This article was downloaded by: [131.254.101.56] On: 03 May 2017, At: 05:39
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

& Operations Research

OPERATIONS

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Combined Multiple Recursive Random Number Generators

Pierre L'Ecuyer,

To cite this article:
Pierre L'Ecuyer, (1996) Combined Multiple Recursive Random Number Generators. Operations Research 44(5):816-822. http://
dx.doi.org/10.1287/0pre.44.5.816

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1996 INFORMS

Please scroll down for article—it is on subsequent pages

infy]

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

RIGHTSE LI MN iy

http://pubsonline.informs.org
http://dx.doi.org/10.1287/opre.44.5.816
http://dx.doi.org/10.1287/opre.44.5.816
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

COMBINED MULTIPLE RECURSIVE RANDOM NUMBER GENERATORS

PIERRE L’ECUYER

Université de Montréal, Montréal, Canada
(Received June 1994; revisions received March 1995, May 1995; accepted July 1995)

We analyze the random number generators obtained by combining two or more multiple recursive generators. We study the lattice
structure of such combined generators and argue that combination is a good way of obtaining robust generators, based on a
recurrence with many nonzero coefficients, and which also possess a fast implementation.

inear congruential random number generators

(LCGs) with prime moduli smaller than 23! have the
merit of being easily implementable on 32-bit computers,
but no longer satisfy the requirements of today’s computer
intensive simulations. Indeed, their period length could
easily be exhausted in a few minutes of cpu time on a
typical workstation. It is also now well-recognized that, for
“statistical” reasons (see, e.g., Compagner 1991, L’Ecuyer
1994 for more details), the period length of a linear-type
generator should be several orders of magnitude larger
than what is actually used. There are also good reasons
(e.g., variance reduction) for splitting the sequence of a
random number generator into disjoint subsequences, to
make several “virtual” generators out of the first one
(L’Ecuyer 1994), each of them having a long period and
good properties. Because of those requirements, the avail-
ability of statistically robust generators with huge period
lengths, say up to 22% or so, is highly desirable.

One way of improving upon LCGs is to use multiple
recursive generators (MRGs) (see L’Ecuyer 1990 and
1994, L’Ecuyer et al. 1993, Niederreiter 1992), which are
based on a linear recurrence of higher order. More specif-
ically, an MRG of order k is based on a kth-order linear
recurrence of the form

x,=(ax,_ 1+ - +ax,_+b)modm; (1)
Uy =Xp/m,

where m and k are positive integers, while b and each a,
belong to Z,, = {0, 1,..., m — 1}. For reasons of effi-
ciency, it has often been suggested to use only two nonzero
cocfficients 4, and b = 0 in (1). This gives a very fast
generator whose period reaches m* — 1 under verifiable
conditions (L’Ecuyer 1990, L’Ecuyer et al.). However,
when the number of nonzero coefficients in (1) is small
compared to k, there are unfavorable limitations on the
quality of the lattice structure of the generator (see
L’Ecuyer 1996). In other words, these generators have
structural defects, which are not necessarily catastrophic,
but could conceivably show up in some computer-intensive
simulations.

Another approach for increasing the period and improv-
ing the structure of the generator is combination. Com-
bined LCGs, which add up the results of two or more
LCGs with different moduli, have been studied by
L’Ecuyer (1988), L’Ecuyer and Tezuka (1991), and
Wichmann and Hill (1982). They are equivalent (or ap-
proximately equivalent) to LCGs with large nonprime
moduli. In other words, these combined LCGs can be
viewed as efficient implementations of LCGs with huge
moduli (L’Ecuyer and Tezuka). One advantage of the
combination approach proposed by L’Ecuyer (1988), com-
pared to that of Wichmann and Hill, is that the former
adds “noise” to the lattice structure, i.e., shakes up the
regularity of the points produced (L'Ecuyer and Tezuka).
However, to obtain a period length near m*, we must com-
bine at least £ LCGs with distinct prime moduli close to m.
This becomes inefficient as & increases. Other types of
combinations, such as combined Tausworthe generators
(Tezuka and L’Ecuyer 1991, Compagner, Wang and
Compagner 1993), have also been proposed and analyzed
in the literature. For more details, see Couture and
L’Ecuyer (1996), L’Ecuyer (1990 and 1994), and the refer-
ences cited there.

In this paper we analyze what happens when we com-
bine two or more MRGs. We show that the combined
generator is equivalent (or approximately equivalent, de-
pending on the type of combination), to an MRG with
large modulus, equal to the product of the individual mod-
uli. One important advantage of that combination is that
the linear recurrence associated with the combined gener-
ator can have many nonzero coefficients. Another feature,
for one of the combination types, is the noise added to the
lattice structure, as with the combined LCGs. In the next
section, we define the combined generators, derive their
approximating MRGs, and characterize their period
lengths. We then discuss the influence of combination on
the lattice structure. Finally, we examine particular classes
of combinations and suggest one specific generator. For
more about the basic concepts of finite fields, we refer the
reader to Lidl and Niederreiter (1986).

