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A. A Review of Probability and Statistics

This appendix gives a condensed summary of basic concepts and results in
probability, statistics, and stochastic modeling. Its aim is not to replace a good
textbook. For more detailed treatments, the reader may consult, for example,
Billingsley (1986), Chung (1974), Wolff (1989) for probability and Markov mod-
els and Hogg and Craig (1995), Rice (1995), Serfling (1980), Shao (1999) for
statistics.

A.1 Probabilities

The behavior of a stochastic model depends, by definition, on the realization ω
of a random phenomenon. This ω represents all sources of randomness in the
model. It must belong to the set Ω of all possible realizations (or outcomes),
called the sample space.

To define probabilities for these realizations, we must first select a family F
of subsets of Ω for which the probabilities will be defined. The members of F
are called the measurable sets, or events (not to be confounded with the events
in discrete event simulation, where the same word has a different meaning). The
set F must satisfy the conditions of a σ-field: (a) Ω itself must belong to F , (b)
if B ∈ F then its complement Ω \B is also in F , and (c) if B1, B2, . . . are in F
then their (denumerable) union ∪∞i=1Bi is also in F . The pair (Ω,F) is called
a measurable space. Note that the smallest possible F contains only Ω and the
empty set.

A signed measure Q is a function that assigns a value in (−∞,∞] = R∪{∞}
to each event B ∈ F , and which is countably additive: If the Bi’s are disjoint sets
in F then Q(B1 ∪B2 ∪ · · ·) = Q(B1) +Q(B2) + · · ·. The measure is positive if it
can never take negative values. A probability measure is a positive measure P for
which P(Ω) = 1. When P is a probability measure on (Ω,F), the mathematical
structure (Ω,F ,P) is called a probability space.

Example A.1 Suppose we throw two dice of different colors and observe the
two numbers showing up. ThenΩ can be defined as the set of all 36 possible pairs
that we can obtain, F can contain all subsets of Ω, and a probability measure
on F can be defined by P(B) = |B|/36 for all B ⊆ Ω. This corresponds to the
idea of two independent fair dice. �



4 A. A Review of Probability and Statistics

If Ω is finite or denumerable, F can be taken as the family of all its possible
subsets, but if Ω is non-denumerable (for example, an interval of the real line),
then it turns out that one cannot take F as the set of all subsets of Ω, because
many such subsets are too “weird” and cause trouble. This gives rise to technical
subtleties studied by measure theory (Billingsley 1986). When Ω = R, F is
usually taken as the Borel σ-field B, defined as the smallest σ-field that contains
all the intervals with rational end points.

In a complex stochastic simulation model, ω can be seen as an infinite
sequence of random bits and the model’s behavior can always be expressed as a
function of the values taken by those bits. Another, perhaps more natural, way
of interpreting ω in the context of simulation is as an infinite sequence of real
numbers in the interval [0, 1], say U0, U1, U2, . . ., such that for all integers s > 0,
Us = (U0, U1, . . . , Us−1) behaves like a point selected at random uniformly in the
unit hypercube [0, 1]s. This means that if B ⊆ [0, 1]s and B is measurable, then
P(Us ∈ B) = volume(B). The aim of random number generators in simulation
is to imitate this type of behavior. The simulation program will take the ω
provided by the generator and transform it (often in complicated ways) to get
the desired result. Note that in simulation applications, we usually take the open
interval (0, 1) instead of the close interval [0, 1], because the transformations of
interest are sometimes infinite or undefined at 0 or at 1.

If B ∈ F and P[B] = 1, we say that B occurs with probability 1 (w.p.1)
or almost surely (a.s.). We have P[B] = 1 if and only if P[Bc] = 0 where
Bc = Ω \B is the complement of B. However, P[Bc] = 0 does not mean that Bc

cannot happen or that B is sure to happen. For example, if Ω is the unit interval
[0, 1], F the Borel σ-field in [0, 1], and P the Lebesgue measure on [0, 1], for which
the probability of an interval equals its length, then any single point ω ∈ [0, 1]
has probability 0. However, ω must take some value and the corresponding event
{ω} will then happen, even though its probability was zero.

If A and B are two events (in F) such that P[B] > 0, we define the condi-
tional probability of A given B by

P(A | B) =
P(A ∩B)

P(B)
.

The events A and B are called independent when P(A | B) = P(A), i.e., P(A ∩
B) = P(A)P(B). In general, n events B1, B2, . . . , Bn are independent if and only
if P(B1∩B2∩ · · ·∩Bn) = P(B1)P(B2) · · ·P(Bn). They are pairwise independent
(a weaker property) if P(Bi ∩ Bj) = P(Bi)P(Bj) for all i 6= j. The probability
of the union of several events obeys the inclusion-exclusion formula:

P[B1∪· · ·∪Bn] =
n∑
i=1

P[Bi]−
∑

1≤i<j≤n

P[Bi∩Bj]+
∑

1≤i<j<≤n

P[Bi∩Bj ∩Bk]−· · · .

More generally, let G ⊂ F be a σ-field contained in F and suppose that
for each B ∈ G, we know whether or not B has occurred. Informally, the prob-
abilities that we have after we know all this information define the probability



A.2 Integrals 5

distribution conditional on G. The corresponding conditional probabilities are
denoted by P(A | G) for each A ∈ F . They are in fact random variables: their
values depend on which events in G have occurred. Note that if A ∈ G, then
P(A | G) is always 0 or 1, because G “tells us” whether A has occurred or not.

Example A.2 In Example A.1, let Bj be the set of realizations for which the
sum over the two dice is equal to j, for j = 2, . . . , 12. Let G be the class of subsets
defined as the union of any number of those Bj’s (including none of them, in
which case we have the empty set). Then the probabilities conditional on G
represent the probabilities conditional on knowing the sum over the two dice.
In particular, if A is the event that we have a 6 on the first die, then the reader
can verify (as an exercise) that P[A | Bj] = 1/(13− j) for j = 7, . . . , 12, and is
0 for j ≤ 6. To compute the probability of A conditional on B10 ∪ B11 ∪ B12,
observe that B10∪B11∪B12 contains six of the 36 possible outcomes, and there
is a 6 on the first die for three of them, so P[A | B10 ∪B11 ∪B12] = 1/2. �

A more rigorous definition of conditional probabilities is given later, based
on the definition of conditional expectation. It permits one to condition on
events having probability 0.

A.2 Integrals

Given two measurable spaces (Ω,F) and (Ω′,F ′), a function f : Ω → Ω′ is a
measurable function if for each B ∈ F ′, {ω : f(ω) ∈ B} ∈ F . Measurability
depends on the σ-fields that have been selected. Often, (Ω′,F ′) = (R,B), the
real space with the Borel sigma-field, and we call the measurable functions
F -measurable to emphasize that their measurability depends on F .

The Lebesgue integral of a F -measurable function f : Ω → R, with respect
to a positive and finite measure Q on (Ω,F), can be defined as follows. This
integral is denoted∫

Ω

f(ω)Q(dω) or more simply

∫
fdQ.

If f is a linear combination of indicator functions,

f(ω) =
n∑
i=1

aiI[ω ∈ Bi]

where ai is a constant and Bi ∈ F for each i, then∫
Ω

f(ω)Q(dω) =
n∑
i=1

aiQ[Bi].

If f ≥ 0, i.e., f cannot take negative values, then it can be proved that there
is an increasing sequence of functions f1 ≤ f2 ≤ f3 ≤ · · · such that each fj is
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a linear combination of indicator functions and f(ω) = limj→∞ fj(ω). We then
define ∫

Ω

f(ω)Q(dω) = lim
j→∞

∫
Ω

fj(ω)Q(dω),

which could be infinite but always exists. If f can take negative values, then we
can decompose it as f = f+ − f− where f+ and f− are both positive and F -
measurable. If both f+ and f− have finite integrals, then f is called Q-integrable
and we define∫

Ω

f(ω)Q(dω) =

∫
Ω

f+(ω)Q(dω)−
∫
Ω

f−(ω)Q(dω).

If {fn, n ≥ 0} is a sequence of F -measurable functions fn : Ω → R, there
are many situations where we would like to interchange the limit and the integral
as follows:

lim
n→∞

∫
Ω

fn(ω)Q(dω) =

∫
Ω

(
lim
n→∞

fn(ω)
)
Q(dω). (A.1)

The following theorems provide sufficient conditions for the interchange to be
valid:

Theorem A.1 (Monotone convergence Theorem). If fn ≥ fn−1 ≥ · · · ≥ 0 for
all n, then (A.1) is valid.

Theorem A.2 (Dominated convergence Theorem). If |fn| ≤ g for all n, where
g : Ω → R is F-measurable and

∫
Ω
g(ω)Q(dω) <∞, then (A.1) is valid.

A.3 Change of Measure and Densities

Suppose that P and Q are two measures on (Ω,F) such that Q dominates P in
the sense that for all measurable sets A ∈ F , P[A] > 0 implies that Q(A) > 0.
Then we say that P is absolutely continuous with respect to Q, and for A ∈ F
we can write ∫

A

dP(ω) =

∫
A

[(dP/dQ)(ω)] dQ(ω)

where (dP/dQ)(ω) is the density (or Random-Nikodym derivative) of P with
respect to Q.

