
RESEARCH CONTRIBUTIONS

Simulation
Modeling Efficient and Portable
and Statistical
Computing

Richard E. Nance
Editor

Combined Random Numbeir

PIERRE L’ECUYER

ABSTRACT: In this paper we present an efficient way to
combine two or more Multiplicative Linear Congruential
Generators (MLCGs) and propose several new generators.
The individual MLCGs, making up the proposed combined
generators, satisfy stringent theoretical criteria for the
quality of the sequence they produce (based on the Spectral
Test) and are easy to implement in a portable way. The
proposed simple combination method is new and produces a
generator whose period is the least common multiple of the
individual periods. Each proposed generator has been
submitted to a comprehensive battery of statistical tests. We
also describe portable implementations, using 16-bit or
32-bit integer arithmetic. The proposed generators have
most of the beneficial properties of MLCGs. For example,
each generator can be split into many independent
generators and it is easy to skip a long subsequence of
numbers without doing the work of generating them all.

1. INTRODUCTION
Random number generators are used in many areas
including computer simulation, Monte-Carlo tech-
niques in numerical analysis, test problem generation
for the performance evaluation of computer algorithms,
statistical sampling, and so on. Despite the large
amount of theoretical research already done on this
subject, many of the generators currently in use, espe-
cially t.hose on the microcomputers, are seriously
flawed [15]. Even some recently proposed [3, 201 or
evaluated [6, 71 generators have a very weak theoreti-
cal justification. The aim of this paper is to propose an
efficient way to combine two or more random number
generators to obtain a new, hopefully better one.

0 1988 ACM OOOl-0782/88/0600-0742 $1.50

All practical “random number” generators on com-
puters are actually simple deterministic computer pro-
grams producing a periodic sequence of numbers that
should look “apparently random.” A generator is de-
fined by a finite state space S, a function f: S -+ S and an
initial state so called the seed. The state of the generator
evolves according to the recursion

si := f(S-I), i = 1, 2, 3, . (11

and the current state s, at stage i is usually transformed
into a real value between 0 and 1, according to

Ui := g(Si) (2)

where g: S --, (0, 1). The period of the generator is the
smallest positive integer p such that

Si+p = Sz

for some integer v 2 0.

for all i > B (3)

It is well accepted [2, 111 that to obtain a good gener-
ator, the choice off and g should be based on a firm
theoretical ground, and before being used for practical
applications, the generator should be submitted to a
comprehensive set of statistical tests. A good implemen-
tation of the generator should be reasonably fast, porta-
ble, and use few computer memory words [2, 191.

The most commonly employed generator today is the
Lehmer linear congruential generator (LCG), for which

f(s) = (as + c) MOD m; g(s) = s/m; (4)

where the modulus m and the multiplier a < m are posi-
tive integers; and the constant c < m is a nonnegative
integer. One usually chooses c = 0, in which case the
generator is called multiplicative linear congruential gen-
erator (MLCG) and its state space is S = {l, 2, , m - 1).

742 Communications of the ACM lune 1988 Volume 31 Number 6

Research Contributions

A MLCG has maximal period (p = m - 1) if m is prime
and II is a primitive element modulo m [ll, p. 191.

Other generators based on linear recursion modulo z
have been proposed. Tausworthe generators [2, 111 are
rather slow in their original form [lo]. The generalized
feedback shift register generators [lo] are faster and
have been shown to enjoy good global properties when
the parameters are well chosen and when they are
based on a primitive polynomial of very large degree.
One shortcoming of these generators is that since the
state s is a large array, they use a rather large amount
of computer memory.

Many disjoint random number subsequences are
often required in simulation studies; for example, to
facilitate synchronization for variance reduction, or to
make independent replications [Z]. Such independent
subsequences can be produced efficiently by “splitting”
a single underlying generator, provided that seeds can
be chosen regularly spaced and far enough apart in the
cycle to insure that the sequences do not overlap. In
other words, given any seed s, and positive integer j,
there should be a quick way to compute si+, (without
generating all intermediate values). That can be done
quite easily for a MLCG, since

Si+j = (U’S~) MOD M = (a’ MOD m)s, MOD m. (5)

For any given i, (a’ MOD m) can be precomputed and
(5) can be implemented like any regular MLCG.

On smaller word size machines, MLCGs with large
modulus are tricky to implement, while MLCGs with
smaller modulus (e.g. m smaller than the largest integer
representable on the machine) have periods that are too
short to be used safely for serious applications. Various
methods have been proposed for combining two or
more pseudo-random number generators [2, 16, 211.
The only mathematically demonstrated improvement of
the combined generators over their components is a
much longer period. Beyond this, the combination is an
intuitively appealing heuristic supported by both em-
pirical tests and the fact that certain demonstrable pa-
thologies in the components are not apparent in the
hybrids (see Figure 4). Some of the combination meth-

’ ods, like bitwise addition modulo 2 [2], apply to LCGs
having the same modulus; but if the individual LCGs
have full periods, both they and the combined genera-
tor have the same period, so, the period is not in-
creased. Other methods, like shuffling [2, 161, do in-
crease the period, but produce a generator that does
not seem to have an efficient way to skip a long subse-
quence of values.

In Section 2, we propose a simple way to combine
two or more MLCGs to obtain a generator whose period
is the least common multiple of the individual periods.
Skipping a fixed number of values can be done quite
easily with the combined generator; it suffices to do it
with each individual MLCG.

