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Estimating the unknown density from which a given independent sample originates is more difficult than

estimating the mean, in the sense that for the best popular non-parametric density estimators, the mean

integrated square error converges more slowly than at the canonical rate of O(1/n). When the sample is

generated from a simulation model and we have control over how this is done, we can do better. We examine

an approach in which conditional Monte Carlo yields, under certain conditions, a random conditional density

which is an unbiased estimator of the true density at any point. By averaging independent replications, we

obtain a density estimator that converges at a faster rate than the usual ones. Moreover, combining this

new type of estimator with randomized quasi-Monte Carlo to generate the samples typically brings a larger

improvement on the error and convergence rate than for the usual estimators, because the new estimator is

smoother as a function of the underlying uniform random numbers.
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1. Introduction

Simulation is commonly used to generate n realizations of a random variable X that may represent

a payoff, a cost, or a performance of some kind, and then to estimate from this sample the unknown

expectation of X together with a confidence interval on this expectation (Asmussen and Glynn

2007, Law 2014). Simulation books focus primarily on how to improve the quality of the estimator

of E[X] and of the confidence interval. Estimating a given quantile of the distribution of X, or the

sensitivity of E[X] with respect to some parameter in the model, also with a confidence interval,

are other well-studied topics in the literature.

However, large simulation experiments can provide a lot more information than just point esti-

mates with confidence intervals. Running simulations of a complex system for hours, with thousands

of runs, only to report confidence intervals on a few single numbers is poor data valorization. A
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simulation experiment can give much more useful information than this. In particular, it can pro-

vide an estimate of the entire distribution of X, and not only its expectation or a specific quantile.

Moreover, and perhaps more importantly, users are typically more interested in the whole distri-

bution than on a confidence interval on the mean. The following examples of typical simulation

models show why.

In many real-life stochastic simulation models, the prime focus of interested is the distribution

of certain random delays. These delays can be for example the waiting times of calls in a telephone

call center, the waiting times of patients at a walk-in medical clinic or at the emergency, the waiting

time of passengers at an airport checking counter, the delivery time of an order, the travel time

in some transportation network, etc. In all these situations, a user will be mostly interested in

what his own waiting time is likely to be. That is, she/he is much more interested in the probability

distribution of the waiting time than in having a good estimate of the expectation (or global mean)

(Nelson 2008, Smith and Nelson 2015).

When one makes a call to a call center and all agents are busy, a good forecast of the waiting

time is certainly appreciated. Based on this forecast, the caller may decide that there is enough

time to engage in another activity before getting an answer. The expected waiting time alone is

not sufficient to make such as decision, because for example it does not tell the probability of

missing the call when going out for x minutes. A distributional forecast, which provides a density

of the waiting time distribution (perhaps conditional on the current time and system state) is

much more informative and helpful (Thiongane et al. 2021). This applies to waiting times in many

other types of service systems. Users are interested in the density (or distribution) of their waiting

time, not just the expectation. When a manufacturer orders parts from a supplier, or a retail store

orders items from the manufacture or distributor, an estimate of the density of the time until

delivery (and not just its expectation) gives them good idea of what can happen, including the

probability that the parts or items arrive on time, and the distribution of the delay if there is one.

In a large construction project that involves many activities of random durations and precedence

constraints, the total time to complete the project is a random variable X usually modeled by

a stochastic activity network (see Section 4.3). Knowing the density of X permits one to assess

the risks in signing contracts that impose various types of penalties when X is too large. In many

other situations, X is a cost or a profit and estimating the density of X is again more interesting

and useful than just the expectation. In a finance application, for example, X may represent an

investment loss over a given month, and the density of X provides much more information on the

possibilities of large losses (and perhaps bankruptcy) than just the mean. We will report numerical

experiments for a finance-type example in Section 4.6.
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So, simulation users are interested in the whole distribution of the output and not only the mean.

One way to visualize the entire distribution of X is to look at the empirical cumulative distribution

function (cdf) of the observations. But density estimators (including histograms) are preferred

because they give a better visual insight on the distribution than the cdf. For this reason, leading

simulation software routinely provides histograms and enhanced boxplots that give a rough idea

of the distribution of the output random variables of interest. For example, the standard output

display in Simiotm is a histogram enhanced with a boxplot, named SMORE (Simio Measure Of

Risk and Error) (Sturrock and Pegden 2010, Smith and Nelson 2015). When X has a continuous

distribution, these histograms and boxplots are in fact just primitive forms of density estimators.

So why are better density estimators not routinely offered? Mainly because non-parametric density

estimation is difficult.

If the density of X is assumed to have a known parametric form, e.g., a normal or gamma

distribution, then one can estimate the parameters from data in the usual way (e.g., by maximum

likelihood) and things are simple. But in typical complex models, X does not have a known and

simple form of distribution. There are semi-parametric procedures in which the density is assumed

to belong to a Hilbert space of functions which are linear combinations a finite number of fixed basis

functions, and the coefficients are estimated by penalized regression. These are known as smoothing

spline models (Gu and Qiu 1993, Yu et al. 2020). But it is often difficult to select basis functions

that capture the unknown density and a good choice depends on the problem. In this paper, we

focus on non-parametric methods, in the sense that we assume no particular form for the density

of X. On the other hand, the input distributions in the simulation model may be parametric (they

often are). The most widely used non-parametric density estimation methods are the histogram and

the kernel density estimator (KDE) (Parzen 1962, Silverman 1986, Wand and Jones 1995, Scott

2015). Given n independent realizations of X, the mean integrated square error (MISE) between

the true density and a histogram with optimally selected divisions converges only as O(n−2/3).

With the KDE, the MISE converges as O(n−4/5) in the best case. These rates are slower than

the canonical O(n−1) rate for the variance of the sample average as an unbiased estimator of the

mean. The slower rates stem from the presence of bias. See for example Scott (2015) for the details.

For a histogram, taking wider rectangles reduces the variance but increases the bias by flattening

out the short-range density variations. A compromise must be made to minimize the MISE. The

same happens with the KDE, with the rectangle width replaced by the bandwidth of the kernel.

Selecting a good bandwidth for the KDE is particularly difficult. The bandwidth should ideally

vary over the interval in which we estimate the density; it should be smaller where the density is

larger and/or smoother, and vice-versa. This is complicated to implement. Handling discontinuities
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in the density is also problematic. These difficulties have discouraged the use of KDEs (instead of

histograms) to report simulation results in general-purpose software.

The KDE and other related density estimation methods were developed mainly for the situation

where n independent realizations of X are given and nothing else is known, as traditionally assumed

in classical non-parametric statistics, and one wishes to estimate the density from them (Scott

2015). But in a Monte Carlo setting in which the n observations are generated by simulation, there

are opportunities to do better by controlling the way we generate the realizations and by exploiting

the fact that we know the underlying stochastic model. This is the subject of the present paper.

Our approach combines two general ideas. The first one is to build a smooth estimator of the cdf

via conditional Monte Carlo (CMC), and take the corresponding conditional density to estimate the

unknown density. We call it a conditional density estimator (CDE). Under appropriate conditions,

the CDE is unbiased and has uniformly-bounded variance, so its MISE is O(n−1) for n samples.

This idea of using CMC was mentioned by Asmussen and Glynn (2007), page 146, Example 4.3,

and further studied in Asmussen (2018), but only for the special case of estimating the density of a

sum of i.i.d. continuous random variables having a known density. Asmussen (2018) simply “hides”

the last term of the sum, meaning that the last random variable is not generated, and he takes a

shifted version of the known density of this last variable to estimate the density, the value at risk,

and the conditional value at risk of the sum. His setting is equivalent to a sum of two independent

random variables: the first one is the partial sum which is generated and on which we condition,

and the second one is the last variable which is not generated. Fu (2006) mentioned this same idea

in one of his examples.

Smoothing by CMC before taking a stochastic derivative has been studied earlier for estimating

the derivative of an expectation (Gong and Ho 1987, L’Ecuyer and Perron 1994, Fu and Hu 1997)

and the derivative of a quantile (Fu et al. 2009) with respect to a model parameter. This is known

as smoothed perturbation analysis (SPA). In retrospect, one can say that the CDE at a given point

x is an SPA estimator obtained by viewing the cdf F (x) as the expectation and x as the model

parameter. However, nobody studied this idea for density estimation until Asmussen (2018) did it

for his special case.

The main contribution of this paper is to show how this CDE approach can be used to estimate

the density in a much more general setting than Asmussen (2018), to give conditions under which

it provides an unbiased density estimator, and to examine how effective it is via experiments

on several types of examples. In most of these examples, X is not defined as a sum of random

variables, and we often have to hide more than just one random variable to do the conditioning. A

key unbiasedness condition is that the conditional cdf must be a continuous function of the point

x at which we estimate the density. In other words, the conditional distribution of X under the
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selected conditioning must have a density with respect to the Lebesgue measure. The variance

of the density estimator may depend strongly on which variables we hide, i.e., on what we are

conditioning. We illustrate this with several examples and we provide guidelines for the choice of

conditioning. Interestingly, while the KDE is defined as an average of n randomly-shifted copies

of the (fixed) kernel density, the CDE is an average of n conditional densities which are generally

different and random.

In addition to being unbiased, the CDE often has less variation than the KDE as a function of the

underlying uniform random numbers. As a result, its combination with randomized quasi-Monte

Carlo (RQMC) tends to bring much more improvement than for the KDE. We have observed this

in all our experiments. Under appropriate conditions, it can be proved that combining the CDE

with RQMC provides a density estimator whose MISE converges at a faster rate than O(n−1),

for instance O(n−2+ε) for any ε > 0 in some situations. We observe this fast rate empirically on

numerical examples. This happens essentially when the CDE is a smooth function of the underlying

uniforms. To our knowledge, this type of convergence rate has never been proved or observed for

non-parametric density estimation.

The combination of RQMC with an ordinary KDE was studied by Ben Abdellah et al. (2021),

who were able to prove a faster rate than O(n−4/5) for the MISE when the RQMC points have

a small number of dimensions. They observed this faster rate empirically on examples. They also

showed that the MISE reduction from RQMC degrades rapidly when the bandwidth is reduced

(to reduce the bias) or when the dimension increases. The CDE+RQMC approach studied in the

present paper avoids this problem (there is no bias and no bandwidth) and is generally much more

effective than the KDE+RQMC combination. We provide numerical comparisons in our examples.

