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Abstract

Several methods for reducing the variance in the context of Monte Carlo simulation
are based on correlation induction. This includes antithetic variates, Latin hypercube
sampling, and randomized version of quasi-Monte Carlo methods such as lattice rules
and digital nets, where the resulting estimators are usually weighted averages of several
dependent random variables that can be seen as function evaluations at a finite set of
random points in the unit hypercube. In this paper, we consider a setting where these
methods can be combined with the use of control variates and we provide conditions under
which we can formally prove that the variance is minimized by choosing equal weights and
equal control variate coefficients across the different points of evaluation, regardless of the
function (integrand) that is evaluated.



1 Introduction

Suppose we want to compute

p=E[f(U)] = oy f(u)du

for some square-integrable function f, where U denotes a uniform random variable over [0, 1)°.
The aim of most stochastic (Monte Carlo) simulations is to estimate such integrals, in which u
can be interpreted as the sequence of independent “random numbers” that drive the simulation.
Sometimes, f depends on a random and unbounded number of uniforms; in that case s can be
taken as infinite.

The crude Monte Carlo method estimates p by the average of f(ug),..., f(u, 1), where the
u;’s are independent and uniformly distributed over [0,1)°. Here, we consider the use of a
random point set P, = {up,...,u,—1} such that each u; is uniformly distributed over [0,1)?
but where the u;’s are not necessarily independent. We assume that these random variables
u; are defined over a common probability space (2, F,P). The transformations u; :  —
[0,1)* are designed to induce a dependence structure between the u;’s and we refer to them as
general antithetic (GA) transformations (see also [13, 27]). They are sometimes called correlation
induction methods [3]. In many cases, P is the uniform distribution over [0,1)*, so w can be
interpreted as a uniform random vector. Actually, it has been shown in [13, 27| that for finite
s, the search for transformations minimizing the variance can be restricted to the case where
the u;’s have a common input w uniformly distributed over [0,1). However, here we do not
make this assumption, because alternative interpretations of w are more natural and convenient
in some of our examples. Many well-known variance reduction techniques, including antithetic
variates, rotation sampling, Latin hypercube sampling, randomly shifted lattice rules, and other
types of randomized quasi-Monte Carlo point sets [3, 4, 12, 16, 18, 23| can be seen as special
cases of GA transformations.

To improve the quality of our estimator of u, we also want to use m measurable functions Cj :
[0,1)* — R as control variables (CV), where we assume that E[C;(U)] = 0 and E[C}(U)] < co
for I =1,...,m, and that the covariance matrix X ¢ with entries 0;; = Cov(C;, C})) is positive
definite, and therefore nonsingular. We are thus interested in approximating y by estimators of
the form

n—1 m n—1
Pgatev = Z o X; — Z Zﬁl,icl,i, (1)
i=0 I=1 i=0
where X; = f(u;) and Cj; = Cj(w;), for i =0,...,n—1, and
n—1
S o=
i=0
The goal is to choose the n — 1 + nm free coefficients oy, ..., -1, 81,05 - Brn—15- -+ Bmos - - -5

Bm,n—1 SO as to minimize the variance of figacv-



We are interested in conditions on P, under which the optimal values of these coefficients satisfy
ap=...=ap_1=1/nand flg=...=Fu, forl=1,...,m. (2)

In other words, we want to know under what conditions on l5n should each point u; in l5n be
given the same weight «; and the same CV coeflicients in the construction of figaicy. Note
that when P, is a set of independent uniformly distributed points as in the crude Monte Carlo
method, it is easy to show that (2) holds. The problem is more challenging when P, has a
nontrivial dependence structure, which is the setup considered in this paper. Interestingly, our
conditions will turn out to be independent of the function f, so our results will hold for any f,
as long as it is square-integrable.

At first sight, one might be tempted to believe that equal weights always prevail: Why give
more importance to some u;’s than to others if all are uniformly distributed? Here is a simple
counterexample.

Example 1 Let s = 1, n = 3, and u; = u; = (U +i/4) mod 1 for 7 = 0,1,2, where U
is uniformly distributed over [0,1). Clearly, each u; is also uniformly distributed over [0,1).

Suppose now that f(u) = u. Then the second moment of fig = 3", o f(u;) can be written as

Vo, ) = fo*(ut 01 /a+az/2)%du+ [} (ut 01 /4— 02/2))2du+ [, (u—(3/4)01 — 02/2)?du.
The gradient of this expression with respect to (a1, ) is zero when oy = 1/4 and ap = 3/8,

and the Hessian matrix / /
3/8 1/4
Hy(on, 02) = [ 1/4 1/2 }

is positive definite for any (o, o) € R?. Therefore the variance is minimized by taking a; = 1/4
and g = ap = 3/8. For a different f, the optimal weights may change. They do depend on f.
On the other hand if we take u; = (U 4+ i/3) mod 1 with n = 3, as a consequence of our results,
the optimal weights are o; = 1/3 for all i whatever be the (square-integrable) function f.

For the function f(u) = u, this second estimator also turns out to have a smaller variance than
the first one with the optimal weights oy = 1/4 and ap = e = 3/8. The variance is 1/108 for the
second estimator and 5/384 for the first one. We point out that none of these two estimators
minimizes the variance, among all possible GA schemes, for this particular f. For instance,
taking ug = U and u; = 1 — U gives zero variance. However, this paper is not about finding
the GA scheme that minimizes the variance for a particular f. This is a different problem. The
goal of this paper is simply to provide conditions under which equal weights are optimal for a
given GA scheme.

