
Uniform Random Number Generation

Pierre L’Ecuyer

Département d’Informatique et de Recherche Opérationnelle, Université de
Montréal, C.P. 6128, Succ. Centre-Ville, Montréal (Québec), H9S 5B8, Canada.

http://www.iro.umontreal.ca/∼lecuyer

Abstract

This chapter covers the basic design principles and methods for uniform random
number generators used in simulation. We also briefly mention the connections
between these methods and those used to construct highly-uniform point sets for
quasi-Monte Carlo integration. The emphasis is on the methods based on linear
recurrences modulo a large integer, or modulo 2. This reflects the fact that their
mathematical structure is much better understood than other types of generators,
and that most generators used in simulation have that form. We discuss the main
requirements for a good generator, theoretical figures of merit for certain classes of
linear-type generators, implementation issues, nonlinear generators, and statistical
testing.

Key words: random number generator, linear congruential generator, multiple
recursive generator, spectral test, statistical test, low discrepancy, quasi-Monte
Carlo

1 Introduction

A reliable (pseudo)random number generator (RNG) is a basic and essential
ingredient for any stochastic simulation. The mathematical theory underly-
ing simulation methods is built over the elegant concepts of probability space
and random variable. However, since the exact implementation of these con-
cepts on conventional computers seems impossible, random variables and other
random objects are simulated by deterministic algorithms. The aim of these
algorithms is to produce sequences of numbers or objects whose behavior is
hard to distinguish from that of their “truly random” counterparts, at least
for the application of interest. The details of these requirements may differ de-
pending on the context. For the (Monte Carlo) simulation methods discussed
in this handbook, the main goal is to reproduce the statistical properties on
which these methods are based, so that the estimators of interest behave as

Preprint submitted to Elsevier Science 16 November 2005

Lecuyer
Typewritten Text
Chapter 3 of Elsevier Handbooks in Operations Research and Management Science: Simulation,
S. G. Henderson and B. L. Nelson, eds., Elsevier Science, Amsterdam, 2006, 55--81.

expected. For gaming machines and cryptology, observing the sequence of out-
put values for some time should provide no practical advantage for predicting
the forthcoming numbers better than by just guessing at random.

Random variate generation for simulation can be decomposed in two steps:
(1) generating imitations of independent and identically distributed (i.i.d.)
random variables having the uniform distribution over the interval (0, 1) and
(2) applying transformations to these i.i.d. U(0, 1) random variates to generate
(or imitate) random variates and random vectors from arbitrary distributions.
Step 2 is examined in Chapters 4 and 5. This chapter is devoted to algorithms
used for Step 1.

In Section 2, we give a definition and the main requirements of a good uniform
RNG. In Section 3, we cover RNGs defined by a linear recurrence modulo
a large integer m. We examine their lattice structure, quality criteria, and
implementation techniques. In Section 4, we provide a similar coverage for
RNGs based on linear recurrences modulo 2, and examine the relationships
between these two types of constructions. One example is given in each of
these two sections. Nonlinear RNGs are briefly mentioned in Section 5. In
Section 6, we discuss empirical statistical testing of RNGs. Additional text-
books and tutorial-like references on uniform RNGs include Knuth (1998);
L’Ecuyer (1994, 1998); Niederreiter (1992), and Tezuka (1995).

2 Uniform Random Number Generators

2.1 Generators Based on a Deterministic Recurrence

RNGs used for simulation are almost always based on deterministic algo-
rithms that fit the following framework (L’Ecuyer, 1994): a RNG is a structure
(S, µ, f,U , g) where S is a finite set of states (the state space), µ is a proba-
bility distribution on S used to select the initial state (or seed) s0, f : S → S
is the transition function, U is the output space, and g : S → U is the output
function. In what follows, we assume that U = (0, 1). The state of the RNG
evolves according to the recurrence si = f(si−1), for i ≥ 1, and the output
at step i is ui = g(si) ∈ U . The output values u0, u1, u2, . . . are the so-called
random numbers produced by the RNG.

Because the state space S is finite, there are necessarily finite integers l ≥ 0
and j > 0 such that sl+j = sl. Then, for all i ≥ l, one has si+j = si and
ui+j = ui, because both f and g are deterministic. This means that the state
and output sequences are eventually periodic. The smallest positive j for which
this happens is called the period length of the RNG, and is denoted by ρ.

2

When l = 0, the sequence is said to be purely periodic. Obviously, the period
length ρ cannot exceed |S|, the cardinality of the state space. Good RNGs
are designed so that their period length ρ is not far from that upper bound.
For general recurrences, ρ may depend on the seed s0, but good RNGs are
normally designed so that ρ is the same for all admissible seeds.

In practice, it is important that the output be strictly between 0 and 1, because
the transformations that generate nonuniform variates sometimes take infinite
values when U is 0 or 1. For example, an exponential random variate X with
mean 1 is usually generated via X = − ln(1 − U) and this gives X = ∞
when U = 1. All good implementations never produce 0 or 1. However, for
the mathematical analysis of RNGs, we often assume that the output space
is [0, 1) (i.e., 0 is admissible), because this simplifies the analysis considerably
without making a significant difference in the mathematical structure of the
generator.

2.2 Quality Criteria

What are the most important quality criteria to be considered when designing
a RNG? An extremely long period is essential, to make sure that no wrap-
around over the cycle can occur. The length of the period must be guaranteed
by a mathematical proof. The RNG must also be efficient (run fast and use
little memory), repeatable (able to reproduce exactly the same sequence as
many times as we want), and portable (work the same way in different soft-
ware/hardware environments). The availability of efficient jump-ahead meth-
ods that can quickly compute si+ν given si, for any large ν and any i, is
also very useful, because it permits one to partition the RNG sequence into
long disjoint streams and substreams of random numbers, to create an ar-
bitrary number of virtual generators from a single RNG (Law and Kelton,
2000; L’Ecuyer et al., 2002a). These virtual generators can be used on parallel
processors or to support different sources of randomness in a large simulation
model, for example (see Chapter 7 for further discussion).

It is important to realize, however, that these elementary properties are far
from sufficient. As a simple illustration, consider a RNG with state space
S = {0, . . . , 210000− 1}, transition function si+1 = f(si) = (si + 1) mod 210000,
and ui = g(si) = si/2

10000. This RNG has the huge period length 210000 and
enjoys all the nice properties described in the preceding paragraph, but it is
certainly not imitating “randomness.” The analysis outlined in the following
paragraphs, although admittedly heuristic, goes a little deeper.

A sequence of real-valued random variables u0, u1, u2, . . . are i.i.d. U(0, 1) if
and only if for all integers i ≥ 0 and t > 0, the vector ui,t = (ui, . . . , ui+t−1) is

3

uniformly distributed over the t-dimensional unit hypercube (0, 1)t. Of course,
this cannot hold for algorithmic RNGs because any vector of t successive values
produced by the generator must belong to

Ψt = {(u0, . . . , ut−1) : s0 ∈ S},

which is the finite set of all vectors of t successive output values that can be
produced, from all possible initial states. We interpret Ψt as a multiset, which
means that the vectors are counted as many times as they appear, and the
cardinality of Ψt is exactly equal to that of S.

Suppose that the seed s0 is selected randomly, uniformly over S. Then, the
vector u0,t has the uniform distribution over the finite set Ψt. And if the
sequence is purely periodic for all s0, ui,t = (ui, . . . , ui+t−1) is also uniformly
distributed over Ψt for all i ≥ 0. Since the goal is to approximate the uniform
distribution over the unit hypercube (0, 1)t, it becomes clear that the set Ψt

should provide a good uniform coverage of this hypercube. In other words, Ψt

acts as an approximation of the theoretical sample space (0, 1)t from which
the vectors of successive output values are supposed to be drawn randomly.
The vectors are generated uniformly over Ψt rather than over (0, 1)t. To design
good-quality RNGs, we must therefore have practical and effective methods
for measuring the uniformity of the corresponding sets Ψt, even when they
have huge cardinalities. It is true that to have a long period, we need a large
state space S. However, a much more important reason for requesting a large
number of states is to have a larger set Ψt, which can be used to obtain a
better coverage of the unit hypercube [0, 1)t.

More generally, we may also want to measure the uniformity of sets of the
form

ΨI = {(ui1 , . . . , uit) | s0 ∈ S},

where I = {i1, · · · , it} is a fixed set of non-negative integers such that 0 ≤
i1 < · · · < it. As a special case, for I = {0, . . . , t− 1}, we recover Ψt = ΨI

The uniformity of ΨI is typically assessed by measuring the discrepancy be-
tween the empirical distribution of its points and the uniform distribution over
(0, 1)t (Hellekalek and Larcher, 1998; L’Ecuyer and Lemieux, 2002; Niederre-
iter, 1992). Discrepancy measures are equivalent to goodness-of-fit test statis-
tics for the multivariate uniform distribution. They can be defined in many
ways. The choice of a specific definition typically depends on the mathemat-
ical structure of the RNG (different measures are used for different types of
RNGs), the reason being that we must be able to compute these uniformity
measures quickly even when S is very large. This excludes any method that re-
quires explicit generation of the sequence over its entire period. The selected

4

discrepancy measure is usually computed for each set I in some predefined
class J , these values are weighted or normalized by factors that depend on I,
and the worst-case (or average) over J is adopted as a figure of merit used
to rank RNGs. The choice of J and of the weights are arbitrary. Typically, J
would contain sets I such that t and it−i1 are rather small. Concrete examples
of figures of merit are given later on, for specific types of RNGs.