Other Monte Carlo density estimators were proposed very recently, also based on the idea of esti-

mating the derivative of the cdf, but using a likelihood ratio (LR) method instead. The LR method

was originally designed to estimate the derivative of the expectation with respect to parameters

of the distribution of the underlying input random variables (Glynn 1987, L’Ecuyer 1990). Laub

et al. (2019) proposed an estimator that combines a clever change of variable with the LR method,

to estimate the density of a sum of random variables as in Asmussen (2018), but in a setting where

the random variables can be dependent. Peng et al. (2018) proposed a generalized version of the

LR gradient estimator method, named GLR, to estimate the derivative of an expectation with

respect to a more general model parameter. Lei et al. (2018) sketched out how GLR could be used

to estimate a density. Formulas for these GLR density estimators are given in Theorem 1 of Peng

et al. (2020). We compare them with the CDE estimators in our numerical illustrations.

Density estimation has other applications than just visualizing the distribution of an output

random variable (Van der Vaart 2000, Scott 2015). For instance when computing a confidence
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interval for a quantile using the central-limit theorem (CLT), one needs a density estimator at the

quantile to estimate the variance (Serfling 1980, Asmussen and Glynn 2007, Nakayama 2014a,b).

See Section B.4 in the Supplement. Another application is for maximum likelihood estimation

when the likelihood does not have a closed-form expression, so to maximize it with respect to some

parameter θ, the likelihood function (which in the continuous case is a density at any value of θ)

must be estimated (Van der Vaart 2000, Peng et al. 2020). A related application is the estimation

of the posterior density of θ given some data, in a Bayesian model (Efron and Hastie 2016).

The remainder is organized as follows. In Section 2, we define our general setting, recall key facts

about density estimators, introduce the general CDEs considered in this paper, prove some of their

properties, and give small examples to provide insight on the key ideas. We also briefly recall GLR

density estimators. In Section 3, we explain how to combine the CDE with RQMC and discuss the

convergence properties for this combination. Section 4 reports experimental results with various

examples. Some of the examples feature creative ways of conditioning to improve the effectiveness

of the method. Additional examples are examined in the Online Supplement. Section 5 summarizes

the key issues and guidelines on the construction and applications of the CDE. A conclusion is

given in Section 6. The main ideas of this paper were presented at a SAMSI workshop on QMC

methods in North Carolina, and at a RICAM workshop in Linz, Austria, both in 2018.

2. Model and conditional density estimator
2.1. Density estimation setting

We have a real-valued random variable X that can be simulated from its exact distribution, but

we do not know the cdf F and density f of X. Typically, X will be an easily computable function

of several other random variables with known densities. Our goal is to estimate f over a finite

interval [a, b]. Let f̂n denote an estimator of f based on a sample of size n. We measure the quality

of f̂n by the mean integrated square error (MISE), defined as

MISE = MISE(f̂n) =

∫ b

a

E[(f̂n(x)− f(x))2]dx. (1)

The MISE is the sum of the integrated variance (IV) and the integrated square bias (ISB):

MISE = IV + ISB =

∫ b

a

E(f̂n(x)−E[f̂n(x)])2dx+

∫ b

a

(E[f̂n(x)]− f(x))2dx.

A standard way of constructing f̂n when X1, . . . ,Xn are n independent realizations of X is via a

KDE, defined as follows (Parzen 1962, Scott 2015):

f̂n(x) =
1

nh

n∑
i=1

k

(
x−Xi

h

)
,
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where the kernel k is a probability density over R, usually symmetric about 0 and non-increasing

over [0,∞), and the constant h> 0 is the bandwidth, whose role is to stretch [or compress] the kernel

horizontally to smooth out [or unsmooth] the estimator f̂n. The KDE was developed for the setting

in which X1, . . . ,Xn are given a priori, and it is the most popular estimator for this situation. It

can be used as well when X1, . . . ,Xn are independent observations produced by simulation from a

generative model, but then there is an opportunity to do better, as we now explain.

2.2. Conditioning and the stochastic derivative as an unbiased density estimator

Since the density of X is the derivative of its cdf, f(x) = F ′(x), a natural idea would be to take

the derivative of an estimator of the cdf as a density estimator. The simplest candidate for a cdf

estimator is the empirical cdf

F̂n(x) =
1

n

n∑
i=1

I[Xi ≤ x],

but dF̂n(x)/dx = 0 almost everywhere, so this one cannot be a useful density estimator. Here,

F̂n(x) is an unbiased estimator of F (x) at each x, but its derivative is a biased estimator of F ′(x).

That is, because of the discontinuity of F̂n, we cannot exchange the derivative and expectation:

0 = E

[
dF̂n(x)

dx

]
6= dE[F̂n(x)]

dx
= F ′(x).

A general framework to construct a continuous estimator of F via CMC is the following. Replace

the indicator I[X ≤ x] by its conditional cdf given filtered (reduced) information G: F (x | G)
def
=

P[X ≤ x | G], where G is a sigma-field that contains not enough information to reveal X but

enough to compute F (x | G). Here, knowing the realization of G means knowing the realizations

of all G-measurable random variables. Our CDE to estimate f(x) will be the conditional density

f(x | G)
def
= F ′(x | G) = dF (x | G)/dx, when it exists. We assume that this estimator can be computed

(or approximated) for (almost) all realizations of G. Under the following assumption, we prove

that f(x | G) exists almost surely and is an unbiased estimator of f(x) whose variance is bounded

uniformly in x. Since F (· | G) cannot decrease, f(· | G) is never negative.

Assumption 1. For all realizations of G, F (x | G) is a continuous function of x over the interval

[a, b], and is differentiable except perhaps at a countable set of points D(G)⊂ [a, b]. For all x∈ [a, b],

F (x | G) is differentiable at x w.p.1. There is also a random variable Γ defined over the same

probability space as F (x | G), such that E[Γ2] ≤ Kγ for some constant Kγ <∞, and for which

supx∈[a,b]\D(G)F
′(x | G)≤ Γ.

Proposition 1. Under Assumption 1, E[f(x | G)] = f(x) and Var[f(x | G)] ≤ Kγ for all x ∈

[a, b].
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Proof. We adapt the proof of Theorem 1 of L’Ecuyer (1990). By Theorem 8.5.3 of Dieudonné

(1969), which is a form of mean value inequality theorem for non-differentiable functions, for every

x∈ [a, b] and δ > 0, with probability 1, we have

0 ≤ ∆(x, δ,G)

δ
def
=

F (x+ δ | G)−F (x | G)

δ
≤ sup

y∈[x,x+δ]\D(G)
F ′(y | G) ≤ Γ.

Then, by the dominated convergence theorem,

E
[
lim
δ→0

∆(x, δ,G)

δ

]
= lim

δ→0
E
[

∆(x, δ,G)

δ

]
,

which shows the unbiasedness. Moreover, Var[f(x | G)] = Var[F ′(x | G)]≤E[Γ2]≤Kγ . �

Suppose now that G(1), . . . ,G(n) are n independent realizations of G, so F (x | G(1)), . . . ,F (x | G(n))

are independent realizations of F (x | G), and consider the CDE

f̂cde,n(x) =
1

n

n∑
i=1

f(x | G(i)). (2)

Under Assumption 1, it follows from Proposition 1 that ISB(f̂cde,n) = 0 and MISE(f̂cde,n) =

IV(f̂cde,n)≤ (b− a)Kγ/n. An unbiased estimator of this IV is given by

ÎV = ÎV(f̂cde,n) =
1

n− 1

∫ b

a

n∑
i=1

[
f(x | G(i))− f̂cde,n(x)

]2
dx. (3)

In practice, this integral can be approximated by evaluating the integrand at a finite number of

points over [a, b] and taking the average, multiplied by (b− a).

The variance of the CDE estimator at x is Var[f(x | G)], where x is fixed and G is random. This

differs from the variance associated with the conditional density f(· | G), which is Var[X | G]. It is

well known that in general, when estimating E[X], a CMC estimator never has a larger variance

than X itself, and the more information we hide, the smaller the variance. That is, if G ⊂ G̃ are

two sigma-fields such that G contains only a subset of the information of G̃, then

Var[E[X | G]]≤Var[E[X | G̃]]≤Var[X]. (4)

Noting that F (x | G) =E[I[X ≤ x] | G], we also have

Var[F (x | G)]≤Var[F (x | G̃)]≤Var[I[X ≤ x]] = F (x)(1−F (x)).

Thus, (4) applies as well to the (conditional) cdf estimator. However, applying it to the CDE is

less straightforward. It is obviously not true that Var[F ′(x | G)]≤ Var[dI[X ≤ x]/dx] because the

latter is zero almost everywhere. Nevertheless, we can prove the following.

Lemma 1. If G ⊂ G̃ both satisfy Assumption 1, then for all x ∈ [a, b], we have Var[f(x | G)] ≤

Var[f(x | G̃)].
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Proof. The result does not follow directly from (4) because F ′ is not an expectation; this is

why our proof does a little detour. For an arbitrary x∈ [a, b] and a small δ > 0, define the random

variable I = I(x, δ) = I[x<X ≤ x+ δ]. We have E[I | G] = F (x+ δ | G)−F (x | G), as in the proof of

Proposition 1, and similarly for G̃. Using (4) with I in place of X gives

Var[E[I | G]]≤Var[E[I | G̃]]. (5)

We have

f(x | G) = lim
δ→0

F (x+ δ | G)−F (x | G)

δ
= lim

δ→0
E[I(x, δ)/δ | G]

and similarly for G̃. Combining this with (5), we obtain

Var[f(x | G)] = Var[lim
δ→0

E[I(x, δ)/δ | G]] = lim
δ→0

Var[E[I(x, δ)/δ | G]]

≤ lim
δ→0

Var[E[I(x, δ)/δ | G̃]] = Var[lim
δ→0

E[I(x, δ)/δ | G̃]] = Var[f(x | G̃)],

in which the exchange of “Var” with the limit (at two places) can be justified by a similar argument

as in Proposition 1. More specifically, we need to apply the dominated convergence theorem to

E[I(x, δ)/δ | G], which is just the same as in Proposition 1, and also to its square, which is also

valid because the square is bounded uniformly by Γ2. This completes the proof. �

This lemma tells us that conditioning on less information (hiding more) always reduces the

variance of the CDE (or keep it the same). But if we hide more, the CDE may be harder or more

costly to compute, so a compromise must be made to minimize the work-normalized MISE (which

is the MISE multiplied by the expected time to compute the estimator), and the best compromise

is generally problem-dependent. When none of G or G̃ is a subset of the other, the variances of

the corresponding conditional density estimators may differ significantly, and Lemma 1 does not

apply, so other strategies must be used to select G when there are multiple possibilities.

