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ABSTRACT

Sufficient conditions for the validity of interchange between derivative and expectation, in
the context of likelihood ratio gradient estimation, were given in L’Ecuyer (1990). The aim
of this paper is to shed additional light on these conditions and introduce specific variants
of them which are often easier to check. Sufficient conditions for the derivative estimator
to have finite moments up to a given order are also given and illustrated by examples.
In particular, we give an example of an unbiased derivative estimator which satisfies the
interchange conditions, but which has infinite variance.
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1. Introduction

This note is a follow-up to L’Ecuyer (1990). It clarifies the conditions given there for the

unbiasedness of the likelihood ratio (LR) derivative estimators. It also introduces specific

variants of these conditions, which are often easier to check. Finally, it gives a minor correc-

tion to the first two examples of L’Ecuyer (1990). For an overview of derivative estimation,

see Glynn (1990) and L’Ecuyer (1991).

Let {Pθ, θ ∈ Θ} be a family of probability measures, defined over the same measurable

space (Ω,B), where Θ is some open interval in IR. Let h(θ, ω) denote the sample value

(cost), where the sample point ω ∈ Ω obeys the probability law Pθ. We assume that h(θ, ·)

is measurable. If G is a given probability measure on (Ω,B) that dominates all the Pθ’s,

then the expected value (cost) can be written as a function of θ as

α(θ) =
∫

Ω
h(θ, ω)dPθ(ω) =

∫
Ω
h(θ, ω)L(G, θ, ω)dG(ω), (1)

where L(G, θ, ω) = (dPθ/dG)(ω). Under appropriate regularity conditions, one can differen-

tiate α by differentiating inside the integral:

α′(θ) =
∫

Ω
ψ(θ, ω)dG(ω), (2)

where

ψ(θ, ω) = L(G, θ, ω)h′(θ, ω) + h(θ, ω)L′(G, θ, ω) (3)

when this derivative exists. Here and throughout the paper, the prime denotes the derivative

with respect to θ. In practice, one can often use simulation to compute realizations of the

random variable (3), called the likelihood ratio (LR) derivative estimator, to estimate the

derivative of the performance measure α. Such a derivative estimator can be very useful in

different contexts, including stochastic optimization, sensitivity analysis, and interpolation

(Glynn 1990, L’Ecuyer 1991).

In this note, we are interested in sufficient conditions that are not too hard to check in

practice and under which (2) is valid, which would imply that (3) is an unbiased estimator
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of the derivative. Such conditions are given for instance in Glynn (1986), L’Ecuyer (1990),

Reiman and Weiss (1989), and Rubinstein (1989), in most cases for more specific setups

than the one examined here. Furthermore, unbiasedness is not the only question of interest.

One would also like to know, for instance, whether the estimator has finite variance, or finite

moments of higher orders. Later on, we will give an example of an unbiased LR derivative

estimator which has infinite variance.

As a special case, if Pθ ≡ P , independent of θ, one can take G = P and (3) becomes

ψ(θ, ω) = h′(θ, ω), which is often called the IPA derivative estimator (Glasserman 1991,

L’Ecuyer 1990). As another special case, if, for some fixed θ0 ∈ Θ, Pθ0 dominates {Pθ, θ ∈

Θ}, then one can take G = Pθ0 and, at θ = θ0, (3) becomes

ψ(θ, ω) = h′(θ, ω) + h(θ, ω)
∂

∂θ
L(Pθ0 , θ, ω)

∣∣∣∣
θ=θ0

. (4)

Assumption A1 below is parameterized by an integer k ≥ 1. For example, A1(2) denotes

that assumption with k = 2. It is proven in L’Ecuyer (1990) that under A1(1), Equation

(2) is valid at θ = θ0 for any θ0 ∈ Υ. A1(k) for k > 1 also implies that the k-th moment of

ψ(θ, ω) is finite for θ ∈ Υ.

ASSUMPTION A1(k). Let H(θ, ω) = h(θ, ω)L(G, θ, ω), let Υ ⊆ Θ be an open interval,

and let Ξ ⊆ Ω be a measurable set such that G(Ξ) = 1.

(a) For all θ ∈ Υ, equation (1) holds and ψ(θ, ω) exists for G-almost all ω.

(b) For every ω ∈ Ξ, there is a D(ω) ⊆ Υ, where Υ \D(ω) is at most a denumerable set,

such that H(·, ω) exists and is continuous everywhere in Υ, and is also differentiable

everywhere in D(ω).

