
INFORMS Journal on Computing
Vol. 20, No. 3, Summer 2008, pp. 385–390
issn 1091-9856 �eissn 1526-5528 �08 �2003 �0385

informs ®

doi 10.1287/ijoc.1070.0251
©2008 INFORMS

Efficient Jump Ahead for �2-Linear Random
Number Generators

Hiroshi Haramoto, Makoto Matsumoto
Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

{haramoto@hiroshima-u.ac.jp, m-mat@math.sci.hiroshima-u.ac.jp}

Takuji Nishimura
Department of Mathematical Sciences, Yamagata University, Yamagata 990-8560, Japan, nisimura@sci.kj.yamagata-u.ac.jp

François Panneton, Pierre L’Ecuyer
Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada

{panneton@iro.umontreal.ca, lecuyer@iro.umontreal.ca}

The fastest long-period random number generators currently available are based on linear recurrences mod-
ulo 2. So far, software that provides multiple disjoint streams and substreams has not been available for

these generators because of the lack of efficient jump-ahead facilities. In principle, it suffices to multiply the
state (a k-bit vector) by an appropriate k × k binary matrix to find the new state far ahead in the sequence.
However, when k is large (e.g., for a generator such as the popular Mersenne twister, for which k = 19�937),
this matrix-vector multiplication is slow, and a large amount of memory is required to store the k× k matrix.
In this paper, we provide a faster algorithm to jump ahead by a large number of steps in a linear recurrence
modulo 2. The method uses much less than the k2 bits of memory required by the matrix method. It is based
on polynomial calculus modulo the characteristic polynomial of the recurrence, and uses a sliding window
algorithm for the multiplication.

Key words : simulation; random number generation; jumping ahead; multiple streams
History : Accepted by Marvin Nakayama, Area Editor for Simulation; accepted October 2007. Published online
in Articles in Advance February 25, 2008.

1. Introduction
Random number generators (RNGs) with multiple
disjoint streams and substreams are an important
component of any good general-purpose simulation
or statistical software. They are very handy, for
example, to obtain parallel RNGs and to support
the implementation of variance reduction techniques
(Hellekalek 1998, Kelton 2006, Law and Kelton 2000,
L’Ecuyer et al. 2002). The most convenient way of
getting these streams and substreams is to start with
a backbone RNG having a huge period and par-
tition its output sequence into long disjoint subse-
quences and subsubsequences whose starting points
are at equidistant lags (Law and Kelton 2000, L’Ecuyer
1990, L’Ecuyer and Côté 1991). When a new stream is
needed, we find its starting point by jumping ahead
from the starting point of the current subsequence
to the starting point of the next one. Substreams
are obtained from subsequences in a similar way. To
make sure that no overlap occurs, the streams and
substreams must be very long, so that they cannot
be exhausted even with days of computing time. To
implement this, we need to know how to quickly
jump ahead by large lags in the sequence of numbers
produced by the generator.

Most generators used for simulation are based on
linear recurrences. For these generators, the state xn
at step n is a vector of k integers in �0� � � � �m − 1�
for some integer m called the modulus, and it evolves
as xn =Axn−1 mod m where A is a k× k matrix with
elements in �0� � � � �m− 1�. To jump ahead by � steps
from any state xn, regardless of how large � is, it suf-
fices to precompute the matrix A� mod m (once for
all) and then compute xn+� = 	A� mod m
xn mod m by
a simple matrix-vector multiplication. This technique
is used to provide streams and substreams in the ran-
dom number package of L’Ecuyer et al. (2002), based
on combined multiple recursive generators (CMRG),
and has been adopted in several simulation and sta-
tistical software products such as Arena, Automod,
Witness, SSJ, SAS, etc.
There are faster generators than the CMRG, based

on linear recurrences modulo 2, with extremely long
periods and good statistical properties. The Mersenne
twister and the WELL (Matsumoto and Nishimura
1998, Panneton et al. 2006), for example, belong to
that class. However, efficient software that provides
multiple disjoint streams and substreams for them is
lacking. Because these generators are linear, the tech-
nique just described applies in principle (with m= 2).