In our setting, the most important condition is that G must satisfy Assumption 1. Any such G

provides an unbiased density estimator with finite variance. When there are multiple choices, in

general we want to choose G so that the conditional density tends to be spread out as opposed to

being concentrated in a narrow peak. We give concrete examples of this in Section 4. This criterion is

heuristic. If f is very spiky itself, then the CDE must be spiky as well, because Var[X | G]≤Var[X],

and yet Var[f(x | G)] can be very small, even zero in degenerate cases. Also, a large Var[X | G] for

all G is not sufficient, because the large variance may come from two or more separate spikes, and

this is why we write “spread out” instead of “large variance”. Roughly, we want the CDE f(· | G)

to be spread out relative to f , for all realizations of G.

A more elaborate selection criterion should take into account the IV of the CDE, its computing

cost, and also the variation of of the resulting CDE as a function of the underlying uniform random
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numbers, in case we want to use RQMC to generate those random numbers (see Section 3). For

real-life models, it is usually much too hard to precompute such measures, so the best practice

would be to identify a few promising candidates and either: (1) perform pilot runs to compare

their effectiveness and select one or (2) take a convex combination of the corresponding CDEs,

as explained in Section 2.4. We believe that finding a good G will always remain largely problem-

dependent and it sometimes requires creativity. No simple selection method works universally. On

the other hand, to make good selections, it is useful to understand certain basic principles. We

illustrate this with a variety of examples in the next subsection and in Section 4.

2.3. Small examples to provide insight

To illustrate some key ideas, this subsection provides simple examples formulated in the special

setting in which X = h(Y1, . . . , Yd) where Y1, . . . , Yd are independent continuous random variables,

each Yj has cdf Fj and density fj, and we condition on G = G−k defined as the information

that remains after erasing the value taken by the single input variable Yk. We can write G−k =

(Y1, . . . , Yk−1, Yk+1, . . . , Yd). The CDE f(x | G−k) will be related to the density fk and will depend

on the form of h. Checking for the continuity of the conditional cdf is usually easy in this case.

Note that this setting is only a particular case of our framework. In many applications, X is not

defined like this in a way that G−k would satisfy Assumption 1 for some k. In Section 4, we examine

examples that do not fit this setting and we provide more elaborate forms of conditioning.

Our first example is a sum of random variables, similar to Asmussen (2018). It conveys the CDE

idea in a simple setting. It also shows that selecting which variable to hide is not straightforward

even in this very simple setting, and that the optimal choice may depend on the value of x at which

we estimate the density. The second example shows how the choice of G can make a significant

difference in performance, and that it is usually better to hide variables having a larger variance

contribution. The third example illustrates what we have to do to verify Assumption 1 for a given

application. The fourth example shows that we cannot always obtain an unbiased CDE by hiding

a single variable. The fifth example shows that it is not always easy to know what is the optimal

information to hide. On the other hand, the CDE can still work well even if we do not use the

optimal G.

Example 1. A very simple situation is when X = h(Y1, . . . , Yd) = Y1 + · · · + Yd, a sum of d

independent continuous random variables. By hiding Yk for an arbitrary k, we get

F (x | G−k) = P[X ≤ x | S−k] = P[Yk ≤ x−S−k] = Fk(x−S−k),

where S−k
def
=
∑d

j=1, j 6=k Yj, and the density estimator becomes f(x | G−k) = fk(x−S−k). This form

also works when the Yj’s are not independent if we are able to compute the density of Yk conditional
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on G−k. It then suffices to replace fk by this conditional density. Asmussen (2018) studied exactly

this model, with independent variables and k= d.

When the Yj’s have different distributions and we want to hide one, which one should we hide?

Intuition may suggest to hide the one having the largest variance. This simple rule works well in

a majority of cases, although it is not always optimal. In particular, the optimal choice of variable

Yk may depend on the value of x at which we estimate the density. To illustrate this, let d = 2,

X = Y1 + Y2, f1(y) = 2y, and f2(y) = 2(1 − y), for y ∈ (0,1). Then, f(x) > 0 for 0 < x < 2. If

we hide Y2, the density estimator at x is f2(x − Y1) and its second moment is E[f2
2 (x − Y1)] =∫ 1

0
f2
2 (x−y1)f1(y1)dy1 whereas if we hide Y1, the density estimator at x is f1(x−Y2) and its second

moment is E[f2
1 (x− Y2)] =

∫ 1

0
f2
1 (x− y2)f2(y2)dy2. One can easily verify that when x is close to 0,

these integrands are nonzero only when both y1 and y2 are also close to 0, and then the second

integral is smallest, so it is better to hide Y1. When x is close to 2, the opposite is true and it is

better to hide Y2. In applications, changing the conditioning as a function of x adds complications

and is normally not necessary. Using the same conditioning for all x, even when not optimal, is

usually preferable because of its simplicity.

Example 2. The following small example provides further insight into the choice of G. Suppose

X is the sum of two independent uniform random variables: X = Y1 + Y2 where Y1 ∼ U(0,1) and

Y2 ∼U(0, ε) where 0< ε < 1. The exact density of X here is f(x) = x/ε for 0≤ x≤ ε, f(x) = 1 for

ε≤ x≤ 1, and f(x) = (1 + ε−x)/ε for 1≤ x≤ 1 + ε. Figure 1 illustrates this density.

0 0.5 1 1.5
0

0.5

1

x

f
(x

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Figure 1 Exact density of X for the model in Example 2 with ε= 3/4 (left) and ε= 1/16 (right).

With G = G−1, we have F (x | G−1) = P[X ≤ x | Y2] = P[Y1 ≤ x− Y2 | Y2] = x− Y2 and the density

estimator is f(x | G−1) = 1 for Y2 ≤ x≤ 1+Y2, and 0 elsewhere. If G = G−2 instead, then F (x | G−2) =

P[Y2 ≤ x− Y1 | Y1] = (x− Y1)/ε and the density estimator is f(x | G−2) = 1/ε for Y1 ≤ x ≤ ε+ Y1,

and 0 elsewhere. In both cases, Assumption 1 holds and the density estimator with one sample is a

uniform density, but the second one is over a narrow interval if ε is small. When ε is small, G = G−2
gives a density estimator f̂cde,n which is a sum of high narrow peaks and has much larger variance.

For this simple example, we can also derive exact formulas for the IV of the CDE under MC. For

G = G−1, f(x | G−1) = I[Y2 ≤ x≤ 1 + Y2] is a Bernoulli random variable with mean P[x− 1≤ Y2 ≤

x] = f(x), so its variance is f(x)(1− f(x)). Integrating this over [0, 1 + ε] gives IV = ε/3 for one
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sample. For a sample of size n, this gives IV = ε/(3n). For G = G−2, f(x | G−2) = I[Y1 ≤ x≤ ε+Y1]/ε

has also mean f(x), but its variance is ε−1f(x)(1−εf(x)), which is much larger than f(x)(1−f(x))

when ε is small. Integrating over [0, 1+ε] gives IV = 1/ε−1+ε/3 for one sample, which is also much

larger than ε/3 when ε is small. The take-away: It is usually better to condition on lower-variance

information and hide variables having a large variance contribution.

Example 3. In this example, we illustrate how Assumption 1 can be verified. Let X be the sum

of two independent normal random variables, X = Y1 + Y2, where Y1 ∼ N (0, σ2
1), Y2 ∼ N (0, σ2

2),

and σ2
1 + σ2

2 = 1, so X ∼N (0,1). Let Φ and φ denote the cdf and density of the standard normal

distribution. With G = G−2, we have F (x | G−2) = P[Y2 ≤ x− Y1] = Φ((x− Y1)/σ2) and the CDE

is f(x | G−2) = φ((x − Y1)/σ2)/σ2. Assumption 1 holds with Γ = φ(0)/σ2 and Kγ = Γ2, so this

estimator is unbiased for f(x) = φ(x). Its variance is

Var[φ((x−Y1)/σ2)/σ2] =E[exp[−(x−Y1)
2/σ2

2]/(2πσ2
2)]−φ2(x)

=
1

σ2
2

√
2π

E[φ(
√

2(x−Y1)/σ2)]−φ2(x)

=
1

σ2

√
2π(1 +σ2

1)
φ
(√

2x/
√

1 +σ2
1

)
−φ2(x). (6)

Example 4. If X is the min or max of two or more continuous random variables, then in general

F (· | G−k) is not continuous, so if we hide only one variable, Assumption 1 does not hold. Indeed,

if X = max(Y1, Y2) where Y1 and Y2 are independent, with G = G−2 (we hide Y2), we have

P[X ≤ x | Y1 = y] =

{
P[Y2 ≤ x | Y1 = y] = F2(x) if x≥ y;

0 if x< y.

If F2(y)> 0, this function is discontinuous at x= y. The same holds for the maximum of more than

two variables. One way to handle this is to generate all the variables, then hide the maximum and

compute its conditional density given the other ones. Without loss of generality, suppose Y1 is the

maximum and Y2 = y2 the second largest. Then the CDE of the max is f(x | G) = f1(x | Y1 > y2).

Note that for independent random variables whose cdf’s and densities have an analytical form, the

cdf and density of the max can often be computed analytically. See Section 4.3 for more on this.

A very similar story holds if we replace the max by the min.