(c) There exists a G-integrable function Γ : Ω→ [0,∞) such that

sup
θ∈D(ω)

∣∣∣ψk(θ, ω)
∣∣∣ ≤ Γ(ω) (5)

for every ω in Ξ.
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Note that the ψ(θ, ω) which is referred to in (5) is the one defined by equation (3),

not (4). Therefore, A1 must be verified for the general expression (3), not for (4). When

G = Pθ0 , (4) is equal to (3) only at θ = θ0. In Example 4.1 of L’Ecuyer (1990), the fourth

displayed equation of page 1372 represents (4), and part (c) of A1(1) was in fact verified

with (4) instead of (3), which is not correct. The same error was also made in Example

4.2. The initial motivation of the present note was to correct that. Its first version had less

than a page. But while trying to verify A1 in different application contexts, it appeared to

the author that other variants of A1, sometimes tailored for specific contexts, could prove

useful in practice. Questions like random horizons and finite moments were also given some

attention. As a result, the note grew up to its present state.

In the next section, we give an alternative formulation for part (c) of A1, which is often

easier to verify. We also extend Theorem 1 of L’Ecuyer (1990). In §3, we examine the

case where ω can be viewed as a sequence of independent random variables with known

θ-dependent densities. The number of such variables can be fixed (deterministic) or random

(e.g., a stopping time). For both of these cases, we give more specific conditions that imply

A1. In §4, we verify (correctly, this time) the validity of the interchange for Examples 4.1

and 4.2 of L’Ecuyer (1990), and illustrate the results of §3 by an additional example. We

also show that even when the estimator is always unbiased, the variance may become infinite

for some values of θ and θ0.

2. An Alternative Formulation of the Assumption

When verifying A1 in practice, complications sometimes arise in trying to find the G-

integrable function Γ. We now give a slightly different formulation of that assumption, which

is often more “user-friendly”. That formulation is more handy when the family {Pθ, θ ∈ Θ}

is dominated by some “worst-case” probability measure Q which is easy to find, but not

necessarily equal to G, and such that it is easier to bound L(Q, θ, ω) than L(G, θ, ω). For

example (see Example 4.1), for the exponential distribution with mean θ, L(Pθ0 , θ, ·) is un-

bounded for θ > θ0, but L(Pb, θ, ·) is bounded for θ < b. One can then choose Q = Pb for b
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larger than any θ of interest. This technique can be applied in general to distributions for

which the likelihood ratio is monotone in θ (e.g., distributions from the exponential). The

measure Q can then be Pθ, where θ is taken at the worst-case extremity of the interval of

interest.

The Proposition that follows extends Theorem 1 of L’Ecuyer (1990). It shows that A1′(k)

is equivalent to A1(k), gives a continuous differentiability condition for α, and finite-moment

conditions for the derivative estimator.

ASSUMPTION A1′(k). Let parts (a–b) of A1(k) hold. Suppose that there exists a

probability measure Q over (Ω,B) and a Q-integrable function Γ̃ : Ω → [0,∞) such that

dG/dQ exists and

sup
θ∈D(ω)

∣∣∣∣∣ψk(θ, ω)
dG

dQ
(ω)

∣∣∣∣∣ ≤ Γ̃(ω) (6)

for all ω ∈ Ξ.

PROPOSITION 1. (a) A1(k) is equivalent to A1′(k).

(b) Under A1(1), equation (2) is valid and α(θ) is differentiable at every θ ∈ Υ.

(c) Under A1(1), if ψ(·, ω) is continuous throughout Υ for each ω ∈ Ξ, then α is continu-

ously differentiable in Υ.

(d) If A1(k) holds for k ≥ 1, then the derivative estimator has a finite moment of order

k, uniformly bounded over Υ.

PROOF. A1(k) clearly implies A1′(k) (take Q = G). So, it remains to prove that (6)

implies (5). Let

Γ(ω) =

 sup
θ∈D(ω)

∣∣∣ψk(θ, ω)
∣∣∣ if ω ∈ Ξ,

0 otherwise.

Then, (5) holds and, since dG/dQ is always non-negative, one has

∫
Ω

Γ(ω)dG(ω) =
∫

Ξ
Γ(ω)dG(ω) =

∫
Ξ

Γ(ω)
dG

dQ
(ω)dQ(ω) ≤

∫
Ξ

Γ̃(ω)dQ(ω) <∞,
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which proves (a). For θ0 ∈ Υ, the proof of Theorem 1 in L’Ecuyer (1990) implies differen-

tiability of α(θ) at θ = θ0. Since θ0 can be chosen anywhere in Υ, this proves (b). If ψ(·, ω)

is continuous in Υ, then, for any θ0 ∈ Υ,

lim
θ→θ0

α′(θ) = lim
θ→θ0

∫
Ω
ψ(θ, ω)dG(ω) =

∫
Ω

lim
θ→θ0

ψ(θ, ω)dG(ω) =
∫

Ω
ψ(θ0, ω)dG(ω) = α′(θ0).

