Variance Bounds and Existence Results
for Randomly Shifted Lattice Rules

Vasile Sinescu and Pierre I’Ecuyer
DIRO, University of Montreal, Canada

Abstract

We study the convergence of the variance for randomly shifted lattice rules
for numerical multiple integration over the unit hypercube in an arbitrary
number of dimensions. We consider integrands that are square integrable
but whose Fourier series are not necessarily absolutely convergent. For such
integrands, a bound on the variance is expressed through a certain type of
weighted discrepancy. We prove existence and construction results for ran-
domly shifted lattice rules such that the variance bounds are almost O(n~%),
where n is the number of function evaluations and o > 1 depends on our as-
sumptions on the convergence speed of the Fourier coefficients. These results
hold for general weights, arbitrary n, and any dimension. With additional
conditions on the weights, we obtain a convergence that holds uniformly in
the dimension, and this provides sufficient conditions for strong tractability
of the integration problem. We also show that lattice rules that satisfy these
bounds are not difficult to construct explicitly and we provide numerical
illustrations of the behaviour of construction algorithms.

Keywords: Numerical multiple integration, quasi-Monte Carlo, lattice
rules, discrepancy, random shift, variance.
2000 MSC: 65D30, 65D32, 11K38, 62J10.

Email address: vsinescu@yahoo.co.nz, lecuyer@iro.umontreal.ca (Vasile
Sinescu and Pierre L’Ecuyer)

Preprint submitted to Journal of Computational and Applied Mathematics February 22, 2012

1. Introduction and summary

Integrals over the d-dimensional unit cube given by

Ii(f) = /(0 b f(x)dx

can be approximated by quadrature rules of the form

|
—

n

Qnalf) = f(te),

0

S|
il

which average function evaluations over the set of quadrature points P, :=
{to,t1,...,t,—1}. In standard Monte Carlo (MC), these points are indepen-
dent and have the uniform distribution over the unit cube (0, 1)?. In classical
quasi-Monte Carlo (QMC) methods, the points are deterministic and they
are selected to cover the unit cube very evenly, that is, so that a given (pre-
specified) measure of discrepancy between their empirical distribution and
the uniform distribution is smaller than for independent random points. In
randomised QMC (RQMC), the points are randomised in a way that each
point t; has the uniform distribution over the unit cube while the points
keep their low discrepancy when taken together. The performance of QMC
methods is often studied by bounding the convergence rate of the worst-case
integration error as a function of n, for given classes of integrands. With
RQMC, we have a noisy but unbiased estimator of I,(f), so it makes sense
to assess the performance of this estimator via the convergence rate of its
variance as a function of n, instead of the worst-case error. This will be our
viewpoint in this paper.

Lattice rules (with a shift) are a class of QMC constructions for which
the set of quadrature points is

P,=(L+A)NnJ0,1)¢

where A € [0,1)? is called the shift, and L is an integration lattice of density
n in R?, defined as a discrete subset of R? which is closed under addition
and subtraction, which contains Z? as a subset, and has n points per unit of
volume in R, When A = 0, we have a “plain” or “unshifted” lattice rule,
which is a QMC method. If A is random with the uniform distribution over
the unit cube (0, 1)?, we have a RQMC method known as a randomly-shifted
lattice rule (RSLR). This is the type of method considered here.

2

In fact, in this paper, we restrict ourselves to a subclass of shifted rank-1
lattice rules for which P, can be written as

Pn::{{k—z—l-A},ngSn—l},

with generating vector z € Z¢ where Z, = {z € {1,2,...,n — 1} :
ged(z,n) = 1}, and where the braces around a vector indicate that we take
only the fractional part of each component (this is the “modulo 1” operator).
In this case, the dual lattice to L is given by

t={heZ h-z=0(modn)}.

More details on lattice rules can be found in [14] and [21].
Suppose that f has the Fourier series representation

§ : f 27r1h,:c
heZd

with Fourier coefficients
fy = [f@etaa,
(0,1)¢

The following proposition, proved in [11], tells us that the RSLR yields an
unbiased estimator regardless of the choice of lattice, and it provides an
explicit expression for the variance in terms of the dual lattice and the Fourier
coefficients of f. As pointed out in [11], the Fourier series does not have to
be absolutely convergent.

Proposition 1. Suppose that f is square integrable. With either MC or a
RSLR, we have E[Qyn.q4(f)] = Id(f). With MC, the variance is

Var[@n d(— == Z ‘f

heZd

where 02 = f(o 1ya f2(x)dx — I3(f) and the ' in the sum indicates that we
omit the h = 0 term, whereas with a RSLR with integration lattice L, it is

Var Qnd Z |f (1>

helt

Ideally, for any given function f, we would like to find a lattice L that
minimises the variance expression (1). This suggests figures of merit, or
measures of “discrepancy” (for P,), of the form

Z/ w(h), (2)

helL+

where the weights w(h) are chosen in correspondence with the class of func-
tions f that we want to consider. (Here the quotes around “discrepancy”
reflect the fact that (2) may not represent a natural measure of discrepancy
from the uniform distribution.) As noted in [10, 11], this discrepancy (2)
provides an obvious bound on the RSLR variance for all functions f whose
Fourier coefficients satisfy | f(h)|? < w(h). Giving an arbitrary weight w(h)
to each vector h as in (2), seems to be the most general way to assign those
weights. However, finding optimal weights at that level of generality is im-
practical, because it would require knowledge of all the Fourier coefficients of
f and there are infinitely many. Moreover, given a selection of weights w(h)
and a parameter o > 1 that controls the decay of the weights, a key question
of interest is whether we can construct sequences of lattices indexed by n so
that the corresponding discrepancy (2) converges as O(n~%).