385

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Haramoto et al.: Efficient Jump Ahead for �2-Linear Random Number Generators
386 INFORMS Journal on Computing 20(3), pp. 385–390, © 2008 INFORMS

However, the matrix-vector multiplication is slow if
implemented naively, and an excessive amount of
memory is required to store the matrix when k is very
large, which is typical. For example, the Mersenne
twister generator has k = 19�937. Then, the k × k
binary matrix occupies 47.4 MB of memory!
We propose a more efficient technique to perform

this multiplication. It uses a representation of the
recurrence in a space of polynomials. For a given step
size �, the state xn+� is expressed as a polynomial in A
of degree less than k, say g	A
, multiplied by xn. A key
ingredient is that we use the implementation of the
original recurrence (i.e., of the generator) to compute
the product g	A
xn. The most expensive operations in
this computation turn out to be the k-bit vector addi-
tions modulo 2. We use a sliding window technique
to reduce the number of these additions, e.g., by a fac-
tor of about four when k= 19�937. For this particular
value of k, with the proposed method, the generator
can jump ahead for an arbitrary lag in less than five
milliseconds on a 32-bit 3.0 GHz computer.
The next section gives a framework for �2-linear

generators and states the jump-ahead problem. In §3,
we examine how to jump ahead, explain our
proposed technique, and analyze its computational
efficiency. The algorithm is stated in §3.4, and some
timings are given in §3.5.

2. �2-Linear Generators
Throughout this paper, arithmetic operations are as-
sumed to be performed in �2, the finite field with two
elements, represented as 0 and 1. This corresponds to
doing arithmetic modulo 2. Note that in �2, subtrac-
tion and addition are equivalent, so we can always
write “+” instead of “−,” and we do so everywhere
in this paper. The RNGs considered obey the general
�2-linear recurrence

xn = Axn−1� (1)

where xn = 	xn�0� � � � � xn�k−1
t ∈ �k2 is the k-bit state vec-
tor at step n and A is the k× k transition matrix with
elements in �2. The output can be defined by any
transformation xn �→ un; the exact form of this trans-
formation is irrelevant for the remainder of the paper.
Usually, the output un ∈ �0�1
 at step n is defined
by un = ∑w

l=1 yn� l−12
−l for some positive integer w,

where yn = 	yn�0� � � � � yn�w−1
t = Bxn and B is a w ×
k matrix with elements in �2. Several types of pop-
ular RNGs fit this framework, including the Taus-
worthe or linear feedback shift register (LFSR), the
generalized feedback shift register (GFSR), the twisted
GFSR (TGFSR), the Mersenne twister, the WELL, xor-
shift, and SFMT generators (Tezuka 1995, Matsumoto
and Nishimura 1998, L’Ecuyer and Panneton 2005,
Panneton and L’Ecuyer 2005, Panneton et al. 2006,

Saito and Matsumoto 2008). The method we propose
applies to any RNG whose transition function is linear
as in (1), because the method is used only for jumping
ahead in the recurrence (1). The output transforma-
tion does not have to be linear for some matrix B; it
can be arbitrary.
Our aim is to compute

xn+� = A�xn (2)

for a large value of �, say, larger than 2100 or even
more. We assume that � is fixed in advance and that (2)
must be computed for several arbitrary vectors xn
unknown in advance. This is what we need to imple-
ment multiple streams and substreams. The algorithm
also works if � is not fixed, but then the computation-
ally expensive setup must be repeated each time.

3. Jumping Ahead
3.1. Matrix Method
A first method to jump ahead is the standard one,
described in the introduction: We start by precomput-
ing the matrix J=A� in �2. By a standard square-and-
multiply exponentiation technique (Knuth 1998), this
requires O	k3 log �
 operations, and we need k2 bits
to store J. Then, whenever jumping ahead is required
from state x, we compute the vector Jx. To obtain the
ith element of Jx, we compute the componentwise
product of the ith row of J by the (transposed) vec-
tor x, by a bitwise AND, and add the bits of the
resulting vector, modulo 2. A straightforward imple-
mentation of this on a w-bit computer requires k	k/w