Example 5. Suppose X = Z · C where Z ∼ N(0,1) and C is continuous with support over

(0,∞). We can hide Z and generate X ∼N(0,C2) conditional on C, or do the opposite. Which

one is best depends on the distribution of C. Here we have Var[X] = E[Var[X | C]] = E[C2] while

Var[E[X |C]] = 0. So the usual variance decomposition tells us nothing about what to hide. This

illustrates the fact that there is rarely a simple rule to find the optimal G.
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2.4. Convex combination of conditional density estimators

When there are many possible choices of G for a given problem, one can select more than one and

take a convex linear combination of the corresponding CDEs as the final density estimator. This

idea is well known for general mean estimators (Bratley et al. 1987). More specifically, suppose

f̂0,n, . . . , f̂q,n are q+ 1 distinct unbiased density estimators. Typically, these estimators are depen-

dent and based on the same simulations. They could be all CDEs based on different choices of

G (so they will not hide the same information), but there could be non-CDEs as well. A convex

combination can take the form

f̂n(x) = β0f̂0,n(x) + · · ·+βqf̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(f̂0,n(x)− f̂`,n(x)) (7)

for all x∈R, where β0 + · · ·+βq = 1. This is equivalent to choosing f̂0,n(x) as the main estimator,

and taking the q differences f̂0,n(x)− f̂`,n(x) as control variables (Bratley et al. 1987), Problem

2.3.9. With this interpretation, the optimal coefficients β` can be estimated via standard control

variate theory (Asmussen and Glynn 2007) by trying to minimize the IV of f̂n(x) w.r.t. the β`’s.

More precisely, if we denote IV` = IV(f̂`,n(x)) and IC`,k =
∫ b
a

Cov[f̂`,n(x), f̂k,n(x)]dx, we obtain

IV = IV
(
f̂n(x)

)
=

q∑
`=0

β2
` IV` + 2

∑
0≤`<k≤q

β`βkIC`,k.

Given the IV`’s and IC`,k’s (or good estimates of them), this IV is a quadratic function of the β`’s,

which can be minimized exactly as in standard least-squares linear regression. That is, the optimal

coefficients βj obey the standard linear regression formula. Estimating the density and coefficients

from the same data yields biased but consistent density estimators, and the bias is rarely a problem.

We followed this approach for some of the examples in Section 4. Cui et al. (2020) obtained an

equivalent formula from a slightly different but equivalent reasoning.

Given that the best choice of G generally depends on x, one may also adopt a more refined

approach which allows the coefficients βj to depend on x:

f̂n(x) = β0(x)f̂0,n(x) + · · ·+βq(x)f̂q,n(x) = f̂0,n(x)−
q∑
`=1

β`(x)(f̂0,n(x)− f̂`,n(x)), (8)

where β0(x) + · · ·+ βq(x) = 1 for all x ∈R. The optimal coefficients can be estimated by standard

control variate theory at selected values of x, then for each `≥ 1, one can fit a smoothing spline

to these estimated values, by least squares. This provides estimated optimal coefficients that are

smooth functions of x, which can be used to obtain a final CDE. This type of strategy was used in

L’Ecuyer and Buist (2008) to estimate varying control variate coefficients. The additional flexibility

can improve the variance reduction in some situations.
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2.5. A GLR density estimator (GLRDE)

The generalized likelihood ratio (GLR) method, originally developed by Peng et al. (2018) to

estimate the derivative of an expectation with respect to some model parameter, can be adapted

to density estimation, as shown in Peng et al. (2020). We summarize briefly here how this method

estimates the density f(x) in our general setting, so we can apply it in our examples and make

numerical comparisons. The assumptions stated below differ slightly from those in Peng et al.

(2020). In particular, here we do not have a parameter θ, the conditions on the estimator are

required only in the area where X ≤ x, and we add a condition to ensure finite variance. As

in Section 2.3, we assume here that X = h(Y) = h(Y1, . . . , Yd) where Y1, . . . , Yd are independent

continuous random variables, and Yj has cdf Fj and density fj. Let P (x) = {y ∈ Rd : h(y) ≤ x}.

For j = 1, . . . , d, let hj(y) := ∂h(y)/∂yj, hjj(y) := ∂2h(y)/∂y2j , and

Ψj(y) =
∂ log fj(yj)/∂yj −hjj(y)/hj(y)

hj(y)
. (9)

Assumption 2. The Lebesgue measure of h−1((x− ε, x+ ε)) in Rd goes to 0 when ε→ 0 (this

means essentially that the density is bounded around x).

Assumption 3. The set P (x) is measurable, the functions hj, hjj, and Ψj are well defined over

it, and E[I[X ≤ x] ·Ψ2
j(Y)]<∞.

Proposition 2. Under Assumptions 2 and 3, the GLRDE I[X ≤ x] ·Ψj(Y) is an unbiased and

finite-variance estimator of the density f(x) at x.

For the proof of Proposition 2 and additional details, see Peng et al. (2020).

3. Combining RQMC with the CMC density estimator

We now discuss how RQMC can be used with the CDE, and under what conditions it can provide

a convergence rate faster than O(n−1) for the IV of the resulting unbiased estimator. For this,

we first recall some basic facts about QMC and RQMC. More detailed coverages can be found in

Niederreiter (1992), Dick and Pillichshammer (2010), and L’Ecuyer (2009, 2018), for example.

For a function g : [0,1)s → R, the integration error by the average over a point set Pn =

{u1, . . . ,un} ⊂ [0,1]s is defined by

En =
1

n

n∑
i=1

g(ui)−
∫
[0,1]s

g(u)du. (10)

Classical QMC theory bounds this error as follows. Let v ⊆ S := {1, . . . , s} denote an arbitrary

subset of coordinates. For any point u = (u1, . . . , us) ∈ [0,1]s, uv denotes the projection of u on

the coordinates in v and (uv,1) is the point u in which uj is replaced by 1 for each j 6∈ v. Let
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gv := ∂|v|g/∂uv denote the partial derivative of g with respect to all the coordinates in v. When gv

exists and is continuous for v = S (i.e., for all v⊆ S), the Hardy-Krause (HK) variation of g can

be written as

VHK(g) =
∑
∅6=v⊆S

∫
[0,1]|v|

|gv(uv,1)|duv. (11)

On the other hand, the star-discrepancy of Pn is

D∗(Pn) = sup
u∈[0,1]s

∣∣∣∣ |Pn ∩ [0,u)|
n

− vol[0,u)

∣∣∣∣
where vol[0,u) is the volume of the box [0,u). The classical Koksma-Hlawka (KH) inequality

bounds the absolute error by the product of these two quantities, one that involves only the function

g and the other that involves only the point set Pn:

|En| ≤ VHK(g) ·D∗(Pn). (12)

There are explicit construction methods (e.g., digital nets, lattice rules, and polynomial lattice

rules) of deterministic point sets Pn for which D∗(Pn) =O((logn)s−1/n) =O(n−1+ε) for all ε > 0.

This means that functions g for which VHK(g)<∞ can be integrated by QMC with a worst-case

error that satisfies |En|=O(n−1+ε). There are also known methods to randomize these point sets

Pn in a way that each randomized point ui has the uniform distribution over [0,1)s, so E[En] = 0,

and the O(n−1+ε) discrepancy bound is preserved, which gives

Var[En] =E[E2
n] =O(n−2+ε). (13)

The classical definitions of variation and discrepancy given above are only one pair among an

infinite collection of possibilities. There are other versions of (12), with different definitions of the

discrepancy and the variation, such that there are known point set constructions for which the

discrepancy converges as O(n−α+ε) for α > 1, but the conditions on g to have finite variation are

more restrictive (more smoothness is required) (Dick and Pillichshammer 2010).

From a practical viewpoint, getting a good estimate or an upper bound on the variation of g that

can be useful to bound the RQMC variance is a notoriously difficult problem. Even just showing

that the variation is finite is not always easy. However, finite variation is not a necessary condition.

In many realistic applications in which variation is known to be infinite, RQMC can nevertheless

reduce the variance by a large factor (L’Ecuyer 2009, L’Ecuyer and Munger 2012, He and Wang

2015). The appropriate explanation for this depends on the application. In many cases, part of

the explanation is that the integrand g can be written as a sum of orthogonal functions (as in an

ANOVA decomposition) and a set of terms in that sum have a large variance contribution and

are smooth low-dimensional functions for which RQMC is very effective (L’Ecuyer and Lemieux
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2000, L’Ecuyer 2009, Lemieux 2009). Making such a decomposition and finding the important

terms is difficult for realistic problems, but to apply RQMC in practice, this is not needed. The

usual approach in applications is to try it and compare the RQMC variance with the MC variance

empirically. We will do that in Section 4.

To combine the CDE with RQMC, we must be able to write F (x | G) = g̃(x,u) and f(x | G) =

g̃′(x,u) = dg̃(x,u)/dx for some function g̃ : [a, b]× [0,1)s. The function g̃′(x, ·) will act as g in (10).

The combined CDE+RQMC estimator f̂cde-rqmc,n(x) will be defined by

f̂cde-rqmc,n(x) =
1

n

n∑
i=1

g̃′(x,Ui), (14)

which is the RQMC version of (2). To estimate the RQMC variance, we can perform nr independent

randomizations to obtain nr independent realizations of f̂cde-rqmc,n in (14) with RQMC, and compute

the empirical IV. By putting together the previous results, we obtain:

Proposition 3. If supx∈[a,b] VHK(g̃′(x, ·))<∞, then with RQMC points sets Pn with D∗(Pn) =

O((logn)s−1/n), for any ε > 0, we have supx∈[a,b] Var[f̂cde-rqmc,n(x)] =O(n−2+ε), so the MISE of the

CDE+RQMC estimator converges as O(n−2+ε).

Although this is rarely done in practice, it is instructive to see how the HK variation of g̃′(x, ·) can

be bounded in our CDE setting, so that Proposition 3 applies. For this, we need to show that the

integral of the partial derivative of g̃′(x,u) with respect to each subset of coordinates of u is finite.

In Section A of the Supplement, we do it for Examples 1 to 3. When the variation is unbounded,

RQMC may still reduce the IV, but there is no guarantee. The GLRDE in Proposition 2 is typically

discontinuous because of the indicator function, and therefore its HK variation is usually infinite.

4. Examples and numerical experiments

We now examine larger instructive examples for which we show how to construct a CDE, summarize

the results of numerical experiments with the CDE and CDE+RQMC, and make comparisons with

the GLRDE and KDE, with MC and RQMC. Section 4.1 gives the experimental framework used

for all the numerical experiments. In Section 4.2, we use a three-dimensional real-life example to

provide further insight on the choice of conditioning and make comparisons between methods. In

Section 4.3, we estimate the density of the length X of the longest path between the source and

destination in a stochastic network. This length may represent the total time to execute a project,

the arrival time of a train at a given station, etc. The length of the shortest path can be handled

in a similar way. In Section 4.4, X is the waiting time of a customer in a queuing system. We

consider a single queue in the example, but a similar conditioning would apply for larger queueing

systems as well. In Section 4.6, X is the payoff of a financial option. We show that by using a
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clever conditioning with CDE+RQMC, the MISE can be reduced by huge factors. More examples

are given in the Online Supplement. In all these examples, estimating the density of X has high

practical relevance. Larger problem instances can also be handled with the same methods.

