T ]/P[T = TK ].

Our problem has been turned into a ratio estimation problem. Typically, E[T ] is easy to
estimate, but pK = P[T = TK ] is hard to estimate if the queue rarely builds up to size
K. The idea then is to estimate E[T ] by standard simulation and to estimate pK by an
independent set of simulation runs using IS. In what follows, we concentrate on the latter.

We will estimate pK with the same change of measure as in Example 6.63, with the same
θ∗. We also make the same assumptions (M(θ) < ∞ around θ = 0 and P[Sj > Aj] > 0). A
simulation run with IS stops at time T . Let NA and NS be the numbers of interarrival times
Aj and service times Sj, respectively, that are generated up to time T . If T = T0, the IS
estimator takes the value 0. If T = TK , then at time TK , the (NA + 1)th customer arrives,
NS−1 customers have left so far, and there are K customers in the system, so we must have
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NA = NS +K− 2, TK =
∑NA

j=1Aj ≤
∑NS

j=1 Sj, and the IS estimator is equal to the likelihood
ratio

L(ω) =

NA∏
j=1

h(Aj)

hθ(Aj)

NS∏
j=1

g(Sj)

gθ(Sj)

= [Mh(−θ)]K−2[Mh(−θ)Mg(θ)]
NS exp

(
θ

NA∑
j=1

Aj − θ
NS∑
j=1

Sj

)
≤ [Mh(−θ)]K−2[M(θ)]NS .

With θ = θ∗, this likelihood ratio becomes

L(ω) = Mh(−θ∗)K−2 exp

(
θ

NA∑
j=1

Aj − θ
NS∑
j=1

Sj

)
≤ Mh(−θ∗)K−2 < 1

and we have a guaranteed variance reduction. The larger is θ, the smaller is Mh(−θ), and
θ∗ is the largest θ for which M(θ) ≤ 1 (which guarantees that L(ω) ≤ 1). The change of
measure is the same as in Example 6.63, but the likelihood ratio differs because the number
of interarrival times and service times that are generated are not the same in the two cases.

— Exercise: Try it.
— Exercise (Sadowsky 1991): Generalize to the GI/GI/m queue.

□

Example 6.65 As a special case of Examples 6.63 and 6.64, consider an M/M/1 queue
with arrival rate λ and service rate µ, where λ < µ. The interarrival times Aj have density
h(y) = λ exp(−λy), for y > 0, and moment generating function

Mh(−θ) =
∫ ∞

0

e−θyλe−λydy =
λ

λ+ θ

for θ > −λ. Likewise, the moment generating function of the service times is Mg(θ) =
µ/(µ − θ) for θ < µ. By solving Mh(−θ)Mg(θ) = 1, i.e., λµ = (λ + θ)(µ − θ), we find
θ∗ = µ− λ. The twisted densities with θ = θ∗ are

hθ(x) = e−θ∗xh(x)/Mh(−θ∗) = e−(µ−λ)xλe−λx/Mh(−θ∗) = µe−µx

and
gθ(x) = eθxg(x)/Mg(θ

∗) = e(µ−λ)xλe−µx/Mg(θ
∗) = λe−λx.

Thus, this IS strategy simply permutes the arrival rate and the service rate. Recall that we
arrived at this same change of measure from a different direction in Example 6.61. Since
Mh(−θ∗) = λ/µ, this strategy divides the variance by at least e(µ−λ)ℓ in Example 6.63 and
(µ/λ)K−2 in Example 6.64. □

Example 6.66 Ruin probability of an insurance firm. See Asmussen (1985), Asmussen
(1988), Asmussen and Rubinstein (1995), Asmussen and Rubinstein (2000), Juneja and Sha-
habuddin (1999). We return to Example 1.44. Suppose that the claims to an insurance firm
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arrive according to a stationary Poisson process {N(t), t ≥ 0} with rate λ, that the claim
sizes are random variables C1, C2, . . . , and that the premiums arrive at constant rate c > 0.
The reserve (i.e., amount of money available) at time t, R(t), obeys

R(t) = R(0) + ct−
N(t)∑
j=1

Cj, (6.111)

where R(0) is the initial reserve. We want to estimate the ruin probability, i.e., the probability
that R(t) eventually becomes negative, by simulation. Typically (hopefully) this probability
is very small. Moreover, the first time when R(t) becomes negative (if it ever does) must be
at the occurrence of a claim. If t is the time of a claim, then we can write

R(0)−R(t) =
N(t)∑
j=1

(Cj − Ajc) =

N(t)∑
j=1

Yj = DN(t)

where Yj = Cj −Ajc and Aj is the time between claims j − 1 and j. This puts the problem
in the framework of Example 6.62. The ruin probability is the probability that DN(t) ever
exceeds ℓ = R(0), i.e., the same as µℓ = P[Tℓ <∞] in Example 6.62.

To apply the IS scheme of Example 6.62, assume that the Cj’s are i.i.d. with density f
and finite moment generating functionMf (θ) in a neighborhood of 0. The moment generating
function of Aj is

Ma(θ) =

∫ ∞

0

eθxλe−λxdx =
λ

λ− θ
,

so the moment generating function of Yj is

M(θ) = E
[
eθ(Cj−cAj)

]
=Mf (θ)Ma(−θc) =Mf (θ)

λ

λ+ θc
.

Here, IS replaces the density f(x) by fθ(x) = f(x)eθx/Mf (θ) and the exponential density
λe−λx of Aj by (λ+θc)e−(λ+θc)x, i.e., the rate of the Poisson process is increased to λθ = λ+θc.

The Lundberg equation M(θ) = 1 can be rewritten as Mf (θ) = (λ + θc)/λ, and the
Lundberg parameter θ∗ > 0 is the largest solution to that equation. With θ = θ∗, the
Poisson rate becomes λθ∗ = λMf (θ

∗) = λ + θ∗c. We also have Eθ∗ [Yj] = M ′(θ∗) > 0, so
DN(t) →∞ and therefore R(t)→ −∞ when t→∞. That is, ruin occurs with probability 1
under IS. The likelihood ratio at ruin time Tℓ is

L(ω) = eθ
∗(R(Tℓ)−R(0)) ≤ e−θ∗R(0).