Efficient and portable implementations of MLCGs are
not always easy to program in a high level language.

Wichmann and Hill [21] and Bratley et al. [2] have
proposed a very efficient way to implement a portable
MLCG with modulus m using only flog,(m + l)l-bit
integer arithmetic, when a satisfies:

a2 < m. (‘3

In Section 3, we describe efficient ways to code porta-
ble implementations for our combined generators by
making use of the ideas introduced in [2, 211.

Marsaglia [13] pointed out a theoretical weakness of
all LCGs (eq. (4)). He showed that for any given k, all
k-tuples (U;+, , . . , U;+k) of successive values generated
by the LCG lie on a set of, at most, (k! m)‘lk equidistant
parallel hyperplanes in the k-dimensional hypercube
(0, l)k. When the number of hyperplanes is too small,
obviously, this is a strong limitation to the k-dimen-
sional uniformity. It has become common practice to
evaluate LCGs in terms of their induced hyperplanes
structures since then.

Fishman and Moore [9] made an exhaustive search of
all multipliers for a MLCG with modulus m = 231 - 1,
to find those for which the maximal distance dk(u, m)
between adjacent parallel hyperplanes in dimension k,
for k = 2, . . , 6, does not exceed the theoretical lower
bound on that distance by more than 25 percent.

Unfortunately, none of the multipliers found by Fish-
man and Moore [9] satisfy the inequality (6). In Sec-
tion 4 of this paper, we present the results of an ex-
tensive search for the best multipliers a in terms of
dk(u, m), for k = 2, . . . , 6, among those that satisfy (6).
The search has been made for a collection of prime
values of m. We propose multipliers for which dk(u, m)
is satisfactory for every k between 2 and 6. These multi-
pliers are almost as good as those found in [g] and yield
generators that are much easier to implement. Our
presentation is preceded by a brief review of the princi-
pal theoretical considerations that the choice of a mul-
tiplier should be based on.

Two new generators, produced by combining some
MLCGs retained in Section 4, are proposed in Section 5,
one for %%bit computers and the other for 16-bit com-
puters. Both have been submitted to a battery of statis-
tical tests and their empirical behavior is highly satis-
factory.

2. COMBINING LINEAR CONGRUENTIAL
GENERATORS
An efficient way to combine many MLCGs to obtain a
hopefully better generator is proposed in this section.
The method is based on the two following lemmas.
Lemma 1 generalizes an informal remark made by
Wichmann and Hill [21].

LEMMAS. Let W,, , WI be 1 independent discrete
rundom variables such that WI is uniform between 0 and
d - 1, where d is a positive integer:

Pr(W, = n) = i

June 1988 Volume 31 Number 6 Communications of the ACM 743

Research Contributions

Then

031

follows a discrete uniform probability law between 0 and
d-1.

PROOF. We first show the result for 1 = 2. Let W2 be
discrete (not necessarily uniform) between a and b. For
0 5 n 5 d - 1, we have:

m
Pr(W = n) =c Pr(W1 + Wz = n + kd)

k-0

= i Pr(W2 = i)Pr(W, = (n - i)MOD d)

u ,=a u

In words, whatever the value i taken by Wz, W =
(W, + W,)MOD d = (W, + i)MOD d is uniform between
oandd-1.

For 1 > 2, define the random variables

Vz = (W, + W2)MOD d

V3 = (Vz + W3)MOD d

vr = (VI-~ + W/)MOD d.

The result for 1 = 2 implies that all those V, are uniform
discrete between 0 and d - 1 and since W = Vl, this
completes the proof. 0

LEMMA 2. Consider a family of 1 generators where for
j=l,... (1, generator j has period pI and evolves according
to

SI.’ := f,(s,.,-11. (9)

Then the period p of the sequence (si = (So,,, , Sl,i), i = 0,
1, 2, 1, where so = (s~,o, . . , ~1,~) is a given seed, is the
least common multiple of pI, , pi.

PROOF. Each individual generator j has period p,, so
p is a multiple of pj for each j. If some integer n is a
multiple of every p,, then clearly sitn = si for any i 2 0,
which implies that p 5 n. El

Now we consider the case where each individual
generator j is a maximal-period MLCG with modulus mj
and multiplier qj:

s,,, = f,(Sj.i-1) = a,+1 MOD m,. (10)

We combine these generators as suggested by equation
(8) with d = m, - 1. Generator j has period m, - 1
where mj is prime. Therefore, every p, = m, - 1 must be
even and so an upper bound for p is given by:

p I II:=1 (m, - 11
2’-’ (11)

and this bound is attained only when all values of
(m, - 1)/2 are relatively prime. During a full cycle,
generator 1 takes each value 1, . , m, - 1 only once.
Thus, provided that generator 1 is good enough, sl., - 1
may be considered as a uniform discrete variate be-
tween 0 and m, - 2, in the sense of eq. (7). In the rest
of this section, we suppose that s,,,, . , sl,i are inde-
pendent random variables with s,,, uniform on (1, . . . ,
ml - 11. According to Lemma 1,

Z, = (i (-l)‘-‘s,,,)MODlm, - 1) (12)

is as a uniform discrete random variate between 0 and
ml - 2 and

u. =
’ i

Zh if Z, > 0
(ml - II/m, if Z, = 0

is therefore a good approximation of a continuous uni-
form (0, 1) random variable for m, large enough.