If P and Q have densities f and g with respect to the Lebesgue measure,
then (dP/dQ) is the ratio of these densities. Likewise, if Ω is a discrete set and
P and Q have densities with respect to the counting measure over Ω (for which
the measure of a set is just its cardinality), then (dP/dQ)(ω) = P(ω)/Q(ω), a
ratio of measures.
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A.4 Random Variables

Given a probability space (Ω,F ,P), a (real-valued) random variable (r.v.) is a
F -measurable function X : Ω → R, which to each outcome ω ∈ Ω assigns a real
number X(ω). Usually, this real number (before its value is known) is simply
denoted by X. Recall that F-measurable means that {ω : X(ω) ∈ B} ∈ F for
each B ∈ B where B is the Borel σ-field on R. Then, X defines a probability
measure P̃ on (R,B) via P̃(B) = P({ω : X(ω) ∈ B}), usually denoted by P(X ∈
B) for each B ∈ B. This determines the probability distribution of X. In this
book, we use the notation “X ∼ ...” to mean “the probability distribution of X
is ...” and X ∼ Y to mean “X and Y have the same probability distributions.”.

Example A.3 In Example A.1, where we throw two independent dice, we
have Ω = {(1, 1), (1, 2), . . . , (6, 6)}. Let X be the sum of values on the two
dice. This X is a random variable that can take the values 2, 3, . . . , 12. We have
P(X = x) = P({ω = (ω1, ω2) : ω1 + ω2 = x}). For example, P(X = 5) =
P({(1, 4), (2, 3), (3, 2), (4, 1)}) = 4/36 = 1/9. �

Example A.4 In a telephone call center, the waiting time of each customer
and the duration of each call can be modeled as random variables that can
take any value in the real interval [0,∞). For such a random variable X, the
sample space could be taken as (0, 1) and X could be defined as X = ϕ(ω)
for an appropriate transformation ϕ : (0, 1)→ [0,∞). The inversion method to
generate random variables operates that way. �

The function F defined by

F (x) = P[X ≤ x] for all x ∈ R

is called the cumulative distribution function (cdf) of X. This function is always
nondecreasing and goes from 0 to 1 (unless X can be ±∞ with positive prob-
ability, which happens sometimes). It defines the probability distribution of X
in a unique way.

♣ Add a picture.
A random variable X has an absolutely continuous cdf with respect to the

Lebesgue measure if we can write

F (x) =

∫ x

−∞
f(y)dy,

for some function f : R → [0,∞) called the density of X (with respect to
the Lebesgue measure). An equivalent condition for the existence of f is that
P[X ∈ A] = 0 for each A ∈ B of Lebesgue measure zero. For an absolutely
continuous random variable, we always have f(x) ≥ 0, P[X = x] = 0 for all x,

P[a ≤ X ≤ b] = F (b)− F (a) =

∫ b

a

f(x)dx,
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−∞ f(x)dx = 1, and f(x) = F ′(x) when the derivative exists. It is important to

understand that f(x) is not a probability. It is customary to just say that X has
a continuous distribution, even though one can construct examples where the
cdf is continuous but not absolutely continuous. Examples of continuous distri-
butions include the uniform, exponential, normal, and chi-square distributions
(see Chapter 2).

A (real-valued) random variable is called discrete (or is said to have a dis-
crete distribution) if it takes its values in a denumerable subset of the real
numbers, say {x0, x1, x2, . . .}. This set is often the set of non-negative inte-
gers, {0, 1, 2, . . .}. For a discrete random variable, the function p defined by
p(xi) = P[X = xi] is called the probability mass function (pmf) of X and we
have F (x) =

∑
xi≤x p(xi). The Bernoulli, binomial, Poisson, and geometric dis-

tributions are examples of discrete distributions (see Chapter 2). Note that the
pmf is also the density of the probability measure P with respect to the counting
measure, which gives a weight of 1 to each possible value, so its measure of a
set is just the cardinality of that set. In this sense, p can also be viewed as a
pdf.

Some random variables X are neither purely discrete nor purely continuous.
For example, there could be a probability mass at some points and a density
elsewhere. In most interesting (one-dimensional) cases, X can be written as
X = qX1 + (1− q)X2 where X1 is discrete, X2 is continuous, and 0 ≤ q ≤ 1.

The reliability function (or survival function) of X is defined by

F̄ (x) = P[X > x].

If X is continuous, the failure rate is defined by

r(x) = f(x)/(1− F (x)).

For a small ε > 0, we have

P[X < x+ ε|X > x] =
P[x < X < x+ ε]

P[X > x]
≈ f(x)

1− F (x)
ε = r(x)ε.

That is, if X denotes the age of first failure of a system, then r(x)ε represents
(approximately) the probability that a failure occurs in the next ε units of time
given that the system has survived until age x.

A.5 Mathematical Expectation and Variance

The mathematical expectation (or theoretical average) of a real-valued random
variable X is defined by the integral

E[X] =

∫
Ω

X(ω)P(dω).

If X is discrete with mass function p, this general expression boils down to
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E[X] =
∞∑
i=0

xip(xi),

and if X is continuous with density f , it becomes

E[X] =

∫ ∞
−∞

xf(x)dx.

If g : R → R is a measurable function, then Y = g(X) is also a random
variable and

E[Y ] = E[g(X)] =

∫
Ω

g(X(ω))P(dω).

If X has cdf F , the latter integral is sometimes denoted by∫ ∞
−∞

g(x)dF (x).

This notation is the old-fashioned Riemann-Stieltjes integral. In the case where
X has a density f , this integral is equivalent to the ordinary Riemann integral∫ ∞

−∞
g(x)f(x)dx

(provided that gf is Riemann-integrable.) The Riemann-Stieltjes integral is
more general than the Riemann integral because (for instance) it covers the
case where F has jumps (which correspond to masses of probability at some
points). The Lebesgue integral (see Section A.2) is more general than these two.

Proposition A.3 If X cannot take negative values, then

E[X] =

∫ ∞
0

(1− F (x))dx.

Proof. Since X =
∫∞

0
I[X > x]dx, we have

E[X] = E
[∫ ∞

0

I[X > x]dx

]
=

∫ ∞
0

E[I[X > x]]dx =

∫ ∞
0

P[X > x]dx.

The variance of X is defined by

Var[X] = E[(X − E[X])2] = E[X2]− (E[X])2.

It is sometimes denoted σ2(X). We always have Var[X] ≥ 0. Physically, the
variance represents the moment of inertia of the pdf (or pmf) of X with re-
spect to its mean. Its square root is called the standard deviation and the ratio√

Var[X]/E[X] = σ(X)/E[X] is the coefficient of variation, also called the rel-
ative error.
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It is easy to verify that if Y = aX + b then E[Y ] = aE[X] + b and Var[Y ] =
a2Var[X].

Example A.5 The normal distribution with mean µ and variance σ2, de-
noted N(µ, σ2) or N(µ, σ2), is a continuous distribution with density f(x) =
(σ
√

2π)−1 exp[(x− µ)2/(2σ2)] for −∞ < x <∞. This density is shown in Fig-
ure A.1, in which σ indicates the standard deviation. The figure also shows the
corresponding cdf, denoted by Φ. The N(0, 1) distribution is called the standard
normal. �

−3σ −2σ −σ 0 σ 2σ 3σ
x

f
(x

)

Fig.A.1. Density of the normal distribution with mean µ = 0

More generally, for a random variable X with mean µ and variance σ2, the
kth moment of X and kth centered moment of X are defined as E[Xk] and
E[(X − µ)k], respectively. The third and fourth moments of (X − µ)/σ are the
skewness coefficient (or coefficient of asymmetry), ν = E[(X − µ)3]/σ3, and the
kurtosis coefficient, κ = E[(X − µ)4]/σ4. We have ν = 0 when the probability
mass (or density) function is symmetric with respect to its mean (as for the
normal or Student-t distributions), ν > 0 if it is skewed to the right (as for the
exponential or chi-square distribution; see Figure A.2), and ν < 0 if it is skewed
to the left. The kurtosis measures the thickness of the tails. For example, the
normal distribution has κ = 3, while the Student-t has κ > 3 and κ decreases
with the number of degrees of freedom.

The moment-generating function (mgf) of a random variable X is defined
by

MX(θ) = E
[
eθX
]

=

∫ ∞
−∞

eθxdF (x), for all θ ∈ R,

when this expectation exists. When this function exists in a neighborhood of
θ = 0, it determines the entire distribution of X in a unique way, and we obtain
the jth moment of X by taking its jth derivative evaluated at 0 (whence its
name):

E[Xj] =
djMX(θ)

dθj

∣∣∣∣
θ=0

.

In fact, all these moments exist if and only if MX(θ) exists in some open interval
that contains 0. IfX is continuous with density f , thenMX(θ) =

∫∞
−∞ e

θxf(x)dx,
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Fig.A.2. The exponential density with mean 1/λ is skewed to the right (i.e., ν > 0)

and MX(−θ) is also the (two-sided) Laplace transform of X. In that case,

fθ(x) = eθxf(x)/MX(θ) (A.2)

is also a probability density function, called an exponentially twisted version
of f(x). Such exponential twisting, for carefully selected θ, is widely used for
importance sampling (see Chapter 6).