Here, the first equality holds because of (b) and since θ ∈ Υ when |θ−θ0| is small enough. The

second equality follows from Lebesgue’s dominated convergence Theorem. This completes

the proof of (c). Finally (d) follows directly from (5).

An interesting application of Proposition 1(b) is to estimate the derivative everywhere

in Υ by a single simulation under G. This is useful for some optimization approaches; see

Rubinstein (1991). Proposition 1(b), when it applies, provides an assurance that such a

derivative estimator is everywhere unbiased. Proposition 1(d) with k = 2 gives a sufficient

condition for the estimator to have a finite variance.

Now, assume that the likelihood ratio L(G, θ, ω) can be expressed as a ratio of (perhaps

multivariate) densities, or probability mass functions, as follows:

L(G, θ, ω) = fθ(ω)/g(ω). (7)

This covers Equation (6) in L’Ecuyer (1990) and is general enough for most discrete-event

simulations. One has

L′(G, θ, ω) =
∂

∂θ
fθ(ω)/g(ω) = L(G, θ, ω)S(θ, ω), (8)

where

S(θ, ω) =
∂

∂θ
ln fθ(ω) (9)

is called the score function. Using (8), (3) can be rewritten as

ψ(θ, ω) = L(G, θ, ω)[h′(θ, ω) + h(θ, ω)S(θ, ω)]. (10)

Assuming that (dG/dQ)(ω) exists, one has (dG/dQ)(ω) = L(Q, θ, ω)/L(G, θ, ω) if L(G, θ, ω) >

0, and ψ(θ, ω) = L(Q, θ, ω) = 0 otherwise. In both cases,

ψk(θ, ω)(dG/dQ)(ω) = L(Q, θ, ω)Lk−1(G, θ, ω)[h′(θ, ω) + h(θ, ω)S(θ, ω)]k. (11)

6



In A1′, we need to bound the right-hand-side expression in (11) by a Q-integrable function.

Observe that for k = 1, G is no longer involved in that. Therefore, if A1′(1) holds for some Q,

it follows that A1(1) holds for all G such that dG/dQ exists. In other words, the interchange

will be valid whatever be the distribution G from which we simulate, provided dG/dQ exists

and the other conditions in A1(1) hold for Q. This is the main strength of A1′. For higher

order moments, things do not simplify so nicely, though, because (11) depends on both G

and Q. However, introducing some Q 6= G can still be helpful, as will be illustrated in the

next section.

3. Simulations Driven by a Sequence of Independent Variates

3.1. Fixed Horizon

Let ζ1, ζ2, . . . be a sequence of independent random variables and for each n > 0, let =n
be the sigma field generated by {ζ1, . . . , ζn}. Suppose that for some fixed (deterministic)

integer t > 0, the cost function h(θ, ω) is =t-measurable for every θ ∈ Θ. Here, one can

define the underlying measurable space (Ω,B) in such a way that ω can be viewed as the

sequence ζ1, . . . , ζt. Assume that for each i, ζi has a density fi,θ. (Our development is

also valid for the case where some or all of these densities are replaced by probability mass

functions.) For each i, 1 ≤ i ≤ t, let gi and qi be densities such that {ζ | fi,θ(ζ) > 0

for some θ ∈ Θ} ⊆ {ζ | gi(ζ) > 0} ⊆ {ζ | qi(ζ) > 0}. These sets of densities define

probability measures Pθ, G, and Q, respectively, over (Ω,B). Let Eθ, EG, and EQ denote the

corresponding mathematical expectations. Here, the gi’s are the densities we use to generate

sample paths (in the simulation), while the qi’s are used to verify A1′. For each θ ∈ Θ, one

has

L(G, θ, ω) =
t∏
i=1

fi,θ(ζi)

gi(ζi)
; (12)

L(Q, θ, ω) =
t∏
i=1

fi,θ(ζi)

qi(ζi)
; (13)

S(θ, ω) =
t∑
i=1

di, (14)
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where

di =
∂

∂θ
ln(fi,θ(ζi)) =

f ′i,θ(ζi)

fi,θ(ζi)
. (15)

Under this setup, we show that the following assumption implies A1(k).

ASSUMPTION A2(k). Let Υ ⊆ Θ be an open interval, and let Ξ ⊆ Ω be a measurable

set such that Q(Ξ) = 1. Interpret ω as ω = (ζ1, . . . , ζt).

(a) For any θ ∈ Υ, h′(θ, ω) and each di exist for Q-almost all ω. For every ω ∈ Ξ, there is

a D(ω) ⊆ Υ, where Υ \D(ω) is at most a denumerable set, such that h(θ, ω) and each

fi,θ(ζi) are continuous in θ everywhere in Υ, and also differentiable in θ everywhere in

D(ω).