AND operations, followed by k2 operations to count
the bits.
However, the work to add the bits modulo 2 can

be reduced as follows. Observe that we only need the
parity of the sum of bits in the vector, which can be
obtained by xoring all its bits. This can be achieved
as follows: partition the k-bit vector into w-bit blocks
(this is how it is stored), xor all these blocks together
(for a given vector, this requires 	k/w
 XOR opera-
tions), and then xor the bits in the resulting w-bit
block (w operations). The total number of operations
with this approach is 2k	k/w
+ kw.
Nevertheless, for k= 19�937, for instance, storing J

takes around 47.4 MB of memory, and computing it
by squaring and multiplying the binary matrices is
impractical (each squaring takes O	k3
 time).

3.2. Using the Polynomial Representation
A more efficient approach, when k is large, works
with the polynomial representation of the recurrence,
as follows. Write the characteristic polynomial of the
matrix A as

p	z
= det	zI+A
= zk+�1zk−1+ · · ·+�k−1z+�k�

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Haramoto et al.: Efficient Jump Ahead for �2-Linear Random Number Generators
INFORMS Journal on Computing 20(3), pp. 385–390, © 2008 INFORMS 387

where I is the identity matrix and �j ∈ �2 for each j ,
and recall that

p	A
=Ak+�1Ak−1+ · · ·+�k−1A+�kI= 0

(this is a fundamental property of the characteris-
tic polynomial). For more details, see, for example,
Strang (1988) or Golub and Van Loan (1996). Let

g	z
= z� mod p	z
= a1zk−1+ · · ·+ ak−1z+ ak� (3)

This g	z
 can be computed (once for all) in O	k2 log �

time by the square-and-multiply method (Knuth 1998,
§4.6.3) in the space of polynomials modulo p	z
.
Observe that g	z
= z�+q	z
p	z
 for some polynomial
q	z
. Combining this with the fact that p	A
 = 0, we
see that g	A
=A� and thus

J=A� = g	A
= a1Ak−1+ · · ·+ ak−1A+ akI�
Therefore, Jx can be computed by

Jx = 	a1Ak−1+ · · ·+ ak−1A+ akI
x
= A	· · ·A	A	Aa1x+ a2x
+ a3x
+ · · ·+ ak−1x


+ akx� (4)

where the latter represents Horner’s method for poly-
nomial evaluation. To compute this, we can simply
advance the RNG by k − 1 steps from state x and
add (by bitwise exclusive-or) the states obtained at
the steps that correspond to the nonzero aj ’s. This
computation requires running the RNG for k−1 steps
and adding at most 	k − 1
 k-bit vectors. For a ran-
dom polynomial g	z
 (whose coefficients a1� � � � � ak
are drawn uniformly over the set of all 2k possibili-
ties), there is on average k/2 nonzero coefficients, so
	k/2
− 1 vector additions are required. This compu-
tation still demands O	k2
 operations, but only k bits
of storage are needed for the coefficients of g	z
.
In practice, � is a fixed constant and g	z
 is not ran-

dom, but a typical g	z
 will have approximately k/2
nonzero coefficients. To examine more closely the cost
of this implementation, let us suppose that the com-
puter has w-bit words and that g	z
 has k/2 nonzero
coefficients. Each k-bit vector addition requires � =
	k/w
 XOR operations on the computer, so we need
		k/2
−1
�≈ k2/	2w
 operations to add the vectors if
we use a “standard” method.
It is important to recall here that the large-period

�2-linear RNGs are normally designed so that Ax can
be computed with only a handful of binary opera-
tions (such as XORs, shifts, and bit masks). Suppose
our RNG needs c such operations at each step. Then
we need 	k− 1
c operations to advance the RNG by
k− 1 steps. The total jump-ahead cost is thus 	k−1
c+
		k/2
− 1
� operations.

As a typical illustration, take w = 32, k = 19�937,
and c = 10. Then 	k − 1
c ≈ 2�0 × 105, whereas
		k/2
− 1
�≈ 6�2× 106, so the vector additions domi-
nate the cost. Our next improvement will reduce this
number of additions in exchange for some additional
storage.