This last question is easier to study for a slightly more restrictive class
of weights defined as follows. For each subset of coordinates (or projection)
uCD={l,...,d}, we select a projection-dependent weight ~, > 0. Such
weights have been introduced in [7, 22] together with the concept of “weighted
spaces of functions”. More precisely, [22] considered only the special case of
product weights, defined by v, =[] jen V5 for all u, for some positive constants
Y, - - -, Ya, Whereas [7] introduced the more general weights considered here.
Note that these projection-dependent weights are not the same as the weights
w(h) in (2) and that for the rest of the paper, by “weights”, we mean the
projection-dependent weights ~y,. Then for each h = (hy,...,hq) € Z%, we

take
w(h) = vyn H |y~
j€u(h)

where u(h) = u(hy, ..., hq) is the set of indices j for which h; # 0, and a > 1
is a given constant. These types of projection-dependent weights have also
been adopted earlier by several authors, under the name “general weights”

[4, 18]. With these weights, the discrepancy (2) becomes

Dyan(z,0) =) Z Yo] sl (3)

uCD {heLt:u(h)=u} jEu

This weighted discrepancy, which turns out to be a square worst-case error
as explained later, provides a bound on the RSLR variance for the class of
functions f whose Fourier coefficients satisfy

Fml <~ T sl (4)

jeu(h)

One motivation for adopting projection-dependent weights ~, is that
these weights can be selected by “matching” the variance components o2
in a functional ANOVA decomposition of f. This decomposition writes f as

= Z ful)

uCD

where fp = [d(f), the other f, are orthogonal and have mean zero, and if
we denote o2 f[o n f2(x) dz, the MC variance of f,, then the total MC
variance has the correspondmg decomposition o = 3, 0n [13, 23]. The
variance components o2 can be estimated by MC techniques described in
23] and the weights 4, can be selected as increasing functions of these o2,
as suggested in [24] and [12], for example.

We prove that for any a > 1, any (satisfying 1 < 3 < «, and any fixed
dimension d, regardless of the choice of weights ~y,, for each n > 3 there
exists a generating vector z* = z*(n) such that

Dyan(2",) < k% C(a, B,d,v)n " (loglogn)”, (5)
where k is an absolute constant and
B8
C(, 8,d,7) (Z /(2 a/ﬁ))“’) : (6)
uCpD

where ((a) := >, h™® denotes the Riemann zeta function. The constant
C(a, ,d,7) does not depend on n but it may be unbounded in d, depending
on the choice of weights. Under the additional condition that

Cla,B,d,v) < Cla, B,y) foralld > 1, (7)

5

for some constant C'(«, 3,7) that does not depend on d, the bound in (5)
becomes uniform in the dimension d.

We also provide algorithms that provably construct (either in a determin-
istic or in a probabilistic sense) vectors z that satisfy the above conditions
for any given d, a, 1 < 3 < «a, weights ~,,, and n, by evaluating the expres-
sion (3) for only a small number of vectors z. These construction methods
include the well-known component-by-component (CBC) technique used in
[4, 9, 18, 19, 20] and a few randomised versions similar to those used in
[19, 24]. Under the assumption that (3) can be evaluated efficiently, we show
that finding vectors z that satisfy the bound (5) is quite easy.

Our assumptions on the integrand are not much stronger than square in-
tegrability, which is a minimal smoothness assumption even for standard MC.
The variance expression in Proposition 1, proved in [11], also holds in such
generality. However [11] gives no result on the existence and construction of
good randomly shifted lattice rules. The purpose of our paper is to provide
such results. It turns out that (3) has the same expression as the square
worst-case error in weighted Korobov spaces considered in [4], with the dif-
ference that we assume a > 1 in (4), while o > 2 was assumed in [4] and in
other references that proved existence results. The class of integrands con-
sidered here is much larger than in [3, 4, 8, 9], where integrands are assumed
to be in certain reproducing kernel Hilbert spaces such as Korobov spaces of
periodic functions, or in Sobolev spaces with square integrable partial mixed
derivatives. We also relax the assumptions on the functions considered in
[18, 20] where the integrands were assumed to have integrable partial mixed
first derivatives.

In particular, our results cover integrands that may have discontinuities
and we make no assumption on their derivatives. These relaxations are im-
portant from a practical viewpoint, since many integrands encountered in
practice are not smooth. For example, the expected payoff of a barrier op-
tions in finance [13], or the probability that the completion of a project
exceeds a given time limit when its components have random durations [11],
or the probability that more than 20% of the received calls in one month of
operation of a call centre wait more than 30 seconds [2], are all integrals of
discontinuous functions. Since our bounds on the variance are expressed via
the worst-case error in certain Korobov spaces, the results already proved in
3, 4, 8, 9] also hold here, but we add new knowledge to those results. Our
results cover the combination of arbitrary (non-prime) number of points n,
general projection-dependent weights, and random shift, which has not been