(b) All the following functions are Q-integrable (for each i):

sup
θ∈D(ω)

[h(θ, ω)]2k, sup
θ∈D(ω)

[h′(θ, ω)]2k, sup
θ∈D(ω)

[
( ∂
∂θ
fi,θ(ζi))

k

qi(ζi)g
k−1
i (ζi)

]2

, sup
θ∈D(ω)

[
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

]2

.

PROPOSITION 2. Under A2(k), A1′(k) holds (and Proposition 1 applies).

PROOF. First note that from our assumptions, every set that has Q-measure zero also

has G-measure zero. Therefore, G(Ξ) = 1. Since each fi,θ(ζi) is differentiable with respect

to θ in D(ω),

H(θ, ω) = h(θ, ω)
t∏
i=1

fi,θ(ζi)

gi(ζi)
,

and from (10), it is easily seen that A2 implies parts (a) and (b) of A1. It remains to

verify part (c). In what follows, we make use of the fact that for any real numbers x and y,

|xy| ≤ x2 + y2 and |x+ y|k ≤ 2k(|x|k + |y|k). For ω ∈ Ξ and θ ∈ D(ω), one has

∣∣∣ψk(θ, ω)(dG/dQ)(ω)
∣∣∣

= L(Q, θ, ω)Lk−1(G, θ, ω) |h′(θ, ω) + h(θ, ω)S(θ, ω)|k

≤ 2kL(Q, θ, ω)Lk−1(G, θ, ω)

|h′(θ, ω)|k +

∣∣∣∣∣∣h(θ, ω)
t∑

j=1

dj

∣∣∣∣∣∣
k

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≤ 2kL(Q, θ, ω)Lk−1(G, θ, ω)

|h′(θ, ω)|k + |h(θ, ω)|ktk−1
t∑

j=1

|dj|k


≤ 2k

[L(Q, θ, ω)Lk−1(G, θ, ω)]2 + |h′(θ, ω)|2k

+
t∑

j=1

(
t2(k−1)|h(θ, ω)|2k + [|dj|kL(Q, θ, ω)Lk−1(G, θ, ω)]2

) . (16)

Let Γ̃(ω) be the supremum over θ, for θ ∈ D(ω), of (16). One has

EQ

[
sup

θ∈D(ω)
[|dj|kL(Q, θ, ω)Lk−1(G, θ, ω)]2

]

= EQ

 sup
θ∈D(ω)

 |dj|kfkj,θ(ζj)
qj(ζj)g

k−1
j (ζj)

t∏
i=1, i 6=j

fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

2


≤ EQ

 sup
θ∈D(ω)

(
|dj|kfkj,θ(ζj)
qj(ζj)g

k−1
j (ζj)

)2 t∏
i=1, i 6=j

sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

)2


= EQ

 sup
θ∈D(ω)

(
| ∂
∂θ
fj,θ(ζj)|k

qj(ζj)g
k−1
j (ζj)

)2
 t∏
i=1, i 6=j

EQ

 sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)
gk−1
i (ζi)

)2


< ∞. (17)

The last equality follows from the independence of the ζi’s. Also,

EQ

[
sup

θ∈D(ω)

[L(Q, θ, ω)Lk−1(G, θ, ω)]2
]
≤ EQ

 t∏
i=1

sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

)2


=
t∏
i=1

EQ

 sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

)2


< ∞. (18)

From (16–18) and part (b) of A2, A1′ follows.

3.2. Random Horizon

Now, suppose that h(θ, ω) is =τ -measurable for some (random) stopping time τ . This means

that for each integer t > 0, the event {τ ≤ t} is =t-measurable. We suppose that τ depends

on θ only through the distribution Pθ, so that for ω fixed, τ does not depend on θ (i.e.,

τ is just a function of ω). The constant t in the previous setup must be replaced by τ .
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We can now view ω as representing (ζ1, . . . , ζτ ). Verifying A1′ in that context is a little

more complicated, because the likelihood ratio is now the product of a random (generally

unbounded) number of terms. We will give an assumption A3, similar to A2, under which

A1 holds in this context. Of course, one can try to verify A1 directly. Alternatively, A3 is a

sufficient condition that is often easier to check, because in A3, the left-hand-side expression

in (6) is already broken up into smaller pieces.

Glynn (1986), in his Theorem 4.9, proves the validity of (2) when h(θ, ω) represents the

total cost for the first τ steps in a finite-state Markov chain with state-dependent one step

rewards (and under some additional assumptions). His proof exploits the fact that his state

space is finite and everything is bounded. Reiman and Weiss (1989) give assumptions based

on a concept called amiability , under which (2) is valid when the cost is =τ -measurable for

some stopping time τ , fi,θ does not depend on i, and gi = fi,θ0 . By looking at the proofs of

their theorems, one can see that their assumptions imply A1(1). Glynn (1991) and Glynn

and Iglehart (1989) also give finite variance conditions for importance sampling cost (rather

than derivative) estimators, over random horizons.