The natural logarithm of MX(θ) (when it exists) is the cumulant-generating
function of X:

ΨX(θ) = ln(MX(θ))

The jth derivative of ΨX(θ) evaluated at θ = 0, when it exists, is the jth
cumulant of X,

κj = Ψ
(j)
X (0) =

djΨX(θ)

dθj

∣∣∣∣
θ=0

.

The first two cumulants κ1 and κ2 are the mean and the variance. If X is
continuous with density f , then the exponentially twisted random variable with
density fθ defined in (A.2) has mean Ψ ′(θ), variance Ψ ′′(θ), and similarly for
higher moments.

The moment generating function may not exist in some cases, but the
complex-valued characteristic function of X, defined as

ϕX(θ) = MX(iθ) = E[eiθX ]

for all θ ∈ R, where i =
√
−1, always exists. The jth moment of X can also be

obtained by evaluating the jth derivative of ϕX at 0: E[Xj] = (−i)jϕ
(j)
X (0).

For a discrete random variable X with probability mass function p(x) for
x = 0, 1, 2, . . ., one often works with the probability generating function (or
z-transform) of X, defined as

G(z) = MX(ln z) = E[zX ] =
∞∑
x=0

p(x)zx.
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A random variable X with cdf F has a heavy-tail distribution (to the right)
if 1 − F (x) converges more slowly than e−ax for any a > 0 when x → ∞, or
equivalently if its generating function M(t) is infinite for any t > 0. For example,
the Pareto distribution has a heavy-tail, whereas the Weibull distribution with
shape parameter α < 1 is heavy-tailed.

A.6 Conditional expectation

Let X be a random variable defined on a probability space (Ω,F ,P), let G ⊂ F
be a σ-field contained in F (also called a sub-σ-field of F), and let P′ be the
restriction of P to G. Assume E[X] < ∞. The conditional expectation of X
given G, denoted E[X | G], is any random variable on (Ω,G,P′) that satisfies∫

B

E[X | G]dP′ =
∫
B

XdP

for all B ∈ G. There always exists at least one version of this random variable
and any two versions are equal with probability 1. In other words, the condi-
tional expectation is defined only w.p.1. The conditional expectation can be
interpreted loosely as the expectation of X after we have the information about
the occurrence (or not) of all the events in G.

As special cases, if G = F , then E[X | G] = E[X | F ] = X w.p.1 because
P′ = P (intuitively, X is F -measurable so the information in F must tell us the
value of X), whereas if G contains only Ω and the empty set, this G tells us
nothing about the value of X and we have E[X | G] = E[X] (a constant).

Conditional probabilities can be seen as special cases of conditional ex-
pectations: For any event B ∈ F , the conditional probability of B given G is
P[B | G] = E[I[B] | G].

If Y is a random variable defined on (Ω,F ,P), let G(Y ) be the smallest
σ-field G (necessarily contained in F) with respect to which Y is G-measurable.
This G(Y ) is called the σ-field generated by Y . The conditional expectation of
X given Y , denoted E[X | Y ], is defined as E[X | G(Y )]. We can also define the
conditional probabilities P[X ∈ A | Y ] as equal to P[X ∈ A | G(Y )] for each
A ∈ F .

Example A.6 In Example A.2, the given σ-field G is G(Y ) where Y is the sum
on the two dice. If X is the value on the first dice, then E[X | Y ] is a random
variable that takes the value Y/2. �

Example A.7 Suppose you wait in a first-in first-out single-server queue. Let
X1 be the time until the customer in front of you starts its service, X2 the
service time of that customer, and suppose that these two random variables are
continuous. Your total waiting time is X = X1 + X2. Suppose you observe X1

and you are interested in the conditional probability that X > c given that
X1 = x1, for some constant c. This probability P[X > c | X1 = x1] cannot be
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written as P[X > c,X1 = x1]/P[X1 = x1], because P[X1 = x1] = 0. However,
we have P[X > c | X1 = x1] = P[X2 > c− x1], which can be computed easily if
we know the cdf of X2. �

The next result follows directly by taking B = Ω in the definition.

Proposition A.4 (Unbiasedness of conditional expectation). If G ⊂ F is a
σ-field and E[X] <∞, then

E[E[X | G]] = E[X].

The following variance decomposition is used frequently in the book, in
particular for the analysis of variance reduction methods.

Proposition A.5 (Variance decomposition). For any σ-field G ⊂ F , we have

Var[X] = Var[E[X | G]] + E[Var[X | G]].

Proof.

Var[X] = E[X2]− (E[X])2

= E[E[X2 | G]]− (E[E[X | G]])2

= E[Var[X | G]] + E[(E[X | G])2]− (E[E[X | G]])2

= E[Var[X | G] +
(
E[X | G])2]− (E[E[X | G]]

)2

= E[Var[X | G]] + Var[E[X | G]].

♣ Stochastic order. See Wolff 1989.

A.7 Joint distribution and independence

The notions of mass and density functions, expectation, variance, etc., can be
generalized to vectors or random variables, also called random vectors.

Let X1, . . . , Xd be d random variables defined on the same probability space
and let X = (X1, . . . , Xd)

t, where the t means “transposed” (our vectors are
column vectors). The vector X is said to have a d-dimensional multivariate
distribution, with joint cdf F : Rd → [0, 1], if for any x = (x1, . . . , xd)

t ∈ Rd,

F (x) = P[X ≤ x] = P[X1 ≤ x1, . . . , Xd ≤ xd].

The jth marginal cdf of F is Fj, defined by Fj(xj) = F (∞, . . . ,∞, xj,∞, . . . ,∞) =
P[Xj ≤ xj].
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The random variables X1, . . . , Xd are mutually independent if and only if
F (x1, . . . , xd) = F1(x1) · · ·Fd(xd) for all (x1, . . . , xd) ∈ Rd. They are pairwise
independent (a weaker condition) if and only if F (xi, xj) = Fi(xi)Fj(xj) for
all pairs i 6= j. If X1, . . . , Xd are mutually independent, then their sum Y =
X1 + · · ·+Xd has moment-generating function MY (θ) = MX1(θ) · · ·MXd

(θ) and
cumulant generating function ΨY (θ) = ΨX1(θ) + · · ·+ΨXd

(θ). Moreover, for any
measurable functions g1, . . . , gd, where gj : R→ R,

E[g1(X1) · · · gd(Xd)] = E[g1(X1)] · · ·E[gd(Xd)].

If X1, . . . , Xd are discrete, their joint probability mass function p is defined
by

p(x1, . . . , xd) = P[X1 = x1, . . . , Xd = xd]

for all values of x1, . . . , xd that these random variables can take. The marginal
mass function of Xj is defined by

pj(xj) = P[Xj = xj].

One can easily prove that the discrete random variables X1, . . . , Xd are mutually
independent if and only if

p(x1, . . . , xd) = p1(x1) · · · pd(xd)

for all values x1, . . . , xd.
If X1, . . . , Xd are continuous, their joint density function f is defined via

F (x1, . . . , xd) =

∫ x1

−∞
· · ·
∫ xd

−∞
f(y1, . . . , yd)dy1 · · · dyd.

The marginal density of Xj is fj, defined by

Fj(x) =

∫ x

−∞
fj(y)dy.

The continuous random variables X1, . . . , Xd are mutually independent if and
only if

f(x1, . . . , xd) = f1(x1) · · · fd(xd)
for all (x1, . . . , xd) ∈ Rd. This also holds if and only if the characteristic function
of X is the product of the characteristic functions of the Xj’s.

Let Z = g(X1, . . . , Xd) where g : Rd → R is a measurable function, so that
Z is a random variable. If X1, . . . , Xd are continuous random variables, then

E[Z] = E[g(X1, . . . , Xd)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, . . . , xd)f(x1, . . . , xd)dx1 · · · dxd.

This also holds in the discrete case if we replace the integrals by sums.

Theorem A.6 (Jensen’s inequality). If X is a random vector in Rd with finite
expectation and h : Rd → R is a convex measurable function, then

E[h(X)] ≥ h(E[X]).
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A.8 Covariance and correlation

The covariance between two random variables X and Y is defined by

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

If X and Y are independent, then Cov(X, Y ) = 0, but the converse is not
necessarily true.

The (Pearson) linear correlation coefficient between X and Y is

ρ(X, Y ) = Corr(X, Y ) =
Cov(X, Y )

(Var(X)Var(Y ))1/2
=

E[XY ]− E[X]E[Y ]

σ(X)σ(Y )
. (A.3)

It always satisfies −1 ≤ ρ(X, Y ) ≤ 1 and can be viewed as a standardized
version of the covariance. It measures the linear dependence between X and Y .
We say that X and Y are uncorrelated if ρ(X, Y ) = 0, positively corelated if
ρ(X, Y ) > 0, and negatively correlated if ρ(X, Y ) < 0.