The estimator figsicy can be rewritten as a Monte Carlo (MC) estimator that uses n — 1 + nm
control variates, as follows:

[y

n—

fgatev = Xo —a1(Xo — X1) — ... — o1 (Xo — Z B1iCu- (3)

=1 1

I
o



This interpretation of antithetic variates as regression variables was already pointed out long
ago by Tukey [26]. We denote by D the vector

(XO - Xl: R XO - anla Cl,Oa s acl,nfla T Cm,O: T C’m,nfl)T

of control variates, and by X the plain MC estimator X,. From the theory of control variates,
the vector of coefficients

T
ﬂ* = (ala ceey O, ﬁl,()a ey ﬂl,n—la R aﬁm,@a ey /8m,n—1)

that minimizes the variance is obtained as a solution of the linear system
Yp,p B=2%x,p, (4)

where Xp p is the (n — 1+ nm) X (n — 1+ nm) covariance matrix of the vector D, and Xx p is
the covariance vector of Xy with each of the control variates in D, i.e.,

EX,D = (COV(X(), Xo — Xl), ey COV(X(), X() — Xn—l)a
COV(X(), 01,0), ceey COV(X(), Cm’n_l))T.

Our main result, stated in Proposition 1, gives sufficient conditions for (2) to hold. We then
consider different settings for P, under which these conditions are satisfied. Informally speaking,
these conditions are that there must be a set of permutations of [0,1,...,n — 1] under which
the joint distribution of any pair of points (u;, u;) in P, is invariant and this set must be rich
enough to sufficiently “shuffle” [0,1,...,n — 1], as we explain in Section 2. This proposition
covers results that can be found in [2, 12], and allows us to prove that (2) holds for different
types of GA transformations.

Note that property (2) does not imply that for any given [, the optimal coefficients f, . .., Bi.n—1
are equal to the optimal coefficient ; that would be used for n = 1, i.e., if CV was not combined
with GA transformations. It is well known that these optimal coefficients generally differ,
because GA changes the covariance structure (see, e.g., [14]).

It is important to point out that in this paper, we assume that the weights have to be chosen
before the random points in P, are observed. The case where the weights can be chosen after
these points are observed is quite different and has been studied, e.g., in [28, 6]. For example,
it is shown in [6] that if f is a twice continuously differentiable function over [0,1] and the
u;’s are n ii.d. U(0,1) random variables sorted by increasing order, then the variance of the
estimator fig, = .o aif(u;) has order O(n~') if a; = 1/n for all i, whereas it has order O(n™*%)
if Qp = (’U,() + ’U,1)/2, Ap_1 = (2 — Up-1 — Un_g)/Q, and o; = (ui—i-l - Ui_l)/Q for 1 S 1 S n— 2.
Similar results in higher dimensions can be found in [28]. However, significant gains by these
techniques that assign weights a posteriori are difficult to achieve in practice when the dimension
exceeds a few units.

Our results assume that all X; and Cj; are available. They do not take into account the potential
savings that can be made by not computing some of them if their weights or coefficients are
zero, and the resulting efficiency tradeoff. For example, if n = 2, (2) is satisfied, and if it takes
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twice the amount of time for computing (Xo, Cip,...,Cmp) and (X1,Ciy,...,Cyp1) than for
computing (Xp, Ci,...,Cmo) alone, then using the GA scheme is more efficient than using
independent replications only if it reduces the variance by a factor larger than 2 compared
with the case n = 1. Several other articles and books concentrate on this efficiency issue (e.g.,
[3, 4,9, 11]), usually assuming equal weights a priori in the case of GA methods.

The remainder of this paper is organized as follows. In Section 2, we introduce some notation,
state our basic result, and prove it. Section 3 considers settings where the u;’s form an abelian
group of random variables and our main result applies. Many examples of sets P, obtained from
different well-known GA techniques are included in these settings and some of them are discussed
in Section 4. Section 5 deals with sets P, obtained by combining two of these GA techniques. The
special case where conditional Monte Carlo is combined with GA transformations is examined
in Section 6. Concluding comments are given in Section 7.

2 Families of Permutations Preserving Distribution of
pairs

We first introduce some notation. If 7 is a permutation of the indices [0, 1,...,n—1], we denote
by D™ the vector of control variates obtained by permuting the order of P, according to r, i.e.,
we have

D™ = (Xzo) — Xrq), - > Xr0) = Xn(n-1)5
Crr0) -2 Crrn=1)s - - Conr(0)> - - - » Crn(n—1)) -

We denote by X7, , the covariance matrix of D", by X% j, the vector of covariances between
the plain MC estimator X,y and D™, and by 8™ the vector of optimal coefficients that solves
2715,135 = zyrX,D-

Our arguments will be based on the following string of ideas. We first note that for a given
permutation 7 that preserves the joint distribution of pairs of points in B,, it is easy to prove
that f™* = g*. If such a permutation m exchanges two different indices i, j € {0,...,n—1}, this
implies that a; = «; and 3,; = f,; for these two specific indices. This can be used to prove (2) if
we can identify a family of permutations preserving the joint distribution and such that any given
index in [0,1,...,n — 1] can be moved to any position by successively applying an appropriate
sequence of permutations from that family. This is what we meant in the introduction by
“sufficiently shuffling” the set [0,1,...,n — 1]. More precisely, our first result is:

Proposition 1 Assume that Xp p is non-singular, that Xx p # 0, and that 15” 18 such that
there exists a set of permutations I1 = {1 ... 7} of [0,1,...,n—1] satisfying the two following
properties:

(a) For any w € 11, the joint distribution of (Wx(;), Ux(;)) is the same as that of (w;,u;) for all
0<i,j<n-—1L.