ASSUMPTION A3(k). Let part (a) of A2 hold with t replaced by τ . Suppose that there

exist measurable functions Γ1i : Ω→ [1,∞) and Γ2i : Ω→ [1,∞), i = 1, 2, . . ., such that for

each i, ζ, and ω, one has

sup
θ∈Υ

(
fki,θ(ζ)

qi(ζ)gk−1
i (ζ)

)8

≤ Γ1i(ζ), (19)

sup
θ∈Υ

(
( ∂
∂θ
fi,θ(ζ))k

qi(ζ)gk−1
i (ζ)

)4

≤ Γ2i(ζ), (20)

and such that all the following functions are Q-integrable:

sup
θ∈D(ω)

[h(θ, ω)]4k, sup
θ∈D(ω)

[h′(θ, ω)]2k, sup
θ∈D(ω)

[τ ]4k−2,
τ∑
j=1

Γ2j(ζj),
τ∏
j=1

Γ1j(ζj).

PROPOSITION 3. Assumption A3(k) implies A1(k).

PROOF. Part (a) holds because L(G, θ, ω) and L(Q, θ, ω) are assumed to exist (which

implies (1)), and because of the differentiability of fi,θ with respect to θ for G-almost all ω.
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Part (b) also follows directly from part (a) of A2, with t replaced by τ in the definition of

h(θ, ω). For part (c) of A1′, one has, using the analog of (16–17),

sup
θ∈D(ω)

∣∣∣ψk(θ, ω)(dG/dQ)(ω)
∣∣∣

≤ 2k sup
θ∈D(ω)

[L(Q, θ, ω)Lk−1(G, θ, ω)]2 + |h′(θ, ω)|2k

+
τ∑
j=1

(
τ 2(k−1)|h(θ, ω)|2k + [|dj|kL(Q, θ, ω)Lk−1(G, θ, ω)]2

) . (21)

≤ 2k

 τ∏
i=1

sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

)2

+ sup
θ∈D(ω)

|h′(θ, ω)|2k + τ 2k−1 sup
θ∈D(ω)

|h(θ, ω)|2k

+
τ∑
j=1

sup
θ∈D(ω)

(
| ∂
∂θ
fj,θ(ζj)|k

qj(ζj)gj(ζj)k−1

)2 τ∏
i=1, i 6=j

sup
θ∈D(ω)

(
fki,θ(ζi)

qi(ζi)g
k−1
i (ζi)

)2


≤
τ∏
i=1

(Γ1i(ζi))
1/4 + sup

θ∈D(ω)

|h′(θ, ω)|2k + τ 2k−1 sup
θ∈D(ω)

|h(θ, ω)|2k +
τ∑
j=1

(Γ2j(ζj))
1/2

τ∏
i=1, i 6=j

(Γ1i(ζi))
1/4

≤
τ∏
i=1

Γ1i(ζi) + sup
θ∈D(ω)

|h′(θ, ω)|2k + τ 4k−2 + sup
θ∈D(ω)

|h(θ, ω)|4k +
τ∑
j=1

(
Γ2j(ζj) +

τ∏
i=1

(Γ1i(ζi))
1/2

)

≤
τ∏
i=1

Γ1i(ζi) + sup
θ∈D(ω)

|h′(θ, ω)|2k + τ 4k−2 + sup
θ∈D(ω)

|h(θ, ω)|4k +
τ∑
j=1

Γ2j(ζj) + τ
τ∏
i=1

(Γ1i(ζi))
1/2

≤ sup
θ∈D(ω)

|h′(θ, ω)|2k + sup
θ∈D(ω)

|h(θ, ω)|4k + τ 4k−2 + τ 2 + 2
τ∏
i=1

Γ1i(ζi) +
τ∑
j=1

Γ2j(ζj). (22)

From Assumption A3, part (c) of A1′ holds with Γ̃ defined by the expression (22).