This IS scheme reduces the variance at least by the factor eθ
∗R(0). □

Example 6.67 Estimating the cell loss ratio in an ATM switch. (Chang et al. 1994,
L’Ecuyer and Champoux 2001.) We consider a single queue fed by m0 sources of arrivals.
These sources are time-synchronized but otherwise independent discrete-time Markov mod-
ulated processes. Each source is OFF for a certain number of steps, producing nothing, then
ON for a certain number of steps, producing exactly one customer per step, then OFF again,
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and so on. The successive OFF and ON periods have mutually independent geometric du-
rations with means κ0 and κ1, respectively. In other words, the state of a source evolves
as a discrete-time Markov chain with the two states 0 = OFF and 1 = ON, and with the
transition probability matrix

R =

(
r00 r01
r10 r11

)
=

(
1− 1/κ0 1/κ0
1/κ1 1− 1/κ1

)
. (6.112)

where rij is the probability that the chain goes to state j at the next step if it is in state i
at the current step. The arrival rate per source, which is the fraction of the time where the
source is ON in the long run, is thus ρ = κ1/(κ0 + κ1), and the total arrival rate is m0ρ.

At each time step, the server serves exactly c customers (if there are less than c in the
system at that time, it serves them all) before the new arrivals join the queue. The system
has a finite buffer size B, so that whenever there is B customers already in the system,
any new arriving customer is lost and disappears. The aim is to estimate the fraction µ of
customers that are lost in the long run. If m0ρ < c and B is large, µ can be quite small and
hard to estimate. This model is a simplified representation of a single node at the first layer
of an ATM switch. In that context, the customers are cells of information and µ, called the
cell loss ratio (CLR), is typically somewhere between 10−12 and 10−7.
...

See L’Ecuyer and Champoux (2001) for the rest....
□

Example 6.68 Pricing a down-and-in call option. (Boyle, Broadie, and Glasserman 1997b)
We return to the down-and-in call option model of Example 6.24, with low barrier ℓ, strike
price K, time horizon T , and observation times 0 = t0 < t1 < · · · < td = T . The value of
the option is the mathematical expectation of X = e−rT max(0, S(T )−K)I[Tℓ ≤ T ], where
Tℓ = inf{tj : S(tj) < ℓ}, and S(·) is assumed to follow a geometric Brownian motion as in
Example 1.11. If ℓ is small and/or K is large compared with S(0), a naive simulation will
yield X = 0 most of the time, so we might consider importance sampling.

In order for X to be nonzero, the price of the asset must first go down below ℓ, then
up above K. Note that conditional on (tj, S(tj), S(T )), the process {Y (t) = lnS(t), t ≥ 0}
is a Brownian bridge over [0, tj] and another Brownian bridge over [tj, T ], so its conditional
probability law does not depend on the original drift parameter µ. For the rare event to
happen, Y (t) must decrease by lnS(0) − ln ℓ, then increase by lnK − ln ℓ, i.e., cover a
vertical distance of lnK+lnS(0)−2 ln ℓ during T units of time. This gives an average speed
(or slope) of µ̃ = [lnK + lnS(0)− 2 ln ℓ]/T . As a heuristic, Boyle, Broadie, and Glasserman
(1997b) propose an IS scheme that changes the drift of the Brownian motion Y (t) to µ1 = −µ̃
until the first time tj when S(tj) < ℓ, then reverses the drift to µ2 = µ̃ until time T . The
volatility is left unchanged. In their setting, the observation times tj are assumed equidistant
and very frequent. They give numerical examples where the variance is reduced by factors
ranging from 7 to 1124. With this heuristic, there is no guarantee that the likelihood ratio
is less than 1 when the payoff is nonzero, and the probability that the barrier is reached is
not 1, but the method works nicely in most cases.

This can be generalized to a process S defined by

S(tj) = S(0) exp(Y1 + · · ·+ Yj)
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where the Yj’s are i.i.d. random variables with some density π. Exponential twisting can
be applied to the Yj’s with parameter θ = θ1 until time Tℓ, and θ = θ2 thereafter. See
Exercise 6.36 and Glasserman (2004), pages 264–266.

— Exercise: We might consider changing the volatility as well?
□

6.12.6 When things can go wrong

♣ The IS schemes discussed so far inflate the probability of the most likely sample paths,
conditional on the occurrence of the rare event of interest. There are situations, however,
where this strategy backfires. By inflating the probability of the (conditionally) most likely
sample path and normalizing, we may decrease by a large factor the probability of another
sample path whose contribution to the mean is not negligible, and this may inflate the
variance considerably.

Example 6.69 Consider a random walk over the real line as in Example 6.62, but suppose
we want to estimate the probability µℓ,n = P[|Dn| > nℓ] for some fixed values of n and ℓ. If we
increase the drift to one side, that would decrease the probability of hitting the rare event on
the other side, and thus inflate the variance of the corresponding part of the likelihood ratio.
See Asmussen (2002), Section 3, and Glasserman and Wang (1997) for details, examples,
and other references. □

6.12.7 Asymptotics

11 In this section, we parameterize the general model of Section 6.12.2 by a rarity parameter
ϵ > 0, so that h, P, µ, X, and Xis now depend on ϵ. We suppose that as ϵ → 0, the costly
events become rarer and the relative error of the naive estimator blows up: limϵ→0RE[X(ϵ)] =
∞.

An alternative unbiased estimator Y (ϵ) for µ is said to have bounded relative error if
RE[Y (ϵ)] remains bounded as ϵ→ 0. Obtaining an IS estimator with relative error bounded
by some constant K is equivalent to finding a probability measure Q(ϵ) such that

VarQ(ϵ)[Xis(ϵ)] ≤ K2µ2(ϵ).

In the special case where X = I[A], the indicator of some rare event A, a sufficient condi-
tion for this to happen is that the likelihood ratio satisfies L(P(ϵ),Q(ϵ), ω) ≤ Kµ(ϵ) when the
eventA occurs. The latter condition implies in turn that EQ(ϵ)[I[A]] = EP(ϵ)[I[A]/L(P(ϵ),Q(ϵ), ω)] ≥
1/K, i.e., that under the measure Q(ϵ) the probability of A no longer converges to 0 as ϵ→ 0.