Generating a random s0 uniformly over S can be implemented (approximately)
by using a physical device. However, for most practical simulation applications
and robust RNGs, just picking an arbitrary s0 would suffice.

2.3 Links with Highly-Uniform Point Sets for Quasi-Monte Carlo Integration

Point sets Ψt that are highly uniform in the t-dimensional unit hypercube
are also used for purposes other than imitating randomness. Another major
application is quasi-Monte Carlo (QMC) integration, where the integral of
a function f over [0, 1)t is approximated by the average of f over the full
point set Ψt (see Chapter 12). Usually, the point set Ψt is randomized in a
way that (1) each individual point has the uniform distribution over [0, 1)t,
so the value of f at that (random) point is an unbiased estimator of the
integral, and (2) the high uniformity of the point set as a whole is preserved.
Under certain conditions, this reduces the variance of the average (which is an
unbiased estimator of the integral) by inducing a negative correlation between
the different evaluations of f .

The point sets used for QMC can actually be constructed in pretty much
the same way as RNGs. Their uniformity can also be assessed by the same
criteria. In fact, many of the criteria mentioned near the end of the previous
subsection were originally introduced for QMC point sets. One general class of
construction methods simply consists in selecting a RNG based on a recurrence
over a small set of states S and adopting the corresponding point set Ψt. We
call it a recurrence-based point set. In principle, any of the RNG construction
methods discussed in the forthcoming sections could be used to define the
recurrence. However, since the size of S must be kept small, all the techniques
whose aim is to obtain efficient implementations of long-period generators
become irrelevant. So recurrence-based point sets are usually defined via quite
simple linear recurrences using modular artithmetic. Two primary examples
are the Korobov lattice rules and the recurrences defined via linear feedback
shift registers (see Sections 3 and 4). These methods turn out to be special
cases of the two main classes of QMC point set construction techniques: lattice
rules and digital nets (see Chapter 12).

5

2.4 Statistical Testing

Good RNGs are designed based on mathematical analysis of their properties,
then implemented and submitted to batteries of empirical statistical tests.
These tests try to detect empirical evidence against the null hypothesis H0:
“the ui are realizations of i.i.d. U(0, 1) random variables.” A test can be defined
by any function T that maps a sequence u0, u1, . . . in (0, 1) to a real number
X, and for which a good approximation is available for the distribution of
the random variable X under H0. For the test to be implementable, X must
depend on only a finite (but perhaps random) number of ui’s. Passing many
tests may improve one’s confidence in the RNG, but never guarantees that
the RNG is foolproof for all kinds of simulations.

It is impossible to build a RNG that passes all statistical tests. Consider, for
example, the class of all tests that examine the first (most significant) b bits of
n successive output values, u0, . . . , un−1, and return a binary value X ∈ {0, 1}.
Select α ∈ (0, 1) so that α2nb is an integer and let Tn,b,α be the tests in this
class that return X = 1 for exactly α2nb of the 2nb possible output sequences.
The sequence is said to fail the test when X = 1. The set Tn,b,α is the set of all
statistical tests of (exact) level α. The number of tests in this set is equal to
the number of ways of choosing α2nb distinct objects among 2nb. The chosen
objects are the sequences that fail the test. For any given output sequence, the
number of tests in Tn,b,α that return 1 for this sequence is equal to the number
of ways of choosing the other α2nb − 1 sequences that also fail the test. This
is the number of ways of choosing α2nb − 1 distinct objects among 2nb − 1.
In other words, every output sequence fails exactly the same number of tests!
This result, pointed out by Leeb (1995), should not be surprising. Viewed
from a different angle, it is a restatement of the well-known fact that under
H0, each of the 2nb possible sequences has the same probability of occurring,
so one may argue that none should be considered more random than any other
(Knuth, 1998).

This viewpoint leads to a dead end. For statistical testing of RNG sequences to
be meaningful, all tests should not be considered on equal footing. So which
ones are more important? Any answer is certainly tainted with its share of
arbitrariness. However, for large values of n, the number of tests is huge and
all but a tiny fraction are too complicated even to be implemented. So we
may say that bad RNGs are those that fail simple tests, whereas good RNGs
fail only complicated tests that are hard to find and run. This common-sense
compromise has been generally adopted in one way or another.

Experience shows that RNGs with very long periods, good structure of their
set Ψt, and based on recurrences that are not too simplistic, pass most rea-
sonable tests, whereas RNGs with short periods or bad structures are usually

6

easy to crack by standard statistical tests. For sensitive applications, it is a
good idea, whenever possible, to apply statistical tests designed in close rela-
tion with the random variable of interest (e.g., based on a simplification of the
stochastic model being simulated, and for which the theoretical distribution
can be computed). Further discussion of statistical testing for RNGs is given
in Section 6.

3 Linear Recurrences Modulo m

3.1 The Multiple Recursive Generator

The most widely used class of RNGs is based on the general linear recurrence

xi = (a1xi−1 + · · ·+ akxi−k) mod m, (1)

where m and k are positive integers called the modulus and the order, and
the coefficients a1, . . . , ak are in Zm, interpreted as the set {0, . . . , m− 1} on
which all operations are performed with reduction modulo m. The state at step
i is si = xi = (xi−k+1, . . . , xi)

T (where T means “transposed”). When m is a
prime number, the finite ring Zm is a finite field and it is possible to choose the
coefficients aj so that the period length reaches ρ = mk−1 , the largest possible
value (Knuth, 1998). This maximal period length is achieved if and only if the
characteristic polynomial of the recurrence, P (z) = zk−a1z

k−1−· · ·−ak, is a
primitive polynomial over Zm, i.e., if and only if the smallest positive integer
ν such that (zν mod P (z)) mod m = 1 (interpreted as a constant polynomial)
is ν = mk − 1. Knuth (1998) explains how to verify this for a given P (z). For
k > 1, for P (z) to be a primitive polynomial, it is necessary that ak and at
least another coefficient aj be nonzero. Finding primitive polynomials of this
form is generally easy and they yield the simplified recurrence:

xn = (arxn−r + akxn−k) mod m. (2)

A multiple recursive generator (MRG) uses (1) with a large value of m and
defines the output as ui = xi/m. For k = 1, this is the classical linear congru-
ential generator (LCG), which was the standard in most simulation software
products and textbooks until a few years ago, usually with m = 231−1. These
LCGs have too short a period (ρ is at most m− 1) and too coarse a structure
of their point set Ψt to be used as reliable RNGs (see Section 6). They should
simply be discarded. On the other hand, small LCGs can be used to construct
QMC point sets which are a special case of lattice rules (see Chapter 12).

7

In practice, the output function of MRGs is modified slightly to make sure
that ui never takes the value 0 or 1; e.g., one may define ui = (xi +1)/(m+1),
or ui = xi/(m + 1) if xi > 0 and ui = m/(m + 1) otherwise. To simplify
the theoretical analysis, here we follow the usual convention of assuming that
ui = xi/m (in which case ui does take the value 0 occasionally).

3.2 The Lattice Structure

Let ei denote the ith unit vector in k dimensions, with a 1 in position i and
0’s elsewhere. Denote by xi,0, xi,1, xi,2, . . . the values of x0, x1, x2, . . . produced
by the recurrence (1) when the initial state x0 is ei. An arbitrary initial state
x0 = (z1, . . . , zk)

T can be written as the linear combination z1e1 + · · · + zkek

and the corresponding sequence is a linear combination of the sequences
(xi,0, xi,1, . . .), with reduction of the coordinates modulo m. Conversely, any
such linear combination reduced modulo m is a sequence that can be obtained
from some initial state x0 ∈ S = Zk

m. If we divide everything by m we find
that for the MRG, for each t ≥ 1, Ψt = Lt ∩ [0, 1)t where

Lt =

{
v =

t∑

i=1

zivi | zi ∈ Z
}

,

is a t-dimensional lattice in Rt, with basis

v1 = (1, 0, . . . , 0, x1,k, . . . , x1,t−1)
T/m

...
...

vk = (0, 0, . . . , 1, xk,k, . . . , xk,t−1)
T/m

vk+1 = (0, 0, . . . , 0, 1, . . . , 0)T

...
...

vt = (0, 0, . . . , 0, 0, . . . , 1)T.

For t ≤ k, Lt contains all vectors whose coordinates are multiples of 1/m. For
t > k, it contains a fraction mk−t of those vectors.

This lattice structure implies that the points of Ψt are distributed according to
a regular pattern, in equidistant parallel hyperplanes. Graphical illustrations
of this lattice structure can be found in several papers and books; e.g., Gentle
(2003); Knuth (1998); Law and Kelton (2000), and L’Ecuyer (1998). Define
the dual lattice to Lt as

L∗t = {h ∈ Rt : hTv ∈ Z for all v ∈ Lt}.

8

Each h ∈ L∗t is a normal vector that defines a family of equidistant parallel
hyperplanes, at distance 1/‖h‖2 apart (where ‖ · ‖2 denotes the Euclidean
norm), and these hyperplanes cover all the points of Lt unless h is an integer
multiple of some other vector h′ ∈ L∗t . Therefore, if `t is the Euclidean length
of a shortest non-zero vector h in L∗t , then there is a family of hyperplanes
at distance 1/`t apart that cover all the points of Lt. A small `t means that
there are thick slices of empty space between the hyperplanes and we want
to avoid that. A large `t means a better (more uniform) coverage of the unit
hypercube by the point set Ψt. Computing the value of 1/`t is often called the
spectral test (Fishman, 1996; Knuth, 1998).