4.1. Experimental setting

Since the CDE is unbiased, we measure its performance by the IV, which equals the MISE in this

case. To approximate the IV estimator (3) for a given n, we first take a stratified sample e1, . . . , ene

of ne evaluation points at which the empirical variance will be computed. We sample ej uniformly

in [a+ (j− 1)(b− a)/ne, a+ j(b− a)/ne) for j = 1, . . . , ne. Then we use the unbiased IV estimator

ÎV =
(b− a)

ne

ne∑
j=1

V̂ar[f̂n(ej)],

where V̂ar[f̂n(ej)] is the empirical variance of the CDE at ej, obtained as follows. We repeat the

following nr times, independently: Generate n observations of X from the density f with the given

method (MC or RQMC), and compute the CDE at each evaluation point ej. We then compute

V̂ar[f̂n(ej)] as the empirical variance of the nr density estimates at ej, for each j. In all our examples,

we used nr = 100 and ne = 128.

To estimate the convergence rate of the IV as a function of n with the different methods, we fit a

model of the form IV≈Kn−ν . For the CDE with independent points (no RQMC), this model holds

exactly with ν = 1. We hope to observe ν > 1 with RQMC. The parameters K and ν are estimated

by linear regression in log-log scale, i.e., by fitting the model log IV≈ logK−ν logn to data. Since

n is always taken as a power of 2, we report the logarithms in base 2. We estimated the IV for

n = 214, . . . ,219 (6 values) to fit the regression model. We also report the observed − log2 IV for

n= 219 and use e19 as a shorthand for this value in the tables. We use exactly the same procedure

for the GLRDE. For the KDE, these values are for the MISE instead of the IV. In all cases, we

used a normal kernel and a bandwidth h selected by the methodology described in Ben Abdellah

et al. (2021). For some examples, we tried CDEs based on different choices of G and a convex

combination as in Section 2.4.

We report results with the following types of point sets:

(1) independent points (MC);

(2) a randomly-shifted lattice rule (Lat+s);

(3) a randomly-shifted lattice rule with a baker’s transformation (Lat+s+b);

(4) Sobol’ points with a left random matrix scramble and random digital shift (Sob+LMS).

The short names in parentheses are used in the plots and tables. For the definitions and properties

of these RQMC point sets, see L’Ecuyer and Lemieux (2000), Owen (2003), L’Ecuyer (2009, 2018).

They are implemented in SSJ (L’Ecuyer 2016), which we used for our experiments. The parameters
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of the lattice rules were found with the Lattice Builder software of L’Ecuyer and Munger (2016),

using a fast-CBC construction method with the P2 criterion and order dependent weights γv = ρ|v|,

with ρ ranging from 0.05 to 0.8, depending on the example (a larger ρ was used when the dimension

s was smaller). The baker’s transformation sometimes improves the convergence rate by making

the integrand periodic (Hickernell 2002), but it can also increase the variation of the integrand, so

its impact on the variance can go either way.

4.2. Displacement of a cantilever beam

We consider the following (real-life) model for the displacement X of a cantilever beam with

horizontal and vertical loads, taken from Bingham (2017):

X = h(Y1, Y2, Y3) =
4`3

Y1wt

√
Y 2
2

w4
+
Y 2
3

t4
(15)

in which ` = 100, w = 4 and t = 2 are constants (in inches), while Y1 (Young’s modulus), Y2

(the horizontal load), and Y3 (the vertical load), are independent normal random variables, Yj ∼
N (µj, σ

2
j ), i.e., normal with mean µj and variance σ2

j . The parameter values are µ1 = 2.9× 107,

σ1 = 1.45× 106, µ2 = 500, σ2 = 100, µ3 = 1000, σ3 = 100. We will denote κ = 4`3/(wt) = 5× 105.

The goal is to estimate the density of X over the interval [3.1707, 5.6675], which covers about 99%

of the density (it clips 0.5% on each side). It is possible to have X < 0 in this model, but the

probability is P[Y1 < 0] = Φ(−20) = 2.8× 10−89, which is negligible, so we can assume that Y1 > 0.

This example fits the framework of Section 2.3, with d= 3. We can hide any of the three random

variables for the conditioning, and we will examine each case.

Conditioning on G−1 means hiding Y1. We have

X =
κ

Y1

√
Y 2
2

w4
+
Y 2
3

t4
≤ x if and only if Y1 ≥

κ

x

√
Y 2
2

w4
+
Y 2
3

t4
def
= W1(x).

Note that W1(x)> 0 if and only if x> 0. For x> 0,

F (x | G−1) = P[Y1 ≥W1(x) |W1(x)] = 1−Φ((W1(x)−µ1)/σ1)

which is continuous and differentiable in x, and

f(x | G−1) =−φ((W1(x)−µ1)/σ1)W
′
1(x)/σ1 = φ((W1(x)−µ1)/σ1)W1(x)/(xσ1).

If we condition on G−2 instead, i.e., we hide Y2, we have X ≤ x if and only if

Y 2
2 ≤w4

(
(xY1/κ)2−Y 2

3 /t
4
) def

= W2(x).

If W2(x)≤ 0, then f(x | G−2) = F (x | G−2) = P[X ≤ x |W2(x)] = 0. For W2(x)> 0, we have

F (x | G−2) = P[X ≤ x |W2(x)] = P
[
−
√
W2(x)≤ Y2 ≤

√
W2(x) |W2(x)

]
= Φ((

√
W2(x)−µ2)/σ2)−Φ(−(

√
W2(x) +µ2)/σ2),
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which is again continuous and differentiable in x, and

f(x | G−2) =
φ((
√
W2(x)−µ2)/σ2) +φ(−(

√
W2(x) +µ2)/σ2)

(σ2

√
W2(x))/(w4x(Y1/κ)2)

> 0.

If we condition on G−3, the analysis is the same as for G−2, by symmetry, and we get

f(x | G−3) =
φ((
√
W3(x)−µ3)/σ3) +φ(−(

√
W3(x) +µ3)/σ3)

(σ3

√
W3(x))/(t4x(Y1/κ)2)

> 0

for W3(x)> 0, where W3(x) is defined in a similar way as W2(x).

For the GLRDE, we write h(Y) = (κ/Y1)S
1/2 where S = Y 2

2 /w
4 + Y 2

3 /t
4, and denote

Zj = (Yj − µj)/σ
2
j = −∂ log fj(Yj)/∂Yj for j = 1,2,3. With this notation, we obtain h1(Y) =

−h(Y)/Y1, h11(Y) = 2h(Y)/Y 2
1 , h2(Y) = (κ/Y1)(Y2/w

4)S−1/2 = h(Y)Y2/(Sw
4), h22(Y) =

(κ/(Y1w
4))(S−1/2 − S−3/2Y 2

2 /w
4), h3(Y) = (κ/Y1)(Y3/t

4)S−1/2 = h(Y)Y3/(St
4), h33(Y) =

(κ/(Y1t
4))(S−1/2−S−3/2Y 2

3 /t
4). With a little calculation, this gives

Ψ1(Y) =
Y1Z1− 2

h(Y)
, Ψ2(Y) =−Y2Z2S+Y 2

3 /t
4

h(Y)Y 2
2 /w

4
, Ψ3(Y) =−Y3Z3S+Y 2

2 /w
4

h(Y)Y 2
3 /t

4
.

In addition to testing the individual estimators derived above, we also tested convex combinations

of the three CDEs and of the three GLRDEs, as explained in Section 2.4, with coefficients β` that

do not depend on x.

Table 1 Values of ν̂ and e19 with a CDE for each choice of G−k and for the best convex combination (CDE-c),

for the GLRDE with each Ψj and for the best convex combination (GLRDE-c), and for the KDE, for the

cantilever beam model.

G−1 G−2 G−3 CDE-c Ψ1 Ψ2 Ψ3 GLRDE-c KDE
e19

MC 19.3 14.5 22.8 22.5 14.1 4.5 15.8 16.3 15.8
Lat+s 39.8 25.2 41.6 41.9 23.4 -2.5 26.4 26.5 21.9
Lat+s+b 44.5 23.7 46.8 47.0 23.3 5.7 24.7 25.1 21.0
Sob+LMS 44.0 23.6 45.7 46.1 23.4 2.8 25.5 25.9 21.5

ν̂
MC 0.97 0.98 0.99 0.98 1.02 0.55 0.94 0.95 0.76
Lat+s 1.99 1.95 2.06 2.04 1.38 — 1.51 1.52 1.03
Lat+s+b 2.24 2.08 2.27 2.25 1.37 — 1.24 1.25 0.93
Sob+LMS 2.21 2.03 2.21 2.21 1.32 — 1.31 1.32 0.97

Table 1 summarizes the results. The MISE is about 2−47 for the best CDE+RQMC compared

with 2−15.8 for the usual KDE+MC, a gain by a factor of over 231 ≈ 2 billions. This is probably

much better accuracy than required in practice for this particular application. With RQMC, the

convergence rate ν̂ is around 2 in all cases with the CDE methods, and much less for GLRDE and

KDE. The GLRDE using Ψ2 behaves very badly (the estimates ν̂ with RQMC are meaningless),
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but with Ψ1 and Ψ3 (the best choice), it performs better that the KDE. Note that the denominator

of Ψ2 takes much smaller values on average than that of Ψ3, and this can explain its larger variance.

For the CDE with lattice rules, the baker’s transformation helps significantly for the CDE.

Conditioning on G−2 does not give as much reduction as for the other choices. To provide visual

insight, Figure 2 shows plots of five realizations of the conditional density for G−1, G−2, and G−3.