Subject classtfications; Simulation. random number generation, linear congruential, lattice structure, multiple recursive, combined generators.

Area of review: SIMULATION,

Operations Research
Vol. 44, No. 5, September~October 1996

RIGHTS L

0030-364X/96/4405-0816 $01.25
© 1996 INFORMS

Eopyright©-266+ At Rights Reserved

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

RIGHTS

1. THE MRG ASSOCIATED WITH A
COMBINED GENERATOR

Consider J MRGs (J = 2) such that for j = 1,...,J, the
jth recurrence has order k; and is given by:

X =@, + 0+ A Xpn—k + b,) mod m, .

(2)
We assume that the m,’s are pairwise relatively prime and
that each recurrence is purely periodic. Let p, denote the
period length of the jth recurrence; that is, x,, ., b = %n for
all n = 0. Recall that if m, is prime, it is easy to obtain p,
equal to m,kf — 1: take b, = 0 (a homogeneous recurrence)
and select the coefficients @,, in such a way that the char-
acteristic polynomial of (2), defined as f(x) = x4 —
a, 71 — .-+ —a, is a primitive polynomial modulo m,
(Knuth 1981, Lidl and Niederreiter). We recall that the
polynomial f(x) is primitive, for prime m,, if and only if
m]"f — 1 is the smallest positive integer n such that x” =
(mod f(x)). An algorithm for testing for primitivity mod-
ulo m;, is given in Knuth (p.29). The only case where b, # 0
seems to have practical interest is when k, = 1 and m, is a
power of two; the period length can then reach m, under
certain conditions (see, e.g., Theorem 3.2.1.2.A of Knuth).
Let 3,,..., §, be arbitrary integers such that §, is rela-
tively prime to m, for each j. Define the two combined
generators

7
Zy = (E 8jxj,n) mOdml; ﬁn = Zn/ml ’ (3)
=1
and
&8
w,=|2 =" mod1. (4)
j=1 7
Let
k = max (kq, , k) (5)
J
m=11m:; (6)
J=1
J 8,b,m
b=1{2 mod m ; (7)
=1 m
n, =(m/m;) 'modm, forj=1,...,J; (8)
J
a,~=(2w~> modm fori=1,...,k; (9)
=1 m

]

where a;, = 0 for i > k, and where (m/m,)”' mod m, is
the inverse of m/m, modulo m, (which exists, because the
m,’s are assumed relatively prime). In other words, n, is
defined as the smallest positive integer which satisfies
n(m/m) = 1 (mod m,). It can be computed using the
identity: n, = (m/mj)'"f_2 mod m, and a divide-to-conquer
algorithm (Brassard and Bratley 1988, Knuth, L'Ecuyer
1990), or by a variant of Euclid’s algorithm, as explained in
Knuth. The divide-to-conquer algorithm computes the ex-
ponentiation modulo m, using the following recursion:

i,

L’Ecuyer / 817

X . ifn =1,
n— .
x"modm, ={X"x modm, ifn>1,n odd;
X232 mod m, ifn>1,n even.

Consider the following MRG, with composite modulus:
(10)
(11)

In what follows, we show that (4) and (10-11) are equiva-
lent, and that their period length p is equal to the least
common multiple (lem) of py, ..., p. We then give tight
bounds on the difference between u,, and i,,. These bounds
are close to zero when the m,’s are close to each other. All
these results generalize those already given by L’Ecuyer
and Tezuka for the case where k = 1 and b = 0.

X, =(a1xn‘1 +-'-+akx,,_k+b) modm;

U, =x,/m.

Proposition 1. If (w,, ... , Ug_q), then

w, = u, foralln = 0.

s W) = (Ug, - -

Proof. By the same argument as in L’Ecuyer and Tezuka,
it is easily seen that

n,(m/m,)* modm = m/m, .

Then, since (m/m,)(m/m) mod m = 0 for i # j, one

obtains
mayw, -1+ +aw,_x +b)modm
k 7 J
; b _
- [b+m 2 <E ae,,nem)<z]x),n l)] mod m
! =1 My 1=1 m,

Il
A

<o

+

M=
pa- I

0
KA
<

i
A

m
n,(~) q, 8%, - ,:l mod m
m}

Il

o

+
M:w
M~

8,a, %, n - ,} mod m

7
5

m k
(—— 8}(bj + 2 a, %, ,i> mod mj>] mod m

=1 m, =1
J Slx .

= (m > ——L) mod m
=1 mj

Therefore, {mw,, n = 0} satisfies the same recurrence as
{x,, n = 0}, and that completes the proof. []

The next lemma will be used in the proof of the propo-
sition that follows. Define ¢, = (m/m;)8, mod m,.

Lemma 1. One has x, = cx,, (mod m,).

Proof. One has

_ _ o4 8€x€,n
x,=mw,=|m > ——2) modm, (12)

=1 Me
which yields
Xp =¢;x,, (modm,),
because (m/m.)8, mod m, = 0 for € #j. []

Proposition 2. The period of {x,, n = 0} is equal to p =
lem(py, .. ., py).