(b) For anyi € {0,1,...,n— 1}, there is a sequence {m'® ... 7*®} in I such that

OIS0 (i) = 0;
Then the (unique) vector B* of optimal coefficients satisfies (2).

Proof: Let II be a set of permutations that satisfy (a) and (b). For any permutation 7 € II,
the vector *™ of optimal coefficients is a solution to

E%,Dﬁ = EWX,D' (5)

Note that property (a) implies that X7, , = ¥p p and ¥% , = Xx p. Combining this with our

assumption on Xp p and Xx p, we get that the solution to (5) is unique, non-zero, and equal to
B*. This implies that for any ¢ € {0,...,n — 1}, we have

O = Olp(4) and ﬁl,i = ﬁl,w(i)a for [ = 1, ., M. (6)

Applying (6) to the sequence of permutations 7@ ... 7*® for which

we obtaln that

o; = aﬂm’)(i) = 017T2(i)07r1(i)(i) =...= aﬂk(i)o“_oﬂl(i)(i) = Oy and
Bii = Bimo) = Bimoenii) = - -+ = Bipk@o.om@@) = Bro, forl=1,...,m.
Since this can be done for each i, §* satisfies (2). O

3 Abelian Groups of Dependent Random Variables

We now study a situation where P, forms a abelian group of random variables with some special
properties. This covers many practical settings. Examples of group operators over P, are given
in the proof of Lemma 2 and in Section 4. We introduce three sets of sufficient conditions on
P, under which Proposition 1 can be used to prove the optimality of the uniform weights given
in (2). Condition 1 is the most general and will be used directly in Section 4 to prove that (2)
holds when P, is defined by certain types of randomized quasi-Monte Carlo methods. The other
conditions are special cases, in the sense that they imply Condition 1, and they turn out to be
convenient to verify in a number of practical settings.

Condition 1 The set P, is an abelian group of random variables uniformly distributed over
[0,1)*, and such that for any u;, u;, u; € P,, the joint distribution of (u;, u;) is the same as that
of (u; - ug, u; - uy), where “” denotes the group operator. O



Condition 2 The set P, is an abelian group of random variables uniformly distributed over
[0,1)%, the probability measure P corresponds to the uniform distribution over {2 = [0,1)*, and
(u; - u))(w) = u;(u;(w)) for all 7, j, and w € Q. O

Condition 3 The random point set P, can be ordered so that the infinite sequence wg, w1, . ..
defined by

Wi = W mod n (7)

for « > 0 is patrwise strongly stationary, i.e., the joint distribution of w; and w;; only depends
on j, for ¢,57 > 0. O

Lemma 2 FEach of Condition 2 or Condition 3 implies Condition 1.

Proof. Suppose Condition 2 holds and let u;,u;,u; € P,. Then, both w and ui(w) are
uniformly distributed over [0,1)*, and therefore the joint distribution of (u; - ug, u;-ux) = ((u;-
ug)(w), (u; - ug)(w)) = (u;(ug(w)), u;(ug(w))) is the same as that of (u;(w), uj(w)) = (u;, v;).

w»

Now suppose Condition 3 holds. The set P, = {ug, ...,u,_1} equipped with the operator
defined by u; - u; = U(i}j) mod n forms an abelian group. Moreover, for every i, j, k, the joint
distribution of (u;-uy, u;-ux) = (Ug4k) mod n> U(j+k) mod n) is the same as that of (u;, u;) because
of the pairwise strong stationarity. (]

In [12], the authors show that when P, satisfies Condition 3, choosing uniform weights «;
minimizes the variance when P, is used to estimate pu. A similar result for the case where
P, satisfies Condition 2 is discussed in [2] and proved in [1]. Our Condition 1 allows to treat
cases not covered by those previous results. Also, we consider in Proposition 6 constructions
P, resulting from the combination of two sets and directly prove that Proposition 1 holds for

these P,. Another novelty of this paper is that we look at the combination with control variates

Ciy . ,Cp-

To show that the assumptions of Proposition 1 are satisfied under Condition 1, we need certain
properties of abelian groups, which we now recall. See, e.g., [7] for an account of group theory.
The fundamental theorem of abelian groups says that P, can be written as a direct sum

P=Q:®...0Q, (8)

where for ¢+ = 1,...,7, Q; is a cyclic group of order n; with generator g;. By asking for the
integer r to be as small possible, this decomposition is unique (up to an isomorphism). In this
context, 7 is called the rank of P,, and the integers n; are called the invariants and they satisfy
ny > 1, and ngyq divides ng for £ = 1,...,7r — 1. Define m; = ny...n; for [ = 0,...,r, where
ny = 1. We will show that the assumptions of Proposition 1 hold for the class of permutations
= {xl, I=1,...,r, d=0,...,n; — 1}, where

74 (i) = (i 4+ dmy_1) mod my + |i/my|my, i=0,...,n—1 9)

Let us explain what these permutations 7, ..., 7% do. For 7}, we partition [0,1,...,n — 1] into
n/ny disjoint sequences of n; = my contiguous values, and shift by d (modulo m;) the position
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of each element inside each sequence. For 72, we partition [0,1,...,n — 1] into n/msy disjoint
sequences of length niny = my; inside each sequence, the position of the elements is shifted
by dm; (modulo my). More generally, for 7, we partition [0,1,...,n — 1] into n/m, disjoint
sequences of length m;, and inside each sequence, the position of the elements is shifted to the
right by dm; ; positions (modulo m;). Figure 1 illustrates the effect of these permutations.

shift by d  shift by d shift by d
VIR VR N\
} % % % I effect of m}
~ N~ ~__
mq mq my
~X shift by dmi -\ shift by dm; . - shift by dmy
; % % % | effect of 72
W \/
ma ma2 ma
/X shift by dm;_; ~—\ shift by dm;_; ... ~ X shift by dm;_1
!
| | | | | effect of m;
my my my

Figure 1: Effect of the permutations on [0,1,...,n — 1]

The proof is built on two preliminary results. Lemma 3 says that when an abelian group P,
is initially ordered in a certain way and this order is permuted according to 7, then in the
representation of its elements according to the decomposition (8), only the element from the /th
cyclic subgroup @; changes. Lemma 4 states that the permutations in IT satisfy property (a) of
Proposition 1. To complete the proof that (2) holds, it then suffices to show that the family II
is rich enough to ensure property (b) of Proposition 1.