The lattice property holds as well for the point sets ΨI formed by values
at arbitrary lags defined by a fixed set of indices I = {i1, · · · , it}. One has
ΨI = LI∩[0, 1)t for some lattice LI , and the largest distance between successive
hyperplanes for a family of hyperplanes that cover all the points of LI is 1/`I ,
where `I is the Euclidean length of a shortest nonzero vector in L∗I , the dual
lattice to LI .

The lattice LI and its dual can be constructed as explained in L’Ecuyer and
Couture (1997). Finding the shortest nonzero vector in a lattice with ba-
sis v1, . . . ,vt can be formulated as an integer programming problem with a
quadratic objective function:

Minimize ‖v‖2
2 =

t∑

i=1

t∑

j=1

ziv
T
i vjzj

subject to z1, . . . , zt integers and not all zero. This problem can be solved by a
branch-and-bound algorithm (Fincke and Pohst, 1985; L’Ecuyer and Couture,
1997; Tezuka, 1995).

For any given dimension t and mk points per unit of volume, there is an
absolute upper bound on the best possible value of `I (Conway and Sloane,
1999; Knuth, 1998; L’Ecuyer, 1999b). Let `∗t (m

k) denote such an upper bound.
To define a figure of merit that takes into account several sets I, in different
numbers of dimensions, it is common practice to divide `I by an upper bound,
to obtain a standardized value between 0 and 1, and then take the worst case
over a given class J of sets I. This gives a figure of merit of the form

MJ = min
I∈J

`I/`
∗
|I|(m

k). (3)

A value of MJ too close to zero means that LI has a bad lattice structure for
at least one of the selected sets I. We want a value as close to 1 as possible.
Computer searches for good MRGs with respect to this criterion have been
reported by L’Ecuyer et al. (1993); L’Ecuyer and Andres (1997); L’Ecuyer

9

(1999a), for example. In most cases, J was simply the sets of the form I =
{1, . . . , t} for t ≤ t1, where t1 was an arbitrary integer ranging from 8 to
45. L’Ecuyer and Lemieux (2000) also consider the small dimensional sets I
with indices not too far apart. They suggest taking J = {{0, 1, . . . , i} : i <
t1} ∪ {{i1, i2} : 0 = i1 < i2 < t2} ∪ · · · ∪ {{i1, . . . , id} : 0 = i1 < . . . < id < td}
for some positive integers d, t1, . . . , td. We could also take a weighted average
instead of the minimum in the definition of MJ .

An important observation is that for t > k, the t-dimensional vector h =
(−ak, . . . ,−a1, 1, 0, . . . , 0)T always belong to L∗t , because for any vector v ∈ Lt,
the first k+1 coordinates of mv must satisfy the recurrence (1), which implies
that (−ak, . . . ,−a1, 1, 0, . . . , 0)v must be an integer. Therefore, one always has
`2
t ≤ ‖h‖2

2 = 1 + a2
1 + · · ·+ a2

k. Likewise, if I contains 0 and all indices j such
that ak−j 6= 0, then `2

I ≤ 1 + a2
1 + · · ·+ a2

k (L’Ecuyer, 1997). This means that
the sum of squares of the coefficients aj must be large if we want to have any
chance that the lattice structure be good.

Constructing MRGs with only two nonzero coefficients and taking these co-
efficients small has been a very popular idea, because this makes the imple-
mentation easier and faster (Deng and Lin, 2000; Knuth, 1998). However, the
MRGs thus obtained have a bad structure. As a worst-case illustration, con-
sider the widely-available additive or subtractive lagged-Fibonacci generator,
based on the recurrence (1) where the two coefficients ar and ak are both
equal to ±1. In this case, whenever I contains {0, k − r, k}, one has `2

I ≤ 3,
so the distance between the hyperplanes is at least 1/

√
3. In particular, for

I = {0, k − r, k}, all the points of ΨI (aside from the zero vector) are con-
tained in only two planes! This type of structure can have a dramatic effect
on certain simulation problems and is a good reason for staying away from
these lagged-Fibonacci generators, regardless of their parameters.

A similar problem occurs for the “fast MRG” proposed by Deng and Lin
(2000), based on the recurrence

xi = (−xi−1 + axi−k) mod m = ((m− 1)xi−1 + axi−k) mod m,

with a2 < m. If a is small, the bound `2
I ≤ 1+a2 implies a bad lattice structure

for I = {0, k− 1, k}. A more detailed analysis by L’Ecuyer and Touzin (2004)
shows that this type of generator cannot have a good lattice structure even if
the condition a2 < m is removed. Another special case proposed by Deng and
Xu (2003) has the form

xi = a(xi−j2 + · · ·+ xi−jt) mod m. (4)

In this case, for I = {0, k − jt−1, . . . , k − j2, k}, the vectors (1, a, . . . , a) and
(a∗, 1, . . . , 1) both belong to the dual lattice L∗I , where a∗ is the multiplicative

10

inverse of a modulo m. So neither a nor a∗ should be small.

To get around this structural problem when I contains certain sets of indices,
Lüscher (1994) and Knuth (1998) recommend skipping some of the output
values to break up the bad vectors. For the lagged-Fibonacci generator, for
example, one can output k successive values produced by the recurrence, then
skip the next d values, output the next k, skip the next d, and so on. A
large value of d (e.g., d = 5k or more) may get rid of the bad structure, but
slows down the generator. See Wegenkittl and Matsumoto (1999) for further
discussion.

We saw that the point set Ψt of a LCG or MRG is the intersection of some
special lattice Lt with the unit hypercube, where Lt contains all corners of the
hypercube. A lattice rule is a QMC integration method defined by selecting
an arbitrary lattice Lt with this property, and using its intersection with the
unit hypercube as a QMC point set. The uniformity of lattice rules can be
measured by the spectral test in the same way as MRGs (see Chapter 12).

3.3 MRG Implementation Techniques

The modulus m is often taken as a large prime number close to the largest
integer directly representable on the computer (e.g., equal or near 231 − 1 for
32-bit computers). Since each xi−j can be as large as m−1, one must be careful
in computing the right side of (1) because the product ajxi−j is typically not
representable as an ordinary integer. Various techniques for computing this
product modulo m are discussed and compared by Fishman (1996); L’Ecuyer
and Côté (1991); L’Ecuyer (1999a), and L’Ecuyer and Simard (1999). Note
that if aj = m−a′j > 0, using aj is equivalent to using the negative coefficient
−a′j, which is sometimes more convenient from the implementation viewpoint.
In what follows, we assume that aj can be either positive or negative.

One approach is to perform the arithmetic modulo m in 64-bit (double preci-
sion) floating-point arithmetic (L’Ecuyer, 1999a). Under this representation,
assuming that the usual IEEE floating-point standard is respected, all positive
integers up to 253 are represented exactly. Then, if each coefficient aj is selected
to satisfy |aj|(m − 1) ≤ 253, the product |aj|xi−j will always be represented
exactly and zj = |aj|xi−j mod m can be computed by the instructions

y = |aj|xi−j; zj = y −mby/mc.

Similarly, if (|a1|+ · · ·+ |ak|)(m− 1) ≤ 253, a1xi−1 + · · ·+ akxi−k will always
be represented exactly.

11

A second technique, called approximate factoring (L’Ecuyer and Côté, 1991),
uses only the integer representation and works under the condition that |aj| =
i or |aj| = bm/ic for some integer i <

√
m. One precomputes qj = bm/|aj|c

and rj = m mod |aj|. Then, zj = |aj|xi−j mod m can be computed by

y = bxi−j/qjc; z = |aj|(xi−j − yqj)− yrj;

if z < 0 then zj = z + m else zj = z.

All quantities involved in these computations are integers between −m and
m, so no overflow can occur if m can be represented as an ordinary integer
(e.g., m < 231 on a 32-bit computer).

The powers-of-two decomposition approach selects coefficients aj that can be
written as a sum or difference of a small number of powers of 2 (L’Ecuyer and
Simard, 1999; L’Ecuyer and Touzin, 2000; Wu, 1997). For example, one may
take aj = ±2q±2r and m = 2e−h for some positive integers q, r, e, and h. To
compute y = 2qx mod m, decompose x = z0 +2e−qz1 (where z0 = x mod 2e−q)
and observe that

y = 2q(z0 + 2e−qz1) mod (2e − h) = (2qz0 + hz1) mod (2e − h).

Suppose now that

h < 2q and h(2q − (h + 1)2−e+q) < m. (5)

Then, 2qz0 < m and hz1 < m, so y can be computed by shifts, masks, addi-
tions, subtractions, and a single multiplication by h. Intermediate results never
exceed 2m−1. Things simplify further if q = 0 or q = 1 or h = 1. For h = 1, y
is obtained simply by swapping the blocks of bits z0 and z1 (Wu, 1997). It has
been pointed out by L’Ecuyer and Simard (1999) that LCGs with parameters
of the form m = 2e − 1 and a = ±2q ± 2r have bad statistical properties
because the recurrence does not “mix the bits” well enough. However, good
and fast MRGs can be obtained via the power-of-two decomposition method,
as explained in L’Ecuyer and Touzin (2000).

Another interesting idea for improving efficiency is to take all nonzero coeffi-
cients aj equal to the same constant a (Deng and Xu, 2003; Marsaglia, 1996).
Then, computing the right side of (1) requires a single multiplication. Deng
and Xu (2003) provide specific parameter sets and concrete implementations
for MRGs of this type, for prime m near 231, and k = 102, 120, and 1511.