Define γ0(1/ϵ) = −2 lnµ(ϵ) and γ1(1/ϵ) = − lnEQ(ϵ)[X
2
is(ϵ)]. It is common place in rare

event contexts that µ(ϵ) decreases exponentially as a function of 1/ϵ, and γ0 is often asymp-
totically linear. Since VarQ(ϵ)[Xis(ϵ)] = EQ(ϵ)[X

2
is(ϵ)]− µ2(ϵ) cannot be negative, we have

−γ1(1/ϵ) = lnEQ(ϵ)[X
2
is(ϵ)] ≥ 2 lnµ(ϵ) = −γ0(1/ϵ).

11From Pierre: To be updated in view of L’Ecuyer, Blanchet, Tuffin, and Glynn (2008).
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The squared relative error of the IS estimator can be written as

RE2[Xis(ϵ)] =
VarQ(ϵ)[Xis(ϵ)]

µ2(ϵ)
= exp[γ0(1/ϵ)− γ1(1/ϵ)]− 1,

so the bounded relative error requirement is equivalent to having |γ0(1/ϵ)−γ1(1/ϵ)| bounded.
A weaker requirement is that

lim
ϵ→0

lnRE[Xis(ϵ)]

− lnµ(ϵ)
≤ 0, (6.113)

which means that lnRE[Xis(ϵ)] grows at a slower rate than ln(1/µ(ϵ)) when ϵ → 0. When
(6.113) holds, the IS estimator is said to be asymptotically optimal, or asymptotically effi-
cient, or logarithmically efficient (Heidelberger 1995, Asmussen and Rubinstein 2000). Some
authors (e.g., Glasserman and Kou 1995) call an estimator asymptotically efficient only
when the slightly stronger condition limϵ→0 γ1(1/ϵ)/γ0(1/ϵ) = 1 is satisfied. This condition
is sufficient for (6.113) to hold, because it implies that

lim
ϵ→0

lnRE[Xis(ϵ)]

− lnµ(ϵ)
≤ lim

ϵ→0

γ0(1/ϵ)− γ1(1/ϵ)
γ0(1/ϵ)

= 0. (6.114)

If µ(ϵ) decreases as exp(−κ/ϵ − o(1/ϵ)) for some constant κ > 0, for example, then
an asymptotically optimal IS scheme is one for which the relative error grows slower than
exponentially as a function of 1/ϵ (e.g., it is allowed to grow polynomially in 1/ϵ, or even
grow as exp(ϵ−0.999), for example). If the relative error is bounded by a polynomial function of
γ0(1/ϵ) for ϵ small enough, Asmussen and Rubinstein (1995) say that we have a polynomial-
time estimator. This property is weaker than having bounded relative error, but stronger
than being asymptotically optimal.

An IS estimator that is asymptotically optimal, or that has bounded relative error, is not
necessarily a minimal variance estimator for a given ϵ, neither asymptotically when ϵ → 0,
but it is certainly a good step in the right direction.

Example 6.70 For the model described in Example 6.64, with ϵ = 1/K, Sadowsky (1991)
has shown that the IS scheme we have described there, with θ = θ∗, is the unique asymp-
totically optimal change of measure for estimating pK among all changes of measure under
which the queue remains GI/GI/1. Under very mild conditions, pK decreases exponentially
with K, and this asymptotically optimal IS scheme is the only one for which the required
sample size to keep the relative error below a given threshold does not grow exponentially
fast with K. Sadowsky (1991) has also generalized these results to the case of a GI/GI/m
queue.

For Example 6.62, which covers Example 6.63 in particular, Lehtonen and Nyrhinen
(1992b) have shown that the IS scheme that we have described, with θ = θ∗, is the unique
asymptotically optimal change of measure among essentially all the changes of measures for
which the Yj’s remain i.i.d.. The results of Lehtonen and Nyrhinen (1992a, 1992b) also imply
that the IS estimator of Example 6.66 is asymptotically optimal if we take ϵ = 1/R(0). □

Example 6.71 Let Y1, Y2, . . . be i.i.d. random variables with density π and finite moment
generating function M(θ) in a neighborhood of 0. Let N be a Poisson random variable with
mean λ, independent of the Yj’s. We want to estimate
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µ(ϵ) = P[Y1 + · · ·+ YN > 1/ϵ]

by simulation. Asmussen and Rubinstein (2000) give a set of conditions on the density π
(e.g., if π is bounded by a constant times a gamma density, or if π is log-concave, etc.) under
which they show that the following IS estimator of µ(ϵ) is asymptotically optimal. Replace
π(y) by πθ(y) = π(y)eθy/M(θ) and λ by λθ = λM(θ). Take θ so that Eθ[Y1+ · · ·+YN ] = 1/ϵ,
i.e., as the solution θ∗ of λM ′(θ) = 1/ϵ. □

6.12.8 Links with large deviations theory

Reference: Bucklew (1990), Bucklew (2004).

6.12.9 IS for heavy-tailed distributions

♣ What do we do when the generating function is infinite? This is frequent: Pareto, Cauchy,
Student, etc.

6.12.10 Adaptive IS

♣ The idea is to approximate the zero-variance IS by “learning” the value function γ(y) in
some way, or by learning some optimal parameter.

6.12.11 To probe further

Excellent surveys on IS are given by Glynn and Iglehart (1989), Glynn (1994), Heidelberger
(1995), Juneja and Shahabuddin (2006), Asmussen and Glynn (2007).

6.13 Splitting

6.13.1 A rare-event setting

Consider a discrete-time Markov chain {Xj, j ≥ 0} with arbitrary state space X . Let A and
B be two disjoint subsets of X . The chain starts in the initial state X0 = x0 ∈ A, eventually
leaves the set A, and then may eventually reach B or return to A. For simplicity, suppose step
1 is when the chain exits A for the first time, i.e., X1 ̸∈ A. Define τA = inf{j > 0 : Xj ∈ A},
the first time when the chain returns to A after leaving it, and τB = inf{j > 0 : Xj ∈ B}, the
first time when the chain reaches the set B. The goal is to estimate µ, the probability that
the chain reaches B before it returns to A, i.e. µ = P[τB < τA]. This probability is assumed
to be very small, e.g., 10−8 or even less.