Lemma 3 Let P, = {ug,...,u,_1} be an abelian group and let v, ny,...,n, be its rank and
invariants, respectively. Assume that P, has been ordered so that

_ i i -
w=g-... g/ , 1=0,...,n—1,

where g¥ is defined by g' = g and g¥ = g-g" ', and where iy = |i/my_1| mod n; forl=1,...,r.
Then for any 1 <1 <r,0<d <mn, and 0 <1 <n, we have that

3t i1 (i1+d) mod n; U+1 i
ey =81 - 81 "8 SN -S4
d



Proof: Let l € {1...,r},d € {0,...,n; — 1}, and 7 € {0,...,n — 1}. By definition, we have
that
Wiy =81 -8
where foru=1,...,r,
= |74(3) /my_1| mod n,,.
We thus want to show that v, = i, for u # [, and that v; = (4, + d) mod n;.
If u < [, then

d dm, i/m
v — {z+ my_1) mod my + |i/my| m lJmodnu
My—1
d —k )
= ( Z+ i1 mlJ + {LJ i ) mod n,, for some integer k > 0,
My—1 myd my—1
d k '
= ( mll— ml+[LJ ml)modnu
My— 1 u—1 My—1 mpd my—1

= |i/my_1] mod Ny (10)
= iy,
where (10) follows from the fact that m;/m, 1 and m;_1/m,_; are both multiples of n,.

If u > [, then m,_; = ¢m,; for some positive integer q. Hence

mh(i)  wy(i) i+ dmy_ mod my N { i J 1« { i J 1 (11)
My—1 qamy qmy mydq gy mydq
; . ' mod 1 1
and i _ 4 _imo ml-i-{LJ—:i"‘{iJ_’ (12)
My—1 qmy qamy mydq o qmy mydq

where @ = (i + dmy_1) mod m; < m; and 8 = i mod m; < m;. Now if we use the (unique)
decomposition

{i/mlJ =aq+b,

where a and b are integers and 0 < b < ¢ (i.e., take a = ||i/my]/q| and b = |i/my;] mod q),
then from (11) and (12) we get that

« b ) b
=—+a+- and =—+a+-.
My —1 qmy q My 1 qamy q

Since a/gm,; and (/gm, are both strictly smaller than 1/q and b < ¢ — 1, we have that both
a/qm;+ b/q and 3/qm; + b/q are strictly smaller than one, and thus

W(i) /mu_lJ - {i/mu_lJ —q,

which means v, = i,.



If u =1, then

- \‘z+dml 1 modml Li/mlJnlJ mod
mp—
(1 +dmy_1)/my_1]) mod n,
= (|¢/my_1] +d) mod ny
(iy + d) mod n.

g

Lemma 4 Under Condition 1, the permutations ' in 11 satisfy property (a) of Proposition 1.

Proof. We suppose that the order of the elements in P, has been fixed as in Lemma 3. For

— ol ) N j
w,=g'-...-gr and u; =gy -... g/, observe that
- j1—%1) mod n |
uj.uilzggjl 1) 1.”‘_g7(:7r zr)modnr'

Using Lemma 3, we have that

1

) BUAER |
ma(1) Tl (4)
_  glii—j1)modmny (i-i=ji-1) mod n—y | _(iy+d—ji—d) mod ny _ (ir41—ji41) mod niy | . o (ir—74r) mod n,
- gl gl 1 gl gl+1 .« .. r
= u;-u;!

7 )

and therefore uj_1 Uy = L. u, ;). Let uy be this group element. Then,

_ -1 _
ey = WUy - Upley = U~ Uy and

f— . _1 . P - e
u L) T u; - u, u,,rfi(z) =uj - Ug.

By assumption, this means that (u;i(;), Un ;) have the same joint distribution as (uj, u;). O

Proposition 5 Assume that Xp p is non-singular and that Xx p # 0. If 15n satisfies Condition
1,2 or 8, then (2) holds.

Proof. It suffices to prove that the family IT of permutations introduced in (9) satisfy assump-
tion (b) of Proposition 1.

For an arbitrary ¢ € {0,...,n — 1}, we define the following sequence of permutations. We first
apply my,y with d(1) = (n; — i) mod n;, which yields
a1y (1) = kama

for some integer k; = [i/m1] > 0, because i + d(1) = 0 (mod m4). More generally, the choice
of permutations 7511(1)’ e ,Wg(r) is defined recursively as follows: using ky = ¢ as an initial value,
we successively define for [ =1,... 7,

d(l) = (nl — kl—l) mod ng,

10



where kl—l = U{Zl_gml_g/ml_lJ for [ > 1. Since kl_zml_g + ((’I’Ll_l - kl_g) mod nl_l)ml_z =0
(mod my_1), we have that

7r(11(1171)(kl—2ml—2) = ki_1my_1. (13)
This sequence of permutations satisfies

WZ(T,) 0---0 Wé(l) (7,) = k,’,mr mod n = 0’

because m, = n, and this proves the result. O

4 Application to GA Techniques

We now give several examples of randomized point sets that are frequently used as GA (or
quasi-Monte Carlo) methods in simulation and that satisfy our conditions.