The covariance matrix Σ = Cov[X] of a random vector X = (X1, . . . , Xd)
t

is the matrix whose elements are σij = Cov[Xi, Xj], and the correlation matrix
R is the one whose elements are ρ(Xi, Xj). We can write Cov[X] = E[(X −
µ)(X − µ)t] where µ = E[X] = (E[X1], . . . ,E[Xd])

t. Any covariance matrix
must be symmetric and nonnegative definite, because for any vector a ∈ Rd,
atΣa = Cov(atX) ≥ 0. Any correlation matrix must have all its diagonal
elements equal to 1. Moreover, if Y = AX + b where A is a d× d matrix and
b is a d-dimensional vector, then E[Y] = Aµ + b and

Cov[Y] = E[A(X− µ)(A(X− µ))t] = AΣAt. (A.4)

As a special case, by taking A as the diagonal matrix with diagonal elements
c1, . . . cd, we obtain:

Proposition A.7 If X1, . . . , Xd are arbitrary random variables and c1, . . . , cd
are constants, then

E[c1X1 + · · ·+ cdXd] = c1E[X1] + · · ·+ cdE[Xd]

and

Var[c1X1 + · · ·+ cdXd] =
d∑
i=1

d∑
j=1

cicjCov(Xi, Xj)

=
d∑
i=1

c2
iVar(Xi) + 2

d∑
i=1

d∑
j=i+1

cicjCov(Xi, Xj).
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A.9 Change of Variables

A change of variables is often very convenient to transform an integral or a
probability distribution to an equivalent one that is much easier to handle. We
define it in the d-dimensional real space, but it also works more generally. Let
ϕ : Rd → Rd be a one-to-one differentiable mapping having a continuous inverse,
and let B a measurable subset of Rd. Then one can write∫

B

f(x)dx =

∫
ϕ−1(B)

f(ϕ(y))|det(J(y))|dy

where J(y) is the Jacobian of the transformation, defined as the d × d matrix
whose element (i, j) contains the derivative of the ith coordinate of x = ϕ(y)
with respect to the jth coordinate of y.

If Y is a continuous random vector in Rd, the random vector X = ϕ(Y)
has density f if and only if Y has density

g(y) = f(ϕ(y))|det(J(y))|.

As a special case, if ϕ defines a linear transformation via ϕ(y) = Ay for some
matrix A, then J(y) = A, so |det(J(y))| = |det(A)|, a constant.

A.10 Convergence of random variables

Let X1, X2, . . . be an infinite sequence of random variables and X another ran-
dom variable (or a constant). Here, all random variables are assumed to be
defined on the same probability space. Saying that this sequence converges to
X can have different meanings, which are not equivalent. We point out some of
them.

We say that Xn → X with probability 1 (or almost surely), denoted

Xn
w.p.1→ X or Xn → X w.p.1, if

P
(

lim
n→∞

Xn = X
)

= 1.

We say that Xn → X in probability, denoted Xn
p→ X, if for all ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

We say that Xn → X in distribution, denoted Xn ⇒ X, if

lim
n→∞

Fn(x) = F (x).

at all points x ∈ R where F is continuous, where F and Fn are the cdf’s of
X and Xn. Convergence in distribution is also called weak convergence. For
1 ≤ p <∞, we say that Xn → X in the Lp norm if E[|X|p] <∞, E[|Xn|p] <∞
for each n, and
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lim
n→∞

E[|Xn −X|p] = 0.

When p = 2, this is called convergence in quadratic mean, or mean-square
convergence. If Xn → X in the Lp norm then Xn → X in the Lq norm for all
q ≤ p.

Each of these modes of convergence extends directly to random vectors:
convergence of vectors is equivalent to convergence of all components of the
vector.

The next proposition summarizes some well-established relationships be-
tween these modes of convergence. They are illustrated by the diagram of Fig-
ure A.3.

Proposition A.8 Convergence with probability 1 implies convergence in proba-
bility, which implies convergence in distribution (the weakest form among those
mentioned here). Convergence in the Lp norm for some p ≥ 1 also implies con-
vergence in probability. However, convergence with probability 1 and convergence
in the Lp norm do not imply each other in any way.

convergence
w.p.1

#
"

 
!

convergence
in the Lp norm

#
"

 
!

convergence
in probability

#
"

 
!

convergence
in distribution

#
"

 
!

�
�
��

@
@
@R

-

Fig.A.3. Convergence modes

For a more detailed treatment and several additional results, see, e.g.,
Galambos (1995). For example, convergence in probability implies the exis-
tence of a subsequence of {Xn} that converges w.p.1, and with some additional
conditions it implies convergence in the Lp norm (see Proposition A.13).

Theorem A.9 (Weak convergence criterion). We have Xn ⇒ X if and only
if

lim
n→∞

E[g(Xn)] = E[g(X)]

for any bounded continuous function g : R→ R, if and only if

lim
n→∞

ϕXn(θ) = ϕX(θ),

where ϕX denotes the characteristic function of X.
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Theorem A.10 (Continuous mapping theorem). If a sequence of random
vectors {Xn = (Xn,1, . . . , Xn,d), n ≥ 1} converges in distribution to a random
vector X = (X1, . . . , Xd) when n→∞, then for any function g : Rd → R such
that the probability that X falls exactly on a discontinuity of g is zero, we have
g(Xn) ⇒ g(X).

By taking g(x, y, z) = yx+ z in the previous result, we obtain:

Theorem A.11 (Slutsky’s theorem). If Xn ⇒ X, Yn ⇒ a, and Zn ⇒ b
for some constant a and b, and all these random variables are defined on the
same probability space, then YnXn + Zn ⇒ aX + b.

Theorem A.12 (Anscombe’s theorem). Suppose Xn ⇒ X and Nn
w.p.1→ ∞,

where Nn is a positive integer and Nn+1 ≥ Nn for all n. If Nn/n ⇒ c for
some constant c > 0, then XNn ⇒ X. The result also holds if the condition
“Nn/n ⇒ c” is replaced by: “{Xn, n ≥ 0} and {Nn, n ≥ 0} are independent
sequences.”

Definition A.1 A family of random variables {Yi, i ∈ I}, where I is an
arbitrary set, is uniformly integrable if

lim
k→∞

sup
i∈I

E [|Yi| I[|Yi| > k]] = 0.

A sufficient condition for uniform integrability is that supi∈I E
[
|Yi|1+δ

]
< ∞

for some constant δ > 0. �

Proposition A.13 Suppose Xn ⇒ X. Then Xn → X in the Lp norm if and
only if {|Xn −X|p, n ≥ 0} is uniformly integrable.

A.11 Convergence of probability measures

Convergence of sequences of random variables is a special case of the notion
of convergence of sequences of measures in general; see, e.g., Billingsley (1968).
This general theory can provide more general central limit theorems, among
other things. We recall the following concept:

Definition A.2 The total variation distance between two probability measures
P and Q on (Ω,F) is defined as

d(P,Q) = sup
B∈F
|Q(B)− P(B)| .

A sequence of measure {Pn, n ≥ 0} converges in total variation to a measure P
if limn→∞ d(Pn,P) = 0. �
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A.12 Point Estimation

Suppose we want to estimate an unknown quantity ν by some random variable
X with expectation µ = E[X] and variance σ2 = Var[X]. The difference β =
µ− ν is called the bias of the estimator X. If β = 0, the estimator is unbiased.

If X1, . . . , Xn are independent realizations of X, then X1, . . . , Xn is called a
sample of independent and identically distributed random variables (or an i.i.d.
sample). We define the sample mean (or empirical mean) by

X̄n =
1

n

n∑
i=1

Xi

and the sample variance by

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2 =
1

n− 1

n∑
i=1

X2
i −

n(X̄n)2

n− 1
.

It is easy to verify that

E[X̄n] = µ and E[S2
n] = σ2,

so X̄n and S2
n are unbiased estimators of µ and σ2.

The variance of X̄n is σ2/n and it can be estimated by S2
n/n. If (X1, Y1), . . . ,

(Xn, Yn) is an i.i.d. sample of (X, Y ), then an unbiased estimator of Cov[X, Y ]
is given by

Ĉov[X, Y ] =
1

n− 1

n∑
i=1

(Xi − X̄n)(Yi − Ȳn).

An infinite sequence of estimators {Yn, n ≥ 1} is often denoted simply by
Yn. For example, we sometimes use X̄n and S2

n to denote infinite sequences
indexed by n. With this abuse of notation, when n → ∞, we say that Yn is
asymptotically unbiased if E[Yn − µ] → 0, consistent if Yn → µ in probability,

and strongly consistent if Yn
w.p.1→ µ.

Example A.8 If µ = E[Xi] and σ2 = Var[Xi] < ∞, then X̄n is strongly
consistent for µ and S2

n is strongly consistent for σ2. �

The two theorems that follow are key results in probability theory. The first
one says that the average of i.i.d. random variables converges strongly to their
expectation when the latter is finite, but tells nothing about the convergence
speed. The second result provides information about the convergence speed.
Proofs can be found in Billingsley (1986), pages 290 and 367.