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

818 / L’EcUYER

Proof. Let s, = (x;,,..., x etk ~ -y and s, = (x,, ...,
Xyt k—1)- Smce each component is purely periodic, the
combined generator is also certainly purely periodic, i.e.,
the initial state s, is eventually revisited. The period of {x,,,
n = 0} is the smallest v such that x,., = x, foralln = 0,
i.e., such that

S, =8¢ . (13)

Clearly, since p is the least common multiple of the indi-
vidual periods of the components, v = p satisfies (13). It
remains to show that no smaller v satisfies (13). Suppose
that such a v exists. Then, from Lemma 1, one has that
¢(X,» = X%;,+,) mod m, = 0. From the assumption that §;
is relatively prime to m, and because the m,’s are pairwise
relatively prime, it follows that ¢; is invertible modulo m,.
This implies that (x,, — x,,,,) mod m, = 0. Since this
holds for all n = 0, it follows that » must be a multiple of
p,» the period of {x, ,, » = 0}. This holds for all j. There-
fore, v must be equal to p. [

If each recurrence (2) is homogeneous (b, = 0) and m;
is prime, then one can easily achieve p, = m% — 1 by
selecting a primitive polynomial for each j. Then, each p; is
even, so p < (mi! — 1) -+ - (m¥ — 1)/2’~1. Another inter-
esting possibility is to take a power of two for m, k; = 1,
get p, = my, and then use distinct prime moduli for the
remaining m,/’s.

Note that the coefficients ¢, in (10) do not depend on
the choice of the Sj’s; only b does. Therefore, when the
individual recurrences (2) are homogeneous, the recur-
rence for the combined generator is the same for whatever
(nonzero mod m,) choices for the §’s. However, changing
the 8,’s will change in general the starting point (x, ...,
Xr—y) in (10) and, as a result, will change the sequence
produced. Note that there are m* such starting points (in-
cluding bad ones) or, equivalently, m* possible states for
the recurrence (10). Changing the starting point could
have a non-negligible effect because those m* states are
usually partitioned into disjoint subcycles (plus perhaps
some transient states), so changing the starting point could
conceivably send us to a different subcycle. When two
starting points belong to the same subcycle (i.e., are reach-
able from each other), we say that they (and the corre-
sponding sequences) are equivalent.

The total number of states for the combined generator
(including the trivial states) is equal to II/_, m®, since each
component has m}> possible states. If the k, are not all
equal, this could be much less than m*. In that case, not
all values of (xg, ..., x,_y) in (10) can be obtained as
combinations of values of (x,, . .., X;) through (12). It
turns out that the states (xy, ..., x,_;) which can be ob-
tained as a combination are recurrent states for the recur-
rence (10), i.e., if the recurrence starts from such a state, it
will eventually return to that state. The other states, which
are not the result of a combination, are transient, that is, if
any of them is the initial state for (10), then it will never be
visited again by the recurrence. This is analyzed more
deeply by Couture and L’Ecuyer.

RIGHTS L

Example 1. TakeJ = 2, m; = 5, k; = 1,m, = 3, k, = 3.
Select the multipliers so that each component has a full
period, namely p; = 4 and p, = 3° — 1 = 26, Then, the
combined generator has a total of 5 X 27 = 135 possible
states (including the zeros), but its period is only p = 52,
On the other hand, the recurrence (10) associated with the
combined generator has order 3 and modulus 15; so its
total number of states is 15° = 3375. The recurrent states
are the 135 states produced by the combination; the other
3240 states are all transient.

We now bound the difference (modulo 1) between u,,
and #,. The €, in (14) represents the distance between
u, and i, on the circle (or one-dimensional torus) ob-
tained by joining the two extremities of the interval [0, 1].
Notice that #, must be a multiple of 1/m,, and therefore
has less resolution than u,, which is a multiple of 1/m.
However, [¢,| is not bounded by 1/m,. As in L’Ecuyer and
Tezuka, define

Y'={jl2<j<Jand (m, —m,)8 >0}

Y- ={jl2=<j=<Jand (m, —m;)s, <0}

A= S (m, —my)(m, — 1)8, LS (m, — my)8§,
-t mym; o~ mym,

A= S (m]”: m;)8, P S (m; —m)(m, — 1)8, '
jert 1 ev” i

Proposition 3. If (Wg, ..., Wi_q) = (ug, ..., Uy—1), then

=(u, +€,)mod1, (14)
for all n = 0, where
A se, sAY. (15)

Proof. The proof mirrors that of Proposition 2 in L’Ecuyer
and Tezuka and is omitted. []

2. COMBINING GENERATORS WITH A
COMMON MODULUS

In the preceding section, we assumed that the m,’s were
pairwise relatively prime. Let us now consider a different
situation, that where the m,’s in (2) are all the same, say m;
= m for all j, but where the k/’s are distinct. We shall
consider again the two combined generators (3) and (4).
We note that in this section, k and m are still the order
and modulus of the MRG associated with the combina-
tion, and are defined differently than in (5)-(6).