Example 2 Antithetic Variates.

In this case, w = u is uniformly distributed over [0,1)* and P, = {ug, u;} = {u, 1—u}. Tt is easily
seen that both Conditions 2 and 3 are satisfied. For Condition 2, we define ug-uy = u; -u; = uy,
and up - u; = ug - ug = uy. O

Example 3 Randomly Shifted Lattice Rules.

A lattice rule (see, e.g., [5, 17, 24]) estimates p by averaging the values of f over the point set
P, =L;N[0,1)% where

S
L, = {v = szxj such that each z; € Z} , (14)
j=1
X1,...,Xs are linearly independent vectors in R®, n denotes the cardinality of P,, and Z* C L.
Under the latter condition, L is called an integration lattice. The set P, = {vo,...,Va_1},

together with the operation + defined over R® by v +u = (v +u) mod 1, where the addition
and reduction modulo 1 on the right side are coordinate by coordinate, is an abelian group.

A randomly-shifted lattice rule replaces the deterministic point set P, by P, = {ug,...,u, 1} C
[0,1)%, where u; = v; + u and u = w is uniformly distributed over [0,1). This P, is an abelian
group under the operation defined by uw; - u; = w; + u; —u = v; + v; + u. In this case,
u; - u;(w) = u;(v; + w) = u;(uj(w)), so Condition 2 is satisfied.

A lattice rule has rank 1 if one can take xo = e, ..., X, = €, in (14), where e, is the jth unit
vector in R® or, equivalently, if P, can be written as P, = {ix; mod 1,7 =0,...,n—1} for some
vector x; € [0,1)°. In this case, if we define w; as in (7), the joint distribution of (w;, w; ;) is
the same as that of (u, (j — 7)x; + u) for all 7 and j, so Condition 3 holds.

However, Condition 3 does not hold in general for rules of higher rank. As an example of this,
consider a two-dimensional copy-rule with n = 4 and P,, = {(0,0), (0,1/2), (1/2,0), (1/2,1/2)}.
Here, there is no way of ordering the points so that (ug, u;) has the same joint distribution as
(111, 112). O

11



Example 4 Rotation sampling.

Here, w = u is uniformly distributed over [0,1)* and P, = {ug,uy,...,u, 1} = {u, (x +
u)mod 1, ..., ((n—1)x+u) mod 1}, where x = (1/n,...,1/n); see [10]. This turns out to be
a special case of a randomly shifted rank-1 lattice rule, with x; = x (see the previous example)
and therefore Condition 2 holds. Glynn and Szechtman [12], page 40, did verify Condition 3 for
this example. [l

Example 5 Latin Hypercube Sampling.

This method uses the randomized point set P, = {(x'(i)/n,...,7*(i)/n)+y;, i=0,...,n—1},
where the 7/’s are i.i.d. uniform permutations of [0,1,...,n — 1], and the y;’s are i.i.d. uniform
over [0,1/n)® [3, 20, 23]. We can interpret w as the randomness needed to generate all the m,’s
and y;’s. Here, all pairs (u;, u;) for ¢ # j have the same joint distribution and all pairs (u;, u;)
have the same joint distribution. Thus, Condition 3 holds for any ordering of the u;’s. (|

Example 6 Digitally Shifted Nets.

We consider a special case of a digital net in base b [8, 21, 25] where the underlying commutative
ring is Z; and all the bijections are the identity (which is often the case in practice). Such a
net corresponds to a deterministic point set P, = {v; = (v;1,...,0i5), ¢ =0,...,n— 1}, where
n = b* for some positive integer k, the coordinates v;,; are defined by

a0
vij = (bil h2 .. ) C; al:’l def Uz‘,j,lbfl + Ui,j,2b72 4.
A k—1
for some carefully selected co x k-dimensional matrices Cy, ..., Cs with elements in Z;, and the

a;;’'s are the digits of the expansion of ¢ in base b; i.e., 1 = a;0 + a; b+ -+ + aiyk_lbk_l. (We
assume that infinitely many coefficients v; ;; differ from b — 1 for each (3, j), so the expansion is
unique.) The set P, forms an abelian group under the operation “+” defined by

vV, +Vy = (Z((Ui’l’l + Uz”,l,l) mod b)bil, ceey Z((Ui’s’l + Ui’,s,l) mod b)bl> . (15)

=1 =1

A digitally shifted net is a random point set defined as P, = P, + u where P, is a digital net
and u is uniformly distributed over [0,1)°. For u; = v; + u and u; = v; + u in B,, define
u; - u; = v; + v; +u. Under this operation “.”, it is easily seen that P, is an abelian group of
random variables satisfying Condition 1. Indeed, (w; - um, u;-u,) = (Vi +vy,+u, v+ vy, +u)
has the same distribution as (u;, u;) = (v;+u, v,;+u), because both u and v,, +u are uniformly
distributed. O

Example 7 Linearly Scrambled Digital Nets.
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This method is very similar to the previous one, except that the deterministic digital net P,
is replaced by a random one, call it ]5”, in which the generating matrices have been randomly
“scrambled” [19, 15]. Hence w in this case is the randomness required to scramble these matrices
and to generate u. To prove that P, satisfies Condition 1, we use the same operator - as in the
previous example, but the v;’s now come from the random digital net B,.

Example 8 Scrambled Digital Nets.