The realizations of f(· | G−2) have high narrow peaks, which explains the larger variance. The

average of the five realizations is shown in red and the true density in black. In Figure 3, we zoom

in on part of the estimated densities to show the difference between MC and RQMC. In each panel

one can see the CDE using MC (in red), RQMC (in green), and the “true density” (black, dashed)

estimated with RQMC using a large number of samples. We have G−1 with n= 210 on the left and

G−2 with n= 216 on the right. In both cases, the RQMC estimate is closer to the true density, and

on the left it oscillates less. If we repeat this experiment several times, the red curve would vary

much more than the green one across the realizations.
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Figure 2 Five realizations of the density conditional on G−k (blue), their average (red), and the true density

(thick black) for k= 1 (left), k= 2 (middle), and k= 3 (right), for the cantilever example.
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Figure 3 The CDE under MC (red), under RQMC (green, very close to the dashed line) and the true density

(black, dashed) for G−1 with n= 210 (left) and for G−2 with n= 216 (right), for the cantilever example.
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4.3. A stochastic activity network

In this example, the conditioning for the CDE must hide more than one random variable. We

consider an acyclic directed graph G = (N ,A) where N is a finite set of nodes and A = {aj =

(αj, βj), j = 1, . . . , d} a finite set of arcs (directed links) where aj goes from αj to βj. There is

a source node having only outcoming arcs, a sink node having only incoming arcs, and each arc

belongs to at least one path going from the source to the sink. There can be at most one arc

for each pair (αj, βj) (no parallel arcs). Each arc j has random length Yj. These Yj are assumed

independent with continuous cdf’s Fj, density fj, and can be generated by inversion: Yj = F−1j (Uj)

where Uj ∼U(0,1). The length of the longest path from the source to the sink is a random variable

X and the goal is to estimate the density of X.

This general model has several applications. The arcs aj may represent activities having random

durations and the graph represents precedence relationships between all activities of a project.

Activity aj cannot start before all activities j′ with βj′ = αj are completed. Then X represents the

duration of the project if all activities are started as soon as allowed. This type of stochastic activity

network (SAN) is widely used in project management for all types of projects (e.g., construction,

software, etc.), communication, transportation, etc. For example, the graph may represent a large

railway network in which each activity corresponds to a train stopping at a station, or a train

covering a given segment of its route, or a minimal spacing between trains, etc. Precedence rela-

tionships are needed because railways are shared, there are ordering and distancing rules between

trains, passengers have connections between trains, trains are merged or split at certain points,

etc. The travel time of one passenger in this network turns out to be the length X of the longest

path in a subnetwork whose source and sink are the origin and destination of this passenger.

For our numerical experiments, we use a small example from Avramidis and Wilson (1996,

1998), who showed how to use CMC to estimate E[X] and some quantiles of the distribution of

X. L’Ecuyer and Lemieux (2000) and L’Ecuyer and Munger (2012) used this same example to test

the combination of CMC with RQMC to estimate E[X]. The network is depicted in Fig. 4 and the

cdf’s Fj are given in Avramidis and Wilson (1996). Much larger networks can be handled in the

same way. We will estimate the density of X over [a, b] = [22, 106.24], which covers about 95% of

the density.

Here, X is defined as the maximum length over several paths, and if we hide only a single random

variable Yj to implement the CDE, we run into the same problem as in Example 4: Assumption 1

does not hold, because F (· | G) has a jump. This means that we must hide more information

(condition on less). Following Avramidis and Wilson (1996, 1998), we select a uniformly directed

cut L, which is a set of activities such that each path from the source to the sink contains exactly
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Figure 4 A stochastic activity network, with the cut L = {5,6,7,9,10} shown in dashed light blue

one activity from L, and let G represent {Yj, j 6∈ L}. In Figure 4, {1,2}, {11,13}, {5,6,7,9,10},

and {2,3,5,8,9,13}, are all valid choices of L. The corresponding conditional cdf is

F (x | G) = P [X ≤ x | {Yj : j 6∈ L}] =
∏
j∈L

P[Yj ≤ x−Pj] =
∏
j∈L

Fj(x−Pj) (16)

where Pj is the length of the longest path that goes through arc j when we exclude Yj from that

length. The conditional density is

f(x | G) =
d

dx
F (x | G) =

∑
j∈L

fj(x−Pj)
∏

l∈L, l 6=j

Fl(x−Pj).

Under this conditioning, if the Yj’s are continuous variables with bounded variance, Assumption 1

holds, so f(x | G) is an unbiased density estimator with uniformly bounded variance.

For our numerical experiments, we use the same cut L= {5,6,7,9,10} as Avramidis and Wilson

(1996), indicated in light blue in Figure 4, even though there are other cuts with six links, which

could possibly perform better because they hide more links. We could also compute the CDE with

several choices of L and then take a convex combination. This approach scales nicely and works

in exactly the same way for very large networks, with thousands of links. A simple adaptation

also works for a stochastic max-flow problem, in which we want the density of the capacity of the

minimal cut having the smallest capacity (L’Ecuyer et al. 2020).

The GLRDE method described in Section 2.5 does not work for this example. Indeed, with

X = h(Y) defined as the length of the longest path, for any j, the derivative hj(Y) is zero whenever

arc j is not on the longest path, so we would need to select an arc j that is guaranteed to be on

the longest path. But there is no such arc in general. We could perhaps apply a modified GLRDE

that selects a cut instead of a single coordinate Yj, but this is beyond the scope of this paper.

Table 2 and Figure 5 summarize our results. We see that for n= 219, the CDE outperforms the

KDE by a factor of about 20 with MC, and by a factor of about 28 ≈ 250 with RQMC.
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Table 2 Values of ν̂ and e19 for the SAN example.

ν̂ e19

CDE

MC 0.96 25.6
Lat+s 1.31 30.9
Lat+s+b 1.17 29.6
Sob+LMS 1.27 29.9

KDE
MC 0.78 20.9
Lat+s 0.95 22.7
Lat+s+b 0.93 22.0
Sob+LMS 0.74 21.9
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Figure 5 MISE vs n in log-log scale, for the SAN example.

4.4. Density of waiting times in a single queue

We adapted this example from Peng et al. (2020), mainly to compare our approach with the

GLRDE proposed in their paper. What we use here is not ordinary CMC, but extended CMC, in

which we condition on different information for each customer. This type of strategy would work

for much larger queueing systems and many other types of systems that involve random delays. To

estimate the density of the waiting times in a queueing system, the general idea is to hide sufficient

information, for each customer in the system, so that its exact waiting time is unknown, but it has

a density conditional on the known information, and we can compute this density easily. This is

often easy to do even for large queueing systems. The hidden information can be the arrival time

of the customer, the departure time of the previous customer, or something similar, selected so

that we can compute the conditional density.

4.4.1. Model with independent days. We consider a single-server FIFO queue in which

customers arrive from an arbitrary arrival process (not necessarily stationary Poisson) and the

service times are independent, with continuous cdf G and density g. If W denotes the waiting time

of a “random” customer, we want to estimate p0 = P[W = 0] and the density f of W over (0,∞).

We first consider a system that starts empty and evolves over a fixed time horizon τ , which we call

a day. Let Tj be the arrival time of the jth customer, T0 = 0, Aj = Tj−Tj−1 the jth interarrival time,

Sj the service time of customer j, and Wj the waiting time of customer j. Since the system starts
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empty, we have W1 = 0, and the Lindley recurrence gives us that Wj = max(0, Wj−1 +Sj−1−Aj) for

j ≥ 2. At time τ , the arrival process stops, but service continues until all customers already arrived

are served. The number of customers handled in a day is the random variable N = max{j ≥ 1 :

Tj < τ}. The cdf of W can be written as F (0) = p0 and for x> 0, F (x) = P[W ≤ x] =E[I(W ≤ x)].

The sequence of waiting times of all customers over an infinite number of independent successive

days is a regenerative process that regenerates at the beginning of each day, so we can apply the

renewal reward theorem, which gives

F (x) =E[I(W ≤ x)] =
E [I[W1 ≤ x] + · · ·+ I[WN ≤ x]]

E[N ]
. (17)

Since E[N ] does not depend on x, we see that for x > 0, the density f(x) is the derivative of the

numerator with respect to x, divided by E[N ].

To obtain a differentiable cdf estimator, we want to replace each indicator in the numerator by

a conditional expectation. One simple way of doing this is to hide the service time Sj−1 of the

previous customer; that is, replace I[Wj ≤ x] by

Pj(x) = P[Wj ≤ x |Wj−1−Aj] = P[Sj−1 ≤ x+Aj −Wj−1] =G(x+Aj −Wj−1) for x≥ 0.

This gives Pj(0) = G(Aj −Wj−1) (there is a probability mass at 0), whereas for x > 0, we have

P ′j(x) = dPj(x)/dx= g(x+Aj −Wj−1) and then, since N does not change when we change x,

f(x) =
E[D(x)]

E[N ]
where D(x) =

N∑
j=1

g(x+Aj −Wj−1). (18)

Note that we are not conditioning on the same information for all terms of the sum, so what we do

is not exactly CMC, but extended CMC (Bratley et al. 1987). It nevertheless provides the required

smoothing and an unbiased density estimator for the numerator of (17). In a multiserver queue,

such as a call center with a large number of agents, one possibility would be to hide the arrival time

Aj of the call, and compute the density of its waiting time conditional on the other information.

Often, for example if the arrival process is Poisson, E[N ] can be computed exactly, in which

case we only need to estimate E[D(x)] and we get an unbiased density estimator. Otherwise, the

denominator E[N ] can be estimated in the usual way, and we are then in the standard setting

of estimating a ratio of expectations (Asmussen and Glynn 2007), for which we have unbiased

estimators for the numerator and the denominator. We simulate n days, independently (with MC)

or with n RQMC points, to obtain n realizations of (N,D(x)), say (N1,D1(x)), . . . , (Nn,Dn(x)).

The ratio estimator (CDE) of f(x) is

f̂(x) =

∑n

i=1Di(x)∑n

i=1Ni

.
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It can be computed at any x∈ [0,∞). For independent realizations (with MC), the variance of f̂(x)

can be estimated using the delta method for ratio estimators (Asmussen and Glynn 2007):

nVar[f̂(x)]→ Var[Di(x)] + Var[Ni]f
2(x)− 2Cov[Di(x),Ni]f(x)

(E[Ni])2

asymptotically, when n→∞. This variance can be estimated by replacing the unknown quantities

in this expression by their empirical values. This is consistent because the n pairs (Di(x),Ni),

i = 1, . . . , n, are independent. Alternatively, a confidence interval on f(x) can also be computed

with a bootstrap approach (Choquet et al. 1999).