Let m be a prime. For each j, we suppose that b; =
and let fi(x) = x — a, ¥ — -+ — a;; be the charac-
teristic polynomial of the recurrence. We assume that f(x)
is a primitive polynomial modulo m, so that p; = m k-1,
Let

-1

fy=x*—a;x*"1—-- —a

=fi(x) -

be the product of those characteristic polynomials, where
k=11, k, and b = 0. Consider now the recurrence (10)

“f1(x) modm,

—Copyrgite260t+Al Rights Reserved

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

associated with that characteristic polynomial, again
with u, = x,/m. We show that both combinations (3)
and (4) follow exactly that recurrence. We also show
that the period of the combined generator is bounded
above by p, - - - p//(m — 1’7}, instead of p, - - - p/2' ! as
is the case for distinct prime moduli. Therefore, this
method of combination with a large prime m appears un-
favorable compared to that of the previous section.

Proposition 4. Under the assumptions made in this section,

fWg oo s Wieiy) = (g, ooy Ug_q) = (Bigy - . ., Hg_y), then
W, = u, = i, foralln = 0.

Proof. Since m, = m for all j, it is clear from their defini-
tions that &,, = w,, for all n. It remains to show that {x,}
(in (1)) and {z,} obey the same linear recurrence. Observe
that the minimal polynomial of the recurrence {8x;,, n =
0} is f(x), the same as for {x,,, n = 0}. The polynomials
f,(x) are also irreducible, because they were assumed to be
primitive. Since the k’s are distinct, these polynomials
must be relatively prime. Then, from Theorem 6.57 in Lidl
and Niederreiter, it follows that the sequence {z,, n = 0},
which is the sum of linear recurrences with respective min-
imal polynomials f,(x),..., f)(x), is a linear recurrence
with minimal polynomial f(x). [

Proposition 5. Under the same assumptions as in the previ-
ous proposition, suppose that for all j, (x,0, . . . , X, 5 —1) mod
m # (0,..., 0). Then, the period length of {x,, n = 0} is
equal to p = lem(m* — 1, ..., m" — 1). Note that (m — 1)
is always a common factor. The largest possible value of p is p
= m" — 1)---(m" — 1)(m — 1Y, and it could be
reached only if the ks are pairwise relatively prime.

Proof. The first part follows from the proof of the
previous proposition and Theorem 6.59 of Lidl and
Niederreiter. The second part is a consequence of
Corollary 3.7 of Lidl and Niederreiter. [

3. THE LATTICE STRUCTURE

For any positive integer ¢, define

Tl ={un =(un7 s 7un+t—1)|n>0’

(16)
so=(x0, ..., xk-1) EZ}}.

This is the set of all possible overlapping ¢-tuples of succes-
sive values produced by (10)~(11), from all possible initial
states. Consider also the shift of 7, defined by 7T; =
(T, = (0,...,0,b,..., b %) mod 1. In general T, does
not necessarily contain the zero vector, but 7, does. Let L,
be the integer lattice generated by T, and Z%,, that is, the
set of all linear combinations of elements of T/ and Z¥,
with integer coefficients, and let L, = L, + (0,..., 0,
b,..., b" %) be the grid (shift lattice), which contains T,.
The points of L, lie in a set of equidistant parallel hyper-
planes (Knuth) and one would like that the distance d,
between those hyperplanes be relatively small, in order to
avoid large slices of empty space. For historical reasons,

RIGHTS L

L’EcuyErR / 819

computing d, is called the spectral test. Another popular
quality measure for a lattice is the Beyer quotient g,
(L’Ecuyer 1990, L’Ecuyer et al.), defined as the ratio of
lengths of a shortest and longest vectors in a Minkowski
reduced basis for the lattice, and which should be close to
one. The computer programs described in L’Ecuyer and
Couture (1996) permit one to compute d, and g, in reason-
ably large dimensions, up to around 40 or more.

Note that d, is the same for both L, and L,. On the other
hand, when p < mF, the points visited from any given
initial state form a strict subset of T,, which might generate
a strict subgrid of L,.

When there are both transient and recurrent states, it is
more appropriate to analyze the set T,, of t-tuples which
are recurrent, since only those states are obtained by the
combination. One has T,, C T,, and the inclusion is strict
when the ks are not all equal. Let L, and L;, denote the
grid and lattice associated with T,, (the analogues of L,
and L;). Couture and L’Ecuyer explain how to construct a
lattice basis for L,, and give several results and special
techniques for computing d, efficiently in large dimensions
for combined generators.