One may be tempted to take m equal to a power of two, say m = 2e, because
computing the products and sums modulo m is then much easier: it suffices

12

to keep the e least significant bits of the results. However, taking a power-of-
two modulus has very important disadvantages in terms of the quality of the
RNG (L’Ecuyer, 1990, 1998). In particular, the least significant bits have very
short periodicity and the period length of the recurrence (1) cannot exceed
(2k − 1)2e−1 if k > 1, and 2e−2 if k = 1 and e ≥ 4. The maximal period
length achievable with k = 7 and m = 231, for example, is more than 2180

times smaller than the maximal period length achievable with k = 7 and
m = 231 − 1 (a prime number).

3.4 Combined MRGs and LCGs

The conditions that make MRG implementations run faster (e.g., only two
nonzero coefficients both close to zero) are generally in conflict with those
required for having a good lattice structure and statistical robustness. Com-
bined MRGs provide one solution to this problem. Consider J distinct MRGs
evolving in parallel, based on the recurrences

xj,i = (aj,1xj,i−1 + · · ·+ aj,kxj,i−k) mod mj (6)

where aj,k 6= 0, for j = 1, . . . , J . Let δ1, . . . , δJ be arbitrary integers,

zi = (δ1x1,i + · · ·+ δJxJ,i) mod m1, ui = zi/m1, (7)

and

wi = (δ1x1,i/m1 + · · ·+ δJxJ,i/mJ) mod 1. (8)

This defines two RNGs, with output sequences {ui, i ≥ 0} and {wi, i ≥ 0}.

Suppose that the mj are pairwise relatively prime, that δj and mj have no
common factor for each j, and that each recurrence (6) is purely periodic with
period length ρj. Let m = m1 · · ·mJ and let ρ be the least common multiple
of ρ1, . . . , ρJ . Under these conditions, the following results have been proved
by L’Ecuyer and Tezuka (1991) and L’Ecuyer (1996a): (a) the sequence (8) is
exactly equivalent to the output sequence of a MRG with (composite) modulus
m and coefficients aj that can be computed explicitly as explained in L’Ecuyer
(1996a); (b) the two sequences in (7) and (8) have period length ρ; and (c) if
both sequences have the same initial state, then ui = wi + εi where maxi≥0 |εi|
can be bounded explicitly by a constant ε which is very small when the mj

are close to each other.

Thus, these combined MRGs can be viewed as practical ways of implementing
an MRG with a large m and several large nonzero coefficients. The idea is

13

to cleverly select the components so that: (1) each one is easy to implement
efficiently (e.g., has only two small nonzero coefficients) and (2) the MRG
that corresponds to the combination has a good lattice structure. If each mj

is prime and if each component j has maximal period length ρj = mk
j −

1, then each ρj is even and ρ cannot exceed ρ1 · · · ρJ/2J−1. Tables of good
parameters for combined MRGs of different sizes that reach this upper bound
are given in L’Ecuyer (1999a) and L’Ecuyer and Touzin (2000), together with
C implementations.

3.5 Jumping Ahead

The recurrence (1) can be written in matrix form as

xi = Axi−1 mod m =




0 1 · · · 0
...

. . .
...

0 0 · · · 1
ak ak−1 · · · a1


 xi−1 mod m.

To jump ahead directly from xi to xi+ν , for an arbitrary integer ν, it suffices
to exploit the relationship

xi+ν = Aνxi mod m = (Aν mod m)xi mod m.

If this is to be done several times for the same ν, the matrix Aν mod m can be
precomputed once for all. For a large ν, this can be done in O(log2 ν) matrix
multiplications via a standard divide-and-conquer algorithm (Knuth, 1998):

Aν mod m =

{
(Aν/2 mod m)(Aν/2 mod m) mod m if ν is even;
A(Aν−1 mod m) mod m if ν is odd.

3.6 Linear Recurrences With Carry

The basic idea here is to add a carry to the linear recurrence (1). The general
form of this RNG, called multiply-with-carry (MWC), can be written as

xi = (a1xi−1 + · · ·+ akxi−k + ci−1)d mod b, (9)

ci = b(a0xi + a1xi−1 + · · ·+ akxi−k + ci−1)/bc, (10)

ui =
∞∑

`=1

xi−`+1b
−`, (11)

14

where b is a positive integer (e.g., a power of two), a0, . . . , ak are arbitrary
integers such that a0 is relatively prime to b, and d is the multiplicative inverse
of −a0 modulo b. The state at step i is si = (xi−k+1, . . . , xi, ci)

T. In practice,
the sum in (11) is truncated to a few terms (it could be a single term if
b is large), but the theoretical analysis is much easier for the infinite sum.
These types of recurrences were introduced by Marsaglia and Zaman (1991)
to obtain a large period even when m is a power of two (this may allow a
faster implementation). They were studied and generalized by Couture and
L’Ecuyer (1994, 1997); Goresky and Klapper (2003), and Tezuka et al. (1994).

Define m =
∑k

`=0 a`b
` and let a be the inverse of b in arithmetic modulo m,

assuming for now that m > 0. A major result proved in Couture and L’Ecuyer
(1997), Goresky and Klapper (2003), and Tezuka et al. (1994) is that if the
initial states agree, the output sequence {ui, i ≥ 0} is exactly the same as
that produced by the LCG with modulus m and multiplier a. Therefore, the
MWC can be seen as a clever way of implementing a LCG with very large
modulus. It has been shown by Couture and L’Ecuyer (1997) that the value
of `t for this LCG satisfies `2

t ≤ a2
0 + · · · + a2

k for t ≥ k, which means that
the lattice structure will be bad unless the sum of squares of coefficients aj is
large.

In the original proposals of Marsaglia and Zaman (1991), called add-with-
carry and subtract-with-borrow, one has −a0 = ±ar = ±ak = 1 for some
r < k and the other coefficients aj are zero, so `2

t ≤ 3 for t ≥ k and the
generator has essentially the same structural defect as the additive lagged-
Fibonacci generator. In the version studied by Couture and L’Ecuyer (1997),
it was assumed that −a0 = d = 1. Then, the period length cannot exceed
(m − 1)/2 if b is a power of two. A concrete implementation was given in
that paper. Goresky and Klapper (2003) pointed out that the maximal period
length of ρ = m − 1 can be achieved by allowing a more general a0. They
provided specific parameters that give a maximal period for b ranging from
221 to 235 and ρ up to approximately 22521.

3.7 Computer Searches for Good Parameters and An Example

When searching for specific instances of MRGs with good parameters, one
would usually impose constraints on the parameters k, m, and aj’s (for each
component in the case of a combined generator). These constraints are based
on implementation efficiency considerations. One of the constraints might be
that the MRG (or each component) has maximal period length. The con-
straints determine a set of feasible solutions in parameter space. A figure of
merit measuring the uniformity of the MRG point set, such as MJ in (3) for
some set J , is also selected. Then, an “intelligent” random search algorithm

15

(that usually employs several heuristics) is used to find a feasible solution with
the largest possible figure of merit. Such computer searches can take days of
CPU time, because checking for maximal period and computing the figure of
merit is generally very demanding computationally. Nevertheless, unless the
constraints are too restrictive, it is typically easy to find good parameter sets
by random search, because there is usually a large number of nearly optimal
solutions.

As a concrete illustration, consider the combined generator MRG32k3a proposed
in L’Ecuyer (1999a). It has J = 2 components of order k = 3 defined as in
(6), with m1 = 232 − 209, a11 = 0, a12 = 1403580, a13 = −810728, m2 =
232 − 22853, a21 = 527612, a22 = 0, a23 = −1370589. The combination is
defined by zi = (x1,i − x2,i) mod m1 and the MRG that corresponds to this
combination has order k = 3, modulus m = m1m2 = 18446645023178547541
and multipliers a1 = 18169668471252892557, a2 = 3186860506199273833, and
a3 = 8738613264398222622. Its period length is (m3

1 − 1)(m3
2 − 1)/2 ≈ 2191.

This generator was found by a computer search with a computing budget of a
few days of CPU time, as follows. The values of J , k, m1, and m2 were fixed.
These values of m1 and m2 have special properties explained in L’Ecuyer
(1999a), which make the maximal period length conditions easier to verify.
The constraints a11 = a22 = 0 and (|aj,0| + |aj,1| + |aj,2|)(mj − 1) < 253 were
also imposed to make sure that the recurrence of each component was easily
implementable in floating-point arithmetic. The figure of merit (to maximize)
was MJ with J = {{0, . . . , i} : i < 32} (i.e., the worst-case standardized
spectral test value in up to 32 dimensions). The retained generator (given
above) has MJ = 0.6336. We later verified that MJ = 0.6225 if we go up to
45 dimensions instead of 32. Computer codes that implement this particular
generator in several languages (such as C, C++, Java) are available from the
author’s web page. It is also implemented in many commercial simulation
packages such as Arena, Automod, Witness, etc.