3.3. Improvement via Decomposition and a
Sliding Window

We choose a small positive integer q, say somewhere
from 4 to 10. Let �q be the set of polynomials with
coefficients in �2 and of degree exactly q, i.e., of the
form h	z
= zq+b1zq−1+· · ·+bq where the bjs are in �2.
This set has cardinality 2q . We decompose g	z
 as

g	z
 = h1	z
zd1 + · · ·+hm	z
zdm +hm+1	z
+ zq� (5)

where hj	z
 ∈ �q for j = 1� � � � �m + 1, 0 ≤ dm < · · · <
d1 < k, and m is as small as possible. This decompo-
sition is obtained as follows. We write the coefficients
of g	z
 in a sequence:

a1 a2 a3 · · ·ak−1 ak�
If i1 = min�i > 0" ai = 1� is the index of the first
nonzero coefficient in the sequence, we set d1 = k −
q− i1, we define

h1	z
= zq + ai1+1zq−1+ · · ·+ ai1+q�
and we remove a1� � � � � ai1+q from the sequence. Then
we repeat the same process with the sequence that
starts with ai1+q+1 to define d2 and h2	z
, and so on.
In general, if ij = min�i > ij−1 + q" ai = 1� is the
index of the first nonzero element in the sequence
aij−1+q+1� � � � � ak and if k− ij ≥ q, we put dj = k− q − ij
and

hj	z
= zq + aij+1zq−1+ · · ·+ aij+q�
As soon as k− ij < q, we put m= j − 1 and

hm+1	z
= zq + aij zk−ij + · · ·+ ak�
This completes the decomposition (5). Note that this
decomposition does not depend on x.
Now, from (5), we can rewrite

Jx = g	A
x
= Adm	· · · 	Ad2−d3	Ad1−d2h1	A
x+h2	A
x
+h3	A
x


+ · · ·+hm	A
x
+hm+1	A
x+Aqx� (6)

To compute Jx, we first compute the vectors h	A
x for
all 2q polynomials h	z
 in �q , and store these vectors
in a table. Then, we start the RNG from state h1	A
x,
advance it by d1 − d2 steps, add h2	A
x to its state,
advance it by d2 − d3 steps� � � � � add hm	A
x to the
state, advance the RNG by dm steps, and finally add
hm+1	A
x+Aqx. We still need to advance the RNG by

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Haramoto et al.: Efficient Jump Ahead for �2-Linear Random Number Generators
388 INFORMS Journal on Computing 20(3), pp. 385–390, © 2008 INFORMS

a total of k− 1 steps, but m+ 1 vector additions now
suffice instead of k/2, where m≤ 	k/	q+ 1

.
This method is a direct adaptation of the sliding

window algorithm used for exponentiation in a group
(Möller 2005). We illustrate it by an example.
Example 1. Let k= 18, q = 3, and suppose that the

coefficients of g	z
 are the following:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
0 0 1 1 1 1︸ ︷︷ ︸

h1	z


0 1 0 0 0︸ ︷︷ ︸
h2	z


a12 a13 a14 a15 a16 a17 a18
1 1 1 0︸ ︷︷ ︸

h3	z


0 0 1︸︷︷︸
h4	z
+z3

.

In this case, we have i1 = 3, d1 = 15− i1 = 12, h1	z
=
z3+z2+z+1, i2 = 8, d2 = 15− i2 = 7, h2	z
= z3, i3 = 12,
d3 = 15− i3 = 3, h3	z
= z3+ z2+ z, and h4	z
= z3+ 1.
We also need an efficient method to compute the 2q

vectors h	A
x, because this has to be redone for each
new vector x. These 2q vectors can be computed effi-
ciently by using a Gray code (Savage 1997) to repre-
sent the elements of �q : We enumerate these elements
as t0	z
� t1	z
� � � � � t2q−1	z
 so that t0	z
 = zq and any
two successive elements in the sequence differ by a
single coefficient. This is Gray code enumeration. The
first vector t0	A
x = Aqx is computed automatically
when we advance the RNG, and then each vector
ti	A
x is computed from the previous one, ti−1	A
x, by
adding or subtracting (in �2 this is the same) a single
vector of the form Ajx for 0 ≤ j < q. These q vectors
are precomputed when we advance the generators by
q steps.
In the next subsection, we put together these ingre-

dients to define our algorithm.