In this case, the point set P, is obtained by applying certain random permutations to each
digit in the expansion of each coordinate of the points coming from a digital net in base b, P,,
defined as in Example 6. We refer to [22] for the details. Here we only state the facts needed
to prove that this case is covered by Condition 1: (i) each u; € P, is uniformly distributed over
[0,1)% (ii) if v;, v; € P,, the joint distribution of (u;, u;) is completely determined by the vector

(q1,--.,qs), where g is such that in dimension [, the first ¢, digits of v; and v; are the same, but
they differ on the (¢, + 1)th digit. Let ¢ denote the (random) transformation from P, to P,, so
u; = ¢(v;) for each 4, and define the operator “” by u; - u; = ¢(v; + v;), where operation + is

defined as in (15). It can be verified that P, is an abelian group under this operation. Moreover,
Condition 1 holds because for any v,, € P,, the vector (g1, ..., ¢s) for (v; + v, v; + vp,) is the
same as that for (v;, v;). O

Our conditions may apply to cases where different GA methods are combined, as illustrated by
the following example.

Example 9 Modified Latin Hypercube Sampling Combined with a Randomly Shifted Lattice
Rule.

We consider a lattice rule with point set P,, = {vy, ..., vy, _1} and a modified Latin Hypercube
sampling scheme with (random) point set Q,, = {w; = w(j)/na +u, j = 0,...,ny — 1},
where 7(j) = (7' (4),...,7°(j)), the n"’s are i.i.d. uniform permutations of [0, 1,...,ny— 1], u is

uniformly distributed over [0,1)* (instead of [0,1/n9)%, and the same u is used for all j; this is
why we say it is a “modified” scheme), and the operation + corresponds to addition modulo 1.
Let n = nyng and P, = {uy, ..., u,_1} where u; is defined as u; = 7 (j) /no +u+v; if i = nyl+7,
where the + operation in the definition of u; is again defined as addition modulo 1. In words,
this point set corresponds to n, randomly shifted copies of P,,, using the ny points of ), for
the shifts.

For i = nol+j and i’ = nol'+75', 0 < i,i" < n, define u;-uy = w((j+7") mod ny)/na+u+vy+vy.
With this operation, P, is an abelian group that satisfies Condition 1, because for i" = nyl" + 5",
u;-uy = w((j+7") mod ng) /no+u+v,+vp and uy -uyr = w((§'+5") mod ny) /ny+u+vy v
have the same joint distribution as u; = (5 mod ny)/ns + u+ v; and uy = 7 (j' mod ns)/ns +
u—+ vp. O

For certain GA combinations, Condition 1 can be difficult or impossible to verify, but one may
still be able to verify the conditions of Proposition 1 via a different path. In the next section
we give a result that provides a different set of sufficient conditions for Proposition 1 that are
convenient to verify for certain types of combined methods.
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5 Combining GA techniques

The next proposition shows that for certain sets P, obtained by combining two smaller sets,
Proposition 1 can be used with a different set of permutations than the one defined in (9) to
prove that (2) holds. This bypasses Proposition 5 and the verification of Condition 1.

Proposition 6 Assume that f/q ={vo,...,vg_1} satzsﬁes Condition 2 and W; = {wo,..., w1}
satisfies Condition 1. Let P, = {vi(wj) i=0,...,q—1,7=0,...,t —1}. (S0 P, has the
same group operation as V,). If for any vy € ‘Z;,Wi,Wj e W, (vk(wi),vk(wj)) has the same
distribution as (w;, w;) or (w;, w;), then P, satisfies the conditions of Proposition 1.

Note that if we were asking for (vi(w;), vi(W;)) to have the same joint distribution as (w;, w;)
for all k, then the resulting point set P, would satisfy Condition 1 and there would be nothing
more to prove. Our condition is weaker because we allow this joint distribution to be equal to
that of (w;, w;) instead. This weaker condition would be easy to handle if no control variables
were used, since Cov(f(w;), f(u;)) = Cov(f(u;), f(u;)). The problem here is that with control
variables, we also need to verify that Cov(f(u;), Cx(u;)) = Cov(f(u;),Ck(u;)), and this is not
necessarily true under our weaker condition.

Proof. We need to define a set of permutations II such that part (a) and (b) of Proposition 1
hold. Since P, is obtained by composing two sets, it seems natural to define the permutations
of II in terms of two permutations that respectively act on [ = |i/t| and r = i mod ¢, for
a given i € {0,...,n — 1} (i.e,, l and r < ¢ are the unique non-negative integers such that
i = It +r). Also, since each of V and W, satisfies Condition 1, it seems reasonable to use the
sets II; = {7}, 1 <1 <r,0<d<m;}and Il = {7},1 <1 <ry,0 <d < myp} given in (9)

to define these two permutations. Here 71, ny1,...,n:, 1 and 72, ny 2, ..., Ny, o are the rank and
invariants associated with V, and W;, respectively. Before describing II, recall from the proof of
Lemma 4 that for any i,5 € {0,...,¢— 1}, v;'- Vil (i) = vj_1 - Vaij)- Let us call this common

element v, (where k£ depends on d and [, for the remainder of this proof) and define the set

A = {(d,1),0<d<n,,1<1l<r:(vi(w;),vi(w;)) has the same
joint distribution as (w;, w;)}.

Hence (d,l) ¢ A means that (vi(w;), vg(W;)) has the same joint distribution as (w;, w;). Also,
let (7y(r))~" be such that Wz -1 = W;ll(r). We define
d

H:{Wf;f;,l (<r,1<i< r2,0§5<nz,1,0S5<W,2},
where for 1 =tl +r, 0 < r < t, we have

(r) if (0,¢) € A
(7k(r))™"  otherwise.