This problem occurs in many practical situations; see, e.g., Nicola et al. (1991), Goyal
et al. (1992), Heidelberger (1995). We saw one instance in Example 6.64, where we estimated
the expected time until the number of customers in the queue reaches a given number K.
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In that case, the sets A and B are the sets of states where Xj = 0 and where Xj ≥ K,
respectively. The random variables τA and τB correspond to T0 and TK in that example, so
E[τB] is the expected time until the first buffer overflow and µ is the probability that the
buffer overflows before returning to empty, assuming that we start afresh with an empty
system. If the system evolves indefinitely, E[τB] also represents approximately the average
time between buffer overflows, which is often the quantity of interest. We saw in Example 6.64
that

E[τB] = E[min(τA, τB)]/µ. (6.115)

In this expression, E[min(τA, τB)] is easy to estimate, but µ is very inefficient to estimate by
standard MC when it is small (Example 1.29).

As another example, we may want to estimate the expected time until failure for a
complex multicomponent system whose initial state is “new”. Components fail once in a
while and are replaced by new ones after some random delay. When the set of working
components satisfies certain conditions, the system is operational, otherwise it is in the
failed state. Let A = {x0}, the set that contains only the “new” state, and let B be the set
of failed states. We may be interested in estimating E[τB], the expected time until failure for
a new system. Again, this quantity can be written as in (6.115), where the denominator µ
is the difficult piece to estimate.

We already saw in Section 6.12 how to attack these problems via IS, by changing the
probability laws so that the chain has a stronger attraction toward B. An important difficulty
with that method is to find an appropriate change of the probability laws.

In the splitting method, the probability laws of the system remain unchanged, but an
artificial drift toward B is created by terminating the trajectories that seem to get away from
it and cloning (splitting) those that are moving toward B. To recover an unbiased estimator,
we multiply the original estimator by an appropriate factor. This technique was proposed by
Kahn and Harris (1951) and has been studied by several authors, including Bayes (1972),
Villén-Altamirano and Villén-Altamirano (1991), Villén-Altamirano and Villén-Altamirano
(1994), Garvels and Kroese (1998), Glasserman et al. (1998), Glasserman et al. (1999),
Garvels (2000), and Demers, L’Ecuyer, and Tuffin (2005).

6.13.2 Multilevel splitting

A key ingredient for the splitting algorithm is the definition of a function h : X → R that
assigns a real number to each state of the chain. This function h is called the importance
function (Garvels 2000, Garvels, Kroese, and Van Ommeren 2002). Define the real-valued
process {Zj = h(Xj), j ≥ 0}. We assume that A = {x ∈ X : h(x) ≤ 0} and B = {x ∈
X : h(x) ≥ L} for some constant L > 0. In the multilevel splitting method, we partition
the interval [0, L) into m subintervals with boundaries 0 = L0 < L1 < · · · < Lm = L. For
k = 1, . . . ,m, define Tk = inf{j > 0 : Zj ≥ Lk}, let Dk = {Tk < τA} denote the event
that the process Z reaches level Lk before returning to level 0, and define the conditional
probabilities pk = P[Dk | Dk−1] for k > 1, and p1 = P[D1]. Since Dm ⊂ Dm−1 ⊂ · · · ⊂ D1,
we see immediately that

µ = P[Dm] =
m∏
k=1

pk.
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The basic idea of splitting is to estimate each probability pk “separately”, by starting a large
number of chains in states that are generated from the distribution of XTk−1

conditional on
the event Dk−1. This conditional distribution is called the entrance distribution at threshold
Lk and we shall denote it by Gk.

This is done in successive stages, as follows. In the first stage, we start N0 independent
chains from the initial state x0 and simulate each of them until time min(τA, T1). Let R1 be
the number of those chains for which D1 occurs. Then p̂1 = R1/N0 is an obvious unbiased
estimator of p1. The empirical distribution of these R1 entrance states XT1 can be viewed as
an estimate of the conditional distribution G1.

In the second stage, we start N1 chains from these R1 entrance states, by cloning (split-
ting) some chains if N1 > R1, and continue the simulation of these chains independently up
to time min(τA, T2). Then p̂2 = R2/N1 is an unbiased estimator of p2, where R2 is the num-
ber of those chains for which D2 occurs. This procedure is repeated at each stage. In stage
k, we pick Nk−1 states out of the Rk−1 that are available (by cloning if necessary), simulate
independently from these states up to time min(τA, Tk), and estimate pk by p̂k = Rk/Nk−1

where Rk is the number of chains for which Dk occurs.

Even tough the p̂k’s are not independent, it turns out that the product p̂1 · · · p̂m =
(R1/N0)(R2/N1) · · · (Rm/Nm−1) is an unbiased estimator of µ (Garvels 2000).

♣ Should add proof.

There are many ways of doing the splitting (Garvels 2000). For example, one may clone
each of the Rk chains that reached level k in ck copies for a fixed integer ck, in which case
Nk = ckRk is random. This is called fixed splitting. In contrast, in the fixed effort method,
we fix a priori each value of Nk and make just the right amount of splitting to reach this
target value. One way of doing this is by sampling the Nk starting states at random, with
replacement, from the Rk available states. This is called random assignment and is equivalent
to sampling from the empirical distribution of the states. In a fixed assignment, on the other
hand, we would split each of the Rk states the same number of times (or approximately
the same number of times, in the case where Nk is not a multiple of Rk). The fixed effort
method tends to perform better, because it reduces the variance of the number of chains
that are simulated at any given stage, and we prefer a fixed assignment strategy to a random
assignment because it amounts to using stratified sampling over the empirical distribution,
and thus typically reduces the variance.

Under a number of simplifying assumptions (e.g., that P[Dk | Dk−1, XTk−1
= x] does

not depend on x) and for the fixed splitting setting, it has been shown (Villén-Altamirano
et al. 1994, Garvels and Kroese 1998) that the efficiency of the splitting method is maxi-
mized by selecting the thresholds so that pk ≈ e−2 ≈ 0.135 and E[Nk] = N0 for each k.
This gives m ≈ −(lnµ)/2 stages. However, these simplifying assumption typically do not
hold, so these results only give guidelines, and more importantly the pk’s are unknown in
practice and selecting the appropriate threshold may be difficult. Moreover, the choice of the
importance function h may have a large impact on the performance of the method and is
not trivial (Garvels, Kroese, and Van Ommeren 2002). Nevertheless, the method has been
shown empirically to be very effective in some situations that fit the above framework.
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Table 6.13. Results with the splitting estimators for the tandem queue

N m h µ̂ σ̂2 RE
4096 10 h1 1.2E-9 4.7E-20 0.18
4096 10 h2 1.2E-9 3.9E-20 0.16
4096 20 h2 1.2E-9 2.1E-20 0.12
16384 20 h2 1.2E-9 3.1E-21 0.046

6.13.3 Splitting: examples

Example 6.72 Consider an open Jackson queueing network with two FIFO queues in
tandem. All external arrivals are at the first queue. After being served there, customers go
to the second queue and then exit the system. Suppose the arrival rate is λ = 1 and the mean
service time is ρi at queue i, for i = 1, 2. The events are the arrivals and service completions
(at any queue) and the state Xj = (X1,j, X2,j) gives the number of customers in each of the
two queues immediately after the jth event. The set A contains only the empty state (0, 0)
and B = {(x1, x2) : x2 ≥ ℓ} for some fixed threshold ℓ, i.e., B is the set of states for which
the length of the second queue is at least ℓ.