4 Generators Based on Recurrences Modulo 2

4.1 A General Framework

It is certainly a good idea to exploit the fact that computers work in binary
arithmetic by designing RNGs defined directly in terms of bit strings and se-
quences. This is the idea underlying the following framework. Let F2 denote
the finite field with two elements, 0 and 1, in which the operations are equiv-
alent to addition and multiplication modulo 2. Consider the RNG defined by
the following matrix linear recurrence over F2:

16

xi =Axi−1, (12)

yi =Bxi, (13)

ui =
w∑

`=1

yi,`−12
−` = .yi,0 yi,1 yi,2 · · · , (14)

where xi = (xi,0, . . . , xi,k−1)
T ∈ Fk

2 is the k-bit state vector at step i, yi =
(yi,0, . . . , yi,w−1)

T ∈ Fw
2 is the w-bit output vector at step i, k and w are

positive integers, A is a k × k transition matrix with elements in F2, B is a
w× k output transformation matrix with elements in F2, and ui ∈ [0, 1) is the
output at step i. All operations in (12) and (13) are performed in F2.

Let

P (z) = det(A− zI) = zk − α1z
k−1 − · · · − αk−1z − αk

be the characteristic polynomial of A, where I is the identity matrix and each
αj is in F2. For any sequence of xi’s that satisfies (12), for each j, the sequence
{xi,j, i ≥ 0} obeys the linear recurrence

xi,j = (α1xi−1,j + · · ·+ αkxi−k,j) mod 2 (15)

(L’Ecuyer, 1994; Niederreiter, 1992). The sequences {yi,j, i ≥ 0}, for 0 ≤ j <
w, also obey the same recurrence (although they may also follow recurrences of
shorter order in certain situations, depending on B). We assume that αk = 1,
so that the recurrence (15) has order k and is purely periodic. Its period length
is 2k − 1 (i.e., maximal) if and only if P (z) is a primitive polynomial over F2

(Knuth, 1998; Niederreiter, 1992).

To jump ahead directly from xi to xi+ν with this type of generator, it suffices to
precompute the matrix Aν (in F2) and then multiply xi by this matrix. How-
ever, this multiplication could becomes unacceptably time consuming when k
exceeds a few hundreds.

Several popular classes of RNGs fit this framework as special cases, by appro-
priate choices of the matrices A and B. This includes the Tausworthe or LFSR,
polynomial LCG, GFSR, twisted GFSR, Mersenne twister, multiple recursive
matrix generators, and combinations of these (L’Ecuyer and Panneton, 2002;
Matsumoto and Nishimura, 1998; Niederreiter, 1995; Tezuka, 1995). We detail
some of them after discussing how to measure their uniformity. The point sets
Ψt produced by these RNGs generally contain 2k points and turn out to be
instances of digital nets, which form a large class of construction methods for
QMC point sets (Chapter 12). This means that any of these RNG implemen-
tation methods can be employed to construct recurrence-based QMC point
sets, by taking a small value of k.

17

4.2 Measures of Equidistribution

The uniformity of point sets ΨI produced by RNGs based on linear recurrences
over F2 is usually assessed by measures of equidistribution defined as follows
(L’Ecuyer, 1996b; L’Ecuyer and Panneton, 2002; L’Ecuyer, 2004a; Tezuka,
1995). For an arbitrary vector q = (q1, . . . , qt) of non-negative integers, parti-
tion the unit hypercube [0, 1)t into 2qj intervals of the same length along axis
j, for each j. This determines a partition of [0, 1)t into 2q1+···+qt rectangular
boxes of the same size and shape. We call this partition the q-equidissection
of the unit hypercube.

For some index set I = {i1, . . . , it}, if ΨI has 2k points, we say that ΨI is
q-equidistributed in base 2 if there are exactly 2q points in each box of the
q-equidissection, where k − q = q1 + · · · + qt. This means that among the 2k

points (xj1 , . . . , xjt) of ΨI , if we consider the first q1 bits of xj1 , the first q2

bits of xj2 , . . . , and the first qt bits of xjt , each of the 2k−q possibilities occurs
exactly the same number of times. This is possible only if q ≤ k.

The q-equidistribution of ΨI depends only on the first qj bits of xij for 1 ≤
j ≤ t, for the points (xi1 , . . . , xit) that belong to ΨI . The vector of these
q1 + · · · + qt = k − q bits can always be expressed as a linear function of the
k bits of the initial state x0, i.e., as Mqx0 for some (k− q)× k binary matrix
Mq, and it is easily seen that ΨI is q-equidistributed if and only if Mq has full
rank k− q. This provides a simple way of checking equidistribution (Fushimi,
1983; L’Ecuyer, 1996b; Tezuka, 1995).

If ΨI is (`, . . . , `)-equidistributed for some ` ≥ 1, it is called t-distributed with
` bits of accuracy, or (t, `)-equidistributed (L’Ecuyer, 1996b). The largest value
of ` for which this holds is called the resolution of the set ΨI and is denoted
by `I . This value has the upper bound `∗t = min(bk/tc, w). The resolution gap
of ΨI is defined as δI = `∗t − `I . In the same vein as for MRGs, a worst-case
figure of merit can be defined here by

∆J = max
I∈J

δI ,

where J is a preselected class of index sets I.

The point set ΨI is a (q, k, t)-net in base 2, often called a (t,m, s)-net in the
context of QMC methods, where a different notation is used (Niederreiter,
1992), if it is (q1, . . . , qt)-equidistributed in base 2 for all non-negative integers
q1, . . . , qt summing to k − q. We call the smallest such q the q-value of ΨI .
The smaller it is, the better. One candidate for a figure of merit could be
the q-value of Ψt for some large t. This measure is frequently used for QMC
point sets, for which k is small (Hellekalek and Larcher, 1998; Niederreiter,

18

1992). However, when k − q is large, i.e., for long-period generators having
good equidistribution, it is extremely difficult to compute because there are
too many vectors q for which equidistribution needs to be checked. In practice,
for RNGs, one must settle for figures of merit that involve a smaller number
of equidissections.

If δI = 0 for all sets I of the form I = {0, . . . , t−1}, for 1 ≤ t ≤ k, the RNG is
said to be maximally equidistributed or asymptotically random for the word size
w (L’Ecuyer, 1996b; Tezuka, 1995; Tootill et al., 1973). This property ensures
perfect equidistribution of all sets Ψt, for any partition of the unit hypercube
into subcubes of equal sizes, as long as ` ≤ w and the number of subcubes does
not exceed the number of points in Ψt. Large-period maximally equidistributed
generators, together with their implementations, can be found in L’Ecuyer
(1999c), L’Ecuyer and Panneton (2002), and Panneton and L’Ecuyer (2004b),
for example.

4.3 Lattice Structure in Spaces of Polynomials and Formal Series

The RNGs defined via (12)–(14) do not have a lattice structure in the real
space like MRGs, but they do have a lattice structure in a space of formal se-
ries, as explained in Couture and L’Ecuyer (2000); L’Ecuyer (2004a); Lemieux
and L’Ecuyer (2003), and Tezuka (1995). The real space R is replaced by the
space L2 of formal power series with coefficients in F2, of the form

∑∞
`=ω x`z

−`

for some integer ω. In that setting, the lattices have the form

Lt =



v(z) =

t∑

j=1

hj(z)vj(z) such that each hj(z) ∈ F2[z]



 ,

where F2[z] is the ring of polynomials with coefficients in F2, and the basis
vectors vj(z) are in Lt

2. The elements of the dual lattice L∗t are the vectors
h(z) in Lt

2 whose scalar product with any vector of Lt is a polynomial in F2[z].

In one setting that applies for instance to LFSR generators, we define the
mapping ϕ : L2 → R by

ϕ

(∞∑

`=ω

x`z
−`

)
=

∞∑

`=ω

x`2
−`

and it turns out that the point set Ψt produced by the generator is equal to
ϕ(Lt) ∩ [0, 1)t for some lattice Lt. The general case is covered by defining the
lattice in a different way (adopting the resolutionwise lattice) as explained
in Couture and L’Ecuyer (2000). Moreover, the equidistribution properties

19

examined in Section 4.2 can be expressed in terms of lengths of shortest vectors
in the dual lattice, with appropriate definitions of the length (or norm). Much
of the theory and algorithms developed for lattices in the real space can be
adapted to these new types of lattices (Couture and L’Ecuyer, 2000; L’Ecuyer,
2004a; Lemieux and L’Ecuyer, 2003; Panneton, 2004; Tezuka, 1995).

4.4 The LFSR Generator

Linear feedback shift register (LFSR) (or Tausworthe) generators (L’Ecuyer,
1996b; Tausworthe, 1965; Tezuka, 1995) are a special case of (12)–(14) with
A = As

0 (in F2) for some positive integer s, where

A0 =




1
. . .

1

ak ak−1 . . . a1




, (16)

a1, . . . , ak are in F2, ak = 1, and all blank entries in the matrix are zeros. We
take w ≤ k and the matrix B contains the first w lines of the k × k identity
matrix. The RNG thus obtained can be defined equivalently by

xi = a1xi−1 + · · ·+ akxi−k mod 2, (17)

ui =
w∑

`=1

xis+`−12
−`, (18)

where xis+`−1 = xi,`−1. Here, P (z) is not the characteristic polynomial of the
recurrence (17), but the characteristic polynomial of the matrix As

0. The choice
of s has an important impact on the quality of the generator. A common special
case is when a single aj is nonzero in addition to ak; then, P (z) is a trinomial
and we say that we have a trinomial-based LFSR generator. These generators
are known to have important statistical deficiencies (Matsumoto and Kurita,
1996; Tezuka, 1995) but they can be used as components of combined RNGs
(see Section 4.6).

LFSR generators can be expressed as LCGs in a space of polynomials (L’Ecuyer,
1994; Tezuka and L’Ecuyer, 1991; Tezuka, 1995). With this representation,
their lattice structure as discussed in Section 4.3 follows immediately.