Theorem A.14 (Strong law of large numbers). If X1, X2, . . . are i.i.d. with

E[Xi] = µ finite, then X̄n
w.p.1→ µ when n→∞.
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Theorem A.15 (Central-limit theorem (CLT)). If X1, X2, . . . are i.i.d.,
E[Xi] = µ, and Var[Xi] = σ2 <∞, then

X̄n − µ
Sn/
√
n
⇒ X̄n − µ

σ/
√
n
⇒ Z ∼ N(0, 1) when n→∞,

i.e., for all x ∈ R,

P
(
X̄n − µ
Sn/
√
n
≤ x

)
→ Φ(x)

where Φ is the cdf of a N(0, 1) random variable.
More generally, if X1,X2, . . . are i.i.d. random vectors with E[Xi] = µ and

Cov[Xi] = Σ (finite), then

√
n(X̄n − µ) ⇒ Z ∼ N(0,Σ),

the multivariate normal distribution with mean 0 and covariance matrix Σ.

Theorem A.15 guarantees convergence of the standardized average to the
normal distribution, but how fast does this convergence occurs? The following
version of the Berry-Esseen theorem, proved in Katz (1963), bounds the error
made when we approximate the cdf Fn of the Student statistic

Tn =
√
n(X̄n − µ)/Sn,

defined by Fn(x) = P[Tn ≤ x], by the standard normal cdf Φ. It shows that this
error converges uniformly as O(n−1/2). The result also holds if we replace Sn by
σ.

Theorem A.16 (Berry-Esseen inequality). Under the assumptions of Theo-
rem A.15, if E[|Xi − µ|3] = β3, there is a constant c ≤ 0.7056 such that

sup
x∈R, n≥2

√
n|Fn(x)− Φ(x)| ≤ c

β3

σ3
.

This result can be generalized in many ways, for example to the case where
the Xi’s are not identically distributed; then, σ2 and β3 in the bound must
be replaced by the average variance and the average third absolute centered
moment, and c ≤ 6 (Feller 1971).

A.13 Confidence intervals

The accuracy of X̄n as an estimator of µ is often assessed via a confidence
interval (CI) for µ. A random interval [I1, I2] is a CI at (confidence) level 1−α
(or a 100(1 − α)% CI) for µ if P[I1 ≤ µ ≤ I2] = 1 − α. The boundaries I1 and
I2 of the CI, and its width I2 − I1, are random variables.
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Often, the CI is constructed for a given target or nominal level 1 − α, but
its true coverage probability P[I1 ≤ µ ≤ I2] may differ from 1 − α and is often
unknown. The difference P[I1 ≤ µ ≤ I2]− (1− α) is the coverage error.

Ideally, a good CI should have (a) (approximately) the correct coverage and
(b) small values of E[I2 − I1] and Var[I2 − I1].

A CI (In,1, In,2) that depends on the sample size n is asymptotically valid if
its coverage error converges to 0 when n→∞.

For a fixed confidence level 1−α, the CLT tells us that for n large enough,
if z1−α/2 = Φ−1(1− α/2) (i.e., Φ(z1−α/2) = 1− α/2), then

P[|X̄n − µ| ≤ z1−α/2Sn/
√
n] ≈ 1− α.

In this case, a CI at (approximate) level 1− α is given by

[In,1, In,2] = [X̄n − z1−α/2Sn/
√
n, X̄n + z1−α/2Sn/

√
n].

For example, for α = 0.05, we have z1−α/2 ≈ 1.96.
When n→∞, the width of the CI is asymptotically proportional to σ/

√
n,

so it converges as O(n−1/2).
When n is small, the central-limit theorem cannot be invoked, but if the

Xi’s are i.i.d. normal, then we can use the following:

Theorem A.17 ( Convergence to Student and chi-square distributions). If
X1, . . . , Xn are i.i.d. N(µ, σ2), then
(i) X̄n and S2

n are independent;
(ii) (n− 1)S2

n/σ
2 has the chi-square distribution with n− 1 degrees of freedom;

(iii)
√
n(X̄n−µ)/Sn has the Student-t distribution with n−1 degrees of freedom.

Part (iii) of this theorem permits one to compute a CI for µ at (exact) level
1− α:

[X̄n − tn−1,1−α/2Sn/
√
n, X̄n + tn−1,1−α/2Sn/

√
n]

where P[Tn−1 ≤ tn−1,1−α/2] = 1 − α/2 and Tn−1 has the Student distribution
with (n−1) degrees of freedom, which is approximately N(0, 1) when n is large.
Part (ii) can be used to compute a CI for σ2: select x1 and x2 such that

P[x1 < χ2
n−1 < x2] = 1− α,

and put
[In,1, In,2] = [(n− 1)S2

n/x2, (n− 1)S2
n/x1].

We have

P[In,1 ≤ σ2 ≤ In,2] = P[(n− 1)S2
n/x2 ≤ σ2 ≤ (n− 1)S2

n/x1]

= P[x1 ≤ (n− 1)S2
n/σ

2 ≤ x2]

= 1− α.

It is important to recall that all of this is valid only if the Xi’s have the normal
distribution. Otherwise, these intervals can be used as approximations if the Xi’s
are independent and have a distribution that is not too far from the normal (in
particular, it should not be too asymmetric).
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A.14 Large deviations

♣ To be done.

A.15 Statistical tests of hypotheses

In a statistical test of hypothesis, one selects a null hypothesis H0, which could
be any hypothesis made about the stochastic model, and a random variable Y ,
called the test statistic, whose distribution is known (or can be well approx-
imated) when H0 is true. Then, a realization of Y is obtained and we judge
if it seems reasonable that this value of Y was generated from the theoretical
distribution of Y under H0. If not, i.e., if the value is much too large or much
too small, then we say that we reject H0.

Suppose the realization of Y is y. We then define the p-value of the test as
p = P[Y ≥ y | H0]. This p-value is in fact a random variable whose outcome is
revealed when we perform the experiment for the test. If Y has a continuous
distribution, then the p-value is uniformly distributed in the interval (0, 1) under
H0. A popular practice is to select a priori a significance level α > 0 (e.g., 0.05 or
0.01) and reject H0 when p < α (for a single-sided test) or when p is outside the
interval [α/2, 1− α/2] (for a two-sided test). The power of the test is then the
probability β of rejecting H0 when it is false; this probability depends on what
is actually true. The probability of rejecting H0 when it is true is α. Usually,
β < 1 and α > 0, so there can be a wrong decision in either direction.

Perhaps a better approach is to avoid fixing a threshold α a priori and simply
report the p-value. This provides more information. In any case, whatever is the
p-value, a statistical test never proves that H0 is true or false. It only provides
statistical evidence against it, or for it. On the other hand, the evidence against
H0 is sometimes very strong, for example if the p-value is smaller than 10−15,
which happens frequently when applying statistical tests to random number
generators.

Example A.9 Suppose we throw n balls randomly and independently in r
boxes, where each ball has probability p̃j of falling in box j, for j = 1, . . . , r.
We are not sure about the p̃j’s, but we have reasons to believe that p̃j = pj for
each j, where the pj’s are fixed, and want to test this hypothesis. Let Xj be the
number of balls falling in box j in our experiment and let oj = npj = E[Xj | H0].
The chi-square test statistic in this context is

Y =
r∑
j=1

(Xj − oj)2

oj
.

Its distribution under H0 is approximately chi-square with r − 1 degrees of
freedom if oj is large enough (e.g., > 5) for all j (see, e.g., Read and Cressie
1988). So if Y takes the value y, we can compute the p-value (approximately)
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by p = 1 − F (y) where F is the distribution function of a chi-square random
variable with r − 1 degrees of freedom. �

A.16 Stochastic processes

A stochastic process is a family {Yt, t ∈ I} of random variables (or vectors)
defined on the same probability space. The index is often interpreted as the
time. The process is continuous-time if I is continuous (e.g., I = [0,∞)), and
discrete-time if I is discrete (e.g., I = {0, 1, 2, . . .}). When I is continuous, we
often denote Yt by Y (t).

A stochastic process is Markovian if, conditionally on its present value Yt
at time t, its future is independent of its past. More precisely, this means that
for any random variable X that can be written as a function of {Ys, s > t}, the
distribution of X conditional on {Ys, s ≤ t} is the same as that conditional on
Yt. In other words, the process is Markovian if Yt contains enough information
to generate its future without looking further in the past. A process can always
be made Markovian by putting enough information in the state Yt. Of course,
this would generally enlarge the size of the state space. When the index set
I is the set of non-negative integers {0, 1, . . .}, the Markov process is called a
(discrete-time) Markov chain.

For a stochastic process {Yj, j = 0, 1, . . .}, σ-field generated by Y0, . . . , Yt,
denoted Ft = σ(Y0, . . . , Yt), represents all the information that can be de-
duced by observing the trajectory of the process up to step t. Similarly, for a
continuous-time process {Yt, t ≥ 0}, the σ-field Ft generated by {Ys, 0 ≤ s ≤ t}
represents all the information that can be deduced from the observation of
{Ys, 0 ≤ s ≤ t}. In both cases, the family {Ft, t ≥ 0} is called a filtration.
It can be viewed as a filter that leaks information on the sample path as time
goes on. A random variable is Ft-measurable if its value can always be com-
puted from the information contained in Ft (without looking in the future, in
particular).