Garvels (2000) and Garvels, Kroese, and Van Ommeren (2002) study the application of
splitting to this model. A simple choice of importance function h here is h1(x1, x2) = x2, the
number of customers in the second queue. A weakness of this definition is that it ignores
the state of the first queue, neglecting its impact on the chances of reaching B. This neglect
can have an important impact especially when the bottleneck is at the first queue. Garvels
(2000) observes this and proposes alternative choices of h that depend on both x1 and x2.

Demers, L’Ecuyer, and Tuffin (2005) considered the importance function

h2(x1, x2) = 2ℓ− d(x1, x2) = x2 +min(0, x2 + x1 − ℓ), (6.116)

where d(x1, x2) is the minimal number of steps required to reach B from the current state
(x1, x2). (To reach B, we need at least ℓ−min(0, x2 + x1 − ℓ) arrivals at the first queue and
ℓ− x2 transfers from the first queue to the second queue.)

For a numerical illustration, let ρ1 = 4, ρ2 = 2, and L = ℓ = 30. Table 6.13 gives
empirical results for the two importance functions h1 and h2, for m = 10 and 20 equidistant
levels, with N = 212 and 214 chains. In this table σ̂2 is an estimator of the variance of the
estimator of µ based on the N copies of the chain, and RE = σ̂/µ̂ is the estimated relative
error of that estimator. These estimations are based on 30 independent replications. These
results are taken from Demers, L’Ecuyer, and Tuffin (2005).

□

6.14 Exercises
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♣ Some of these exercises will have to be revised or replaced.

6.1 For the example of Section 6.2.2, compare CRNs with the (a + c) synchronization,
CRNs without synchronization, and IRNs, for the case where Bi is fixed at 1. Try the three
values of δ.

6.2 For the example of Section 6.2.2, implement a combination of the CRN methodology
with the CV Ai and with stratification based on Bi, with proportional allocation.

6.3 (Adapted from Bratley, Fox, and Schrage 1987.) In a GI/GI/1 queue, we want to
estimate µ2(t) − µ1(t), where µk(t) = E[Nk(t)], and Nk(t) is the number of customers who
complete their service during the time interval (0, t] if the service time distribution is Gk,
k = 1, 2. In both cases, the system is initially empty and the interarrival time distribution
is the same.

(a) Suppose we simulate the two systems with common random numbers, using inver-
sion and good synchronization, and compute the estimator N2(t) − N1(t). Is this a CRN-
concordant scheme?

(b) Suppose now that we are interested, instead, in q2(t)− q1(t), where qk(t) = E[Qk(t)],
and Qk(t) is the number of customers in the system at time t. We simulate with CRNs as
before and compute the estimator Q2(t) − Q1(t). Why is it not a CRN-concordant scheme
in the strict sense of the definition?

(c) Argue that N1(t) − N2(t) = Q2(t) − Q1(t), and use it to prove that the variance of
Q2(t) − Q1(t) is necessarily reduced by taking common random numbers. (Hint: Nk(t) =
A(t)−Qk(t), where A(t) is the number of arrivals during (0, t].)

(d) Let W̄k(t) be the average sojourn time per customer for the Nk(t) customers who have
left by time t. We want to estimate w2(t)− w1(t), for very large t, where wk(t) = E[W̄k(t)].
Construct a CRN-concordant estimator for this difference, after arguing (via Little’s law; see
Example 6.31) that qk(t) ≈ wk(t)E[A(t)/t] for large t.

6.4 In Theorem 6.5(iii), explain why the continuity of the function f with respect to θ for
every fixed U is sufficient to obtain the result (give a counterexample).

6.5 In Example 6.10, for the M/M/1 queue, we showed that the conditions of Corollary 6.6
are satisfied by bounding the derivative f ′(θ,U). Verify the conditions of Theorem 6.5(iii)
for this example, directly with f(θ,U), without using the derivative.

6.6 In the call center example of Section 6.2.2, suppose the service times are Erlang(k, γ)
instead of exponential and that we generate each of them as follows: generate k independent
exponentials with mean 1/γ by inversion and add them up. This requires k independant
uniform random variable for each service time. The two systems that we compare have the
same value of k and slightly different values of γ, and we use the same set of uniforms for
both.

Prove that this method is equivalent to direct inversion of the Erlang (or gamma) distri-
bution function for a single uniform random number U that we do not observe (i.e., this is
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implicit inversion), and consequently it maximizes the correlation between the service times
of corresponding calls in the two systems. What is this maximal correlation?

6.7 As mentioned at the end of Section 6.5.2, averaging an antithetic pair (X(1), X(2))
(hoping that they are negatively correlated) is equivalent to using X(1) as the main estimator
and X(1) − X(2) as a CV with coefficient β1 = 1/2. Show that if X(1) = h(U) and X(2) =
h(1−U ) where U is a sequence of i.i.d. U(0, 1), as in Section 6.9, then the value of the CV
coefficient that minimizes the variance is β1 = 1/2, regardless of the sign of the correlation
between X(1) and X(2).

6.8 Let X1, . . . , Xq be independent unbiased estimators of µ, with Var[Xj] = σ2
j . Consider

the linear combination X =
∑q

j=1 βjXj, where
∑q

j=1 βj = 1. Show that E[X] = µ and that

Var[X] is minimized by taking 1/βj = σ2
j

∑q
ℓ=1(1/σ

2
ℓ ).