4. Verifying Interchange Conditions and Finite Moments for
Some Examples

We will use formulation (11) to verify A1′ for Example 4.1 of L’Ecuyer (1990), and formu-

lation (10) to verify A1 for Example 4.2 of L’Ecuyer (1990). Parts (a) and (b) of A1 have

been verified there, but part (c) was not verified correctly. We then give another example to

illustrate A3.
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4.1. A GI/M/1 Queue with Mean Service Time θ

This is a slight generalization of Example 4.1 in L’Ecuyer (1990). Let h(θ, ω) be the average

sojourn time for the first t customers in a GI/M/1 queue, initially empty, with mean service

time θ. Let ω = (S1, A1, . . . , At−1, St), where for each i, Wi and Si are the waiting time and

service time of customer i, respectively, and Ai is the interarrival time between customers

i and i + 1, whose distribution is assumed independent of θ. Let G = Pθ0 , where θ0 is the

parameter value at which we perform the simulation. We will now try to find the largest

interval Υ = (θmin, θmax) for which A1′ holds. Assume that

0 < θmin < θ0 < θmax <
k

k − 1
θ0 (23)

(where 1/0 =∞). Let us take b > θ0θmax/(kθ0− (k−1)θmax) and let Q = Pb (a “worst-case”

service time distribution). Then,

L(Q, θ, ω) =

(
b

θ

)t
exp

[(
1

b
− 1

θ

) t∑
i=1

Si

]
,

L(G, θ, ω) =

(
θ0

θ

)t
exp

[(
1

θ0

− 1

θ

) t∑
i=1

Si

]
,

S(θ, ω) =
1

θ2

t∑
i=1

(Si − θ),

(dG/dQ)(ω) = L(Q, θ0, ω) exists, and

ψk(θ, ω)(dG/dQ)(ω)

= L(Q, θ, ω)Lk−1(G, θ, ω)hk(θ, ω)Sk(θ, ω)

=

[
1

t

t∑
i=1

(Wi + Si)

]k [
1

θ2

t∑
i=1

(Si − θ)
]k (

bθk−1
0

θk

)t
exp

[(
1

b
+
k − 1

θ0

− k

θ

)
t∑
i=1

Si

]
.

For each i, Wi ≤
∑i−1
j=1 Sj, so that

[
1

t

t∑
i=1

(Wi + Si)

]k
≤

1

t

t∑
i=1

i∑
j=1

Sj

k ≤ [
t∑
i=1

Si

]k
.

Also, from our choice of b, we have b > θmax > θ0 and 1/b+ (k − 1)/θ0 − k/θ < 0. So,

exp

[(
1

b
+
k − 1

θ0

− k

θ

)
t∑
i=1

Si

]
≤ 1.
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Therefore,

|ψk(θ, ω)|(dG/dQ)(ω) ≤
[

t∑
i=1

Si

]k [
1

θ2
min

t∑
i=1

(Si + b)

]k (
b

θmin

)kt
. (24)

The latter is Q-integrable, because the exponential distribution has finite moments of all

orders. This verifies part (c) of A1′. The other conditions of A1 were already verified in

L’Ecuyer (1990) and therefore, Proposition 1 applies.

Observe that for k = 1, condition (23) becomes

0 < θmin < θ0 < θmax <∞. (25)

Therefore, with G = Pθ0 for some fixed θ0 > 0, for any Υ = (θmin, θmax) satisfying (25), one

obtains through (2) an unbiased estimator of the derivative everywhere in Υ. In other words,

one can simulate by generating service times with any parameter value θ0 > 0, and compute

h(θ, ω)L(Pθ0 , θ, ω)S(θ, ω) =

[
1

t

t∑
i=1

(Wi + Si)

] [
1

θ2

t∑
i=1

(Si − θ)
](

θ0

θ

)t
exp

[(
1

θ0

− 1

θ

) t∑
i=1

Si

]
.

The latter gives an unbiased estimator of α′(θ) for all θ > 0. For a finite variance, the

condition (23) becomes (take k = 2): θmax < 2θ0.

We have just shown that condition (23) is sufficient for a finite k-th moment. We now

show that it is also necessary . Indeed, if (k − 1)θ ≥ kθ0, one has

∫
Ω
ψk(θ, ω)dG(ω)

=
∫
Lk(G, θ, ω)hk(θ, ω)Sk(θ, ω)dG(ω)

≥
∫ ∞

0
· · ·

∫ ∞
0

[
1

t

t∑
i=1

Si

]k [
1

θ2

t∑
i=1

(Si − θ)
]k (

θ0

θ

)kt

exp

[(
k

θ0

− k

θ

)
t∑
i=1

Si

] (
1

θ0

)t
exp

[
− 1

θ0

t∑
i=1

Si

]
dS1 · · · dSt

≥
∫ ∞

0
. . .
∫ ∞

0
IS

tk

θ2k

(
θ0

θ

)kt (
1

θ0

)t
exp

[(
k − 1

θ0

− k

θ

)
t∑
i=1

Si

]
dS1 · · · dSt

−
∫ ∞

0
. . .
∫ ∞

0
(1− IS)(θ + 1)k

(
t

θ

)k (θ0

θ

)kt (
1

θ0

)t
exp

[(
k − 1

θ0

− k

θ

)
(θ + 1)t

]
dS1 · · · dSt

= ∞,

13



where IS denotes the indicator function:

IS =
{

1 if
∑t
i=1 Si ≥ (θ + 1)t,

0 otherwise.