The points @, = (&, ..., d,+,-1), » = 0, produced by
the combined generator (3) no longer belong to the grids
or lattices described above, because of the “noise” ¢,. If we
equate (or join) the opposite faces of the r-dimensional
unit hypercube [0, 1], we obtain the ¢-dimensional unit
torus. Computing the Euclidean distances in that torus is
equivalent to “neglecting” the modulo 1 operation in (14)
(see L’Ecuyer and Tezuka for further discussion). We then
obtain that the Euclidean distance between ,, and u, in the
unit torus is bounded by AV, where A = max(|A*|, |A7)).
Typically, the values of €, are also pretty much evenly
distributed between A~ and A*. As a result, when AV is
larger than d,, the hyperplane structure usually becomes
unrecognizable.

4, EXAMPLES

We now give specific numerical examples. The first two
should not be taken as serious proposals for random num-
ber generators; their purpose is just to give concrete illus-
trations of the possible effect of combination. The last two
examples are more realistic and could be used as actual
random number generators. We have applied a battery of
statistical tests to one of them (Example 4) and give a C
program implementing it.

Example 2. LetJ =2, m; =103, k; = 1,a,; = 40, m, =
103, &k = 3, and (a3, 425, a23) = (29, 14, —15). Then,
each component has full period, that is p, = 102 and p, =
1012 — 1 = 1030300, and the period of the combination is
p = p1pof2 = 52545300. The recurrence (10) associated
with the combination has order £ = 3, modulus m =
10403, multipliers (a,, a,, a;) = (4675, 721, 4429), and
b = 0. The latter recurrence has 10403* possible states,
103 X 101*® of which are recurrent. Table I shows the

Copyright © 2001 All Rights Reserved

820 / L’EcuYER

distances d, between successive hyperplanes, in dimensions
4 to 10, for the lattice L, generated by all the 10403 states
(first column) and for the (sub)lattice L, , generated by the
recurrent states (second column). The latter is the proper
one to analyze in this case, and clearly contains much
fewer points than the former. One may also be interested
by the sublattice generated by the p states visited over one
of the two main cycles of the combined generator: here

Example 3. Let J = 2, m; = 103, and m, = 101 as in
Example 2, but we now take k, = k, = 2. With
(a1,1, a12) = (21, —21) and (a,,, a,,) = (27, —18), both
components have full period, that is, p, = 102°> — 1 =
10608 and p, = 101 — 1 = 10200. In this case, gcd(py, p,)
= 408, so p = p,p,/408 = 265200. The recurrence (10) has
order £ = 2, modulus m = 10403, and all its 104032 states

: are recurrent. Therefore, the lattice L, , is the same as L,.
-§ this sublattice turns out to be the same as L,,. Table 11 gives the values of d,. Note that this generator has
g 408 main cycles of length 265200. We also analyzed the
= Table 1 lattice (or grid) generated by some of those main cycles
% The Values of d, for Example 2, for Each Component, (i.e., with different initial states) and it turned out that it
= for All States, and for the Recurrent States of the was the same as L, in each case. In general, this need not
® Combination always be the case: the lattice (or grid) generated by one
—g‘ d, main cycle could be a strict sublattice (or subgrid) of L,
§ *_ Component1 Component2 Full Recurrent Example 4. For a more realistic combined generator, let
= 4 0.30151 0.11547 0.00127 0.01048 — — 93t _ - -
= 5 030151 0.11547 000582 0.02767 us take J = 2, my = 2% — 1 = 2147483647, m, =
g 6 0.57735 012500 001048 0.04560 2145483479, ky = ky = 3, (a1, @15, a,3) = (0, 63308,
a 7 0.57735 0.12500 0.02767 0.07161 —183326), and (a,;, a5,, a53) = (86098, 0, —539608).
5 8 0.57735 0.20000 0.04560 0.10370 Each component has period p, = m — 1, and the combi-
o 13 82;;;2 gggg% 8%;% 8}?6)22 nation has period p = p,p,/2, which is close to 285, The
g : : : : MRG associated with the combination has order 3, modu-
o lus m = mym, = 4607390686061167913, and multipliers
E_ Table II a; = 2620007610006878699, a, = 4374377652968432818,
8 The Values Of dt fOI' Example 3 and ay = 667476516358487852
N Here, all states are recurrent and they generate the
g t d. same lattice as that generated by each of the two main
E 3 0.00285 cycles. Table III gives the values of d, and g, for each of
2 g 882238 the two components, as well as for the combination. For
o 5 0.05361 comparison, the best simple LCGs with modulus m = 23!
B 7 0.08058 — 1 cannot have a value of d, smaller than 0.01 in dimen-
§ 8 0.10847 sion 5 and 0.20 in dimension 20 (approximately). The 32-
< 9 0.15811 bit combined generator proposed by L’Ecuyer (1988),
« 10 0.15811 whose period length is near 2°', can be approximated by a
&
= Table 111
o The Generator Proposed in Example 4: d, and g, for Each Component and for the
3 Combination
g Component 1 Component 2 Combination
E ; d, g d, q d, 4 AVE
g 4 5.16E—6 9.0E-5 1.83E~6 25E—4 1.1E-14 0.6585 1.86E—-3
= 5 5.16E—-6 0.1611 3.28E—6 0.5952 6.6E—12 0.7558 2.08E-3
3 6 245E-5 0.6807 245E-5 0.3948 4.8E~10 0.7315 2.28E-3
g 7 1.21E~4 0.5722 1.16E-4 0.5146 9.80E—9 0.7866 246E—3
= 8 3.74E—-4 0.6424 4.07E—4 0.5930 9.55E-8 0.7167 2.63E-3
= 9 9.24E—4 0.6590 8.26E—4 0.7049 6.00E—7 0.7491 2.79E~-3
8 10 1.58E-3 0.7746 2.12E-3 0.4970 2.25E—-6 0.6667 2.95E-3