Only Z, needs to be uniform for Lemma 1 to hold.
But in practice, Z1 is not exactly uniform. Therefore, it
is (heuristically) more appealing to have all the Z; as
uniform as possible. We keep that before us in the se-
lection of individual MLCGs in Section 5.

3. PORTABLE IMPLEMENTATIONS
Portable generators, implementable in a high level lan-
guage and producing the same results on any machine
with sufficient word length, are highly desirable in
most practical situations [2, 19, 211. Bratley et al. [Z,
6.5.21, inspired by Wichmann and Hill [21], propose an
efficient way to implement a portable MLCG with mod-
ulus m and multiplier a using only integers f.rom -m to
+m, when a’ < m (i.e., using only b-bit integer arithme-
tic if m < 2b-‘). We present that technique and explain
how to use it to implement our combined generators.

Consider a MLCG defined by

So := f(Si-1) = as,-*MOD m

where a2 < m. Define

(14)

q := Lm/aJ (15)

r := m MOD a (16)

so that m is decomposed as m = aq + r where r c a. For
0 < s < m, one has

as MOD m = (as - Ls/qJm)MOD m

= (as - Ls/qJ(aq + r))MOD m
(17)

= (a(s - Ls/qJq) - Ls/qJr)MOD m

= (a(s MOD q) - Ls/qJr)MOD m.

When computing (14) using (17), every interrnediate
value (integer) during the computation will remain be-
tween -m and +m. More specifically, a(s MOD q) < aq

5 m, Ls/qJr< L(aq + r)/qJr 5 ars a* < m and both
terms are nonnegative, so their difference stays strictly
between -m and +m.

744 Communications of the ACM June 1988 Volume 31 Number 6

Research Contributions

Assuming that m, a, q and L- are global integer con-
stants and that s is a global integer variable holding the
current variate, (14) can be implemented as follows
(using Pascal-like syntax):

k := s DIV q;
s . .= a * (s - k * q) - k * r;
IF s<O THEN s := s+m

To obtain a value u between 0 and 1, add the
statement

u . .= s * h

where h is a precomputed constant equal to l/m. This
requires only one integer division and four multiplica-
tions, which is much more efficient than most other
previously proposed implementations (see [12, 14, 17,

181).
The above technique can be used for each individual

MLCG in the implementing of a combined generator as
proposed in Section 2, when each of the individual
generators satisfies a2 < tn. However, additional care
must be taken to avoid overflow while computing the
sum in eq. (12). The sequence of Pascal statements in
Figure 1 implements equations (10, 12-13) using only
integers between -m and m. The constant L represents
thenumberIofMLCGs;m[j],a[j],q[jl,r[j) and
s [j] are the constants and the current variate associ-
ated with the MLCG number j, and u denotes the Uni-
form (0, 1) value that comes out (SNGL converts from
INTEGERtoREAL).

VAR
IJ : REAL!
;, x. z : INTEGER:
a. a. q. r. 8 : ARRAY [l..Ll OF INTEGER:

BEGIN
2 := 0.
FOR j 1= 1 TO L DO

BEGIN
k := s[jl DIV qfjl;
sfjl := a[j] * (s[j] - k * qfjl) - k * r[jl;
IF s[j] Z 0 THEN s[jl := s[jl + m[jl;
IF ODD (i) THEN .*

z := (Z - m[ll + 1) + efjl
ELSE

Z := Z - s[jl;
IF Z c 1 THEN 2 := Z + m[ll - 1
END;

U := SNGL (Z) ,' SNGL (mtll)
END

FIGURE 1. General Code for a Portable Combined Generator

Obviously, the “general” code is not very efficient, it
could be optimized for each particular implementation.
We use two examples in the next section. On machines
where double precision is available, a simplified coding
scheme can be used, as shown in Figure 2. It assumes
that the arrays m, a and s and the variable z are stored
in floating point with at least flog,(c&r aj(mj - 1))l bits
of precision for the mantissa. The function DMOD(x, y) is

VAR
u, z : DOUBLE
j : INTEGER;
m, a, s : ARRAY Cl.. Ll OF DOUBLE:
. . .

BEGIN
2 .= 0 0.
FOi i I='1 TO L DO

BEGIN
sljl := DBLE (DMOD caCj1 * scjl. mfjl));
IF ODD (j) THEN Z := 2 + s[jl ELSE 2 := Z - s[jl;
END;

WHILE Z < 0.5 DO 2 := Z + (m[l] - 1);
WHILE 2 > (m[l] - 0.6) DO Z := Z - (rn[ll - 1);
U := 2 / m[ll
END

FIGURE 2. A More Direct Coding Scheme Using Double Precision

assumed to yield x MOD y and DBLE converts to double
precision. This coding scheme might be slightly faster
on some computers having a floating point accelerator.

4. SEARCHING FOR GOOD MULTIPLIERS
Multidimensional uniformity of the k-tuples of succes-
sive numbers is the ultimate measure of goodness of
pseudo-random number generators. In practice, obtain-
ing k-dimensional uniformity for every positive integer
k is impossible, but good uniformity for small values of
k is a must. Many theoretical tests to measure the uni-
formity for a given LCG and a given k have been sug-
gested: most of these tests are based on the fact that
all k-tuples Pi,k = @I,+, , . . . , Ui+k) are arranged on par-
allel hyperplanes and form a lattice structure in the
k-dimensional unit hypercube.