In the RQMC case, the pairs (Di(x),Ni) are no longer independent. Then, to obtain an estimator

of f(x) for which we can estimate the variance, we make nr independent replicates of the RQMC

estimator of the pair (E[D(x)],E[N ]), say (D̄1(x), N̄1), . . . , (D̄nr(x), N̄nr), where each (D̄j(x), N̄j) is

the average of n pairs (Di(x),Ni) sampled by RQMC. We estimate the density f(x) by the ratio

of the two grand sums

f̂rqmc,nr(x) =

∑nr
j=1 D̄j(x)∑nr
j=1 N̄j

.

To estimate the variance, we use that

Var[f̂rqmc,nr(x)]≈ Var[D̄j(x)] + Var[N̄j]f
2(x)− 2Cov[D̄j(x), N̄j]f(x)

nr(E[N ])2

and we replace all the unknown quantities in this expression by their empirical values.

Here, the required dimension of the RQMC points is the (random) total number of inter-arrival

times Aj and service times Sj that we need to generate during the day. It is approximately twice

the number of customers that arrive during the day. This number is unbounded, so the RQMC

points must have unbounded (or infinite) dimension, and one must be able to generate the points

without first selecting a maximal dimension. Recurrence-based RQMC point sets have this prop-

erty; they can be provided for instance by ordinary or polynomial Korobov lattice rules (L’Ecuyer

and Lemieux 2000, 2002), which are available in the hups package of SSJ (L’Ecuyer 2016).

4.4.2. Steady-state model. In a slightly different setting, we can assume that the single

queue evolves in steady-state over an infinite time horizon, under the additional assumptions that

the Aj’s are i.i.d. and the Sj’s are also i.i.d. Again, we want to estimate the density of the waiting

time W of a random customer. In this case, the system regenerates whenever a new customer

arrives in an empty system. The regenerative cycles can be much shorter on average than for the

previous case, unless the day is very short or the utilization factor of the system is close to 1. The

CDE has exactly the same form, apart from the different definition of regenerative cycle. In this

case n represents the number of regenerative cycles, Ni is the number of customers in the ith cycle

and Di(x) is the realization of D(x) over the ith cycle.

In both settings, one could also hide Aj instead of Sj−1. The density estimator is similar and

easy to derive. Intuition says that this should be a better choice if Aj has more variance than Sj−1.
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4.4.3. The GLRDE estimator. Peng et al. (2020), Section 4.2.2., show how to construct a

GLRDE for the density of the sojourn time of customer j in this single-queue model. The density of

the waiting time can be estimated as follows. If the service times Sj are lognormal with parameters

(µ,σ2), we can write

X =Wj = max(0, Wj−1 +Sj−1−Aj) = max(0, Wj−1 + exp[σZj−1 +µ]−Aj) =: h(Y)

where Zj−1 has the standard normal density φ, and Y = (Y1, Y2, Y3) = (Zj−1,Aj,Wj−1). When

Wj > 0, taking the derivative of h with respect to Y1 =Zj−1 gives h1(Y) = exp[σZj−1 +µ]σ= Sj−1σ,

h11(Y) = Sj−1σ
2, and these derivatives are 0 when Wj = 0. We also have ∂ logφ(x)/∂x=−x, and

therefore for x > 0, f(x) = E[L(x)]/E[N ] where L(x) =
∑N

j=1 I[Wj ≤ x] · Ψj and Ψj = −(Zj−1 +

σ)/(Sj−1σ). We can do n runs to estimate each of the two expectations in the ratio. This provides

a very similar density estimator as with the CDE in (18), but here L(x) is discontinuous in x,

whereas D(x) in (18) is continuous.

4.4.4. Numerical results. For a numerical illustration, suppose the time is in minutes, let

the arrival process be Poisson with constant rate λ= 1, and the service times Sj lognormal with

parameters (µ,σ2) = (−0.7,0.4). This gives E[Sj] = e−0.5 ≈ 0.6065 and Var[Sj] = e−1(e0.4 − 1) ≈

0.18093. For RQMC, we use infinite-dimensional RQMC points defined by Korobov lattice rules

(L’Ecuyer and Lemieux 2000) selected with Lattice Builder (L’Ecuyer and Munger 2016) using

order-dependent weights γk = 0.005k for projections of order k. We do not use Sobol’ points because

with the available software, there is an upper bound on the dimension.

Finite-horizon case. For the finite-horizon case, take τ = 60, so E[N ] = 60, we only need to

estimate the numerator, and we have an unbiased density estimator all over [0,∞). The results for

(a, b] = (0,2.2] are in Table 3. Due to the large and random dimensionality of the required RQMC

points, and more importantly the discontinuity of the derivative of the CDE with respect to the

underlying uniforms (because of the max, the HK variation is infinite), it was unclear if RQMC

could bring any significant gain for this example. The good surprise is that although RQMC does

not improve ν̃ significantly, it improves the IV itself by a factor of about 27.5 ≈ 180 for n = 219,

which is quite significant. We also see that CDE beats GLRDE by a factor of about 500 with MC

and about 200 with RQMC.

Steady-state case. We performed a similar experiment using regenerative simulation for the

steady-state model. The density is similar but not exactly the same as in the finite-horizon case.

The results are in Table 4. They are similar to those of the finite-horizon case, with similar empir-

ical convergence rates, and the IV for n= 219 is again about 180 times smaller with CDE+RQMC

compared to CDE+MC. The IV for GLRDE with n= 219 is roughly 300 times larger than with



L’Ecuyer, Puchhammer, Ben Abdellah: MC and QMC Density Estimation via Conditioning
Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!) 27

Table 3 Values of ν̂ and e19 for the single queue example, finite-horizon case.

ν̂ e19

CDE
MC 1.00 24.8
Lat+s 0.99 32.3
Lat+s+b 1.02 32.3

GLRDE
MC 1.00 15.8
Lat+s 1.03 24.6
Lat+s+b 1.08 25.0

CDE with MC and 200 times larger than with CDE with RQMC. The only important difference

is that here, the IV is about 30 times larger than in the finite-horizon case, for all the methods.

The explanation is that in the finite-horizon case, we simulate n runs with about 60 customers

per run, whereas in the steady-state case, we have about 2.5 customers per regenerative cycle on

average, so we simulate about 25 times fewer customers. Interestingly, the fact that we use much

more coordinates of the RQMC points in the finite-horizon case (on average) makes no significant

difference. A similar observation was made by L’Ecuyer and Lemieux (2000), Section 10.3, who

compared finite-horizon runs of 5000 customers each on average, with regenerative simulation, in

the context of estimating the probability of a large waiting time using RQMC. The reason why

RQMC performs well even for a very large time horizon is that the integrand has low effective

dimension in the successive-dimensions sense (as defined by these authors). Appendix C of the

Supplement provides additional plots for this example.

Table 4 Values of ν̂ and e19 for the single queue example, steady-state case.

ν̂ e19

CDE
MC 0.99 19.9
Lat+s 1.04 27.6
Lat+s+b 1.08 27.8

GLRDE
MC 0.99 11.5
Lat+s 1.20 20.1
Lat+s+b 1.21 20.4

4.5. Making a change of variable

In many situations, X = h(Y) for a random vector Y and hiding a single coordinate of Y does not

provide a very effective CDE. But sometimes, after an appropriate change of variable Y = g(Z),

hiding one coordinate of the random vector Z can provide a much more effective CDE. We will use

this technique in Section 4.6. We describe it here in a separate subsection because it can be useful

for a much wider range of applications.

Specifically, let Z−j denote the vector Z with Zj (the jth coordinate) removed, and let γ(z) =

γ(z;Z−j) = h(g(z;Z−j)) denote the value of h(Y) as a function of Zj = z when Z−j is fixed. We

assume in the following that for almost any realization of Z−j, γ(z;Z−j) is a monotone non-

decreasing and differentiable function of z, so that γ−1(x) = inf{z ∈R : γ(z)≥ x} is well defined for



L’Ecuyer, Puchhammer, Ben Abdellah: MC and QMC Density Estimation via Conditioning
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

any x. We also assume that Zj has density ϕ and is independent of Z−j (to simplify). Conditional

on Z−j, we have

P[x< h(Y)≤ x+ δ |Z−j] = P[x< γ(Zj)≤ x+ δ |Z−j] = P[z <Zj ≤ z+ ∆ |Z−j]≈ϕ(z)∆

where z = γ−1(x) and z+ ∆ = γ−1(x+ δ). Taking the limit gives

f(x |Z−j) = lim
δ→0

P[z <Zj ≤ z+ ∆ |Z−j]
δ

= lim
δ→0

ϕ(z)∆

δ
=
ϕ(z)

γ′(z)
=
ϕ(γ−1(x))

γ′(γ−1(x))
,

assuming that the latter is well defined. In case there are closed-form formulas for γ−1 and γ′, this

CDE can be evaluated directly. Otherwise, z = γ−1(x) can often be computed by a few iterations

of a root-finding algorithm. Since γ and its inverse γ−1 depend on Z−j, this could mean inverting a

different function for each sample realization. Our next example will show that the approach could

nevertheless bring a huge benefit.

4.6. A function of a multivariate normal vector

We consider a multivariate normal vector Y = (Y1, . . . , Ys)
t (where t means transposed) defined via

Yj = Yj−1 + µj + σjZj with Y0 = 0, the µj and σj > 0 are constants, and the Zj are independent

N (0,1) random variables, with cdf Φ and density φ. Let X = S̄ = (S1 + · · ·+Ss)/s where Sj = S0e
Yj

for some constant S0 > 0. We want to estimate the density ofX over some interval (a, b) = (K,K+c)

where K ≥ 0 and c > 0. This is the same as estimating the density of max(0, S̄ −K), which may

represent the payoff of a financial contract, for example (Glasserman 2004). A simple way to define

the CDE here is to hide Zs. The conditional cdf is P[X ≤ x |Z−s] = P[Zs ≤W (x)] = Φ(W (x)) where

W (x) = (ln[sx− (S1 + · · ·+Ss−1)/S0]− lnS0−Ys−1−µs)/σs.

Taking the derivative with respect to x gives the unbiased CDE

f(x |Z−s) =
∂

∂x
P[S̄ ≤ x |Z−s] = φ(W (x))W ′(x) =

φ(W (x))s

[sx− (S1 + · · ·+Ss−1)/S0]σs
. (19)

Unfortunately, this sequential CDE is usually rather spiky, because hiding only this Zs does not

remove much information, and then the conditional density has a large variance.