To prove part (a) of Proposition 1, we need to show that for any 7r E IT and any u;,u; € P,

¢l

55(1) and j' = 7r“( /), then (uy, u;7) has the same joint dlstrlbutlon as (u;, u;). Writing

ifd =7
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i =1It+r, and j = mt + s where 0 < r,s < t, assume first that (3,£) € A. Using the same
arguments as in the proof of Lemma 4 and the fact that V, satisfies Condition 2, we get

Wi = Vat) (Wﬁg(r)) = Vi - Vi (Wy - W) = Vi (Vi (Wr - W)

and
(5)) =Vm - vk(ws ’ WN) = vm(vk(ws : Wn))a

where & is such that w, = w;* Wi for any 0 < i < t. By assumption that W, satisfies
8

Condition 1, we know that (w, - w,, ws - w,) has the same joint distribution as (w,, wy).
Combining this with the fact that (§,¢/) € A, we have that (vi(w, - W), vig(Ws - w,)) has
the same joint distribution as (w,, wy), as required. If (6,¢) ¢ A then,

Uty = Vg (W;gjlm) =vi-vi(wyhwi) = vi(ve(wr - wih)) (16)
uml;,’g(j) = Vaim) (W;f%l(s)) = Vi - V(Wi W) = v (vi(wi - w ), (17)

where the second equality in both (16) and (17) comes from the abelian property of W,. By
assumption that W, satisfies Condition 1, we know that (w,'-w.! w,'-w_!) has the same
joint distribution as (w; !, w;!) and since (6,¢) ¢ A, (vi(w:1),vg(w;1)) has the same joint
distribution as (w;*, w; '), which has the same joint distribution as (w,, w,), again by Condition

1 (multiplying both arguments by w, - w,., and using the abelian property of W;).

We now prove that I satisfies part (b) of Proposition 1. Let i = ¢t/+r and 0 < r < t. Following
the proof of Proposition 5, we know that there exists a set of pairs {(d(j),7),7 =1,...,71} such
that ’ﬂ';%”) 0-:-0 ’ﬂ'é(l)(l) = 0. Similarly, there exists a set of pairs {(e(j),j), j =1,...,72} such
that 772 ) o---o 7y, (r) =0.

(r2

Observe that since 7} is the identity, (0,1) € A and it is easy to see that

1,1 S Lra NS W SN S8 SN W _
Ta(r),0 © """ O Ta(1),0 © Mole(ry) © *** © Moleqr)(8) = Tagryy0 0+ 0 Ty o (#) = 0.

Example 10 Antithetic Variates and Randomly Shifted QQMC Point Set.

Let w=u, Vo = {vog = u,v; = 1 — u}, and W,,j» be a randomly shifted lattice rule (which
satisfies Condition 1). Then for any w;, w; € Wn/g, (vo(w;), vo(w,)) obviously has the same
joint distribution as (w;, w;). To show that (v;(w;), vi(w;)) has the same joint distribution as
(w;, w;), let x; be such that w; =x;+ufor i =0,...,n/2—1 (as seen in Example 3). We can
write (vi(w;), vi(w;)) = (1—w;, 1—w;) = (x;+u’,x;+u’), where u’ = 1—x; —x; —u. This pair
has the same joint distribution as (w;, w;) because u’ has the same distribution as u. Since Va
satisfies Condition 2, Proposition 6 applies and thus P, satisfies the conditions of Proposition 1.
This also works if the randomly shifted lattice rule W, /2 is replaced by a digitally shifted net,
with the + operator defined in (15), and the corresponding — operator in the definition of v;.
U
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6 Integrating GA with CMC

For each 1, let F; be the Borel o-field generated by u;, let G; be a sub-o-field of F;, and define
Y; = E[X; | G;], which can also be written as Y; = g(u;) for some measurable function g. One
has E[Y;] = E[X;] = p and Y is a conditional Monte Carlo (CMC) estimator of u. Define
C; = Y; — X, and consider the estimator

n—1 n—1
=Y iY; =Y BiC, (18)
=0 =0

which uses the C; as control variates, and where ag + -+ -+ a,,_1 = 1.

If the u;’s satisfy the assumptions of Proposition 1, we know that the variance of fi,, is minimized
by taking «; = 1/n and 8; = b*/n for all i, for some constant b* that remains to be determined.
With these values, (18) becomes i, = Y, — b*C,, where ¥, = 37" V;/n and C, = 3.7 Ci/n,
and it is easily seen that

_ CovlY,, Gyl

b= aC) (19)

It is also known that for the case where n = 1, one has b* = 0 [12, Theorem 2], which means
that the best strategy in this case is to use only Y; as an estimator and forget about the control
variate C;. The idea is that Y; has smaller variance than X; and turns out to be uncorrelated
with Cj, so it becomes useless to introduce C; as a control variate. But for n > 1, the C; are
not always independent of the Y; for j # 4, so it might be worthwhile to have them as control
variates. The next example illustrates this.