3.4. Algorithm
The algorithm has two parts: (a) a one-time setup for
each jump size � and (b) the jumping from xn to xn+� .
It is described in Figure 1.
To summarize the computing costs in the second

part, we need 	k−1
c operations to advance the RNG
by k − 1 steps, then 2q − 1 vector additions to com-
pute all the vectors ti	A
x, and a further m+ 1≤ 1+
	k/	q + 1

 additions to compute (6). Because each
vector addition requires � operations, the total cost is
at most

	k−1
c+	2q−1+m+1
�≤ 	k−1
c+	2q+	k/	q+1


�
operations. The value of q can be chosen to minimize
this number; i.e., minimize the upper bound na	k� q
=
2q + 	k/	q + 1

 on the number of vector additions
(because the term 	k− 1
c does not depend on q). As
an illustration, Table 1 gives the value of na	k� q
 as a
function of q for k= 19�937 and w= 32. The minimum

Preliminary setup for a given �.
Compute the polynomial g	z
 in (3) and store
its coefficients in an array.

Select q > 0 and choose a Gray code to enumerate the
polynomials of �q (equivalently, the integers 0�1� � � � �2q − 1).

Compute m�d1� � � � � dm�h1	z
� � � � � hm	z
�hm+1	z
� c1� � � � � cm� cm+1,
where cj is the Gray code of hj 	z
, i.e., hj 	z
= tcj 	z
, for each j .

Jump ahead by � steps, from state x.
Compute Ax�A2x� � � � �Aqx by running the RNG for q steps.
y0 ← t0	x
=Aqx.
For i= 1� � � � �2q − 1 do
Compute yi+1 = ti+1	A
x from yi = ti	A
x; this requires
a single vector XOR.
x′ ← yc1 .
For j = 2� � � � �m do
x′ ←Adj−1−dj x′ +ycj .
x′ ←Admx′ +ycm+1 +y0.
Return x′.

Figure 1 The Jump-Ahead Algorithm

is attained for q = 8. The case q = 0 refers to the com-
putation via the ordinary Horner method given in (4),
for which the table gives the expected number of vec-
tor additions for a random polynomial. With q = 8,
the number of additions is reduced by approximately
a factor of four.
This algorithm can still be applied when the value

of � is not fixed, but then the (costly) preliminary
setup must be repeated each time.

3.5. Timings
We made the following experiment to measure the
CPU time required by the proposed algorithm to
jump ahead by an arbitrary number of steps, from an
arbitrary state, for k= 19�937 with both the Mersenne
twister and a WELL generator, k= 1�024 with a WELL
generator, and various values of q. We generated a
polynomial g	z
 and a state x at random, uniformly
over the set of possible nonzero values, and measured
the time to compute g	A
x. Thus, g	z
 was a polyno-
mial of degree ≤k and x was a k-bit vector. Generating
such a random g	z
 is equivalent to generating a ran-
dom � uniformly over the set �1�2� � � � �2k − 1�. Even
though � is normally fixed (not random), generating
it at random several times and taking the average per-
formance provides a good representation of a “typ-
ical” �. Note that for a given k, the speed does not
really depend on the “size” of �.
We replicated this 1,000 times and computed the

average CPU time for jumping ahead in millisec-
onds (msec). Table 2 reports these CPU times and the
required memory size for each method, on the follow-
ing computers: (a) an Intel Pentium 4 at 3.0 GHz, with

Table 1 Value of na�k� q� as a Function of q for k = 19�937

q 0 · · · 4 5 6 7 8 9 10 11 12

na�k� q� 9,968 · · · 4,004 3,355 2,913 2,621 2,472 2,506 2,837 3,710 5,630

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Haramoto et al.: Efficient Jump Ahead for �2-Linear Random Number Generators
INFORMS Journal on Computing 20(3), pp. 385–390, © 2008 INFORMS 389