20

4.5 The GFSR and Twisted GFSR

Here we take A as the pq × pq matrix

A =




Ip S

Ip

Ip

. . .

Ip




for some positive integers p and q, where Ip is the p× p identity matrix, S is a
p× p matrix, and the matrix Ip on the first line is in columns (r − 1)p + 1 to
rp for some positive integer r. Often, w = p and B contains the first w lines of
the pq×pq identity matrix. If S is also the identity matrix, the generator thus
obtained is the trinomial-based generalized feedback shift register (GFSR), for
which xi is obtained by a bitwise exclusive-or of xi−r and xi−q. This gives a
very fast RNG, but its period length cannot exceed 2q − 1, because each bit
of xi follows the same binary recurrence of order k = q, with characteristic
polynomial P (z) = zq − zq−r − 1.

More generally, we can define xi as the bitwise exclusive-or of xi−r1 ,xi−r2 ,
. . . ,xi−rd

where rd = q, so that each bit of xi follows a recurrence in F2 whose
characteristic polynomial P (z) has d + 1 nonzero terms. However, the period
length is still bounded by 2q−1, whereas considering the pq-bit state, we should
rather expect a period length close to 2pq. This was the main motivation for
the twisted GFSR (TGFSR) generator. In the original version introduced by
Matsumoto and Kurita (1992), w = p and the matrix S is defined as the
transpose of A0 in (16), with k replaced by p. The characteristic polynomial
of A is then P (z) = PS(zq + zm), where PS(z) = zp − apz

p−1 − · · · − a1 is
the characteristic polynomial of S, and its degree is k = pq. If the parameters
are selected so that P (z) is primitive over F2, then the TGFSR has period
length 2k− 1. Tezuka (1994) pointed out important weaknesses of the original
TGFSR and Matsumoto and Kurita (1994) proposed an improved version
that uses a well-chosen matrix B whose lines differ from those of the identity.
The operations implemented by this matrix are called tempering and their
purpose is to improve the uniformity of the points produced by the RNG.
The Mersenne twister (Matsumoto and Nishimura, 1998; Nishimura, 2000) is
a variant of the TGFSR where k is slightly less than pq and can be a prime
number. A specific instance proposed by Matsumoto and Nishimura (1998) is
fast, robust, has the huge period length of 219937 − 1, and has become quite
popular.

21

In the multiple recursive matrix method of Niederreiter (1995), the first row
of p × p matrices in A contains arbitrary matrices. However, a fast imple-
mentation is possible only when these matrices are sparse and have a special
structure.

4.6 Combined Linear Generators Over F2

Many of the best generators based on linear recurrences over F2 are con-
structed by combining the output of two or more RNGs having a simple struc-
ture. The idea is the same as for MRGs: select simple components that can
run fast but such that their combination has a more complicated structure
and highly-uniform sets ΨI for the sets I considered important.

Consider J distinct recurrences of the form (12)–(13), where the jth recurrence
has parameters (k, w,A,B) = (kj, w,Aj,Bj) and state xj,i at step i, for j =
1, . . . , J . The output of the combined generator at step i is defined by

yi =B1x1,i ⊕ · · · ⊕BJxJ,i,

ui =
w∑

`=1

yi,`−12
−`,

where ⊕ denotes the bitwise exclusive-or operation. One can show (Tezuka,
1995) that the period length ρ of this combined generator is the least common
multiple of the period lengths ρj of its components. Moreover, this combined
generator is equivalent to the generator (12)–(14) with k = k1 + · · ·+ kJ , A =
diag(A1, . . . ,AJ), and B = (B1, . . . ,BJ).

With this method, by selecting the parameters carefully, the combination of
LFSR generators with characteristic polynomials P1(z), . . . , PJ(z) gives yet
another LFSR with characteristic polynomial P (z) = P1(z) · · ·PJ(z) and pe-
riod length equal to the product of the period lengths of the components
(L’Ecuyer, 1996b; Tezuka and L’Ecuyer, 1991; Tezuka, 1995; Wang and Com-
pagner, 1993). Tables and fast implementations of maximally equidistributed
combined LFSR generators are given in L’Ecuyer (1999c).

The TGFSR and Mersenne twister generators proposed in Matsumoto and
Kurita (1994), Matsumoto and Nishimura (1998), and Nishimura (2000) can-
not be maximally equidistributed. L’Ecuyer and Panneton (2002), on the other
hand, have constructed concrete examples of maximally equidistributed com-
bined TGFSR generators, with period lengths near 2466 and 21250. These gen-
erators have the additional property that the resolution gaps δI are zero for a
class of small sets I with indices not too far apart.

22

4.7 An Example

Consider the combined generator with J = 4 LFSR components whose recur-
rences (17) have the following characteristic polynomials: P1(z) = z31−z6−1,
P2(z) = z29 − z2 − 1, P3(z) = z28 − z13 − 1, and P4(z) = z25 − z3 − 1, and
whose values of s in (18) are s1 = 18, s2 = 2, s3 = 7, and s4 = 13, respectively.
The corresponding combined LFSR generator has a characteristic polynomial
P (z) = P1(z)P2(z)P3(z)P4(z) of degree 113, with 58 coefficients equal to 0 and
55 equal to 1, and its period length is (231−1)(229−1)(228−1)(225−1) ≈ 2113.
This combined generator is also maximally equidistributed (as defined in Sec-
tion 4.2). An implementation in C is given in L’Ecuyer (1999c), under the
name of lfsr113. This generator is faster than MRG32k3a: it needs approxi-
mately 30 seconds to produce 109 (one billion) uniform random numbers on a
2.8 GHz athlon-based computer, compared to approximately 100 seconds for
MRG32k3a.

Its parameters were selected as follows. The degrees of the characteristic poly-
nomials Pj(z) were fixed at k1 = 31, k2 = 29, k3 = 28, and k4 = 25,
and these polynomials were required to be primitive trinomials of the form
Pj(z) = zkj − zqj − 1 with 0 < 2qj < kj and with step size sj satisfying
0 < sj ≤ kj − qj < kj ≤ w = 32 and gcd(sj, 2

kj − 1) = 1. Components that
satisfy these conditions have maximal period length 2kj − 1 and can be imple-
mented efficiently as described in L’Ecuyer (1996b). These values of kj were
selected so that the period lengths 2kj − 1 of the components have no com-
mon factor, which implies that the period length of the combined generator is
their product. An exhaustive search was performed to find all parameter val-
ues that satisfy these conditions; there are approximtely 3.28 million. Among
them, there are 4744 for which the combined generator is maximally equidis-
tributed and also collision-free (which means that when the number of points
does not exceed the number of boxes in the equidissection, there is never more
than one point in a box). The lfsr113 generator given above is one of them.

5 Nonlinear RNGs

The linear RNGs discussed so far have point sets Ψt with a very regular
structure. To get away from this regularity, one can either use a nonlinear
transition function f , or keep the transition function linear but use a nonlin-
ear output function g. Several types of nonlinear RNGs have been proposed
over the years; see, e.g., Blum et al. (1986); Eichenauer-Herrmann (1995);
Eichenauer-Herrmann et al. (1998); Hellekalek and Wegenkittl (2003); Knuth
(1998); L’Ecuyer (1994); L’Ecuyer and Granger-Piché (2003); Niederreiter and
Shparlinski (2002). Their nonlinear mappings are defined in various ways by

23

multiplicative inversion in a finite field, quadratic and cubic functions in the
finite ring of integers modulo m, and other more complicated transforma-
tions. Many of them have output sequences that tend to behave much like
i.i.d. U(0, 1) sequences even over their entire period length, in contrast with
“good” linear RNGs, whose point sets Ψt are much more regular than typical
random points. In most cases, on the other hand, their statistical properties
can be analyzed only empirically or via asymptotic theoretical results. They
are generally slower than the linear ones.

Various ways of combining RNGs also give rise to nonlinear RNGs whose out-
put sequence shows less regularity; see, e.g., Fishman (1996); Gentle (2003);
Knuth (1998); Law and Kelton (2000); L’Ecuyer (1994); Marsaglia (1985),
and other references given there. This includes shuffling the output sequence
of one generator using another one (or the same one), alternating between sev-
eral streams, or just adding them in different ways. It is important to under-
stand that to assess the quality of the combined generator, one must analyze
the mathematical structure of the combined generator itself rather than the
structure of its components (L’Ecuyer, 1996b,a; L’Ecuyer and Granger-Piché,
2003; Tezuka, 1995). Otherwise, these combination techniques are heuristics
which often improve the uniformity (empirically), but can also make it worse.

6 Empirical Statistical Tests

A statistical test for RNGs can be defined by any random variable X whose
distribution under H0 can be well approximated. When X takes the value x,
we define the right and left p-values of the test by

pR = P [X ≥ x | H0] and pL = P [X ≤ x | H0].

When testing RNGs, there is no need to prespecify the level of the test. If
either of the right or left p-value is extremely close to zero, e.g., less than
10−15, then it is clear that H0 (and the RNG) must be rejected. When a
suspicious p-value is obtained, e.g., near 10−2 or 10−3, one can just repeat this
particular test a few more times, perhaps with a larger sample size. Almost
always, things will then clarify.

Statistical tests are defined by partitioning the possible realizations of (u0, . . . ,
uτ−1) into a finite number of subsets (where the integer τ can be random or
deterministic), computing the probability pj of each subset j under H0, and
measuring the discrepancy between these probabilities and empirical frequen-
cies from realizations simulated by the RNG.