A random variable T (discrete or continuous) is a stopping time with respect
to the filtration {Ft, t ≥ 0} if T is FT -measurable, i.e., if the value of T is known
by the time it is reached. For a rigorous mathematical coverage of these topics,
see, e.g., Billingsley (1986).

A.17 Renewal processes

Let Y1, Y2, . . . be a sequence of i.i.d. random variables, S0 = 0, and Sn = Y1 +
· · ·+Yn for n ≥ 1. We can interpret the Sn’s as renewal epochs for a continuous-
time process, and the Yj’s as times between renewals, as follows. Let N(t) =
max{n ≥ 0 | Sn ≤ t} denote the number of renewals during the time interval
[0, t]. The process {N(t), t ≥ 0} is called a renewal process. As a special case,
if each Yj is exponential with mean 1/λ, the renewal process is a stationary
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Poisson process with rate λ. In that case, for all t, N(t) is a Poisson random
variable with mean λt.

At a given epoch t, the times of the last renewal and of the next renewal
are SN(t) and SN(t)+1, respectively. Call the time interval (Sj−1, Sj] the jth
renewal cycle and suppose a cost Xj is incurred during that cycle, where the
Xj’s are i.i.d. and Xj is independent of {Y`, ` 6= j}. The total cost for the first
n cycles is Vn =

∑n
j=1Xj, and the total cost until time t is V (t) = VN(t). Let

v(t) = E[V (t)]. (The costs may also be interpreted as rewards instead.)

Theorem A.18 (Renewal reward theorem.) Suppose that 0 < E[Yj] <∞ and
E[|Xj|] <∞. Then,

v̄
def
= lim

t→∞

E[VN(t)]

t
= lim

t→∞

E[VN(t)+1]

t
=

E[Xj]

E[Yj]
; (A.5)

and

v̄
w.p.1
= lim

t→∞

VN(t)

t
= lim

t→∞

VN(t)+1

t
. (A.6)

A proof can be found in Wolff (1989). Eq. (A.5) is called the expected value
version of the renewal reward theorem, while (A.6) is the sample path version.
Note that all expressions in (A.5) are deterministic, whereas the expressions in
(A.6) (except for v̄) are random variables. The special case of this theorem where
Xj = 1 for all j is the elementary renewal theorem. The above analysis and the
theorem also hold if Y1 and X1 have a different distribution than the other Yj’s
and Xj’s. This occurs when the process does not start at the beginning of a
renewal cycle.

Theorem A.19 (Wald identity.) Let X1, X2, . . . be independent random vari-
ables with common mean E[Xj] = E[X1], suppose supj≥1 E[|Xj|] < ∞, and let
N be a stopping time with respect to filtration generated by {Xj, j ≥ 1} (this
means that {N ≥ n} is independent of (Xn, Xn+1, . . .) and P[N <∞] = 1) and
such that E[N ] <∞. Then

E

[
N∑
j=1

Xj

]
= E[X1]E[N ].

More general versions of this theorem allow dependence between the Xi’s
and N does not necessarily have to be a stopping time, but some other technical
conditions are needed.
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A.18 Markov chains

A.18.1 Discrete-time Markov chains

Discrete-time Markov chains (DTMC) are an important class of Markovian
processes for which the time index is I = {0, 1, 2, . . .}. We consider the case
of a stationary (or time-homogeneous) DTMC {Yn, n ≥ 0} with denumerable
state space Y = {0, 1, 2, . . .} (we can just enumerate the states that way). The
(one-step) transition probabilities are

pi,j = P[Yn+1 = j | Yn = i]

for all i, j ∈ Y (they do not depend on n) and the k-step transition probabilities
are defined as

p
(k)
i,j = P[Yn+k = j | Yn = i].

The transition probability matrix is the matrix P whose element (i, j) is pi,j. One

can show that the matrix whose element (i, j) is p
(k)
i,j is Pk, the matrix P raised

to the power k. Let pj = P[Y0 = j] (the initial-state probabilities) and p
(k)
j =

P[Yk = j]. Define the row vectors p = (p0, p1, . . .) and p(k) = (p
(k)
0 , p

(k)
1 , . . .).

Then we have p(k) = pPk (here we use row vectors instead of column vectors
for convenience and compatibility with standard notation).

Two state i and j are said to communicate if p
(k)
i,j > 0 for some k > 0

and p
(`)
j,i > 0 for some ` > 0. The DTMC is called irreducible if all states

communicate. A state j is said to be recurrent if when we are in that state,
the probability that we return to it is 1, and positive recurrent if the expected
number of steps required for this return, denoted νj, is finite. For an irreducible
chain, if one state is positive recurrent, then all states are positive recurrent.

Theorem A.20 (Steady-state probabilities). If the DTMC is irreducible, then
all states are positive recurrent if and only if there is a unique probability (row)
vector π = (π0, π1, . . .) (whose elements are all non-negative and sum to 1) that
satisfies the linear system

πP = π. (A.7)

Moreover, πj = 1/νj for all j.

We now assume that the DTMC is irreducible and positive recurrent. The
vector π is called the vector of steady-state probabilities (or the stationary

distribution). If we select the initial state Y0 with the initial probabilities p
(0)
j =

P[Y0 = j] = πj for all j, then we have p
(k)
j = P[Yk = j] = πj for all k an j, and

πj represents the fraction of the steps that we spend in state j, in the long run.
If we partition the state space in two sets, say B and B̄, the fraction of the

transitions that go from B to B̄ must be the same as that going from B̄ to B,
in the long run. In particular, the fraction of transitions leaving any given state
must be the same as that going into that state. However, if we pick any two
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states i and j, there could be much more transitions going from i to j than from
j to i, or vice-versa. When the two are equal in the long run, that is, when we
have

πipi,j = πjpj,i (A.8)

for all pairs of states (i, j), we say that the chain is reversible. Such a chain
can be simulated backward while keeping the same probability distribution over
sample paths, if we initialize the state from the steady-state distribution and
look at the sample paths in reverse when simulating backward. Any probability
vector π on Y that satisfies (A.8) is said to be reversible for the chain. An
important result states that any reversible probability vector must be equal to
the vector of steady-state probabilities. This is often useful to show that a given
vector π is a solution to (A.7): it suffices to show that it is reversible (Häggström
2002).

A state i is periodic with period d if p
(n)
i,i = 0 whenever n is not a multiple

of d, and d is the largest integer for which this property holds. When the period
is d = 1, the state is called aperiodic. In an irreducible DTMC, all states have
the same period. If state i has period d, then limk→∞ p

(kd)
i,i = dπi.

For the case where d = 1 for an irreducible positive recurrent chain, we have
limk→∞ p

(k)
i,j = limk→∞ p

(k)
j = πj for all (i, j), and the total variation distance

between p(k) and π converges at a geometric (or exponential) rate, regardless
of p(0); that is,

sup
i,j

∣∣∣p(k)
i,j − πj

∣∣∣ ≤ Kρk (A.9)

for some constantsK > 0 and ρ < 1. This geometric convergence actually occurs
under a more general condition, called the Doeblin condition: There exists an
integer k0, a constant δ > 0, and a probability distribution p = (p0, p1, . . .) on

the states, such that p
(k0)
i,j ≥ δpj for all states i, j. If the chain is irreducible and

this condition holds, then we have a geometric convergence of the total variation
distance, with ρ = (1− δ)1/k0 .

Suppose that at step n, we incur a cost (or reward) Cn whose distribution
may depend on (Yn−1, Yn) but not on n, and not on other states conditionally on
(Yn−1, Yn), and the random variables C1, C2, . . . are independent conditionally
on {Yn, n ≥ 0}. Let ci,j = E[Cn | Yn−1 = i, Yn = j] and ci = E[Cn | Yn−1 =
i] =

∑∞
j=0 pi,jci,j. Let i be an arbitrary (positive recurrent) state, let Y0 = i,

and let Tii = inf{n > 0 | Yn = i}. We have E[Tii] = νi = 1/πi. We can view
each return to i as marking the end of a regenerative cycle. Then, the renewal
reward theorem gives us:

Theorem A.21 (Renewal reward theorem). Suppose Y0 = i and E
[∑Tii

n=1 |Cn|
]
<

∞. Then, the average cost per step in the long run obeys:

lim
n→∞

1

n

n∑
j=1

Cj
w.p.1
= lim

n→∞

1

n

n∑
j=1

E[Cj] =
∞∑
i=0

πici
def
= ν. (A.10)
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The leftmost expression in (A.10) is a random variable and the other expres-
sions are constant (i.e., deterministic). The last sum is the steady-state average
cost. It does not depend on i.

Suppose now that there is a set of absorbing states A ⊂ {0, 1, . . .} such that
the chain stops at step TA = inf{n > 0 | Yn ∈ A}. The total expected cost until
absorption, when starting in state Y0 = i, is

vi
def
= E

[
TA∑
n=1

Cn | Y0 = i

]
for i 6∈ A and vi = 0 for i ∈ A. In particular, if the one-step cost is 1 when we
reach a state in some fixed set A′ ⊂ A, and 0 otherwise, then vi represents the
probability of reaching A′ before A \ A′, when starting from i.