6.9 You will experiment with the two control variates suggested in Example 6.17, for pricing
an Asian option, and their combination with antithetic variates. The idea is to see how
effective are these methods depending on the parameters of the option. Time is measured in
years. Fix σ = 0.2, r = 0.08, S(0) = 100, T = 120/365. For the observation times, consider
three cases: (i) d = 10 and tj = (110+ j)/365 for j = 1, . . . , d; (ii) d = 10 and tj = (12j)/365
for j = 1, . . . , d; (iii) d = 120 and tj = j/365 for j = 1, . . . , d. The strike price K can take
the following four values: K = 80, 90, 100, and 110.

(a) For each of the 12 parameter combinations, perform n = 10000 simulation runs (1)
without any VRT, (2) with only the payoff based on the geometric mean as a CV, (3) with
only the sum

∑d
j=1 S(tj) as a CV, (4) with both CVs together, and (5) with both CVs

together with antithetic variates. In each case, give an estimate of the variance reduction
factor. Discuss your results extensively.

(b) Explore how the effectiveness of the CVs in (2) and (4) of part (a) above in terms
if the values of σ2 and (td − t1). To answer this, you can make additional experiments to
see what happens when σ2, t1, . . . , td are changed. Can you explain the behavior that you
observe (i.e., why it occurs).

6.10 You are asked to try the control variate suggested in Example 6.18. Estimate the vari-
ance reduction factor compared with naive Monte Carlo by performing n = 10000 simulation
runs with the following parameters: σ = 0.2, r = 0.08, S(0) = 100, T = 1, K = 100, d = 10,
and tj = j/10 for j = 1, . . . , d. For the barrier ℓ, try ℓ = 80, 90, and 95. Discuss your results.
Can you suggest other ways of reducing the variance for this example?

6.11 Show that in Example 6.20, if E[Cj] = νj for each j and C =
∑τ

j=1(Cj−νj), where the
νj’s can be different, then it remains true that E[C] = 0, despite the fact that τ is random.

6.12 (Boyle, Broadie, and Glasserman 1997b, page 1317.) We want to prove Eq. (6.42).

Suppose Xi = h(Zi), µ = E[h(Zi)], X̃i = h(Z̃i) where Z̃i is defined by (6.41), ¯̃Xn =
(1/n)

∑n
i=1 X̃i, and h is twice continuously differentiable at Zi with probability 1.

(a) Prove that the Z̃i defined in (6.41) effectively match the first two moments, i.e, that
their mean and variance are µz and σ

2
z , respectively.
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(b) Show, via Taylor’s expansion, that

h(Z̃i) = h(Zi) + h′(Zi)(Z̃i − Zi) +Op(1/n).

(c) Use (a) to show that

¯̃Xn − X̄n = −

(
1

n

n∑
i=1

Zih
′(Zi)

)(
1− σz
Sz,n

)

−

(
1

n

n∑
i=1

h′(Zi)

)(
Z̄nσz
Sz,n

− µz

)
+Op(1/n)

⇒ −β1C(1) − β2C(2) when n→∞.

(d) Explain why E[C(1)] ̸= 0 and E[C(2)] ̸= 0 in general.

6.13 Prove Eq. (6.50).

6.14 Prove that if G1 ⊂ G2, then E[Var[X | G1]] ≥ E[Var[X | G2]]. Hint: Replace X by
X | G1 and G by G2 in (6.48), and take the expectation.

6.15 Implement the CMC estimator described in Example 6.22. Combine it with stratifi-
cation and a control variate, as in Section 6.2.1, and estimate by what factor it improves
upon the estimator with the smallest variance obtained in Table 6.1. You can use a two-stage
procedure, estimating the σs’s in stage 1, and taking a final estimator that uses both stages.
Make enough runs to make your variance comparison significant.

6.16 Give the explicit formula for Xe in Example 6.24. Do you believe that this CMC
should improve the efficiency compared with X when the barrier ℓ tends to be hit early and
frequently, or late and more rarely? Why? Explain. Design and make an experiment to verify
it empirically. You can take for example the same model and parameters as in Example 1.11,
with the same observation times (only for the barrier), and try several values of ℓ < 100 to
compare.

6.17 (Boyle, Broadie, and Glasserman 1997b.) In Example 6.24, we can define an alternative
extended CMC estimator that conditions on less information, as follows. At each observation
time tj < Tℓ, compute the conditional expectation of I[Tℓ = tj+1]X and add up these
conditional expectations. Write an explicit expression for this estimator and show that it
is unbiased. In their empirical experiments, Boyle, Broadie, and Glasserman (1997b) found
this estimator to be less efficient than the previous one, because it is much more costly to
compute while the additional variance reduction is only modest.

6.18 Give a concrete example where Xee defined in (6.53) has more variance than X.

6.19 Suppose we want to estimate ν = g(µ) where µ = E[X] ∈ Rd and g : Rd → R as
in Section 5.4.1. Consider an estimator based on a conditional expectation given some G.
An obvious candidate is the estimator Ỹe = E[g(X) | G]. However, Ỹe can be too hard to
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compute, so we may consider the alternative estimator Ye = g(Xe) = g(E[X | G]) instead.
Let n be the number of independent simulation runs, Xi and Xe,i the values of X and Xe

on run i, and X̄n and X̄e,n the averages of the Xi’s and Xe,i’s, respectively.
Show that the estimator g(X̄e,n) is (generally) biased but consistent for ν, and use the

delta method to derive a central-limit theorem for it (as n → ∞). Give conditions under
which limn→∞MSE[g(X̄e,n)]/MSE[g(X̄n)] < 1 (See Fox and Glynn 1986.)

6.20 In Example 6.29, suppose that the service times are generated via Sj = G−1
θ (Uj).

Suppose that Gθ(x) is differentiable with respect to θ for x fixed and differentiable in x for θ
fixed. This derivative with respect to x gives the service time density gθ(x). We assume that
this density is bounded by a constant C, uniformly in θ and x.

Under what additional assumptions can we prove that Var[Y (B)/δ] remains bounded
when δ → 0 by showing that Y (B) satisfies the conditions of Corollary 6.6? Prove it.

Note: the conditions given in L’Ecuyer 1994a for this example are stronger than what
we need here, because a stronger result than that of Corollary 6.6 is proved in that paper.