11 3.60E-3 0.6983 3.86E-3 0.6364 8.41E—6 0.7563 3.09E-3

12 441E-3 0.7343 5.67E-3 0.6674 2.66E—5 0.6676 3.23E-3

13 6.67E—-3 0.7700 7.21E-3 0.7353 4.68E-5 0.7255 3.36E~3

14 8.18E-3 0.9083 1.03E-2 0.7439 1.05E—4 0.7362 3.48E-3

15 1.25E-2 0.8629 1.28E-2 0.5947 1.60E—4 0.8171 3.61E-3

16 1.60E-2 0.7156 1.78E~-2 0.5895 2.68E—4 0.8671 3.73E-3

17 2.14E-2 0.7818 224E-2 0.5804 4.26E—-4 0.8619 3.84E-3

18 2.24E-2 0.8576 232E-2 0.8028 7.05E—4 0.9026 3.95E-3

19 2.77E-2 0.9080 3.11E-2 0.7368 1.03E-3 0.8665 4.06E-3

20 4.08E-2 0.8399 3.23E-2 0.8468 1.32E—-3 0.8062 4.17E-3

RIGHTS L

PN LI - WV~ VW . ST I ., L R . ¥ (]
COPYIYNMTer Z0U T AT RIJITS RTSETVET

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

RIGHTS

int ml = 2147483647, m2 = 2145483479,

al2 = 63308, ql2 = 33921, rl2 = 12979,
al3 = -183326, qi3 = 11714, ri3 = 2883,
a2l = 86098, g21 = 24919, 21 = 7417,
a23 = -539608, q23 = 3976, r23 = 2071,

x10, x11, x12, x20, %22,
double Inv'mpl =4 656612373077393@ 10;

1int Random(}

nt h, pl2, pi3, p21, p23,
/* Component 1 */
h = x10 / ql13;

h = x11/ q12,
1£(p13 < 0) P13 = p13 + mi,
x10 = x11; x11 = x12; x12 = p12 - p13,
/* Component 2 */

h = x20 / q23; p23 = -a23 * (x20 -~ h * q23) - h * r23,

h = x22 / q21; p21 = a21 * (x22 - h * g21) - h = r21,

1£(p23 < 0) p23 = p23 + m2; 1£(p2l < 0) p2i = p2i + m2

x22 = p21 - p23; 1f(x22 < 0) x22 = x22 + m2,

p13 = -al3 » (x10 - h * g13) - h « r13;

p12 = al2 » (x11 - h * q12) - h » r12;

1f(p12 < 0) pl2 = p12 + ml

1f(x12 < 0) x12 = x12 + ml,

x20 = x21; x21 = x22;
/% Combination */
;f (x12 < x22) return (x12 - x22 + ml); else return (x12 - x22);

dom{;le Uniform01()
1f (Z==0) Z =ml,

int Z,
Z = Random (), return (Z * Invmpl),
}

Figure 1. An implementation in C of the combined gener-
ation of Example 4.

LCG with ds =~ 0.0002, d,, = 0.017, and d,, ~ 0.10 (see
L’Ecuyer and Tezuka).

With 8, = —8, = 1, one has ¥*
and the bounds (15) become

= {2}, ¥~ is empty,

434 %10 B =<e, <931 %107,

In fact, over the entire period, the values of ¢, are distrib-
uted (practically) uniformly between those two bounds.
The Euclidean distance between the points u, and i, in
the t-dimensional unit torus is bounded by AV?
0.000931V¢, which is given in the last column of Table III.
One can see that in dimensions up to 20 (and more), the
lattice structure is “detroyed by the noise”, in the sense
that the bound 0.000931V¢ remains larger than the dis-
tance d, between successive hyperplanes. In some larger
dimension (around 40), that bound is getting close to d,,
which means that |ju, — i,| is then approximately uni-
formly distributed between zero and d,, so the “empty
slices” between the hyperplanes are nicely filled up.

Figure 1 gives an implementation of the combined gen-
erator (3) in the C language. Translation into other proce-
dural languages such as FORTRAN, Pascal, Modula-2
and so on, is trivial. The two MRG components are imple-
mented along the lines described by L'Ecuyer (1990) and
L’Ecuyer et al. The function Random returns an integer in
the range [0, 2*' — 2], while Uniform01 returns a value
(strictly) between 0 and 1 (assuming that the “double”
floating-point real numbers are represented with at least
32 bits for their mantissa).