The Spectral Test [Z, 4, 5, 111 determines the maximal
distance &(m, a) between adjacent parallel hyper-
planes, the maximum being taken over all families of
parallel hyperplanes that cover all the points Pi,k. The
smaller that maximal distance, the better the generator
is, since this implies smaller empty “slices” in the hy-
percube. However, there is a theoretical lower bound
d:(m) on &(m, a), that is given here for 2 5 k 5 8 (see
[ll, p. 1051):

d&n, a) 5: dk* (m) = (18)

Normalizing dk(m, a) as in [9], we obtain the figure of
merit

that lies between 0 and 1. An algorithm to compute
dk(m, a) was proposed by Coveyou and MacPherson [4]
and later improved by Knuth [ll] and Dieter [5]. The
algorithm is described in [ll, pp. 98-1001.

]une 1988 Volume 31 Number 6 Communications of the ACM 745

Research Contributions

A second measure of quality, suggested by Marsaglia
[13], is the minimal number ojparallel hyperplanes cover-
ing all the points P,,k. This number should be high,
otherwise large regions will be devoid of points. How-
ever, as Knuth [ll, p. 921 points out, this measure,
although strongly related to dk(m, a), is “biased by how
nearly the slope of the hyperplanes matches the coordi-
nate alxes,” and is then a less significant criterion.

Niederreiter [17] has shown how to analyse LCGs in
terms of their discrepancy. The discrepancy in k dimen-
sions can be defined [ll, 171 as the maximum absolute
difference between the expected number and the ob-
served number of points Pi,k in a k-dimensional hyper-
rectangular box aligned with the axes, the maximum
being taken over all such boxes. The discrepancy is
defined for any subsequence of length N 5 p, where p is
the period. It can be shown [ll] that any LCG that
performs well in the Spectral Test will have rather
small discrepancy for large enough N (Knuth suggests
N > &(log m)‘+‘). The measure of discrepancy detects
the worst cases only with regard to boxes that are
aligned with the axes; it can change significantly when
the points are rotated, unlike the result of the (rotation-
ally invariant) Spectral Test. This suggests that the lat-
ter test should be considered as more meaningful. No
algorithm exists to compute the discrepancy; only
expressions giving lower and upper bounds are known
and even these bounds cannot be computed in general.

Other measures of goodness have been suggested,
such as the lattice test, the minimal distance between
any two points, measures of packing the lattice with
spheres, bounds on the serial correlation, and so on (see
[l, 91). However, as suggested in [9, 111, the results of
these tests are either strongly correlated or dominated
by those of the Spectral Test, which appears to be the
most powerful test known for LCGs. Borosh and Nied-
erreiter [l] have found “optimal” multipliers for moduli
Z”, 6 1~ n 5 35. The “optimality” criterion is simply a
measure of uniformity of the empirical distribution of
the pairs (Ui+l, Ui+z) over the unit square.

We applied the Spectral Test for some values of m to
find, among all multipliers a 5 & that are primitive
elements modulo m, those that perform well in every
dimension k between 2 and 6. More specifically, we
found those a for which the worst case measure

def
M&L a) = 2z& Sk@, a) PJI

is the largest (the closest to unity). A summary of our
results is given in Table I. The first and seventh values
of m (2147483647 and 32749) are the largest primes
smaller than 231 and 215 respectively (that can be repre-
sented in two’s-complement 32-bit and 16-bit integer
arithmetic respectively). The second to sixth. values are
those for which su~~~~iiiM~(rrz, a) is the largest among
the 50 largest primes smaller than 231 and thLe last five
are those for which supaS~M6(m, a) is the largest
among the 100 largest primes smaller than 215.

For each m, the first multiplier a in Table I is the best
according to MB(m, a), among those for whic:h a 5 &.

For m = 2147483647, the multipliers a = 742938285
and a = 950706376 are the two best overall according to
[9]; a = 16807 has been suggested by Lewis et al. [12]
and is also recommended in [2, 191; a = 630360016 is
used in the SIMSCRIPT II.5 language and is recom-
mended in [14]. For m = 32749, a = 219 is the best
multiplier overall, but is larger than &. However, the
last five combinations of m and a given in Table I,
have a better figure of merit. In general, the constraint
a 5 X& is not costly in terms of the best achievable
value of MG(m, a).

For a simple and easily implementable MLCG on a
32-bit computer, we suggest m = 2147483399 and a =
40692. On a 16-bit computer, we hesitate to recom-
mend the general use of any simple MLCG with
m < 2”, since the lattice structure is too coarse and the
period is too short. Combined generators offer much
longer periods and we advocate them for both 16-bit
and 32-bit computers.

TABLE I. Computed Values of S&z, a) and M&z, a) for the Spectral Test.

2147483647 39373
2147483647 742938285
2147483647 950706376
2147483647 16807
2147483647 630360016
2147483563 40014
2147483399 40692
214748281 i 41546
2147462601 42024
2147482739 45742

32749 162
32749 219
32363 157
32143 160
32119 172
31727 146
31657 142

.7907

.a673

.a574

.3375

.a035

.a172

.a343

.a439

.9186

.8331

.9299

.a122

.8305

.a931

.7628

.7427

.7549

.8607

.a985

.4412

.4317

.a357

.ai 80

.7870

.aiii

.a512

.7959

.7930

.a507

.7545

.7195

.7219

.7625

.7866

.a627

.a692

.5752

.7833

.8&l

.a112

.a568

.7833

.7100

.7263

.a270

.8067

.7352

.7266

.a244

.7580 .7545

.6319 .a341

.a337 .a274

.7361 .6454

.a021 .5700

.a281 .aoai

.8912 .a181

.8085 .a206

.7830 .8101

.a201 .7991

.6581 .7628

.7180 .7628

.7818 .7885

.7279 .7774

.7763 .7401

.7579 .72aa

.7853 .7794

.7545

.a319

.a274

.3375

.4317

.7885

.8051

.7870

.7830

.7833

.6581

.7180

.7818

.7279

.7195

.7427

746 Communications of the ACM]une 1988 Volume ::I Number 6

Research Contributions

TABLE II. Theoretical Lower Bounds on d&z, a)