6.21 In Example 6.29, suppose that instead of conditioning on Wj for customer j, we
condition on Xj−1, i.e., on the sojourn time of the previous customer. Derive an expression
for this estimator (call it Y (C)) in terms of F and Gθ. Simplify this expression (into a formula
which can be programmed directly) for the case where F and G are exponential with means
1 and θ.

6.22 For stratified sampling with deterministic allocation (Section 6.8.1), show that the
optimal allocation is n∗

s = npsσs/σ̄ to stratum s (neglecting the condition that ns must be
an integer).

6.23 Show that if σ̂
(0)
s = σs, allocating ns = n

(0)
s +n

(1)
s to stratum s, where n

(1)
s is defined in

(6.77), minimizes the variance under the constraints that ns ≥ n
(0)
s for each s and

∑k
s=1 ns =

n. Hint: Write the Kuhn-Tucker optimality conditions.

6.24 In poststratification (Section 6.8.3), when Ns = 0 for some s, one estimator uses the
general sample mean as an estimator of µs within the empty strata, and the usual estimator
otherwise. For example, if there are two strata and none is empty, use the stratified estimator
(6.70), whereas if one is empty, use the general sample mean as an estimator. Assume that
N = n (a constant). Show that this estimator is biased, and give an expression for the bias.
Show that the bias can be made arbitrary large (for fixed n) by changing the means within
the strata, but that the bias vanishes exponentially fast if n→∞ while the other parameters
are fixed.

6.25 Derive a formula for the variance of the estimator (6.78). Hint: Use the variance
decomposition

Var[X̄sr,n] = E[Var[X̄sr,n | N1, . . . , Ns]] + Var[E[X̄sr,n | N1, . . . , Ns]]

and the fact that (see Stephan 1945) E [I[Ns > 0]/Ns] =
∑∞

j=1 us,j, where us,1 = [1 − qns −
ϵs]/[(n+ 1)ps], us,j = [(j − 1)us,j−1 − ϵs/j]/[(n+ j)ps] for j > 1, and ϵs = npsq

n
s . Prove that
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Var[X̄sr,n] =
∑k

s=1 ψs where

ψs = p̃2sσ
2
s

∞∑
j=1

us,j + p̃2sµ
2
sq

n
s (1− qns ).

Show that if nps ≪ 1, ψs ≈ (σ2
s + µ2

s)ps/n. Show that for the naive estimator X̄n, the
contribution of stratum s to the variance is (σ2

s + (µs − µ)2)ps/n ≤ ψs.

6.26 (Yakowitz, Krimmel, and Szidarovszky 1978 ? (to be verified)) Consider the following
post-stratification scheme for the one-dimensional integration problem of Example 6.34: Take
an i.i.d. sample as usual form the U(0, 1) over [0,1]. Then, weight the observations f(Ui)
proportionally to the sum of distances to the two nearest neighbors of Ui. More specifically,
the estimator of µ becomes

X̄sw,n =
1

2

n∑
i=1

(U(i+1) − U(i−1))f(U(i)).

where U(0) = −U(1) and U(n+1) = 2−U(n). What are the mean and variance of this estimator?
How would you estimate its variance?

6.27 (a) Prove that for the stratified sampling scheme of Example 6.34 (which is equivalent
to one-dimensional Latin hypercube sampling), E[X̄s,n] = µ and E[S2

s,m] = Var[Xs], where
S2
s,m is the sample variance of the m replicates of Xs.

(b) Prove that this also holds for the t-dimensional Latin hypercube sampling.
(c) Explain why the variance estimator given by (6.73) is better (less noisy) than the

estimator S2
s,m defined in (a) in the one-dimensional case.

6.28 (a) In Example 6.37, show that variance reduction is guaranteed if we simulate the
Brownian motion {B(t), t ≥ 0} via the Brownian bridge approach and use antithetic variates
(Zj,−Zj) for the underlying standard normals, where the Zj’s can be generated by any
method, not necessarily by inversion.

(b) Implement this AV scheme and estimate the efficiency improvement factor for an
example with the following parameters: σ = 0.3, r = 0.05, K = 55, S(0) = 50, T = 1 year,
d = 64, and tj = j/64 for j = 1, . . . , d.

6.29 (Rotation sampling; Fishman and Wang 1983.) This technique is related to antithetic
variates, Latin hypercube sampling, and lattice rules. It generates a single random vector
U = (U1, . . . , Us), uniformly over [0, 1)s, adds this vector modulo 1 (coordinatewise) to each
of the points ui = (i/k, . . . , i/k), i = 0, . . . , k− 1, for some positive integer k, and estimates
µ =

∫
[0,1)s

f(u)du by

Xrs =
1

k

k−1∑
i=0

f((ui +U) mod 1).

This is much less expensive to apply than LHS, because only s uniforms need to be generated,
whereas LHS requires ks uniforms and s random permutations of the first k integers. As for
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LHS, we can replicate the scheme m times, independently, and use the empirical mean and
variance of the m copies of Xrs to compute a confidence interval on µ.

(a) Show that this method is a special case of a randomly-shifted lattice rule. Give a basis
for the corresponding s-dimensional integration lattice. Does it look like a good integration
lattice? Why?

(b) Give a simple concrete example of a function for which this method increases the
variance by the factor k compared with standard Monte Carlo (for the same total number
of function evaluations).

6.30 (Weighted average over a randomly-shifted lattice rule.) This generalizes Theorem 5
of Glynn and Szechtman (2002). See also Ben-Ameur, L’Ecuyer, and Lemieux (2004). Let
{u0, . . . ,un−1} be the point set of an integration lattice. To estimate µ =

∫
[0,1)s

f(u)du,

consider the weighted randomly-shifted lattice rule

Xwlr =
1

n

n−1∑
i=0

wif((ui +U ) mod 1),

where wi ∈ R for each i and w0 + · · ·+ wn−1 = 1.
(a) Show that Var[Xwlr] is minimized by taking wi = 1/n for each i.
(b) Give an counterexample showing that the result in (a) does not hold in general for

an arbitrary point set (which is not a lattice).
(c) How would you optimize the weights in the general case? Hint: Xwlr can be viewed

as a CV estimator, where the differences C(i) = f((ui+U) mod 1)− f((u0+U) mod 1) act
as control variates for the estimator f((u0 +U) mod 1).

6.31 (Adapted from Rubinstein and Shapiro 1993, Exercice 2.8.5.)
Supposons que durant la simulation, on génère les v.a. Y1, . . . , Yt, où t est déterministe.