This code assumes that all integers in the range [—2°",
2*! — 1] are well represented. The global variables x10 to
x22 hold the generator’s state and represent X;,, Xy ,41,
Xi 425 X205 X2+ 1> X2 4.2, TESpectively. They must be initial-
ized, before the first call, to values that satisty 0 < x,, <
m,— 1forj=1,2and 0 <=2, and x,, > 0 for at least
one i, for each j. For example, initializing each of those
variables to a random value between 1 and 2145483478
will do. These six initial values constitute the seed.

i,

L’Ecuyer / 821

In terms of speed, we should expect this proposed gen-
erator to take approximately twice the time as the 32-bit
combined LCG proposed by L'Ecuyer (1988) and used as
the basis of the random number package of L'Ecuyer and
Coté (1991), because here we have four modular products
to compute instead of two, and some additional modular
sums. We checked that empirically by running the two
combined generators on a SUN SPARCstation 20 under
Solaris. Both were implemented in C and compiled with
the “cc” compiler at optimization level —02. To generate
one million random numbers, the combined generator of
L'Ecuyer (1988) took 7.8 seconds, while the combined
MRG of Figure 1 took 17.2 seconds. For both generators,
these timings correspond to implementations where the
constants such as a12, 912, r12, and so on, are first de-
clared and then used in the code, as in Figure 1, so that
the procedure is in generic form, independent of the spe-
cific multipliers and moduli. We also tested versions where
the specific constants were replaced directly by their nu-
merical values in the code, to speed up the execution.
Then, the timings we got were 4.8 and 9.5 seconds, respec-
tively. Finally, we also tried the latter implementations
compiled using the “-fast” option of the cc compiler, and
the two generators then took 1.9 and 3.4 seconds, respec-
tively, to generate the 10° random numbers. To make sure
that the compiler was not optimizing out the calls to the
generators because the random numbers were not used,
we added up the random numbers while they where gen-
erated and printed the sum.

Clearly, there is a price to pay in terms of speed to get
the longer period length and (theoretically) better proper-
ties of the combined MRG. That price could be negligible
when the random number generation takes only a small
fraction of the total computing time. If a program takes
hours of cpu of a fast computer and most of that time is
for generating the random numbers, then the generator’s
speed may be critical, but its statistical robustness more so.
In other words, the latter situation is likely to be one for
which “classical” LCGs, with period length of around 2*'
or 2°2, could produce wrong results, because the fraction
of the period length that is used is too large. It takes less
than half an hour of cpu time to exhaust the period of a
LCG with modulus 2*! — 1 on our SPARCstation 20. The
combined Tausworthe generators proposed by Tezuka and
L’Ecuyer are also faster than that of Figure 1, but have a
shorter period length (near 2%°).

We applied a battery of empirical statistical tests to that
generator: we ran the same 21 tests as in L’Ecuyer (1988),
as well as the 10 tests used in L’Ecuyer (1992). The gener-
ator easily passed all those tests (the detailed results are
available from the author).

The sequence produced by the generator can be split
into disjoint subtreams by starting the generator from dif-
ferent initial states, spaced far apart in the original se-
quence. Based on that, one can build a package with
several virtual generators, as in L’'Ecuyer and Co6té (1991).
Those initial states can be computed easily if jumping

Copyright © 2001 All Rights Reserved

Downloaded from informs.org by [131.254.101.56] on 03 May 2017, at 05:39 . For personal use only, all rights reserved.

822 / L’EcUYER

Table IV
The Generator of Example 5: 4, and ¢, for Each
Component and for the Combination

Component 1

t d, q, d, q, d, q,

4 00112 0.4305 7.81E-7 59E—4 4.0E—10 0.8713
5 00249 05758 2.76E—6 0.8189 3.30E-8 0.7163
6 0.0347 08319 255E-5 06142 523E—7 0.8293
7
8

Component 2 Combination

0.0700 0.7189 136E—4 04791 4.24E-6 0.6704
0.0839 0.7105 4.49E—-4 0.6752 1.90E-5 0.7040

9 01163 06176 6.92E—4 0.8495 743E-5 0.6166
10 01250 07629 1.67E-3 04942 1.67E-4 0.6960
11 0.1543 0.7563 2.46E-3 0.7763 3.76E—4 0.6751
12 0.1667 0.7222 4.32E-3 0.7654 7.28E—4 0.7248
13 0.2500 0.7760 7.05E-3 0.,5302 1.18E-3 0.8302
14 0.2500 0.7295 9.11E-3 0.7304 1.95E-3 (.7469
15 02500 0.7421 1.34E-2 0.7291 2.76E—3 0.8238
16 0.2887 0.6784 1.54E-2 0.8085 3.98E~3 0.7579
17 02887 0.7697 197E-2 0.8185 S5.18E-3 0.7716
18 0.2887 0.8008 2.40E-2 0.8437 7.25E—-3 0.8111
19 0.2887 0.7918 3.40E-2 0.7923 9.33E-3 0.7101
20 02887 0.8185 344E-2 0.7870 1.10E—2 0.7929

ahead facilities are available for the individual MRG
components; that is, if an efficient algorithm is available
for computing the state of the MRG, say, v steps ahead
of the current one, for large values of v. L’Ecuyer (1990,
p- 88) explains one way of doing that, based on the fact
that the MRG (1) can be viewed as a LCG in matrix
form, whose state is a k-dimensional vector and whose
multiplier is a k X k matrix A. To jump ahead by v
values, just multiply the current state by 4*, modulo m.
The matrix A” mod m can be precomputed in time
O(log v), using again the divide-to-conquer algorithm
mentioned in Section 1.