6

considered before. For instance, the results of [4] are for general projection-
dependent weights, but only for prime n and unshifted lattice rules. However,
since the space of functions considered in [4] is the weighted Korobov space
with shift-invariant kernel, adding a shift does not affect the discrepancy
(3). Other results in [3, 8, 9] were developed only for the product weights
mentioned earlier. The results in these papers also used a second sequence
of weights and their derivation involve the number of prime factors of n,
which is not needed here. We will show that the results in those previous
papers are particular cases of ours, under no more restrictive assumptions.
Our results are also presented here in a form that is easier to follow. Our dis-
crepancy bounds also differ from previous ones and are significantly smaller
in some situations, for reasonable values of a and n. It is known from [3]
that in a weighted Korobov space of functions whose Fourier coefficients sat-
isfy (4) for some o > 2, there exist rank-1 lattice rules for which the square
worst-case error converges as O(n~*(logn)?) as a function of n. In this
paper, by bounding the variance instead of the worst-case error, we can ex-
tend the known results in Korobov spaces for a > 2 by covering the case
where 1 < a < 2, that is, situations where the Fourier series associated
with the integrand is not absolutely convergent. Our bounds replace the
O(n~(log n)4) expression by O(n=?(loglogn)®) for any 1 < 3 < a, with 3
arbitrarily close to a.

The remainder of the paper is organised as follows. The main theoretical
results are presented and proved in Sections 2 and 3. These results concern
the existence of good lattice rules, the analysis of the convergence of the figure
of merit and the construction of lattice rules that are good with respect to
the figure of merit. We then illustrate the empirical performance of the
construction methods on a typical example.

2. Existence and convergence results

Existence results for good lattice rules with respect to a certain figure of
merit are usually proved by an averaging argument; see for instance [4, 9,
18, 20]. We will use this type of argument, and for that purpose we consider
the average of the quantities (3) over all possible generating vectors z. Of
course, there has to be a generating vector z that produces a discrepancy not
bigger than the average. Then, to analyse the convergence of the quadrature
error for a better than average z, we will prove that the average is bounded
by the right-hand side of (5).

We now proceed to bound the average discrepancy. We first expand the
inside sum in the right side of (3) as

271'1hkz]/n

> eSO ©
{heLL:u(h)=u} j€u k=0 jeu \ heZ

which follows from [21, Theorem 2.8] applied to the function

w =1l (Z/ ermaj) |

JEu heZ

By using (8) in (3), we obtain

,627rihk:z]'/n
Didnlz,0) = ZZ’RH(Z W) (9)

k=0 uCD JEU heZ

The average of this discrepancy (9) over all admissible vectors z is

Mnd’y = d ZDnd’yza (10)

zezZd

where p(n) denotes the Euler totient function of n. For prime n, we have an
exact formula for this average, also established in [4]:

M, a(c Z'ru 2 ()™ + nT_l > A (W),

uCD uCD

where
2(a)(1—n'=)

n—1

W(a) =—

If the weights have a product form, that is, v, = HjEuyj, where 7; > 0 is a
weight associated with coordinate j for each j, then the average for prime n
is given by

14 1
Myan(a) == (1 +2v;¢([T +uw(e) -1
=1 7=1

3

n

For non-prime n, no closed form formula for the average is available, but
we establish an upper bound for it.

Theorem 1. For any n > 2, any dimension d > 1, and any given o > 1,

we have

Mn,d’)‘() S M Z’Yu |u‘

(11)

Proof. Expanding the average (10) using (9), as in [4] but with the difference

that here n is an arbitrary positive integer, we obtain

nd'y ZZ’Y;J na \u|>

k 0 uCD

where)
, ethkz/n

I

Tnolh) = 20y s0() 2.2

2€Z, hEZ

From [5] and [9, Lemmas 2.1 and 2.2], we obtain

n—1

T) <~ (oc(a))h
kz:;(a(F)) SD(H)(()™,
for any subset u C D. By using (14) in (12), we obtain
1
Mn,d'y WZ’Y 2<’ \u|’

uCD

which is the desired (11).

When n is prime, this gives the same bound as in [4], namely
1
M. - E [u]

If d =1, then for any z € Z,, it follows easily from (3) that

27{1}@(&).

nOt

Dn,l,’y(z7 05) =

(12)

(13)

(14)

(15)

Of course, there must be at least one vector z as good as the average,
and therefore at least one generating vector z whose discrepancy does not

exceed the bound given by Theorem 1.

9

It is known from [3] that for any fixed o > 1, there is at least one vector
z for which the expression (3) converges as O(n~%(logn)®) when n — oo,
and that the exponent —a in n™¢ is optimal. We can apply this result here
and it provides a bound on the convergence rate of the discrepancy for the
best z = z(n), as a function of n. In the next theorem, we follow a different
path and obtain a different bound.

Theorem 2. Let o > 1 be fized. For any dimensiond > 1 and integern > 3,
there exists a vector z* € Z2 such that for any 3 satisfying 1 < 3 < a, we
have

(16)

kloglogn A
n)

Dn,d,’y(Z*a O{) S C(Oé, ﬂ? d7 7) (
where k > 0 is an absolute constant and
B
C(, 8,d,7) (va 2(a/ﬂ))“’)
uCD

is as given in (6). Moreover, if the weights are chosen so that condition (7)
holds, that is, C(«, 3,d,~) < C(a, 3,7), then the bound (16) is also uniform
n d.