Theorem A.22 If P[TA <∞ | Y0 = i] = 1 for all i, then the vi’s are the unique
finite solution to the linear system

vi =
∞∑
j=0

pi,j[ci,j + I(j 6∈ A) vj] = ci +
∑
j 6∈A

pi,jvj, i = 0, 1, . . .

A.18.2 Continuous-time Markov chains

A stationary continuous-time Markov chain (CTMC) with state-space Y =
{0, 1, 2, . . .} is a continuous-time process {Y (t), t ≥ 0} for which

P [Y (s+ t) = j | {Y (u), 0 ≤ u ≤ s}] = P [Y (s+ t) = j | Y (s)]

and does not depend on s. This implies that the process is Markovian, and we
can define

Pi,j(t) = P[Y (s+ t) = j | Y (s) = i].

These probabilities satisfy the Chapman-Kolmogorov equations:

Pi,j(s+ t) =
∞∑
k=0

Pi,k(s)Pk,j(t),

together with
∑∞

j=1 Pi,j(t) = 1. We assume from now on that our CTMC is a
pure jump process, with a strictly positive and finite sojourn time whenever it
visits a state. Under this assumption, it can be shown that each sojourn time to
a state i is exponential with some rate λi > 0. This λi is the jump rate out of that
state. Moreover, the next state is j with some probability pi,j, independently
of the sojourn time. So if 0 = T0 < T1 < T2 < . . . are the jump times of the
CTMC, and if we put Yn = Y (Tn) for n ≥ 0, then {Yn, n ≥ 0} is a DTMC
with transition probabilities pi,j. We call it the embedded DTMC. We also have
that conditionally on {Yn, n ≥ 0}, the sojourn times {Tn − Tn−1, n ≥ 0} are
independent random variables and Tn − Tn−1 is exponential with rate λYn−1 .
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When in state i, the jump rate of the CTMC is λi and its jump rate to state
j is λi,j = λipi,j. Define λi,i = −λi. The matrix A whose element (i, j) is λi,j is
known as the infinitesimal generator of the CTMC.

We say that the CTMC is irreducible if for all pairs of states (i, j), Pi,j(t) > 0
for some t > 0. This holds if and only if the DTMC is irreducible. The CTMC
is regular if for any initial state Y (0) and any finite time interval, the number
of transitions in that time interval is finite w.p.1. A sufficient condition for
regularity is that λi ≤ λ for all i, for some constant λ <∞. When this condition
holds, we can simulate the CTMC by generating jump times from a stationary
Poisson process with rate λ. A jump that occurs when the process is in state
i provokes a true transition with probability λi/λ (to state j with probability
λi,j/λ), and is ignored (or considered as a transition to state i) with probability
1− λi/λ. This technique is known as uniformization of the chain.

The CTMC is positive recurrent if from any state i, the expected time to
return to i is finite. The key renewal theorem states that for a positive recurrent
CTMC, for all pairs (i, j),

lim
t→∞

Pi,j(t) = qj,

where qj is a constant that also represents the fraction of the time that the
CTMC spends in state j, in the long run. The overall rate of occurrence of
jumps from i to j is then qiλi,j, and the rate of occurrence of jumps out of
state i is qiλi. The jump rate into state i must also equal this value, because
the absolute difference between these two numbers of jumps is at most 1. More
generally, if we split the state space in two, say B ⊂ Y and B̄ = Y \ B, then
the overall jump rate from B to B̄ must be the same as that from B̄ to B. By
equaling those rates, we get the balance equation:∑

i∈B

∑
j∈B̄

qiλi,j =
∑
i∈B̄

∑
j∈B

qiλi,j.

To find the state probabilities qi, we can select a collection of subsets B in a
way that the corresponding balance equations are easy to solve and provide a
unique solution, and then solve this linear system of equations. This method is
often used to derive explicit formulas for the qi’s.

Suppose that costs are accumulated at rate γ(i) when the CTMC is in state
i. Then the total cost during the time interval [0, t] is V (t) =

∫ t
0
γ(Y (t))dt. If∑∞

i=0 |γ(i)|qi <∞, then the average cost per unit of time in the long run obeys

lim
t→∞

V (t)

t

w.p.1
=

∞∑
i=0

qiγ(i).

Suppose now that a cost κ(i) is incurred each time we jump to state i. Then the
total cost during [0, t] is V (t) =

∑∞
n=1 κ(Yn)I[Tn ≤ t]. If

∑∞
i=0 |κ(i)|λiqi < ∞,

then the average cost per unit of time in the long run obeys

lim
t→∞

V (t)

t

w.p.1
=

∞∑
i=0

κ(i)qiλi.
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A birth-and-death process is a CTMC with state space Y = {0, 1, 2, . . .},
with jump rates λj,j+1 = λj, λj,j−1 = µj, and λi,j = 0 when j is neither i− 1 or
i+1, or j < 0. Here, the embedded DTMC has period 2. By writing the balance
equations λjqj = µj+1qj+1 for all j ≥ 0, we find that qj = bjq0, where b0 = 1
and bj = λ0 · · ·λj−1/[µ1 · · ·µj] for j ≥ 1. Since the qj’s must sum to 1, we have
q0 = 1/

∑∞
j=0 bj, provided that this sum is finite (otherwise, the process is not

positive recurrent).

♣ Add figure.

A.18.3 Markov chains on general state spaces

♣ To be done. See Meyn and Tweedie (1993). Stability. Harris recurrence.
Ergodicity. Geometric ergodicity.

A.19 Queueing notation and formulas

When customers arrive at a service facility faster than the servers can handle
them, a queue of waiting customers may form in front of the facility. Usually,
the queue is due to randomness in the arrival and service times, and is only
temporary (it eventually disappears, then reappears, and so on). A queueing
system is comprised of a customer population, an arrival process for the cus-
tomers, and a service facility with one or more servers. When all servers are
busy, arriving customers must wait in the queue. The queueing discipline is
often first-come first-served (FCFS), but there are many other possibilities such
as last-come first-served (LCFS), shortest-job first, ordering by priorities, ser-
vice in random order, and so on. In a single-server queue, FCFS and LCFS are
equivalent to first-in first-out (FIFO) and last-in first-out (LIFO), respectively,
but this is not necessarily true when there are many servers, because the order
in which customers leave may differ from the order in which they start service.
The capacity of the system (maximal number in queue or in service), and the
size of the population (total number of potential customers), could be infinite
or finite. When the system is filled to its capacity, all arrivals are lost. If the
capacity equals the number of servers, there is never a queue and we speak of a
loss system. Some models consider possible abandonment of customers already
in the queue (reneging) or upon arrival when they think the queue is too long
(balking).

A standard nomenclature to specify queueing systems (or models) is the
Kendall notation, in which A/B/s/K means a system where the interarrival
times between successive customers has distribution type A, service times have
distribution type B, there are s identical servers, and the system has capacity
K (assumed to be infinite when the parameter K is omitted). When specifying
the interarrival and service time distributions, G means a general (unspeci-
fied) distribution, GI means general and independent (used for the interarrival
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times, since the independence is usually implicit for the service times), M means
Markovian (which means i.i.d. and exponentially distributed), and D means de-
terministic (a constant).

Classical references on queueing models include Gross and Harris (1998),
Kleinrock (1975), Kleinrock (1976), Wolff (1989).

Example A.10 AnM/M/s queue has i.i.d. exponential interarrival times, i.i.d.
exponential service times, s servers, and infinite capacity. An M/M/1 queue is
a special case, with a single server. A GI/G/1 queue has i.i.d. interarrival times
with arbitrary distribution, i.i.d. service times with arbitrary distribution, and
a single server. �

For a queueing system operating in steady-state, we use the following no-
tation:

λ average arrival rate (inverse of the mean time between arrivals)
µ mean service rate (inverse of the mean service time)
r = λ/µ: traffic intensity, or load (in Erlangs)
s number of identical servers
ρ = λ/(sµ): average server utilization (fraction of the time a server

is busy, in the case where no customer is lost)
w average waiting time in the queue, per customer
q average queue length (number of waiting customers), with respect

to time
` average number of customers in the system (waiting or being

served)
W waiting time of a random customer, in steady-state
δ = P[W > 0]: delay probability (fraction of customers not served

immediately)

A key relationship is Little’s formula (see Kleinrock 1975, pages 187–190):

q = λw. (A.11)

It says that the average number of customers in the queue is the arrival rate
multiplied by the average time spent in the queue. The intuitive interpretation
is that over a very long time interval of length t, the total waiting time of all
customers during that interval is on the one hand the integral of the queue
length over that interval, which is approximately qt, and on the other hand it is
approximately the total waiting time of all customers who arrived during that
interval, which is approximately λtw. It is important to observe that this formula
applies to any subsystem of the queueing system, and to any subnetwork in the
case of a queueing network. In general, we can replace λ by the arrival rate
to the subsystem, w by the average time a customer spends in the subsystem,
and q by the average number in the subsystem. In particular, if we consider the
customers in the entire system (waiting or being served), we get the variant

` = λ(w + 1/µ).
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The M/M/s queue evolves as a birth-and-death process whose state is the
number of customers in the system, and its steady-state probabilities are easily
obtained using the general formulas for birth-and-death processes. We get the
Erlang-C formula for the delay probability:

δ = P[W > 0] =

rs

(s− 1)!(s− r)
rs

(s− 1)!(s− r)
+

s−1∑
i=0

ri

i!