23’ = 2147483648 .0000201 .000690 .00391 .01105 .02157
2147482739 .0000201 .000690 .00391 .01105 .02157

2’5 = 32768 .0051409 .027840 .06251 .10154 .13700
31657 .0052303. .028163 .06304 .10223 .13777

The values of the theoretical lower bounds on
&(m, a) given by eq. (18) appear in Table II for four
values of m. These values give a better insight about
the significance of the results of Table I. Notice that
for close values of m, these bounds are about the same.
For example, for m = 2” = 2147483648 and m =
2147482739, the figures shown in Table II are exactly
the same. This means that for all values of m between
these two, the numbers Sk(m, a) and Ms(m, a) have
about the same significance. For values of m near 215, the
difference is more perceptible, but still relatively small.

5. TWO NEW GENERATORS
From the results of the previous sections, we can now
propose two new combined generators. For a b-bit word
length, we want m, < 2b-’ and a, I 4 for every j, so
that every individual generator can be easily imple-
mented in a portable and efficient way using the tech-
nique proposed in [2, 211.

For 32-bit computers, we suggest 1= 2, m, =
2147483563, a, = 40014, m2 = 2147483399 andu, =
40692. These two individual MLCGs are excellent ac-
cording to the Spectral Test (see Table I). Furthermore,

(ml - 1)/2 = 3 X 7 X 631 X 81031 and (m2 - 1)/2 =
19 X 31 X 1019 X 1789 are relatively prime and the
combined generator has period p = (m, - l)(mz - 1)/2
= 2.30584 X 101'.

For Is-bit computers, we suggest I = 3 and pick the
three MLCGs defined by ml = 32363, a, = 157, mZ =
31727, u2 = 146, m3 = 31657 and u3 = 142. They all
perform very well in the Spectral Test and the values
of (ml - 1)/2 = 11 X 1471, (m2 - 1)/2 = 29 X 547 and
(m3 - 1)/2 = 2 X 2 X 3 X 1319 are relatively prime.
The period of the combined generator is then p =
(ml - l)(mz - l)(ma - 1)/4 = 8.12544 X lOI’. The gener-
ator with m = 32143 and a = 160 is not selected despite
its good performance in the Spectral Test since 32142/2
has 11 as a common factor with (ml - 1)/2.

The values of 4 and r for each individual MLCG are
given in Table III.

TABLE III. The Values of m, a, 9 and r for the Five
Retained MLCGs

2147483563 40014 53668 12211
2147483399 40692 52774 3791

32363 157 206 21
31727 146 217 45
31657 142 222 133

Figure 3 gives a Pascal function implementing the
first proposed combined generator, using an optimized
version of the code given in Figure 1. It works as long
as the machine can represent all integers in the range
[-2= + 85, 2= - 851. The integer variables s 1 and s2
are global and hold the current variates. Before the first
call to Uniform, they must be initialized to values in
the range [l, 21474835621 and [l, 21474833981 respec-
tively. Notice that the function will never return 0.0 or
1.0, as long as REAL variables have at least 23-bit man-
tissa (this is the case for most 32-bit machines). In the
second edition of their book, Bratley, Fox and Schrage
[2] adopt this generator. They provide a FORTRAN im-
plementation and specific seeds to generate disjoint
streams. Such specific seeds, spaced say 2d values apart
in the sequence, can be computed as follows: for each
of the two MLCG components, (i) choose any seed in
the proper range; (ii) precompute uzd MOD m, where a
and m are the constants defining this MLCG; and (iii)
use eq. (5). An efficient way to precompute uzd MOD m
is to start with a and square it d times modulo m.
Notice that this squaring, as well as the product in
eq. (5) must be done in extended precision arithmetic
(2 62 bits).

FUNCTION Uniform : REAL;
VAR

2, k : INTEGER;
BEGIN
k := sl DIV 53668;
sl := 40014 * (al - k * 63668) - k * 12211;
IF sl < 0 THEN sl := sl + 2147483563;

k := a2 DIV 52774;
s2 := 40692 * (s2 - k * 52774) - k * 3791;
XF s2 < 0 THEN s2 := s2 + 2147483399;

2 := sl - 82;
IF Z < 1 THEN 2 := 2 + 2147483662;

7Jniform := 2 * 4.656613E-10
END

FIGURE 3. A Portable Generator for 32.bit Computers

Figure 4 gives a portable code for the other proposed
combined generator for 16-bit computers. It assumes
that integers in the range [-32363, 323631 are well rep-
resented. The (global) integer variables s 1, s 2 and s 3
must be initialized to values in the range [l, 323621,
[l, 317261 and [l, 316561 respectively.