Therefore, (23) is a necessary and sufficient condition for having a finite moment of order k.

For example, for any θ0 > 0, the derivative estimator ψ(θ, ω) is unbiased for all θ > 0, but

has finite variance only for θ < 2θ0, and infinite variance otherwise.

4.2. A GI/G/1 Queue with Service Time Determined by a Bernouilli (θ)

This is essentially Example 4.2 of L’Ecuyer (1990). We look at a GI/G/1 queue as in Example

4.1, but with a different service time distribution. Let 0 < a < b < ∞, 0 < c < θ < d < 1,

and suppose that the service time is b with probability θ, and a with probability 1− θ. Let

Ci = 1 if Si = b, and Ci = 0 if Si = a. Here, Ci is Bernoulli (θ) and determines the service

time of customer i. Take Q = G = Pθ0 , for c < θ0 < d, which means that we will verify

A1(k) directly. One has

L(G, θ, ω) =
t∏
i=1

θCi(1− θ)1−Ci

θCi
0 (1− θ0)1−Ci

and

S(θ, ω) =
∂

∂θ
lnL(G, θ, ω) =

∂

∂θ
ln

t∏
i=1

[
θCi(1− θ)1−Ci

]

=
1

θ

t∑
i=1

Ci −
1

1− θ

t∑
i=1

(1− Ci) =
t∑
i=1

Ci − θ
θ(1− θ)

.

Recall that Si ≤ b, 0 < c < θ0 < d < 1, and 0 < c < θ < d < 1. Therefore, θCi(1−θ)1−Ci ≤ 1,

|Ci − θ| ≤ 1, θCi
0 ≥ c, (1− θ0)1−Ci ≥ 1− d, and θ(1− θ) ≥ c(1− d). Then,

|ψ(θ, ω)| =

[
1

t

t∑
i=1

(Wi + Si)

] [
t∏
i=1

θCi(1− θ)1−Ci

θCi
0 (1− θ0)1−Ci

] ∣∣∣∣∣
t∑
i=1

Ci − θ
θ(1− θ)

∣∣∣∣∣
≤

[
t∑
i=1

Si

](
1

c(1− d)

)t t∑
i=1

1

θ(1− θ)
≤ bt2

(c(1− d))t+1
.

Take Γ(ω) = bt2/(c(1 − d))t+1. This is a constant and is therefore trivially Pθ0-integrable.

This completes the verification of A1(1), so that Proposition 1 applies for k = 1. It is also

easily seen that the moments of ψ(θ, ω) of all orders are finite.
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4.3. Derivative of the Expected Number of Customers per Busy Cycle

For the GI/M/1 queue examined in Example 4.1, redefine h(θ, ω) as the number τ of cus-

tomers in the first busy cycle, that is τ = min{i ≥ 1 | customer i + 1 does not wait }. We

assume that the system is started empty. Here, ζi = (Si, Ai) and ω = (S1, A1, . . . , Sτ , Aτ ).

Take G = Pθ0 , where θ0 < 1/λ (the latter is the mean interarrival time). We want to simu-

late the system at parameter value θ0 to estimate the derivative at θ. We will now seek an

interval Υ, containing θ0, for which A3(k) holds.

Since the interarrival time distribution does not depend on θ, only the service times and

their density function affect the likelihood ratio, the score function, and the left-hand-side of

(19–20). Therefore, to simplify the notation, we can view ζi as just Si and fi,θ as the service

time density. One then has

fi,θ(ζ) =
1

θ
exp[−ζ/θ];

∂

∂θ
fi,θ(ζ) =

ζ − θ
θ3

exp[−ζ/θ];

h′(θ, ω) = 0;

L(G, θ, ω) =

(
θ0

θ

)τ
exp

[(
1

θ0

− 1

θ

) τ∑
i=1

Si

]
.

The LR estimator of the derivative of Eθ[τ ] is then

ψ(θ, ω) = τS(θ, ω)L(G, θ, ω) = τ

(
τ∑
i=1

Si − θ
θ2

)(
θ0

θ

)τ
exp

[(
1

θ0

− 1

θ

) τ∑
i=1

Si

]
.

For fixed ω = (ζ1, . . . , ζτ ), Si and τ are fixed, so that fi,θ(ζi) and h(θ, ω) = τ are everywhere

differentiable in θ. Therefore, part (a) of A2 holds.