Example 11 Let s = 2, X; = f(w) = f(ui1,%i2) = w1 + uio + w10, and Y; = E[X; |
U/Z"luz',Q]. One has Y; = U1 Uz2 — 2(1 — ui,lui,g)/ln(ui,lui,g), because Us,1 (Ui,lui,z = ’U) has density
function h(u) = —1/(ulnw) for u > v and h(u) = 0 elsewhere. Therefore, C; = Y; — X; =
—2(1 — wi i) /In(u; ui2) — w1 — ui2. Suppose we use antithetic variates (AV), so n = 2 and
u; = 1 — ugy. Denoting ug = (ug, us), using AV alone gives the estimator

X = (Xo+X1)/2
= 05[U1 =+ U9 + ugug + (]. — U,l) + (]. — Ug) + (]. - ’U,l)(]. — ’LLQ)]
= 1+ 0.5(U1U2 + (1 - Ul)(l - ’U,Q)),
while using AV with CMC yields
Y, = (Yo+1)/2
2(1 - Ul’U,Q)

In(uqus)
= 0.5[ugus + (1 —ug)(1 — ug)] — g(u1,us),

21— (1 — wg)(1 — ug))

# 0 w)(1—w)  S

= 0.5 U1Ug —

where
(1—wug) (11— (1—u)(l—up))
In(ujus) In(1 —uy)(1—ug)

g(ula U’?) -
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Their difference is Cy = (Cy + C1)/2 = —1 — g(u1,us), and Cov[Ys, Co] = Var[g(uy,us)] —
Cov[g(u1,ua), urus+(1—uq1)(1—wu9)]/2 = 0.021229 > 0, which in turn implies that b* > 0. With
B; = b*/2, the variance of ji,, turns out to be approximately 0.00215, whereas Var[Ys] ~ 0.03614.
Thus, using the control variate Cy with its optimal coefficient reduces the variance by a factor
of more than 16 compared with using 8; = s = 0.

Suppose now that we condition on u;; instead of Ui 1 Uj2- Then, Y; = E[X; | ui1] = 1_'5“111 + 0.9,
Ci=Y,—X; =05+ 0.5u;1 — ;2 — u;1U; 9, and since Y5 = 1.25, we get that Cov[Y,, C,] =0,
so b* = 0. O

For many of the schemes we have seen in Section 4, such as antithetic variates, randomly shifted
lattice rules, and digitally shifted nets, for example, the randomness affects the points in a way
that knowing a single u; reveals enough information to determine the entire point set P,. For
instance, knowing u; is enough to determine the shift for a randomly-shifted lattice rule, and
then to determine all other points u;. For antithetic variates, knowing u tells us 1 — u.

In such a situation, the o-fields F; are all the same. Frequently, in this context, the G; will also
be all identical. For example, if ¥; can be written as ¥; = E[X; | Z;] for some random variable
(or vector) Z;, and if Z; = g(1;) where U; represents a subset of the coordinates of u; and ¢
is a one-to-one transformation, then the G;’s turn out to be all the same. This implies that
E[X; | Gj]| = E[X; | Gi] =Y; almost surely (a.s.) for all 4 and j. The next proposition says that
under the latter condition, the optimal strategy is to use the CMC estimator Y, alone, without
the control variates C;.

Proposition 7 If E[X; | G;] = E[X; | Gi] a.s. for all i and j, then b* = 0.

Proof. Under the assumption of the proposition, for any j, Y, is G;-measurable and E[X, |
G| =Y, as., so

Cov[Y,, C,] = E[Y,C,]

= E[E[Y,(Y,—X,) | Gj]]
= E[EY,(Yo - Y.) | G)]]
= 0.
Then, b* = 0. -

Example 12 Let T be the length of the longest path between two given nodes (the origin and
the destination) in an acyclic network with s arcs of random length. The aim is to estimate
p = P[T > c| for some constant c¢. Here, X = I[T > c| where I is the indicator function.
Suppose we generate the vector V; = (V;1,...,V;,) of random arc lengths by using coordinate
k of u;, u;x, to generate V;; by inversion, for each 7 and k, and then compute the corresponding
values of T; and X;. We assume that each arc length distribution has a density, which ensures
that the transformation from w;j to V; is invertible.
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A CMC estimator for this example can be defined as follows (see, e.g., [3, 17]). Select a set of
arcs L C {1,...,s} and let G; be the o-field generated by {Vix, ¥ ¢ L£}. That is, ¥; = E[X |
G:] = P[T > c | G;] is a probability conditional on the lengths of all arcs not in £. If £ is chosen
so that each path from the origin to the destination contains exactly one arc from L, then this
conditional probability is easy to compute [3]. Here, if all u; can be recovered from any single
u;, then {V,x, k & L} can also be recovered from {V; s, k ¢ L} from each 3, j, and therefore the
conditions of Proposition 7 are satisfied. This means that if the u;’s are obtained by AV, or
randomly shifted lattice rules, or digitally shifted nets, for example, then b* = 0. O

7 Conclusion

In this work, we have studied estimators based on GA transformations combined with control
variates. Our goal was to determine under what conditions using equal weights across all eval-
uation points minimizes the variance, for a given GA scheme, when the weights must be chosen
a priori. In Proposition 1, we have obtained general sufficient conditions for the optimality of
equal weights. We then provided three different easily verifiable conditions under which Propo-
sition 1 can be applied. For several correlation induction techniques, we have been able to verify
these conditions and thus show that equal weights are optimal.

Other questions of interest include: By how much can we reduce the variance if we are allowed
to choose the weights a posteriori, i.e., after the evaluation points have been observed, and how
does the improvement behave as a function of the number of points n and the dimension s?
What are the interesting families of GA transformations for which choosing unequal weights
is optimal? How does the variance of estimators obtained from these families, with optimal
weights, compare with that of estimators for which equal weights prevail?

A different issue, perhaps more important but certainly more difficult to address, is to determine
what types of GA transformations provide the largest variance reduction, or the largest efficiency
improvement factor if we take the computing cost of the estimator into account, for given classes
of functions. The answer obviously depends very much on the functions f we would consider.
Further work in that direction is certainly needed.
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