We now describe a less obvious but more effective conditioning approach. The goal is to hide a

variable that contains more information. For this, we generate the vector Y using a Brownian bridge

construction in which the Zj’s are used in a different way, as follows (Caflisch et al. 1997, Glasserman

2004). Let µ̄j = µ1 + · · ·+ µj and σ̄j = σ1 + · · ·+ σj, for j = 1, . . . , s. With this construction, we

first sample Ys = µ̄s + σ̄sZs. Then, given Ys = ys, we put j2 = bs/2c, and we sample Yj2 from

its normal distribution conditional on Ys = ys, which is normal with mean ysµ̄j2/µ̄s and variance

(σ̄s− σ̄j2)σ̄j2/σ̄s. This uses the fact that if X1 and X2 are independent and normal, then conditional
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on X1+X2 = x̄, X1 is normal with mean x̄E[X1]/E[X1+X2] and variance Var[X1]Var[X2]/Var[X1+

X2]. Then we put j3 = bj2/2c and we sample Yj3 conditionally on Yj2 , then we put j4 = b(j2 +s)/2c

and we sample Yj4 conditionally on (Yj2 , Ys), and so on, until all the Yj’s are known.

For the CDE, we hide again Zs, but now Zs has much more impact on the payoff, because all the

Yj’s depend on Zs. This makes the conditional density much less straightforward to compute, but

we can proceed as follows. To avoid sampling Zs, we sample Y1, . . . , Ys−1 conditional on Zs = zs = 0,

which will give say Y 0
1 , . . . , Y

0
s−1, and then write X as a function of z = zs conditional on these values,

that is, conditional on Z−s = (Z1, . . . ,Zs−1). We have Ys = Y 0
s + σ̄sZs and Yj = Y 0

j + (µ̄j/µ̄s)σ̄sZs.

Then,

X = S̄ =
S0

s

s∑
j=1

eYj =
S0

s

s∑
j=1

exp[Y 0
j +Zs(µ̄j/µ̄s)σ̄s].

This fits the framework of Section 4.5, with j = s,

γ(z) =
S0

s

s∑
j=1

exp[Y 0
j + z(µ̄j/µ̄s)σ̄s] and γ′(z) =

S0

s

s∑
j=1

exp[Y 0
j + z(µ̄j/µ̄s)σ̄s](µ̄j/µ̄s)σ̄s.

The CDE at x= γ(z) is then f(x |Z−s) = φ(z)/γ′(z). We call it the bridge CDE.

To compute this density at a specified x we need z = γ−1(x), We have no explicit formula for

γ−1 in this case, but we can compute a root of γ(z)−x= 0 numerically. To evaluate the density at

the ne evaluation points e1, . . . , ene in (a, b), we first compute x∗ = γ(0) and let j∗ be the smallest

j for which ej ≥ x∗. We compute z = wj∗ such that γ(wj∗) = ej∗ . This can be done via Newton

iteration, zk = zk−1− (γ(zk−1)− ej∗)/γ′(zk−1), starting with z0 = 0. Then, for j = j∗+ 1, . . . , ne, we

use again Newton iteration to find z =wj such that γ(wj) = ej, starting at z0 =wj−1. We do the

same to find z =wj such that γ(wj) = ej for j = j∗− 1, . . . ,1, starting at z0 =wj+1. This provides

the point wj required to evaluate the conditional density at ej, for each j. We must repeat this

procedure for each realization of Z−j, because the function γ depends on Z−j. However, the gain

in accuracy is more significant than the cost of additional computations. This conditioning differs

from the simpler ones used by Boyle et al. (1997) and Heidergott et al. (2015) for barrier options.

For a numerical illustration, we take S0 = 100, s= 12, µj = 0.00771966 and σj = 0.035033 for all

j, and K = 101. We estimate the density of the payoff over [a, b] = [101, 128.13]. To approximate

the root of γ(z)− x= 0 for the bridge CDE, we use five Newton iterations; doing more makes no

significant difference. The results are in Table 5, with additional plots in the Supplement. RQMC

with the bridge CDE performs extremely well. For example, for Sob+LMS, the MISE with n= 219

is approximately 2−46.9, which is about 219 (half a million) times smaller than for the same CDE

with MC, and it decreases as O(n−2). With a KDE, the MISE with n = 219 is about 221 ≈ 2

million times larger with the same Sobol’ points and 226 ≈ 67 million times larger with MC. With

the sequential CDE, RQMC is ineffective and the IV of the MC estimator is also quite large, as
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expected. To illustrate the behavior of the sequential and bridge CDEs, Figure 6 plots five single

realizations of each, using the same horizontal scale. The sequential CDE has much more spiky

realizations than the bridge CDE, and this explains why the latter performs much better.

Table 5 Values of ν̂ and e19 for the Asian option, with sequential and bridge CDE constructions.

ν̂ e19

sequential KDE
MC 0.78 20.4
Sob+LMS 0.76 20.6

sequential CDE

MC 1.00 19.9
Lat+s 1.07 20.3
Lat+s+b 1.01 20.1
Sob+LMS 1.00 20.0

bridge CDE

MC 1.04 27.9
Lat+s 1.60 40.0
Lat+s+b 1.74 45.0
Sob+LMS 2.01 46.9
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Figure 6 Five realizations of the density estimator (blue), their average (dashed red), and the true density (thick

black) for the sequential CDE (left) and the bridge CDE (right), for the Asian option example.

The method introduced here works not only for a Brownian motion, but for more general Lévy

processes as well. Some popular models in finance use a Lévy subordinator process to produce a

random clock speed to model stochastic volatility, and a geometric Brownian process that evolves

at that random speed. This includes the variance-gamma (VG) and the normal inverse Gaussian

processes, for example. For these models, we can generate the subordinator as usual using a bridge

method to obtain the random times at which the Brownian process is evaluated, and then apply

the method that we just described to the resulting Brownian process. For the VG process, a

more effective alternative could be to use the double gamma bridge sampling method described

in Avramidis and L’Ecuyer (2006) and hide the first variable as we have done here. Yet another

approach would be to do a monotone mapping between the Lévy process and a Brownian motion

as explained in L’Ecuyer et al. (2008), estimate the density in the Brownian representation as we

did here, and transform this density to the original Lévy process via the change of variable that

corresponds to the mapping.
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4.7. More examples

Additional examples are given in the Online Supplement. In the first one, X is a sum of independent

normal random variables, with known density, and the purpose is to see how each estimator behaves

as a function of the dimension (the number of summands) and of the relative variance of the one we

hide. The second one is a (real-life) six-dimensional example in which X is the buckling strength of

a steel plate. The third one is a multicomponent system in which each component fails at a certain

random time, and we want to estimate the density of the failure time of the system. In the fourth

one, we explain how accurate density estimation is useful to compute a confidence interval on a

quantile or on the expected shortfall. This, alone, has many applications.

5. Summary and Guidelines

Here we provide a summary of the main conditions and some guidelines for applying the method.

The primary task is to select the information G on which we condition, or equivalently, to decide

what we hide. The main constraint is that G must be selected in a way that Assumption 1 is

satisfied, at least in the region where we want to estimate the density. The key condition for this is

that the conditional density must be well-defined in that region. In particular, the conditional CDF

should never have jumps. A second requirement is that the conditional density can be calculated

efficiently for all realizations of G (almost surely). There are often many possible choices of G for

which these conditions are satisfied. The set of admissible choices is highly problem-dependent; it

depends on the model and also on the variable X of interest.

In many cases, one must hide more than just a single input random variable. The hidden infor-

mation can also be dynamically selected, in the sense that it may depend on the sample realization

(for example, if X is the maximum of several independent random variables, one may generate all

the variables and hide the maximum). Sometimes, it becomes much easier to apply the method

after making an appropriate multivariate change of variable. This may require creativity, as we

have shown in our examples.

When there are many choices for G, finding the optimal one (e.g., to minimize the work-

normalized MISE) can be difficult in general, because the MISE depends on many factors, but

just finding a good one is usually much easier and sufficient. For comparable computing times, the

best choices are often those for which the variance of the conditional density is the largest. As a

rule of thumb, it is usually better to condition on lower-variance information and hide variables

having a large variance contribution. The optimal choice also depends (in general) on the point

x at which we want to estimate the density. In principle, one could optimize by using different

conditioning for different intervals, but it is usually not worth the additional complications. When

several good choices of G are available, selecting a few of them and taking a convex combination

of the corresponding estimators can provide a more robust CDE than selecting only one G.
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When we want to combine the CDE with RQMC, additional properties come into play: we want

to select G and also the formulation of the estimator as a function g̃′ of the vector U of underlying

uniform random numbers in a way that the assumption of Proposition 3 is satisfied (if possible)

and the variation of this function g̃′ is not too large. Proving these conditions in practice may be

difficult, but one can always try RQMC empirically. Experience shows that it can often reduce the

variance significantly, in particular when the effective dimension of g̃′ is small. This was illustrated

in our examples.

6. Conclusion

We have examined a simple and very effective approach for estimating the density of a random

variable generated by simulation from a stochastic model, by using a computable conditional den-

sity. The resulting CDE is unbiased and its MISE converges faster than for other popular density

estimators such as the KDE. We have also shown how to further reduce the IV, and even improve

its convergence rate, by combining the CDE with RQMC. Our numerical examples show that this

combination can be very efficient. It sometimes reduces the MISE by factors over a million. The

CDE approach also outperforms the recently proposed GLRDE method, and CDE+RQMC out-

performs both GLRDE+RQMC and KDE+RQMC, in all our examples. RQMC tends to bring a

larger improvement to the CDE than the KDE or GLRDE because the estimator usually has less

variation as a function of the underlying uniforms.

The examples in the paper were selected to provide insight on key issues. We tried to avoid

unnecessary complications in the models. But it would not be too difficult to derive CDEs for

larger and more complicated versions of these models. We outlined some possibilities in the text.

Suggested future work includes experimenting this methodology in more complicated applications,

designing and exploring different types of conditioning, and perhaps adapting the Monte Carlo

sampling strategies to make the method more effective for specific applications (e.g., by changing

the way X is defined in terms of the basic input random variates). Its application to quantile and

expected shortfall estimation also deserves further study.
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