Proof. We will use Jensen’s inequality [6, Theorem 19, p. 28], which states
that for arbitrary non-negative numbers a; with ¢ = 1,2,... and 0 < t < s,

we have
1/s 1/t
(Z af) < (Z a’é) : (17)

By taking a (such that 1 < 8 < a and applying Jensen’s inequality (17) in
(3), we obtain

B

Dypan(z,0) < | > Z AT 1hgl

uCD {heLt:u(h)=u} jeu

Consider now a vector z* such that D, 4~(2*,) < D, 4~(z,a) for all z €
Z4. From the previous inequality, we have

Dn,d,’y(Z*a Oé) S Dn,d,’y(z7a> S (Dn,d,—yl/ﬁ(zaa/ﬁ))ﬁv for all z S Zle (18>

10

From Theorem 1, there exists a vector z € fo such that

D, gi6(z,a/B) < M, 41/8(a/B) < 80— 271/,@ 2¢(ar/B))M,

(uCD

Combining this with (18) leads to

Dyinl=',0) (Zvl/ﬁzca/m'“))

) & (#(n))?

where C(a, 3, d,) is given by (6). We now use an inequality from [17], which

states that
n w 2.50637

— < —
©(n)loglogn ‘ (loglogn)?’
for any n > 3, where w is the Euler-Mascheroni constant. This leads to

1 o 2.50637 log logn
< |le .
e(n) (loglog n)? n

Clearly, the expression in parentheses decreases as n increases and therefore
there exists an absolute constant £ > 0 such that

1 </§10g10gn
pn) = n

(20)

For instance, we can take k = ¢* +2.5 for any n > 15. Replacing this in (19),
we obtain (16). If the weights are chosen so that (7) holds, then obviously
the bound in (16) does not depend on d, and this completes the proof. [

Theorem 2 shows that there exists a generating vector z whose discrep-
ancy is O(n=?(loglogn)?), where the dimension d appears only in the con-
stant C'(a, 3, d,v)x” and not in the function of n. Similar convergence results
for the figure of merit have been obtained previously [3, 4, 14], based on the
asymptotically optimal bound of O(n~%(logn)®) (which is asymptotically
slightly stronger because 3 < «), by writing (logn)® < C)(«, d, d)n°, where
0 > 0 can be taken arbitrarily small. However, there are many situations
where our bound is much smaller than the bound provided in those refer-
ences, for reasonable values of a and n. To see this, let us compare our
bound with the bound in [3, Theorem 6], for the case of product weights,

11

where v, =[] jewj for any u € D. That theorem states that there exists a
generating vector z for which

d
H (1 + 27;/0‘(1 —log2 + C(a)/* + 10gn)> . (21)

Jj=1

1
p(n)*

Dn,d,'y(za O‘) S

For the same product weights, the constant C(«, 3, d,«y) in (6) can be written

as
d

B

Jj=1

If we take for instance o = 2, d = 10, and weights v; = 1/j%, then for
n = 16384 = 2! the bound given by (21) is approximately 9.5046 x 107,
whereas the bound in (16) reaches a minimal value (as a function of f3)
of 0.0022 when § = 1. Thus, our upper bound is smaller by a factor of
about 4 x 10", As another example, for a = 2, d = 5, weights v, = 1/52,
and n = 1048576 = 2%, the bound in (21) is 0.5027, while that in (16)
reaches a minimum value of 2.5873 x 107° at 3 = 1. Also for a = 2 and
weights v; = 1/7%, if we now take n = 2097152 = 22! and d = 10, the
bound in (21) is 2.3005 x 10°, while the bound in (16) reaches its minimum
value of 1.0146 x 10~® when 3 ~ 1.19. These numerical examples show that
by minimising (16) over (3, one can obtain a much tighter bound on the
discrepancy than the bound given by (21).

Given that 1 < # < « and because the variance is bounded by this
discrepancy, it follows that with a RSLR we can obtain a variance that
converges at a faster rate than the usual O(n™!) achieved by MC methods.

3. Construction results and algorithms

In this section we present algorithms to construct generating vectors of
rank-1 lattice rules and prove that a component-by-component (CBC) con-
struction method (see [15, 16]) returns a generating vector whose weighted
discrepancy (9) satisfies the bound given in Theorem 2. We also compare
the performance of the CBC algorithm with simpler (and more naive) ran-
dom search methods. We suppose that d, a and the weights are fixed. We
also assume that n > 3, and that the discrepancy (9) can be computed in
constant time for any vector z. The latter assumption is not always true in

12

practice, but it holds when « is an even integer and was used in [4, 8, 9, 21]
and perhaps not in other cases, as we explain in the final section.

The CBC algorithm constructs the generating vector z = (z1, 22, ..., 24)
as follows.

CBC construction algorithm:

Let 2z, :=1;
Fors=2,3,...,d, find z, € Z, that minimises D,, 5 ((z1, 22, ..., 25), @),
defined in (9), while 21, ..., zs_; remain unchanged.

We now discuss the total computing time required by this algorithm for
the situation where « is an even integer. Then, it is known (see [21]) that
the infinite sum

, e?wihkz/n
C’k(z,a) = Z W (22)
heZ
can be expressed as the finite sum
,627riha: (_1)%+1(27T)aB (x) (23)

|h|le a!
heZ
for all x € [0,1], where B, is the Bernoulli polynomial of degree . In
this case, since there are 2¢ weights, the computation of (9) for fixed z, n,
and d requires O(nd2?) operations, and the full CBC construction requires
O(n2d2%) time, plus additional storage. This is explained in [18] for a different
type of discrepancy, but the argument remains the same. Note that if we
would recompute the product over j in (8) for each value of s in the CBC
algorithm, we would get O(n%d?2?) instead of O(n%d2?) for the total time;
we obtain the latter by storing the partial products from previous iterations,
for each k. This requires O(n) storage. Of course, having 2¢ weights is
unpractical, but the cost of the CBC algorithm can be dramatically reduced
for particular classes of weights. See [1, 3, 4, 15, 16, 18, 20] for further details.
There is also a fast version of this CBC construction algorithm which re-
turns a generating vector z in O(ndlogn) time for certain types of weights,
such as product weights [15, 16]. The fast CBC construction of [1, 15, 16] re-
places the n? factor with a much smaller one of nlog n by using a fast Fourier
transform, while particular classes of weights such as product weights allow
a further reduction on the dimension dependence of the construction algo-
rithm, to yield the mentioned O(ndlogn). Although the O(ndlogn) time

13

required by the full CBC construction is optimal, we think it is neverthe-
less interesting to compare this algorithm with simpler (more naive) random
search methods, because they are easier to implement and can easily provide
good point sets, as we will see later.