24

A simple and natural way of doing that is to take τ = t (a constant) and cut
the interval [0, 1) into d equal segments for some positive integer d, to partition
the hypercube [0, 1)t into k = dt subcubes of volume 1/k. We then generate
n points ui = (uti, . . . , uti+t−1) ∈ [0, 1)t, for i = 0, . . . , n − 1, and count the
number Nj of points falling in subcube j, for j = 0, . . . , k− 1. Any measure of
distance (or divergence) between the numbers Nj and their expectations n/k
can define a test statistic X. The tests thus defined are generally called serial
tests of uniformity (Knuth, 1998; L’Ecuyer et al., 2002b). They can be sparse
(if n/k ¿ 1), or dense (if n/k À 1), or something in between. There are also
overlapping versions, where the points are defined by ui = (ui, . . . , ui+t−1) for
i = 0, . . . , n− 1.

For further details, specific instances of serial tests, and other empirical tests
commonly applied to RNGs (based, e.g., on close pairs of points among in the
space, random walks on the real line or over the integers, the linear complexity
of a binary output sequence, the simulation of dice or poker hands, etc.), we
refer the reader to (Knuth, 1998; L’Ecuyer and Hellekalek, 1998; L’Ecuyer and
Simard, 2001; L’Ecuyer, 2001; L’Ecuyer et al., 2002b; L’Ecuyer and Simard,
2002; Marsaglia, 1985; Rukhin et al., 2001; Vattulainen et al., 1995).

When testing RNGs, there is no specific alternative hypothesis toH0. Different
tests are needed to detect different types of departures fromH0. Test suites for
RNGs include a selection of tests, with predetermined parameters and sample
sizes. The best known are DIEHARD (Marsaglia, 1996) and the NIST test
suite (Rukhin et al., 2001). The library TestU01 (L’Ecuyer and Simard, 2002)
implements a large selection of tests in the C language and provides a variety
of test suites, some designed for i.i.d. U(0, 1) output sequences and others for
strings of bits.

7 Conclusion, Future Work, and Open Issues

The ultimate goal of RNG design is to obtain a fast algorithm or device whose
output cannot be distinguished in any way from a realization of an infinite
sequence of i.i.d. uniform random variables. This requirement is equivalent to
passing all possible statistical tests of uniformity and independence. It seems
that this can only be achieved through a physical device based on quantum
physics. Using this type of device for simulation has several drawbacks, one of
them being that the sequence cannot be reproduced without storing it.

RNGs based on linear recurrences and output transformations, on the other
hand, are known to fail statistical tests of linear complexity (for obvious rea-
sons), even when their period length is huge. This seems to have no impact
for the great majority of relevant discrete-event simulation applications, but

25

it would nevertheless be good to have efficient alternative nonlinear RNGs
that also pass these linear complexity tests. Work in that direction has been
initiated in L’Ecuyer and Granger-Piché (2003), for instance. In fact, what is
needed is a collection of RNGs having different types of structures, different
sizes of their state space, for both 32-bit and 64-bit computers, perhaps some
faster and some slower but more robust, and where each RNG can provide
multiple streams of random numbers as in L’Ecuyer et al. (2002a) (see also
Chapter 7). It should also be easy and simple to replace the pseudorandom
numbers by (possibly randomized) quasirandom numbers in a simulation.

Work is currently in progress to develop generators with huge period lengths
(e.g., near 220000 or more) as well as faster generators based on linear re-
currences modulo 2 and good equidistribution properties. The huge-period
generators are not necessarily the way to go, in my opinion, because they
require a large amount of memory and managing multiple streams involves
much more overhead than for the smaller generators. Their huge periods may
also hide rather long bad subsequences, due to the fact that the transition
function typically modifies only a small part of their state at each step. For
example Panneton and L’Ecuyer (2004a) have shown that if the Mersenne
twister proposed by Matsumoto and Nishimura (1998) is initialized to a state
that contains almost only zeros, then the fraction of zeros in the state tends
to remain very large for several thousand steps. These issues require further
study.

Poor (or plain bad) generators can still be found in popular commercial statis-
tical and simulation software, spreadsheets, etc. Do not trust the default RNGs
available in these products: many of them are quite unreliable (L’Ecuyer,
2001). Vendors should be pressured to change this state of affairs. Each year,
several new RNGs are proposed in the scientific literature or over the Inter-
net. Many of them are based on very little theoretical analysis. An important
task of RNG experts is to study these proposals carefully to shed light on
their potential weaknesses. This is an area where negative results are often as
important to publish as the positive ones.

Acknowledgements

This text is an adaptation of a chapter entitled “Random Number Gener-
ation,” written for the Handbook of Computational Statistics, published by
Springer-Verlag (L’Ecuyer, 2004b). This work has been supported by the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC) Grant
No. ODGP0110050, NATEQ-Québec grant No. 02ER3218, and a Canada Re-
search Chair to the author. François Panneton, Richard Simard, Shane Hen-
derson, Barry Nelson, and Christiane Lemieux made helpful comments and

26

corrections on an earlier draft.

References

Blum, L., Blum, M., Schub, M., 1986. A simple unpredictable pseudo-random
number generator. SIAM Journal on Computing 15 (2), 364–383.

Conway, J. H., Sloane, N. J. A., 1999. Sphere Packings, Lattices and
Groups, 3rd Edition. Grundlehren der Mathematischen Wissenschaften 290.
Springer-Verlag, New York.

Couture, R., L’Ecuyer, P., 1994. On the lattice structure of certain linear
congruential sequences related to AWC/SWB generators. Mathematics of
Computation 62 (206), 798–808.

Couture, R., L’Ecuyer, P., 1997. Distribution properties of multiply-with-carry
random number generators. Mathematics of Computation 66 (218), 591–
607.

Couture, R., L’Ecuyer, P., 2000. Lattice computations for random numbers.
Mathematics of Computation 69 (230), 757–765.

Deng, L.-Y., Lin, D. K. J., 2000. Random number generation for the new
century. The American Statistician 54 (2), 145–150.

Deng, L.-Y., Xu, H., 2003. A system of high-dimensional, efficient, long-cycle
and portable uniform random number generators. ACM Transactions on
Modeling and Computer Simulation 13 (4), 299–309.

Eichenauer-Herrmann, J., 1995. Pseudorandom number generation by nonlin-
ear methods. International Statistical Reviews 63, 247–255.

Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S., 1998. A survey of
quadratic and inversive congruential pseudorandom numbers. In: Hellekalek,
P., Larcher, G., Niederreiter, H., Zinterhof, P. (Eds.), Monte Carlo and
Quasi-Monte Carlo Methods 1996. Vol. 127 of Lecture Notes in Statistics.
Springer, New York, pp. 66–97.

Fincke, U., Pohst, M., 1985. Improved methods for calculating vectors of short
length in a lattice, including a complexity analysis. Mathematics of Com-
putation 44, 463–471.

Fishman, G. S., 1996. Monte Carlo: Concepts, Algorithms, and Applications.
Springer Series in Operations Research. Springer-Verlag, New York.

Fushimi, M., 1983. Increasing the orders of equidistribution of the leading bits
of the Tausworthe sequence. Information Processing Letters 16, 189–192.

Gentle, J. E., 2003. Random Number Generation and Monte Carlo Methods,
2nd Edition. Springer, New York.

Goresky, M., Klapper, A., 2003. Efficient multiply-with-carry random num-
ber generators with maximal period. ACM Transactions on Modeling and
Computer Simulation 13 (4), 310–321.

Hellekalek, P., Larcher, G. (Eds.), 1998. Random and Quasi-Random Point
Sets. Vol. 138 of Lecture Notes in Statistics. Springer, New York.

27

Hellekalek, P., Wegenkittl, S., 2003. Empirical evidence concerning AES. ACM
Transactions on Modeling and Computer Simulation 13 (4), 322–333.

Knuth, D. E., 1998. The Art of Computer Programming, Volume 2: Seminu-
merical Algorithms, 3rd Edition. Addison-Wesley, Reading, Mass.

Law, A. M., Kelton, W. D., 2000. Simulation Modeling and Analysis, 3rd
Edition. McGraw-Hill, New York.

L’Ecuyer, P., 1990. Random numbers for simulation. Communications of the
ACM 33 (10), 85–97.

L’Ecuyer, P., 1994. Uniform random number generation. Annals of Operations
Research 53, 77–120.

L’Ecuyer, P., 1996a. Combined multiple recursive random number generators.
Operations Research 44 (5), 816–822.

L’Ecuyer, P., 1996b. Maximally equidistributed combined Tausworthe gener-
ators. Mathematics of Computation 65 (213), 203–213.

L’Ecuyer, P., 1997. Bad lattice structures for vectors of non-successive values
produced by some linear recurrences. INFORMS Journal on Computing
9 (1), 57–60.

L’Ecuyer, P., 1998. Random number generation. In: Banks, J. (Ed.), Handbook
of Simulation. Wiley, pp. 93–137, chapter 4.

L’Ecuyer, P., 1999a. Good parameters and implementations for combined mul-
tiple recursive random number generators. Operations Research 47 (1), 159–
164.

L’Ecuyer, P., 1999b. Tables of linear congruential generators of different sizes
and good lattice structure. Mathematics of Computation 68 (225), 249–260.

L’Ecuyer, P., 1999c. Tables of maximally equidistributed combined LFSR gen-
erators. Mathematics of Computation 68 (225), 261–269.