Example 5. Let us now combine an MRG with a LCG
with power-of-two modulus. We take J = 2, m; = 2%,
ky =1,a,, = 738801091, b, = 1, while m, = 2°! — 1 =
2147483647, k, = 3, (a3, G, @23) = (0, 377579228,
—472831176), and b, = 0. The period lengths are p, = 2%
for component 1, p, = (2°! — 1)> — 1 for component 2,
and p = p;p,/2 ~ 2'** for the combination. Table IV gives
the values of d, and g, for each component and for the
combination (for the recurrent states).

ACKNOWLEDGMENT

This work has been supported by NSERC-Canada grant
number OGP0110050 and FCAR-Québec grant number
93ER1654. The author wishes to thank Raymond Couture,
David Kelton, and the referees for their useful comments;
Luc De Bellefeuille, who helped writing the C program of
Figure 1; and Jean-Francois Cordeau, who helped per-
forming the statistical tests.

RIGHTS L

REFERENCES

BraAssarD, G., AND P. BrRATLEY. 1988. Algorithmics: Theory
and Practice. Prentice Hall.

COMPAGNER, A. 1991. The Hierarchy of Correlations in Ran-
dom Binary Sequences. J. Statistical Physics 63, 883-896.

CoUTURE, R., AND P. L’ECUYER. 1996. Orbits and Lattices for
Linear Random Number Generators with Composite
Moduli. Math. Computation, 65, 213, 189-201.

Knuth, D. E. 1981. The Art of Computer Programming, Vol-
ume 2: Seminumerical Algorithms. Second Ed,,
Addison-Wesley.

L’ECUYER, P. 1988. Efficient and Portable Combined Random
Number Generators. Comm. ACM 31(6), 742-749 and
774. (See also the correspondence in the same journal,
32, 8 (1989) 1019-1024.)

L’ECUYER, P. 1990. Random Numbers for Simulation. Comm.
ACM 33(10), 85-97.

L’ECUYER, P. 1992. Testing Random Number Generators. In
Proceedings of the 1992 Winter Simulation Conference,
305-313. IEEE Press.

L’EcUYER, P. 1994, Uniform Random Number Generation.
Anns. O. R 53, 77-120.

L’EcuvEer, P. 1996. Bad Lattice Structures for Vectors of
Non-successive Values Produced by Some Linear Recur-
rences. J. Computing. To appear.

L’EcUYER, P., F. BLouiN AND R. CouTURE. 1993. A Search for
Good Multiple Recursive Random Number Generators.
ACM Trans. Modeling and Computer Simulanon 3(2),
87-98.

L’ECUYER, P., aND S. COTE. 1991. Implementing a Random
Number Package with Splitting Facilities. ACM Trans.
Math. Software 17(1), 98-111.

L’ECUYER, P., aND R. COUTURE. 1996. An Implementation of
the Lattice and Spectral Tests for Linear Congruential
and Multiple Recursive Generators. J. Comput., to ap-
pear.

L’ECUYER, P., AND S. TEzUKA. 1991. Structural Properties for
Two Classes of Combined Random Number Generators.
Math. Computation 57(196), 735-746.

LipL, R., aND H. NIEDERREITER. 1986. Introduction to Finite
Fields and Their Applications. Cambridge University
Press, Cambridge.

NIEDERREITER, H. 1992. Random Number Generation and
Quasi-Monte Carlo Methods. Volume 63 of SIAM CBMS-
NSF Regional Conference Series in Applied Mathematics.
SIAM, Philadelphia.

TEzUKA, S., anD P. L’Ecuyir. 1991, Efficient and Portable
Combined Tausworthe Random Number Generators. ACM
Trans. Modeling and Computer Simulation 1(2), 99-112.

WanG, D., AND A. CoMPAGNER. 1993, On the Use of Reduc-
ible Polynomials as Random Number Generators. Math.
Computation 60, 363-374.

WicHMANN, B. A., anp 1. D. HiLL. 1982. An Efficient and
Portable Pseudorandom Number Generator. Appl. Statis-
tics 31, 188-190. (See also corrections and remarks in the
same journal by Wichmann and Hill, 33 (1984) 123;
McLeod 34 (1985) 198-200; Zeisel 35 (1986) 89.)

copyrignt e ZU0T All Rights Reserved