The following randomised CBC construction algorithm simplifies the pre-
vious one by examining only a small number of integers z;, € Z, (cho-
sen at random) at each step. It has been already used in [19], where the
discrepancy measure to minimise was the classical weighted star discrep-
ancy of [18, 20]. A similar algorithm was considered in [24], with the ad-
ditional feature that for any given s, new integers z, are examined until

Dn,s,’y((zly 29y 7Zs)a a) S Mn,s,’y(a)~

Randomised CBC construction algorithm (R-CBC):

Let z; :=1;

For s =2,3,...,d,
choose r integers z, at random in Z,,, and select the one that
minimises D, s ~((21, 22, ..., %),), while 21,..., z,_; remain
unchanged.

An even simpler (and more naive) algorithm is a uniform random search
in (Z,)?, as follows:

Uniform random search algorithm (R-search):
Choose 1 vectors z at random in (Z,)9, and select the one that
minimises D,, s ~((21, 22, . - ., 2s), Q).

Both R-CBC and R-search algorithms yield a random output, while the
full CBC construction gives a deterministic output. Following the same idea
as for the full CBC construction, one can see that for product weights, the
R-CBC algorithm takes O(ndr) time, where r is the number of random selec-
tions at each step. If r ~ logn and if we assume that the hidden constants in
the two O(+) expressions are the same, this is comparable to the O(ndlogn)
time required by the fast implementation of the CBC algorithm. Those hid-
den constants depend on the specific implementations and comparing them
is beyond the scope of this paper. But to give a rough idea of what they can
be, with an implementation of fast CBC and R-CBC currently developed by
D. Munger and P. L’Ecuyer, for a prime n near 2%, fast CBC needs about
twice the CPU time of R-CBC with r = 14 = logn.

14

As pointed out in [15], the hidden constant in the O(ndlogn) expression
depends on the number of divisors of n and the number of prime factors
of n, since the number of fast Fourier transforms on which the fast CBC
construction is based, is dependent on these numbers. The hidden constant
in O(ndr) does not depend either on the number of divisors or the number
of prime factors of n. In a similar way, the R-search algorithm also takes
O(ndr) time, where r is this time the total number of random trials. See
also [19] for further discussion on the R-CBC and R-search algorithms. The
randomised algorithms can be attractive from a practical viewpoint if we find
that they return vectors z with figures of merit comparable to those returned
by the CBC method even for small r. This is basically what we will find for
R-CBC in our numerical experiments. Similar results, for a different figure
of merit, were reported in [19].

Another special category of weights, used for example in [4, 18, 20], are
order-dependent weights, where v, is assumed to depend only on |u|, the
cardinality of u, so we can write 7, = I'; when |u| = ¢, where I'y,... Ty are
non-negative constants. It was shown in [1] that the cost of the fast CBC
construction for these weights is also O(ndlogn), but with O(nd) storage.
Our R-CBC algorithm for these weights will also require O(ndr) plus O(nd)
storage by using the same arguments as in [1].

We now prove that the (full) CBC algorithm constructs a generating
vector z whose corresponding discrepancy satisfies the bound of Theorem 2.
The proof is by induction on d and a similar idea was used in [4, 9, 18, 20]
under the specific assumptions made in these papers. It basically shows that
we can construct good lattice rules that are extensible in d, if we assume that
we can compute the discrepancy for any given z.

Theorem 3. For any integer n > 3 and any dimension d > 1, there exists
a z € Z¢ such that

E
Dnan(2,0) < (Z’rl/ﬁ 2¢(a/P))“') : (24)

uCD

and this vector can be obtained by using the CBC technique, that is, we can
set zy = 1 and then, every component zy, with d > 1 can be obtained by
minimising D, q4~(2z,) with respect to zq € Z, without altering the previous
d — 1 components.

15

Proof. For d = 1, the result follows easily from (15) together with § < «,
((a) < {(a/pB) and p(n) < n, which show that

2711)C(a/B)
p(n)?

For d > 1, let us assume now that (24) holds. We want to prove that there
exists an integer z4.1 € Z, such that

Dn,l,‘y(zu Oé) S

B
Dy ar14((2, 2a41),) < (Z ~B(2¢ () B))Iul> ’ (25)

uCD

where Dy := DU {d+ 1}. For any d > 1, consider

Dn,d+1,7((2’1,22,-- Zd7zd+1 E ’)’ug HCk Zj, Q

uC'D1 k=0 jcu

where the Cy(z;, @) are as given by (22). Then we separate out the discrep-
ancy in dimension d from this (d + 1)-dimensional discrepancy to obtain