Wichmann and Hill [21] have proposed a different
portable combined generator, for 16-bit computers. It

]une 1988 Volume 31 Number 6 Communications of the ACM 747

Research Contributions

generates three Uniform (0, 1) values using three “inde-
pendent” MLCGs, and takes the sum modulo one. The
three individual MLCGs have modulus 30269, 30307
and 30323 and multipliers 171, 172 and 170 respec-
tively. Their MG(a, m) values are .1830, .6228 and .4639
respeclively, which is rather low compared to the
MLCG.s proposed here. According to Lemma 2, the gen-
erator proposed in [21] has period p = 6.95 X 1O1’
instead of p > 2.78 X 1Ol3 as claimed.

FUNCTION Uniform : REAL:
VAR

2.k : INTEGER; ,‘
BEGIN
k := sl DIV 206;
Sl := 157 * (St. - k*206) -.k*21; ,n
IF sl < 0 THEN al :" st + 32363; "'

k := a2 DXV 217; b
s2 := 148 * (~2 - k * 217) - k * ,45;
IF s2 < 0 THEN s2 := $2 +.3P7W; . nl:

k := 83 DIV 222; ,
a3 := 142 * (93 - k * 222) i:k *.JZi?~;~~:~~
IF s3 < 0 THEN s3 := 83 + 31@57; ..~

2 := si - s2; / ,,
IF Z > 706 THEN Z := Z - 32362;
2 := 2 + 93:
IF 2 Z 1 THEN 2 := 2 + 32362; ,.

Uniform := Z * 3.0899E-5
END

FIGURE 4. A Portable Generator for l6-bit Computers

As proposed here, the combinations are performed in
integer arithmetic. In [21], the values are transformed
into reals between 0 and 1 before being combined.
Combination in integer arithmetic is faster, and is also
advantageous when one uses directly the integer Z, in-
stead of the floating point number t.& (for example,
when generating uniform random integers over an arbi-
trary interval; see [2], section 6.7.1). On the other hand,
for the Is-bit generator proposed here, the number of
possib1.e output values is only 32362 (the number of
possib1.e values of Z,); for the generator proposed in [21],
that number depends on the floating point representa-
tion and is generally much higher.

6. EMPIRICAL TESTING
The two proposed combined generators and one simple
MLCG have been submitted to a comprehensive battery
of statistical tests described in Knuth [ll, pp. 59-731.
Each test produces a statistic that, under the null hy-
pothesis Ho that the generator is good, has a known
theoretical probability distribution. Furthermore, every
test has been repeated N times and the empirical distri-
bution of the values of the statistics has been com-
pared to the theoretical distribution using the classical
Kolmo,gorov-Smirnov (KS) test. Thus the final result
is the value s of a KS statistic S. A generator fails the
test if the observed descriptive level 6 = Pr(S 5 s j Ho) is
“too small.”

We performed 21 different tests on the three genera-
tors. They are described below using the notation of

Knuth [ll] for their parameters. Here, II denotes the
number of observations during a given run and N de-
notes the number of runs. These tests involve billions
of pseudo-random numbers and took more than 200
hours of CPU time on a VAX-11/780.

(1)

(4

(3)

(4)

(5)

(‘3)

(7)

(81

(9)
(10)
(11)
(12)
(13)

(14)

(15)
(16)
(17)
WI

(19)

WV

(21)

Equidistribution test, using chi-square, d = 64,
II = 1000, N = 10000.
Equidistribution test, using chi-square, d = 256,
n = 10000, N = 10000.
Serial test with pairs (2-dimensional), d q = 64,
n = 100000, N = 1000.
Serial test with triplets (3-dimensional), d = 16,
n = 100000, N = 1000.
Serial test with quadruplets (4-dimensional), d = 8,
n = 100000, N = 1000.
Gap test, (Y = 0, p = .05, t = 15, n = 10000,
N = 1000.
Gap test, (Y = .95, p = 1, t = 15, n = 10000,
N = 1000.
Gap test, (Y = %, fi = %, t = 10, n = 10000,
N = 1000.
Poker test, k = 4, d = 4, n = 10000, N = 1000.
Poker test, k = 6, d = 4, n = 10000, N = 1000.
Poker test, k = 6, d = 8, n = 10000, N = 1000.
Poker test, k = 8, d = 16, n = 10000, N = 1000.
Coupon’s collector test, d = 5, t = 25, n =: 10000,
N = 1000.
Coupon’s collector test, d = 10, t = 40, n = 10000,
N = 1000.
Permutation test, t = 3, n = 10000, N = 1000.
Permutation test, t = 5, n = 10000, N = 1000.
Runs-up test, n = 100000, N = 1000.
Maximum-of-f test, t = 8, d = 128, n = 10000,
N = 1000.
Collision test, 6 dimensions, d = 8, n = 20000,
N = 100.
Collision test, 10 dimensions, d = 4, n = .20000,
N = 100.
Collision test, 20 dimensions, d = 2, n = .20000,
N = 100.

The results of the tests appear in Table IV, where 6,
and & represent the observed value of 6 for the first (for
32-bit) and second (for 16-bit) proposed combined gen-
erators respectively. & is the observed value of 6 for the
simple MLCG with modulus m = 2147483399 and mul-
tiplier a = 40692 suggested in Section 4.

The initial seeds for each test were sl = 12345 and
s2 = 67890 for the first generator; sl = 12, s2 = 23 and
s3 = 34 for the second generator; and SI = 12345 for
the third generator. We arbitrarily declare as “suspects”
the values of 6 smaller than 0.05. These low values,
marked with a * superscript in Table IV, could have
been produced by chance (it should occur 5 percent of
the time under Ho) or may indicate flaws in the genera-
tors. To probe further, we repeated those tests that pro-
duced the “suspect” values, using different (disjoint)
random number streams. To guarantee that the streams
were disjoint, we used as starting seeds the final values
at the end of the corresponding “first trial” tests. The

748 Communications of the ACM June 1988 Volume 3;! Number 6

Research Contributions

(a) TheMLCGwithm =23'-1 anda =16607.