Table 2 Required Memory Size and Average CPU Time
(in Milliseconds) for a Random Jump Ahead, for k = 19�937,
on Pentium 4 (32-Bit) and AMD Athlon (64-Bit) Computers

q 0 4 5 6 7 8 9 10

Memory (Kb) 2.5 39 78 156 312 624 1,248 2,496

32-bit MT19937, w = 32 15	9 5	8 5	1 4	7 4	3 4	5 5	1 6	8
Pentium WELL19937, w = 32 15	9 6	3 5	4 4	9 4	6 4	7 5	4 7	4

MT19937-64, w = 64 19	8 7	1 6	2 5	7 5	2 5	3 6	1 8	4
64-bit MT19937, w = 32 9	0 3	9 3	6 3	3 3	2 3	3 4	5 6	7
Athlon WELL19937, w = 32 9	7 4	0 3	8 3	5 3	4 3	5 4	8 7	1

MT19937-64, w = 64 5	6 2	4 2	4 2	3 2	1 2	3 2	9 5	0

1.0 GB of memory, using the gcc compiler with the
-O2 option, under Linux; and (b) a 64-bit AMD-Athlon
64 3200+, with 2.0 GB of memory, also using Linux
and the same compiler. The tested generators are the
32-bit MT19937 (Matsumoto and Nishimura 1998), the
32-bit WELL19937 (Panneton et al. 2006), and a 64-
bit Mersenne Twister named MT19937-64 (Nishimura
2000).
The timings show that the proposed jump-ahead

algorithm is viable even with q = 0. For k = 19�937,
the sliding window with a good value of q provides
a speedup by a factor of about three on a 32-bit com-
puter. It also requires 312 Kb of memory, but for most
practical applications this is not a serious drawback
given the memory sizes currently available. There is
more improvement on the Pentium than on the AMD
Athlon, and this is especially true for the MT19937-64
generator. Note that the speed does not necessarily
double when going from a 32-bit to a 64-bit proces-
sor, for several reasons (memory access is not twice
as fast, the Pentium and Athlon are different, etc.).
Even for k= 1�024 (a small value), the sliding window
remains advantageous.
A similar experiment with a clever implementa-

tion of the matrix method of §3.1 gave the following
results: For k= 19�937, the jump ahead took 24.5 msec
on the 32-bit Pentium and 17.0 msec on the 64-bit
Athlon, on average. For k = 1�024, the timings were
0.117 msec on the 32-bit Pentium and 0.096 msec on
the 64-bit Athlon, on average. This is roughly five
times slower than the proposed method for k= 19�937
and 50% slower for k= 1�024.

Table 3 Required Memory Size and Average CPU Time
(in Milliseconds) for a Random Jump Ahead, for k = 1�024,
on Pentium 4 (32-Bit) and AMD Athlon (64-Bit) Computers

q 0 3 4 5 6 7

Memory (Kb) 0.13 1.0 2.0 4.0 8.0 16.0

32-bit WELL1024, w = 32 0	098 0	069 0	068 0	075 0	077 0	092
Pentium

64-bit WELL1024, w = 32 0	096 0	060 0	062 0	068 0	071 0	086
Athlon

We also estimated the time to precompute
z� mod p	z
 using C++ and the NTL library (http://
www.shoup.net/ntl) for the polynomial calculations.
For this, we generated 1,000 values of � randomly
and uniformly in �0�1� � � � �264−1�, and measured the
average CPU time to compute z� mod p	z
. The aver-
age was 239 milliseconds for k = 19�937 and 1.9 mil-
liseconds for k = 1�024. This is much more than the
time required to jump ahead. We underline that in an
actual implementation, z� mod p	z
 is precomputed
once for all and stored when implementing the soft-
ware, so its computation time is irrelevant for the
user.

4. Conclusions
We have developed a viable jump-ahead algorithm
for large linear RNGs over �2. With this technique, one
can easily implement RNG packages with multiple
streams and substreams, based on long-period gen-
erators such as the Mersenne twister and the WELL
with a period length of 219�937 − 1. For these gener-
ators, jumping ahead takes a few milliseconds with
the proposed method. This is still significantly slower
than for the MRG32k3a generator in L’Ecuyer et al.
(2002), whose jump-ahead time is a few microseconds.
On the other hand, MRG32k3a is slower to generate
its numbers, by a factor of two or three on com-
mon 32-bit computers, and has a much shorter period
length. For applications where jumping ahead is not
required too frequently and where a fast long-period
RNG is desired, the new jump-ahead algorithm comes
in very handy.