D”7d+17'7((zv Zd+1)= Oé) = Dn7d77(27 Oé) + Ln,d-i-l,“/((z’ Zd+1>7 Oé), (26>

where

n—1
1
Ln,d+17‘7<(z7 Zd-i-l)a Oé) = E Z Yu Z Ck(zd+17 CY) H Ck(zja «

uCD, k=0 jeu\{d+1}
d+1eu

Following a similar idea as in [4, 18, 20], we then average over all possible
integers z411 € Z, and focus on the last term in the above, because it is the
only one depending on z441. Using (13) and (14), we see that we have

(— Z Ck Zd+17 = (k),

Zd+1 €Zn

and

We also have |Ci(z,)| < 2¢(«). From all these inequalities, it follows that

the average on L, 4,1~ Over zg41 satisfies

1
= — Z Ln,d+1,’7((z7zd+1)7a)

Avg(L, , , =
Vg(,d+1,“/((z Zd-H) Oé)) (p(n) -
Zd+1 n
< LY 2@ o (),
n p(n)
u-r’1
d+1€u
Consequently, there exists a 2411 € Z, such that
Linar1~((2, zd41), Z Yu(2¢(a |u|~ (27)
uCDy
d+16u

On the other hand, using (8), we see that we can write

n—1
Lnasin((2 zas1),0) = %Z 7 S [Cilz,a

uCD, k=0 jeu
d+1€u

= > v > Tl

uCD, {heLt:u(h)=u} j€u
d+1€u

Using then Jensen’s inequality (17), it follows that (see also the proof of

Theorem 2)
B

> Z vl < | > Z e | I

uCD; {heLt:u(h)=u} JjEu uCD; {heLL:u(h)=u} JjEu
d+1€u d+1€u

which shows that
Ln,d+1,~/((za Zigt1), @) < (Ln,d—i-l,'yl/ﬁ (2, zat1), 04/5))

This inequality together with (27) shows that the chosen 24,1 € Z,, satisfies
B

1 > i acla/)

Ly ar1~4((2,2441),0) < ——=
I i (¢(n))?
d+1€u

17

From this inequality and (26) and by using the induction hypothesis (24), it
follows that the chosen z4,; satisfies

3
Dy a1 ~((2, za11),) < (Z ~B(2¢(a)B))Iu)

uCD
B
_ 1 / Ju
Tty | 2 W)
d+1€cu

The desired result (25) follows from this inequality by applying again Jensen’s
inequality (17). O

Theorem 3 implies that the vector z constructed by the CBC algorithm
satisfies the optimal bound given by Theorem 2. This is stated in the next
corollary.

Corollary 4. For any o > 1, any dimension d > 1, and any n > 3, the
vector z constructed by the CBC algorithm satisfies (16) for any [satisfying
1 <8 <.

Markov’s inequality allows us to state a probabilistic bound on the figure
of merit of the vector z returned by the R-search algorithm. Similar results
in the prime case have been proved in [4, Theorem 1 and Theorem 2].

Theorem 5. If Z is the vector returned by the R-search algorithm, r is the
number of independent trials of the algorithm, and t > 1, then

B B
’ Dn’d’v(é’a)gt(w) (Z‘Yi/ﬁ(%(a/ﬂ))'“) > 14/,

n
uCD

Proof. Since the average of Dy, 4~(z, @) over all vectors z € Z4 is bounded
by M, 4~(c) (see Theorem 1), we have from Markov’s inequality that for all
a > 1 and for z drawn at random uniformly from Z?,

P [Dn,d,'yl/ﬁ (z,0/8) = aMn,d;yl/ﬁ (Oé/ﬁ)} <1/a,

18

where M, 4.1/s(a/B) is defined in (11). We also have from (18) that

Dn,d,’Y(z7 OZ) < (Dn,d,'yl/ﬁ (Z7 a/ﬁ))ﬂ

for all z. Combining these two inequalities with (20) gives that

6 6
v D”’d”(z’a)zt<w) (Z’Yf/ﬁ(%(a/ﬂ))'“') <8

n
uCD

Since r is the number of independent trials, the result follows by a geometric
argument. O

This last theorem shows that if we choose ¢ > 1 and r large enough so
that ¢t~"/# is very small, we have a very high probability that a vector z leads
to a discrepancy satisfying the desired error bound.

4. Numerical experiments with the construction algorithms

We will now compare empirically the performance of the three construc-
tion algorithms given in Section 3. We made numerical investigations with
various values of d, n, even integer values of a and different choices of weights.
We report the results for a small representative subset of those experiments.
Similar experiments were reported in [19] for a different type of figure of
merit, namely the weighted star discrepancy, which provides worst-case de-
terministic error bounds for certain classes of functions. Other experiments
with the CBC construction method for the same measure of discrepancy as
considered here, with @ = 2 and specific types of weights, are also reported
in [9] (for product weights) and [4] (for order-dependent weights, defined
below).

When « is not an even integer, there is no closed-form formula for Cy(z, cv).
Then, in the construction algorithms presented in the previous section, one
could truncate the infinite sum that defines Ci(z,«). However it is unclear
what would be the impact of such a truncation over the figure of merit.

For the reported experiments, we take @ = 2, which means that we
consider functions f whose Fourier coefficients satisfy

|f(h)] < 7u(h)H|hj|71

JEU

19

for all h. These functions do not have absolutely convergent Fourier series,
as typically assumed in other papers [3, 4, 8, 9]. In that particular case, the
discrepancy (9) which bounds the variance is equivalent to the figure of merit
used in [4], that is

1 n-1 , e27rihkz]~/n
Duanted = ST (X)

k=0 uCD JjEu \ heZ

S ()

k=0 uCD JEuU

where By is the Bernoulli polynomial of degree 2, given by By(z) = 2> —x +
1/6. This expression is easy to compute.