0.0 ,001

(b) TheMLCGwith m =2147463399and a =40692.

(c) The proposed combined generator.

FIGURE 5. A Thin Slice of the Plot of Output Pairs for Three 32-bit
Generators

results of these “second trials” appear in Table V.
The combined 32-bit generator produced no suspect

value. For the combined 16-bit generator, the new
value of d is no more suspect. The result of test 13
(coupon’s collector) for the 32-bit MLCG is still suspect.
The MLCG also had 3 suspect values on the first trials,
compared to 0 and 1 respectively for the combined gen-
erators. In summary, we conclude that the empirical
tests support the latter.

Figure 5 gives a partial graphical illustration of the
two-dimensional behavior of three generators. For each
of the three plots, five million pairs of consecutive

numbers were generated and placed in the unit square.
A thin slice of the surface of the square, .OOl wide by
1.0 high, was then cut on its left side and stretched out
horizontally. Thus, each part of Figure 4 contains only
the pairs (Ui+i , LIi+I) such that LI;+i < .OOl, (i.e., approx-
imately 5000 points).

In Figure 5, Box (a) shows the behavior of the often
recommended MLCG with m = 23’ - 1 and a = 16807.
The lattice structure is quite clear. It looks a little bet-
ter in Box (b), which shows the behavior of the MLCG

TABLE IV. Results of the Empirical Tests

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
16.
19.
20.
21.

‘(smaller than .0.5)

.0961 .1920 .0510

.7984 .6096 .0582

.7388 .6461 .0071'

.4399 .6507 .7647

.7530 .6466 .9414

.8818 .1243 .0479

.0751 .3509 .7794

.1881 .9699 ‘7275

.1879 .1898 .4054

.6358 .6920 .6765

.3925 .3960 .3645

.3395 .4591 .3491

.9390 .1945 .0255

.4053 .2914 .4543

.8659 .9357 .2557

.3516 .2503 .0640

.1775 .9895 .0930

.8703 .0252' .7532

.9341 .4382 .1216

.2101 .8435 .7369

.lOlQ .2178 .4633

(continued on p. 774)

June 1988 Volume 31 Number 6 Communications of the ACM 749

Research Contributions

61. Sho.stack. C.. and Eddy. C. Management by computer graphics. Har-
vard Bus. Rev. 49, 6 (Nov.-Dec. 1971). 52-63.

62. Simon, H.A. Information processing models of cognition. Ann. Rev. of
Psyc 30 (1979), 363-396.

63. Strickland, R.G. A Study of the Possibilities of Graphs ns a Means of
Instruction in the First Four Grades o/‘Eltmentary School. Columbia
University. 1938. Vol. 30, 311.

64. Takeuchi, H., and Schmidt A.H. New promise of computer graphics.
Haroard Bus. Rem 58, 1 (Jan.-Feb. 1980), 122-131.

65. Thiel. CT. The big boom in computer graphics. Infosys. 29, 5 (1982).
48-56.

66. Tullis. T.S. An evaluation of alphanumeric, graphic, and color infor-
mation display. Human Factors 23. 5 (Oct. 1981), 541-550.

67. Vernon, M.D. Learning from graphical material. kit. J. of Psyc. 36,
Part 3 (May 19461, 145-158.

68. Vernon. M.D. The use and value of graphical material in presenting
quantitative data. &cup. Psyc. 26 (1952). 22-34.

69. Vicino, F.L., and Ringel, S. Decision-making with Updated Graphic
vs. Alphanumeric Information. Wash., D.C.: Army Pers. Res. Office,
Techn. Res. Note 178, Nov. 1966.

70. Vogel, D.R.. Dickson, G.W., and Lehman, J.A. “Persuasion and the
Role of Visual Presentation Support: Tine UM/3M Study.” MISRC-
WP-86-11. June 1986.

71. Wainer, H.. and Reiser, M. Assessing the efficacy of visual displays.
Proc. of the Am. Stat. Assoc., Sot. Stat. Sect.. I, Part I (Aug. 1976).
69-92.

72. Washburne, J.N. An experimental study of various graphic, tabular
and textural methods of presenting quantitative material. J. of Ed.

Psyc. 18. 6 (Sept. 1927), 361-376.
73. Watson, Cl., and Driver, R.W. The influence of computer graphics

on the recall of information. MIS Qrtly. 7, 1 (Mar. 198?), 45-53.
74. Wilcox. W. Numbers and the news: Graph, table or text? Jozrrnnlism

Qrtly. 41, 1 (Winter 19641, 38-44.
75. Welsch. R.E. Graphics for data analysis. Camp. and Graphics 2, I

(1976). 31-37.

CR Categories and Subject Descriptors: H.3.0 [Information Storage
and Retrieval]: General; 1.3.0 [Computer Graphics]: General.