Les Yi sont indépendantes et Yi a une densité de la forme (famille exponentielle):

fi(θi, y) = ai(θi)ui(y)e
bi(θi)vi(y) (6.117)

où chaque θi est un paramètre continu, ai et ui sont des fonctions non-négatives, et bi
et vi sont des fonctions à valeur réelle. La densité conjointe du vecteur de v.a. générées
est donc le produit de ces densités. On veut estimer µ = µ(θ) = Eθ[X], où Eθ dénote
l’espérance mathématique lorsque le vecteur des paramètres est θ = (θ1, θ2, . . . , θt), X =
h(ω) = h(Y1, . . . , Yt, Z1, Z2, . . . ) et les Zj (s’il y en a) sont d’autres v.a. indépendantes des Yi,
pour lesquelles nous n’allons pas changer les lois de probabilité (donc seulement les densités
fi vont apparaitre dans le rapport de vraisemblance). On veut effectuer nos simulations
avec les valeurs des paramètres fixés à (θ0 = (θ1,0, θ2,0, . . . , θt,0) pour estimer µ(θ), supposé
fini. Soient L(θ, θ0, ω) le rapport de vraisemblance associé à ce changement de mesure et
Xis = XL(θ, θ0, ω) l’estimateur IS.

(a) Écrivez l’expression pour L(θ, θ0, ω).
(b) Montrez que pour tout entier k ≥ 2,

Eθ0 [X
k
is] =

t∏
i=1

aki (θi)

ak−1
i (θi,0)ãi,k

Ẽ[Xk],
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où Ẽ est l’espérance qui correspond au cas où chaque v.a. Yi est générée selon la densité

f̃i(y) = ãi,kui(y)e
b̃i,kvi(y),

et où b̃i,k et ãi,k sont définis par:

b̃i,k = kbi(θi)− (k − 1)bi(θi,0);

ãi,k =

(∫ ∞

0

ui(y)e
b̃i,kvi(y)dy

)−1

pour chaque i.
(c) Donnez une condition nécessaire et suffisante pour que ce k-ième moment soit fini,

en termes des b̃i,k et des fonctions ui et vi. (Supposez que vi(y) est un polynôme en y.) Pour
simplifier, vous pouvez supposer que Ẽ[Xk] est fini lorsque chaque f̃i est une densité dont
l’intégrale vaut 1.

(d) Supposons maintenant que comme dans notre example de file M/M/1, les v.a. Yi
sont toutes exponentielles de moyenne θ, de sorte que:

fi(θ, y) = θ−1e−y/θ, pour y > 0, (6.118)

pour chaque i. Montrez dans ce cas que le k-ième moment de Xis est fini si et seulement si
θ < kθ0/(k−1). En particulier, la variance est finie si et seulement si θ < 2θ0. (Remarque: la
variance de la variance échantillonnale de Xis est finie si et seulement si le quatrième moment
de Xis est fini.)

6.32 In Example 6.60, suppose that we put q1,0 = 0 and q1,2 = 1 instead of q1,0 = 1 − q
and q1,2 = q. We still have qi,i+1 = q for i ≥ 2. How does this change the variance and the
efficiency of IS the estimator? Show that for K = 2, this reduces the variance to 0.

6.33 Implement the IS scheme described in Example 6.60, with K = 20 and p = 1/3. Try
several values of q in a close neighborhood of q = 2/3 and compare the efficiencies. Try to
find the optimal q, i.e., the value of q that maximizes the efficiency. Try also the modification
suggested in Exercise 6.32 and compare.

6.34 In Example 6.60, suppose that pi,i+1 = pi ≤ 1/2 and pi,i−1 = 1 − pi > 0 for 1 ≤ i ≤
K − 1, but that the pi are no longer all the same. We want to design an IS scheme that
replaces pi by some qi for each i, again to estimate P[XT = K], the probability of reaching
K before coming back to 0.

(a) Write the corresponding likelihood ratio on the event {XT = K}.
(b) How would you select the qi’s in order to minimize an upper bound on this likelihood

ratio? With your selection, the variance is reduced by at least what factor?

6.35 Suppose Y1, . . . , Yd are i.i.d. random variables with density π, and we replace this
density by g to estimate the expectation of some random variableX = h(Y1, . . . , Yd). Suppose
also that Eg[| ln(π(Y1)/g(Y1))|] <∞ (a mild condition).

(a) Use the strong law of large numbers to show that
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lim
d→∞

lnL(y1, . . . , yd)

d
= c

for some constant c. Then show that lnEg[π(Y1)/g(Y1)] = 0 use it together with Jensen’s
inequality to show that c ≤ 0.

(b) Show that c can be zero only if Eg[I[π(Y1) = g(Y1)]] = 1, which would mean that π
and g are essentially the same.

(c) Explain why this implies that when d→∞ under g, L(Y1, . . . , Yd)→ 0 with proba-
bility 1 and Var[L(Y1, . . . , Yd)]→∞, even though E[L(Y1, . . . , Yd)] = 1 for all d.

6.36 Generalize Example 6.68 to the setting where

S(tj) = S(0) exp(Y1 + · · ·+ Yj)

and the Yj’s are i.i.d. with an arbitrary density π.
(a) Explain how to apply exponential twisting to the Yj’s, with parameter θ = θ1 until

time Tℓ, and θ = θ2 thereafter. Propose a method for selecting θ1 and θ2. Note that the
method proposed in Example 6.68 is a heuristic; there is no guarantee that the likelihood
ratio is less than 1 when the payoff is nonzero, and no guarantee that the barrier is reached
with probability 1. The same can be true for the method you propose.

(b) In the case where π is the normal density, compare the change of measure given by
your method with that suggested in Example 6.68 for the geometric Brownian motion. More
specifically, prove that the exponentially twisted normal density is still a normal density.
For what values of θ1 and θ2 is the exponential twisting exactly equivalent to the method
proposed in Example 6.68?
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de l’Institut de Statistique de l’Université de Paris, 9:171–173.
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ed. A. Ruszczyński and A. Shapiro. 2003. Stochastic Programming. Handbooks in Operations
Research and Management Science, Amsterdam, The Netherlands: Elsevier.

Rydberg, T. H. 1997. The normal inverse Gaussian Lévy process: Simulation and approxi-
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