For each given pair 0 < θ0 < 1/λ and 0 < θ < 1/λ, one can choose a different value of b

and take qi = fi,b for each i. Let

b =
θθ0

kθ0 − (k − 1)θ
,

i.e.,
1

b
=
k

θ
− k − 1

θ0

. (26)
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Suppose that θ0 and θ are such that 0 < b < 1/λ. From Theorem III.3.1 in Gut (1988), page

78, one has Eb[τ
4k] <∞. Since the exponential distribution has a finite moment generating

function in some neighborhood of zero, it also follows from Theorem III.3.2 in Gut (1988),

page 81, that there exists a z0(b) > 1 such that Eb[z
τ ] <∞ for 0 ≤ z ≤ z0(b). Suppose now

that (
bθk−1

0

θk

)8

< z0(b). (27)

Then, Eb[(bθ
k−1
0 /θk)8τ ] < ∞. Note that for θ = θ0, one has b = θ0 and (27) holds. Further,

for fixed θ0 and b, there exists a neighborhood of θ0, say Υ = (θmin, θmax), in which (27) is

satisfied.

To complete the verification of A3 for that fixed b, under these assumptions, define

Γ1i(ζ) = (bθk−1
0 /θkmin)8 and Γ2i(ζ) = ((ζ + θmax)kbk/θ3k

min)4 for each ζ and i. One has

sup
θ∈Υ

(
fki,θ(ζ)

qi(ζ)gk−1
i (ζ)

)8

= sup
θ∈Υ

(
bθk−1

0

θk
exp

[(
1

b
+
k − 1

θ0

− k

θ

)
ζ

])8

≤
(
bθk−1

0

θkmin

)8

= Γ1i(ζ);

sup
θ∈Υ

(
( ∂
∂θ
fi,θ(ζ))k

qi(ζ)gk−1
i (ζ)

)4

= sup
θ∈Υ

(
(ζ − θ)kbθk−1

0

θ3k
exp

[(
1

b
+
k − 1

θ0

− k

θ

)
ζ

])4

≤
(

(ζ + θmax)kbk

θ3k
min

)4

= Γ2i(ζ);

Eb

 τ∑
j=1

Γ2j(Sj)

 = Eb[τ ]Eb

((Sj + θmax)kbk

θ3k
min

)4
 < ∞;

Eb

[
τ∏
i=1

Γ1i(Si)

]
= Eb[(bθ

k−1
0 /θkmin)8τ ] < ∞.

The next to last equality is the well known Wald’s equation. This completes the verification

of A3(k) for that given Υ.

From that reasoning, sufficient conditions for A3(k) are that

k/θ − (k − 1)/θ0 > λ (28)

and that (27) holds with b defined by (26). For k = 1, one has b = θ, (28) becomes θ < 1/λ,

and (27) becomes z0(b) > 1, which always holds.
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For a more specific example, consider an M/M/1 queue with arrival rate λ = 1 and mean

service time θ < 1. In this case, one has Eb[z
τ ] <∞ if and only if z ≤ z0(b) = (1 + b)2/(4b)

(see Kleinrock 1975, §5.9). The condition (27) then becomes:

4b9

(1 + b)2
≤

(
θk

θk−1
0

)8

. (29)

For k = 2, for each θ0 ∈ (0, 1), there is an interval I(θ0) containing θ0 in which (29) holds.

For example, one has:

θ0 I(θ0)
0.2 (.1261, .2407)
0.5 (.4090, .5450)
0.8 (.7514, .8233)

Further, for k = 2, (28) becomes θ ≤ 2θ0/(θ0 +1), which also holds when θ ∈ I(θ0). We have

now proved that the variance of the LR derivative estimator is finite for θ ∈ I(θ0). Outside

that interval, we have not proven anything, which means that the variance could also be

finite in a larger region.

5. Conclusion

We have studied sufficient conditions for unbiasedness and finite moments, for LR derivative

estimators. Clearly, the conditions given are not necessary, but they could prove useful in

practice. Necessary and sufficient conditions, namely uniform integrability, are often difficult

to check directly (see, e.g., Glasserman 1991).

We have illustrated the practical use of our different sets of assumptions by a few simple

examples. More complicated applications, like queueing network driven by a sequence of

independent variates, would also fit into the framework of Section 3, and their analysis will

be similar to that of our examples. In our examples, the probability distributions are from

the exponential family. In fact, our treatment is not really specific to the exponential family,

but likelihood ratios simplify nicely for the exponential family, and most commonly used

distributions belong to that family.
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The interchange between derivative and expectation is not the only major issue in deriva-

tive estimation. Finite vs infinite variance (or higher moments) is also crucial. One must be

very careful in practice, because as illustrated by Example 4.1, an unbiased LR derivative

estimator can have an infinite variance. Further, when the variance is infinite, the vari-

ance estimators are usually very misleading: they typically take a very small value with

large probability, and an extremely large value with a tiny (almost zero) probability. What

happens is essentially the same as with “importance sampling” for function (as opposed to

derivative) estimation (see Glynn 1991 and Glynn and Iglehart 1989).
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