. (A.12)

When λ → ∞, s → ∞, and (1 − ρ)
√
s → β for 0 < β < 1, then (Halfin and

Whitt 1981)

1/δ → 1 + βΦ(β)/φ(β), (A.13)

where Φ and φ are the standard normal distribution and density functions.
The right side of (A.13) is the Halfin-Whitt approximation. It is often used to
approximate the value of s required for a given δ; this approximation gives the
square root safety staffing formula s ≈ r + β

√
r.

Given that a customer must wait, in the M/M/s queue, its conditional
waiting time in queue is exponential with mean 1/(sµ− λ). The probability of
waiting more than x, for x ≥ 0, is then

P[W > x] = P[W > 0] exp[−(sµ− λ)x]. (A.14)

We also have w = δ/[µs(1−ρ)]. When s = 1 (the M/M/1 queue), this simplifies
to δ = ρ = λ/µ and w = ρ/[µ(1− ρ)].

For an M/M/s/K queue, the probability qj that there are j customers in
the system is

qj = q0r
j/j! for j = 1, . . . , s,

qj = q0

(
r

s

)j−s
rs/s! for j = s+ 1, . . . , K,

where

1

q0

=
s∑
j=0

rj

j!
+
rs

s!

K−s∑
j=1

(
s

r

)j
.

The fraction of customers who are lost is λ(1− qK). The average queue length
is

q =
K∑

j=s+1

(j − s)qj.

For an M/G/1 queue, the delay probability is still δ = ρ, and w can be com-
puted by the Pollaczek-Khintchine (P-K) mean value formula for the average
waiting time (Kleinrock 1975):
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w =
λE[S2]

2(1− ρ)
=

ρ

µ(1− ρ)

1 + c2
s

2
, (A.15)

where cs is the coefficient of variation of a customer’s service time. If we multiply
this equation by λ and use Little’s law, we obtain the P-K formula for q.

♣ Abandonments: Erlang-A formulas

♣ Jackson networks



B. Bachmann-Landau (or big O and little o)

notation

Given two real-valued functions f : R→ R and g : R→ R, we say that

f(x) = O(g(x)) as x→∞

if and only if there is a finite constant K > 0 and a real number x0 such that
|f(x)| ≤ K |g(x)| for all x > x0. Sometimes, the functions are defined only on
a subset of the real numbers; then we consider only the values of x that belong
to that subset. In particular, when x can only non-negative integer values, we
usually replace x by n and say f(n) = O(g(n)).

Similarly, for an arbitrary constant a (usually a = 0),

f(x) = O(g(x)) as x→ a

if and only if there is a finite constant K > 0 and a real number δ such that
|f(x)| ≤ K |g(x)| whenever |x− a| < δ.

Usually, the “x→∞” or “x→ a” is clear from the context and is omitted.
For example, f(n) = 42/n+O(1/n2) means that f(n)−42/n is upper bounded
by a quantity that converges at least as fast as K/n2 for some constant K when
n→∞.

As another example, if we say that algorithm takes O(n log n) time and
O(n2) space in the worst-case, this means that there is a constant K and some
integer n0 such that for any problem instance of size n ≥ n0 (the meaning of
“size” is problem-dependent), the algorithm will solve the problem in less than
Kn log n units of time and using less than Kn2 units (e.g., bytes) of memory.

If f(x) = O(g(x)) and g(x) = O(f(x)), then we say that f(x) = Θ(g(x)).
We say that

f(x) = o(g(x)) as x→∞

if and only if lim supx→∞ |f(x)/g(x)| = 0. That is, if for any ε > 0, there is
a real number x0 such that |f(x)| ≤ ε |g(x)| for all x > x0. For an arbitrary
constant a,

f(x) = o(g(x)) as x→ a

if and only if lim sup|x−a|→0 |f(x)/g(x)| = 0. The interpretation is that |f(x)|
converges to 0 much faster than g(x), or increases much slower than |g(x)|, when
x→∞ (or when x→ a).
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Some authors prefer to write f(x) ∈ O(g(x)) instead of f(x) = O(g(x)),
and this makes more sense because O(g(x)) is actually the set of functions f
for which the property holds. The same applies to Θ and o. But even though
f(x) = O(g(x)) is an abuse of notation, it is more standard and well encrusted.
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Index

Ft-measurable, 23
σ-field, 3
z-transform, 11

abandonment, 29
absolutely continuous, 6
absorbing state, 27
almost surely, 4
Anscombe’s theorem, 18

balance equations, 28
balking, 29
Berry-Esseen theorem, 20
bias, 19
birth-and-death process, 29
Borel σ-field, 4

cdf, 7
central-limit theorem, 19
change of measure, 6
Chapman-Kolmogorov equations, 27
characteristic function, 11, 17
chi-square test, 22
coefficient of asymmetry, 10
coefficient of variation, 9
conditional expectation, 12
conditional probability, 4, 5, 12
confidence interval, 20
confidence level, 20
consistent, 19
continuous distribution, 7, 14
continuous mapping theorem, 17
continuous random variable, 7
convergence
– almost surely, 16
– geometric, 26
– in Lp norm, 17, 18
– in distribution, 16

– in probability, 16

– in quadratic mean, 17

– in total variation, 18, 26

– mean square, 17

– of random variables, 16

– weak, 16

– with probability 1, 16

correlated, 15

correlation coefficient, 15

correlation matrix, 15

counting measure, 6, 8

covariance, 15

covariance

– sample, empirical, 19

covariance matrix, 15

coverage error, 20

coverage probability, 20

cumulant-generating function, 11

cumulative distribution function, 7

density, 6, 7

discrete distribution, 8, 14

discrete random variable, 8

distribution

– chi-square, 21

– normal, 10

– Student, 21

distribution function

– multivariate, 13

distribution function

– marginal, 13

dominated convergence theorem, 6

embedded discrete-time chain, 27

Erlang-C formula, 31

event, 3

exponential twisting, 11

37
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failure rate, 8
FCFS, 29
FIFO, 29
filtration, 23

generating function, 11

Halfin-Whitt approximation, 31
heavy-tailed distribution, 11

i.i.d., 19
independent, 13
independent events, 4
integral, 5
interchange of limit and integral, 6

Jensen’s inequality, 14

key renewal theorem, 28
kurtosis coefficient, 10

Laplace transform, 11
large deviations, 22
law of large numbers
– strong, 19
LCFS, 29
Lebesgue integral, 5
Lebesgue measure, 4, 6
LIFO, 29
linear dependence, 15
Little’s formula, 30
loss system, 29

marginal distribution, 13
Markov chain, 23, 25
Markov chain
– continuous-time, 27
– discrete-time, 25
– infinitesimal generator, 28
– irreducible, 25
– positive recurrent, 25, 28
– recurrent, 25
– regular, 28
– reversible, 26
– state communication, 25
– stationary, 25
– steady-state probabilities, 25
– transition probabilities, 25
Markovian process, 23
mathematical expectation, 8

mean
– sample, empirical, 19
measurabe space, 3
measurable function, 5, 7
measurable set, 3
measure theory, 4
mgf, 10
moment-generating function, 10
moments (of a random variable), 10
monotone convergence theorem, 6
multivariate distribution, 13
mutually independent, 13

nominal level, 20
normal distribution, 10
null hypothesis, 22

pairwise independent, 4, 13
periodic state, 26
Poisson process, 24
probability, 3
probability density, 14
probability distribution, 7
probability generating function, 11
probability mass function, 8, 14
probability measure, 3
probability space, 3

queueing system, 29
queueing system
– M/G/1, 31
– M/M/s, 31
– M/M/s/K, 31
– average queue length, 30
– average waiting time, 30
– capacity, 29
– delay probability, 30
– Kendall notation, 29
– server utilization, 30
– traffic intensity or load, 30

random number generator, 4
random variable, 7
– moments, 10
Random-Nikodym derivative, 6
realization, 3
reject H0, 22
relative error, 9
reliability function, 8
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reneging, 29
renewal process, 23
renewal theorem, 24
renewal-reward theorem, 24, 26
reversible probability vector, 26

sample, 19
sample space, 3
sigma-field, 23
signed measure, 3
skewness coefficient, 10
Slutsky’s theorem, 18
square root safety staffing, 31
standard deviation, 9
standard normal, 10
statistical test
– p-value, 22
– power, 22
– significance level, 22
statistics, 3
steady-state average cost, 26, 28
stochastic process, 23
stopping time, 23, 24
strongly consistent, 19
sub-σ-field, 12
survival function, 8

test of hypothesis, 22
test statistic, 22
total variation distance, 18

unbiased, 19
uniformization, 28
uniformly integrable, 18
unit hypercube, 4

variance, 9
variance
– sample, empirical, 19
variance decomposition, 13

w.p.1, 4
Wald identity, 24
weak convergence criterion, 17
with probability 1, 4