If the weights have the product form ~, = []
Dy, 4~(2,2) given by (28) can be rewritten as

jenVj» the expression of

Di.a~(2 —%nzzzd;r ég(zﬁ& ({ﬁ})) (29)
[ul=¢

For a = 2, the average is bounded by (see also (11)):

Mp,a~(2) < Z%()lu‘

For the experiments with D, 4(2,2) reported here, we selected dimen-
sions ranging from 5 to 80, and values of n ranging from 2! to 22°. We
consider product weights with 7; = 1/52 for all j. For those weights,
we have)77, 7; < oo and this is sufficient to ensure that condition (7)
holds, which implies that that variance is bounded independently of the
dimension d. We also consider order-dependent weights given by 'y =
(d(d—1)---(d—€+1))"" for all u C D with |u| = ¢, where £ = 1,...,d.

20

Replacing these weights in (29) and by noting that |By(z)| < 1/6 for any
x € [0, 1], we obtain

1 &1 /72 2
Dnd~y z, 2 S EZZE <§> < exp (g))
k=0 (=1

which clearly shows that this discrepancy is bounded independently of d.

Table 1 summarises the values of the discrepancy (28) obtained for dif-
ferent values of n (powers of 2), product weights in d = 20 dimensions and
order-dependent weights in d = 10 dimensions, with the weights defined
as indicated above, with the (full) CBC method, randomised CBC with
r = 10 (this is smaller than logn), and uniform random search. For the
latter method, we used a sample size of » = 10° for n = 2, 215 216 and
r = 10* for n = 2'7, 2! These large sample sizes were used for the purpose
of estimating the probability distribution of the figure of merit, as illustrated
in Figure 1. When applying the R-search algorithm to quickly find a good
lattice, one would normally use a smaller r than this, and the best returned
figure of merit will typically be a bit larger.

Table 1: Values of the figure of merit obtained by the CBC algorithm (CBC), the ran-
domised CBC algorithm (R-CBC) with r = 10, the uniform random search algorithm with
a large r (R-search), and the value of the bound for the mean M,, 4-(2)

’ Weights ‘ d ‘ n ‘ CBC ‘ R-CBC ‘ R-search ‘ Ma~(2) ‘
product | 20 | 21 | 4.65e-5 | 7.94e-5 | 7.5le-5 | 2.60e-3
215 | 1.81e-5 | 2.19e-5 | 3.03e-5 1.30e-3
216 | 6.76e-6 | 8.69¢-6 | 1.23e-5 6.50e-4
217 | 2.56e-6 | 3.48¢-6 | 5.14e-6 3.24e-4
218 19.73e-7 | 1.39e-6 | 2.09¢-6 1.62e-4
order-dep. | 10 | 214 | 5.20e-4 | 5.63e-4 | 5.7le-4 | 3.16e-3
215 | 2.25e-4 | 2.3Te-4 | 2.64e-4 1.58e-4
216 1 9.80e-5 | 1.07e-4 | 1.13e-4 7.88e-4
217 | 4.26e-5 | 4.71e-5 | 5.19e-5 3.94e-4
218 1 1.86e-5 | 2.02e-5 | 2.24e-5 1.97e-4

We observed that the R-CBC algorithm always returned vectors z with
figure of merit smaller than the bound M, 4~(2), even for small values of r

21

(such as r = 10, as reported in the table). This means that finding a good
generating vector (in the sense of doing better than the bound) is easy and
does not require the full CBC construction. As expected, the figures of merit
for R-CBC are not as good as for full CBC. In other experiments, it was
observed that when the weights are fixed, the gap between CBC and R-CBC
generally decreases with the dimension. Note that despite the large value of
r used in the R-search algorithm here, the R-search does not perform as well
as the R-CBC. Nevertheless, except in one case, it still returns a value much
smaller than the mean.

In our exploration of the uniform random search algorithm method, we
computed an empirical version F' of the cumulative distribution function F
of D, 4~(2,2), defined by F(x) = P[D,,4~(2,2)] < z], for a purely random
z drawn uniformly from Z2. The empirical distribution was computed with
r = 10° for n < 2! and r = 10* otherwise. We observed that the shapes of
the corresponding distributions were quite similar for different values of d, n,
and weights (with proper scaling). We found that typically, this distribution
is positively skewed, and the median is smaller than the average M,, 4~(2), or
the bound on this average, so the probability ¢, 4~ of getting a value smaller
than the average with a random z is more than 1/2 (often around 0.9). Note
that these empirical observations may change with the figure of merit. For
instance in the case of the weighted star discrepancy used in [19], we observed
that the probability of finding a vector better than the mean is often around
0.75. This implies that a vector z whose corresponding discrepancy is smaller
than the average (and thus satisfies the bound in Theorem 2) is easy to find
even by simple uniform random search. By applying this algorithm with
r trials, the probability of finding such a vector is 1 — (1 — gy a+)". With
Gn.d~ = 0.9, this probability is 1 — 107", which is very close to 1 even for
moderate values of r. Note that the bound on the probability given (and
proved) in Theorem 5 is only valid for a discrepancy value larger than the
mean and is usually very conservative. This easyness of finding a vector
better than the mean just by random search may suggest that we should be
more ambitious than only beating the average if the goal is to really find one
of the best rules. On the other hand, the discrepancy bounds and convergence
rate results are only in terms of the average, and there is no proof that one
can always do significantly better.