L’Ecuyer, P., 2001. Software for uniform random number generation: Distin-
guishing the good and the bad. In: Proceedings of the 2001 Winter Simula-
tion Conference. IEEE Press, Pistacaway, NJ, pp. 95–105.

L’Ecuyer, P., 2004a. Polynomial integration lattices. In: Niederreiter, H. (Ed.),
Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer-Verlag, Berlin,
pp. 73–98.

L’Ecuyer, P., 2004b. Random number generation. In: Gentle, J. E., Haer-
dle, W., Mori, Y. (Eds.), Handbook of Computational Statistics. Springer-
Verlag, Berlin, pp. 35–70, chapter II.2.

L’Ecuyer, P., Andres, T. H., 1997. A random number generator based on the
combination of four LCGs. Mathematics and Computers in Simulation 44,
99–107.

L’Ecuyer, P., Blouin, F., Couture, R., 1993. A search for good multiple re-
cursive random number generators. ACM Transactions on Modeling and
Computer Simulation 3 (2), 87–98.

L’Ecuyer, P., Côté, S., 1991. Implementing a random number package with
splitting facilities. ACM Transactions on Mathematical Software 17 (1), 98–
111.

L’Ecuyer, P., Couture, R., 1997. An implementation of the lattice and spectral

28

tests for multiple recursive linear random number generators. INFORMS
Journal on Computing 9 (2), 206–217.

L’Ecuyer, P., Granger-Piché, J., 2003. Combined generators with components
from different families. Mathematics and Computers in Simulation 62, 395–
404.

L’Ecuyer, P., Hellekalek, P., 1998. Random number generators: Selection cri-
teria and testing. In: Hellekalek, P., Larcher, G. (Eds.), Random and Quasi-
Random Point Sets. Vol. 138 of Lecture Notes in Statistics. Springer, New
York, pp. 223–265.

L’Ecuyer, P., Lemieux, C., 2000. Variance reduction via lattice rules. Manage-
ment Science 46 (9), 1214–1235.

L’Ecuyer, P., Lemieux, C., 2002. Recent advances in randomized quasi-Monte
Carlo methods. In: Dror, M., L’Ecuyer, P., Szidarovszki, F. (Eds.), Modeling
Uncertainty: An Examination of Stochastic Theory, Methods, and Applica-
tions. Kluwer Academic Publishers, Boston, pp. 419–474.

L’Ecuyer, P., Panneton, F., 2002. Construction of equidistributed generators
based on linear recurrences modulo 2. In: Fang, K.-T., Hickernell, F. J.,
Niederreiter, H. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods 2000.
Springer-Verlag, Berlin, pp. 318–330.

L’Ecuyer, P., Simard, R., 1999. Beware of linear congruential generators with
multipliers of the form a = ±2q ± 2r. ACM Transactions on Mathematical
Software 25 (3), 367–374.

L’Ecuyer, P., Simard, R., 2001. On the performance of birthday spacings tests
for certain families of random number generators. Mathematics and Com-
puters in Simulation 55 (1–3), 131–137.

L’Ecuyer, P., Simard, R., 2002. TestU01: A Software Library in ANSI C for
Empirical Testing of Random Number Generators. Software user’s guide.
Available at http://www.iro.umontreal.ca/∼lecuyer.

L’Ecuyer, P., Simard, R., Chen, E. J., Kelton, W. D., 2002a. An object-
oriented random-number package with many long streams and substreams.
Operations Research 50 (6), 1073–1075.

L’Ecuyer, P., Simard, R., Wegenkittl, S., 2002b. Sparse serial tests of unifor-
mity for random number generators. SIAM Journal on Scientific Computing
24 (2), 652–668.

L’Ecuyer, P., Tezuka, S., 1991. Structural properties for two classes of com-
bined random number generators. Mathematics of Computation 57 (196),
735–746.

L’Ecuyer, P., Touzin, R., 2000. Fast combined multiple recursive generators
with multipliers of the form a = ±2q ± 2r. In: Joines, J. A., Barton, R. R.,
Kang, K., Fishwick, P. A. (Eds.), Proceedings of the 2000 Winter Simulation
Conference. IEEE Press, Pistacaway, NJ, pp. 683–689.

L’Ecuyer, P., Touzin, R., 2004. On the Deng-Lin random number generators
and related methods. Statistics and Computing 14, 5–9.

Leeb, H., 1995. Random numbers for computer simulation. Master’s thesis,
University of Salzburg.

29

Lemieux, C., L’Ecuyer, P., 2003. Randomized polynomial lattice rules for mul-
tivariate integration and simulation. SIAM Journal on Scientific Computing
24 (5), 1768–1789.

Lüscher, M., 1994. A portable high-quality random number generator for lat-
tice field theory simulations. Computer Physics Communications 79, 100–
110.

Marsaglia, G., 1985. A current view of random number generators. In: Com-
puter Science and Statistics, Sixteenth Symposium on the Interface. Elsevier
Science Publishers, North-Holland, Amsterdam, pp. 3–10.

Marsaglia, G., 1996. The Marsaglia random number CDROM including the
DIEHARD battery of tests of randomness, see http://stat.fsu.edu/pub/
diehard.

Marsaglia, G., Zaman, A., 1991. A new class of random number generators.
The Annals of Applied Probability 1, 462–480.

Matsumoto, M., Kurita, Y., 1992. Twisted GFSR generators. ACM Transac-
tions on Modeling and Computer Simulation 2 (3), 179–194.

Matsumoto, M., Kurita, Y., 1994. Twisted GFSR generators II. ACM Trans-
actions on Modeling and Computer Simulation 4 (3), 254–266.

Matsumoto, M., Kurita, Y., 1996. Strong deviations from randomness in m-
sequences based on trinomials. ACM Transactions on Modeling and Com-
puter Simulation 6 (2), 99–106.

Matsumoto, M., Nishimura, T., 1998. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transac-
tions on Modeling and Computer Simulation 8 (1), 3–30.

Niederreiter, H., 1992. Random Number Generation and Quasi-Monte Carlo
Methods. Vol. 63 of SIAM CBMS-NSF Regional Conference Series in Ap-
plied Mathematics. SIAM, Philadelphia.

Niederreiter, H., 1995. The multiple-recursive matrix method for pseudoran-
dom number generation. Finite Fields and their Applications 1, 3–30.

Niederreiter, H., Shparlinski, I. E., 2002. Recent advances in the theory of
nonlinear pseudorandom number generators. In: Fang, K.-T., Hickernell,
F. J., Niederreiter, H. (Eds.), Monte Carlo and Quasi-Monte Carlo Methods
2000. Springer-Verlag, Berlin, pp. 86–102.

Nishimura, T., 2000. Tables of 64-bit Mersenne twisters. ACM Transactions
on Modeling and Computer Simulation 10 (4), 348–357.

Panneton, F., August 2004. Construction d’ensembles de points basée sur
des récurrences linéaires dans un corps fini de caractéristique 2 pour la
simulation Monte Carlo et l’intégration quasi-Monte Carlo. Ph.D. thesis,
Département d’informatique et de recherche opérationnelle, Université de
Montréal, Canada.

Panneton, F., L’Ecuyer, P., July 2004a. Improved long-period generators based
on linear recurrences modulo 2, manuscript.

Panneton, F., L’Ecuyer, P., 2004b. Random number generators based on linear
recurrences in F2w . In: Niederreiter, H. (Ed.), Monte Carlo and Quasi-Monte
Carlo Methods 2002. Springer-Verlag, Berlin, pp. 367–378.

30

Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E., Leigh, S., Levenson,
M., Vangel, M., Banks, D., Heckert, A., Dray, J., Vo, S., 2001. A statistical
test suite for random and pseudorandom number generators for crypto-
graphic applications. NIST special publication 800-22, National Institute
of Standards and Technology (NIST), Gaithersburg, Maryland, USA, see
http://csrc.nist.gov/rng/.

Tausworthe, R. C., 1965. Random numbers generated by linear recurrence
modulo two. Mathematics of Computation 19, 201–209.

Tezuka, S., 1994. A unified view of large-period random number generators.
Journal of the Operations Research Society of Japan 37, 211–227.

Tezuka, S., 1995. Uniform Random Numbers: Theory and Practice. Kluwer
Academic Publishers, Norwell, Mass.

Tezuka, S., L’Ecuyer, P., 1991. Efficient and portable combined Tausworthe
random number generators. ACM Transactions on Modeling and Computer
Simulation 1 (2), 99–112.

Tezuka, S., L’Ecuyer, P., Couture, R., 1994. On the add-with-carry and
subtract-with-borrow random number generators. ACM Transactions on
Modeling and Computer Simulation 3 (4), 315–331.

Tootill, J. P. R., Robinson, W. D., Eagle, D. J., 1973. An asymptotically
random Tausworthe sequence. Journal of the ACM 20, 469–481.

Vattulainen, I., Ala-Nissila, T., Kankaala, K., 1995. Physical models as tests
of randomness. Physical Review E 52 (3), 3205–3213.

Wang, D., Compagner, A., 1993. On the use of reducible polynomials as ran-
dom number generators. Mathematics of Computation 60, 363–374.

Wegenkittl, S., Matsumoto, M., 1999. Getting rid of correlations among
pseudorandom numbers: Discarding versus tempering. ACM Transactions
on Modeling and Computer Simulation 9 (3), 282–294.

Wu, P.-C., 1997. Multiplicative, congruential random number generators with
multiplier ±2k1±2k2 and modulus 2p−1. ACM Transactions on Mathemat-
ical Software 23 (2), 255–265.

31