General Terms: Experimentation, Graphics, Management
Additional Key Words and Phrases: Business, decision making, deci-

sion support, guidelines, research

Received 2/86: revised l/87: accepted 11/87

Authors’ Addresses: Sirkka L. Jarvenpaa, Department of Management
Science and Information Systems, University of Texas at Austin, Austin,
TX 78712; Gary W. Dickson, Department of Business Computer Informa-
tion Systems, College of Business, St. Cloud State University, St. Cloud,
MN 56301.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

L’Ecuyer (continued from p. 749)

TABLE V. Results of the “Second Trial” Tests

Combined 16-bit 18. .0252 4139
32-bit MLCG 3. .0071 .1098
32-bit MLCG 6. .0479 .1967
32&t MLCG 13. .0255 .0228

with m = 2147483399 and a = 40692. Box (c) is the
output from the proposed 32-bit combined generator:
No lattice structure is apparent. These graphics are just
more empirical evidence supporting the combination.

Acknowledgments. This work has been supported
by NSESRC-Canada grant number A5463 and FCAR-
Quebec grant number EQ2831. I would like to acknowl-
edge the many helpful suggestions by Professor B. L.
Fox, L. E. Schrage, C. Dupuis, and T. Vo-Dai. I would
also like to thank Pierre Poulin, Eric Boucher, Brigitte
Mercier, Sylvie Prigent and Marc de la Durantaye, who
wrote the large amount of Pascal code required for this
research.

REFERENCES
Note: Reference [8] is not cited in text.

1. Borosh. S., and Niederreiter, H. Optimal multipliers for pseudo-
random number generation by the linear congruential method.
BIT 23 (1983). 65-74.

2. Bratley, P., Fox, B.L., and Scbrage, L.E. A Guide to Simulation.
Springer-Verlag, New York, N.Y., 2nd ed.. 1987.

3. Clark., R.N. A Pseudorandom Number Generator. Simulation 45, 5
(Nov. 1985). 252-255.

4. Coveyou. R.R., and MacPherson. R.D. Fourier analysis of uniform
random number generators.]- ACM 24 (Jan. 1967), 100-119.

5. Dieter. U. How to calculate shortest vectors in a lattice. Math. Com-
put. ;!9 (July 1975). 827-833.

6. Dudewicz, E.J., Karian, Z.A.. and Marshall, R.J., III. Random number
generation on microcomputers. Modeling and Simulation on Micro-
computers: 1985, The Society for Computer Simulation. 1985, pp.
9-14.

7. Figiel, K.D., and Sule. D.R. New lagged product test for random
number generators. Comput. Ind. Eng. 9, 3 (Mar. 1985). 287-296.

8. Fishman, G.S.. and Moore, L.S.. 111. A statistical evaluation of multi-

774 Communications of the ACM June 1988 Volume 31 Number 6

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

plicative congruential random “umber generators with modulus
2=-l. 1. Am. Stat. Assoc. 77 (Mar. 1982), 129-136.
Fishman, G.S., and Moore, L.S.. III. An exhaustive ana.lysis of multi-
plicative congruential random number generators with modulus 2”
- 1. SMMJ Sci. Stat. Comput. 7. 1 (Jan. 1986), 24-45.
Fushimi, M.. and Tezuka, S. The k-distribution of generalized feed-
back shift register pseudorandom numbers. Commun. ACM 26. 7
(July 1983), 516-523.
Knuth. D.E. The Art of Compufer Programming-Seminulnerical Algo-
rithms. vol. 2, 2nd ed., Addison-Wesley, Reading, Mass. 1981.
Lewis, P.A.W.. Goodman, AS.. and Miller, J.M. A pseudo-random
number generator for the system/360. IBM Syst. J. 8, 2 (1969). 136-
146.
Marsaglia, G. Random numbers fall mainly in the planes. Proc. Nat.
Acad. Sci. 61 (Sept. 1968), 25-28.
Marse. K. and Roberts. S.D. Implementing a portable FORTRAN
uniform (0, 1) generator. Simulation 41, 4 (Oct. 19831, 135-139.
Modianos. D.T., Scott. R.C., and Cornwell, L.W. Random number
generation on microcomputers. Interfaces 14, 2 (Mar.-A.pril 1984).
81-87.
Nance, R.E., and Overstreet. C., Jr. Some experimental observations
on the behavior of composite random number generators. Oper. Res.
26, 5 (Sept.-Oct. 1978), 915-935.
Niederreiter, H. Quasi-Monte Carlo methods and pseudo-random
numbers. Bull. Amer. Math. Sec. 84, 6 (Nov. 1978). 957-1041.
Payne, W.H., Rabung, J.R., and Bogyo. T.P. Coding the Lehmer
pseudo-random number generator. Commun. ACM 12. 2 (Feb. 1969),
85-86.

19. Schrage, L. A more portable Fortran random number generator.
ACM Trans. Math. Soff. 5, 2 (June 1979), 132-138.

20. These”. A. An efficient generator of uniformly distributed random
variates between zero and one. Simulation 44, 1 (Jan. 1985). 17-22.

21. Wichmann, B.A and Hill, I.D. An efficient and portable pseudo-
random number generator. Appl. Stat. 31 (1982), 188-190.

CR Categories and Subject Descriptors: G.3 [Probability and Statis-
tics]: Random number generation

General Terms: Algorithms. performance
Additional Key Words and Phrases: Combined generators, empirical

tests, multiplicative linear congruential generators, portability. spectral
test

Received 7/86; revised 2/87; accepted 3/87

Authors’ Present Address: Pierre L’Ecuyer, DBpartement d’informatique,
Universite Laval, Ste-Foy, Quebec, Canada, GlK 7P4.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwse, or to
republish, requires a fee and/or specific permission.