An example of an empirical distribution is given in Figure 1. The min-
imum value returned by the figure of merit out of 10000 random tries was
2.24x107°, while the maximum was 2.41 x 1072 In the figure, the green (left-

22

0.75 +

0.25 T

> T

0 — %
2.924e-5 8.77e-5 2.41e-2

Figure 1: Empirical distribution of D,, 4~(2,2) for 10* random vectors when n = 2'% =
262144, d = 10 and order-dependent weights I'y = (d(d — 1)---(d — £ + 1))7!, for all
¢=1,...,d

most) vertical line indicates the median (4.39 x 107°), the blue line (middle
one) indicates the empirical average (8.77 x 107°), while the brown (right-
most) line indicates the value of the bound (11) on the mean (1.97 x 107%).

Acknowledgements

This work has been supported by an NSERC-Canada Discovery Grant
and a Canada Research Chair to the second author. The first draft of the
paper was written when the first author was a postdoctoral fellow at the Uni-
versity of Montreal. The first author acknowledges support from Professor
Ronald Cools, via the Research Programme of the Research Foundation-
Flanders (FWO-Vlaanderen) G.0597.06. David Munger helped us with some
comments and experiments with the CBC method.

23

References

1]

[10]

[11]

R. Cools, F.Y. Kuo and D. Nuyens. (2006). Constructing embedded lat-
tice rules for multivariate integration, SIAM J. Sci. Comput. 28, pp.
2162-2168.

M.T. Cezik and P. L’Ecuyer. (2008). Staffing multiskill call centers via
linear programming and simulation, Management Science 54, pp. 310—
323.

J. Dick. (2004). On the convergence rate of the component-by-component
construction of good lattice rules, J. Complexity 20, pp. 493-522.

J. Dick, I.H. Sloan, X. Wang and H. Wozniakowski. (2006). Good lattice
rules in weighted Korobov spaces with general weights, Numer. Math.
103, pp. 63-97.

S. Disney. (1990). Error bounds for rank 1 lattice quadrature rules modulo
composites, Monatsh. Math. 110, pp. 89-100.

G.H. Hardy, J.E. Littlewood and G. Pélya. (1964). Inequalities, 2nd ed.,
Cambridge University Press.

F.J. Hickernell. (1998). Lattice rules: how well do they measure up?,
Random and quasi-random point sets, Lecture Notes in Statist. 138,
Springer, New York, pp. 109-166.

F.Y. Kuo. (2003). Component-by-component constructions achieve the
optimal rate of convergence for multivariate integration in weighted Ko-
robov and Sobolev spaces, J. Complexity 19, pp. 301-320.

F.Y. Kuo and S. Joe. (2002). Component-by-component construction of
good lattice rules with a composite number of points, J. Complexity 18,
pp. 943-976.

P. L’Ecuyer. (2009). Quasi-Monte Carlo methods with applications in
finance, Finance and Stochastics 13, pp. 307-349.

P. L’Ecuyer and C. Lemieux. (2000). Variance reduction via lattice rules,
Management Science 46, pp. 1214-1235.

24

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

P. L’Ecuyer and D. Munger. (2011). On Figures of Merit for Randomly-
Shifted Lattice Rules, in Monte Carlo and Quasi-Monte Carlo Methods
2010, H. Wozniakowski and L. Plaskota (Eds.), Springer, Berlin, 2011.

R. Liu and A.B. Owen. (2006). Estimating mean dimensionality of anal-
ysis of variance decompositions, J. Amer. Statist. Assoc. 101, pp. 712—
721.

H. Niederreiter. (1992). Random Number Generation and Quasi-Monte
Carlo Methods, STAM, Philadelphia.

D. Nuyens and R. Cools. (2006). Fast component-by-component con-
struction of rank-1 lattice rules with a non-prime number of points, J.
Complexity 22, pp. 4-28.

D. Nuyens and R. Cools. (2006). Fast algorithms for component-by-
component construction of rank-1 lattice rules in shift-invariant repro-
ducing kernel Hilbert spaces, Math. Comp. 75, pp. 903-920.

J.B. Rosser and L. Schoenfeld. (1962). Approzimate formulas for some
functions of prime numbers, Illinois J. Math. 6, pp. 64-94.

V. Sinescu and S. Joe. (2007). Good lattice rules based on the general
weighted star discrepancy, Math. Comp. 76, pp. 989-1004.

V. Sinescu and P. L’Ecuyer. (2009). On the behavior of the weighted
star discrepancy bounds for shifted lattice rules, in Monte Carlo and
Quasi-Monte Carlo Methods 2008, P. L’Ecuyer and A.B. Owen (Eds.),
Springer, Berlin, pp. 603-616.

V. Sinescu and P. L’Ecuyer. (2011). Ezistence and construction of shifted
lattice rules with an arbitrary number of points and bounded weighted

star discrepancy for general decreasing weights, J. Complexity 27, pp.
449-465.

I.H. Sloan and S. Joe. (1994). Lattice Methods for Multiple Integration,
Clarendon Press, Oxford.

[.H. Sloan and H. Wozniakowski. (1998). When are quasi-Monte Carlo
algorithms efficient for high dimensional integrals?, J. Complexity 14,
pp- 1-33.

25

23] I.M. Sobol’ and E.E. Myshetskaya. (2007). Monte Carlo estimators for
small sensitivity indices, Monte Carlo Methods and Applications 13, pp.
455-465.

[24] X. Wang and L.H. Sloan. (2006). Efficient weighted lattice rules with
applications to finance, STAM J. Sci. Comput. 28, pp. 728-750.

26