Acknowledgments
This study was partially supported by JSPS/Ministry
of Education Grant-in-Aid for Scientific Research Nos.
18654021, 16204002, and 19204002, JSPS Core-to-Core Pro-
gram No. 18005, NSERC-Canada Grant ODGP0110050, and
a Canada Research Chair to the last author. The paper was
written while the last author was enjoying the hospitality
of IRISA-INRIA in Rennes, France, and while the second
author was a visiting professor at The Institute of Statistical
Mathematics, in Japan.

References
Golub, G. H., C. F. Van Loan. 1996. Matrix Computations, 3rd ed.

John Hopkins University Press, Baltimore.
Hellekalek, P. 1998. Don’t trust parallel Monte Carlo! Twelfth Work-

shop on Parallel and Distributed Simulation, Banff, Canada. IEEE
Computer Society, Los Alamitos, CA, 82–89.

Kelton, W. D. 2006. Implementing representations of uncertainty.
S. G. Henderson, B. L. Nelson, eds. Simulation. Handbooks in
Operations Research and Management Science, Chapter 7. Elsevier,
Amsterdam, 181–191.

Knuth, D. E. 1998. The Art of Computer Programming, Seminumerical
Algorithms, 3rd ed., Vol. 2. Addison-Wesley, Reading, MA.

Law, A. M., W. D. Kelton. 2000. Simulation Modeling and Analysis,
3rd ed. McGraw-Hill, New York.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Haramoto et al.: Efficient Jump Ahead for �2-Linear Random Number Generators
390 INFORMS Journal on Computing 20(3), pp. 385–390, © 2008 INFORMS

L’Ecuyer, P. 1990. Random numbers for simulation. Comm. ACM 33
85–97.

L’Ecuyer, P., S. Côté. 1991. Implementing a random number package
with splitting facilities. ACM Trans. Math. Software 17 98–111.

L’Ecuyer, P., F. Panneton. 2005. Fast random number generators
based on linear recurrences modulo 2: Overview and compari-
son. Proc. 2005 Winter Simulation Conf., IEEE Press, Piscataway,
NJ, 110–119.

L’Ecuyer, P., R. Simard, E. J. Chen, W. D. Kelton. 2002. An object-
oriented random-number package with many long streams
and substreams. Oper. Res. 50 1073–1075.

Matsumoto, M., T. Nishimura. 1998. Mersenne twister: A 623-
dimensionally equidistributed uniform pseudo-random num-
ber generator. ACM Trans. Model. Comput. Simulation 8 3–30.

Möller, B. 2005. Sliding window exponentiation. H. C. A. van
Tilborg, ed. Encyclopedia of Cryptography and Security. Springer-
Verlag, New York, 588–590.

Nishimura, T. 2000. Tables of 64-bit Mersenne twisters. ACM Trans.
Model. Comput. Simulation 10 348–357.

Panneton, F., P. L’Ecuyer. 2005. On the xorshift random number
generators. ACM Trans. Model. Comput. Simulation 15 346–361.

Panneton, F., P. L’Ecuyer, M. Matsumoto. 2006. Improved long-
period generators based on linear recurrences modulo 2. ACM
Trans. Math. Software 32 1–16.

Saito, M., M. Matsumoto. 2008. SIMD-oriented fast Mersenne
twister: A 128-bit pseudorandomnumber generator. S. Heinrich,
A. Keller, H. Niederreiter, eds. Monte Carlo and Quasi-Monte
Carlo Methods 2006. Springer-Verlag, Berlin, 617–632.

Savage, C. 1997. A survey of combinatorial Gray codes. SIAM Rev.
39 605–629.

Strang, G. 1988. Linear Algebra and Its Applications, 3rd ed. Saunders,
Philadelphia.

Tezuka, S. 1995. Uniform Random Numbers: Theory and Practice.
Kluwer Academic Publishers, Norwell, MA.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.


