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Theorem 4.3: Assume that the partitioning in (4.20) is made so that
Ominl 21) > Omax(Z2). Then the subsystem (A4, B,.C) is reachable and
observable.

Proof: From (4.22) it follows that
ANZ Ay + AT 2,4, - 2= —C]C). (427)
Assume that the subsystem (A4, B;, C,) is not observable. Then there
exists an eigenvector v with corresponding eigenvalue A of 4,,, such that

Ayt =Av (4.28)
Civ=0 (4.29)
el =1. (4.30)
Multiply (4.27) from the right by ¢ and left by ¢* to obtain
(1= A} erZ o= 0453, 45,0 4.31)
We have
v*2102>0,,,(Z) (432)
0% AL 234210 < 1 A0 170000 (Z5) - (4.33)
Insertion of (4.32) and (4.33) into (4.31) gives
(1= 1A1?) Omin( Z1) < 142101 20, (Z5). (434

From Theorem 4.1 it follows that
( A ) .
Ay

Insert (4.35) into (4.34) to get

(1= A1) 0 Z1) < (1= [A]? Y a2

We know that the subsystem ( 4,,, B,, C;) is asymptotically stable. There-
fore

<l 4 ol Fldyol?<leldyol2<1—|A)%

(4.35)

(4.36)

I1—-|A2>0
and
Omin 21) < 00 (25)-

This contradicts the assumption of the theorem. Therefore, the subsystem
is obvservable. Analogously it can be shown that it is reachable.

The following example shows that the other subsystem (A4,,, B,, C;) is
not necessarily controllable and observable.

Example 4.2: The system

(4.37)

. ;
0 3 . 1
X1 = 1 X, U,
2 0 A0
»=( 0)x,

is asymptotically stable, reachable, observable, and balanced. The gram-
mians are both equal to

6,
= 15

0o A

15

The subsystem (0, 1, 1), which corresponds to the large eigenvalue of = is
controllable and observable in accordance to the theorem. The subsystem
(0,0,0), which corresponds to the smallest eigenvalue of =, is, however,
neither reachable nor observable. Observe also that the balanced represen-
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tation is unique, since 2 has distinct eigenvalues. Therefore, it is not
possible to find an equivalent balanced representation, which is such that
every subsysiem is reachable and observable. It follows from Theorem 3.3
and Lemma 3.1 that this is always possible in the continuous time case.
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A Stochastic Control Approach to Group Preventive
Replacement in a Multicomponent System

A. HAURIE, MEMBER, IEEE, AND P, ECUYER

Abstract —A group preventive replacement problem is formulated in
continuous time for a multicomponent system having identical elements.
The dynamic programming equation is obtained in the framework of the
theory of optimal control of jump processes. For a discrete time version of
the model, the numerical computation of optimal and suboptimal strategies
of group preventive replacement are done. A monotonicity property of the
Bellman functional (or cost-to-go function) is used to reduce the-size of the
computational problem. Some counterintuitive properties of the optimal
strategy are apparent in the numerical results obtained.

NOTATIONS

Throughout this paper | 4| denotes the cardinality of the set A. 1 is the
indicator function

1 _ i1 if condition is true
(condition) ™ | otherwise

N is the set NU {0}, R? is the positive orthant in R™. P( M) is the class
of subsets of the set M.

I. INTRODUCTION

The aim of this paper is to formulate and solve a group preventive
replacement (GPR) problem, considered in the framework of optimal
stochastic control theory.
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A presentation of group preventive maintenance can be found in [1].
The GPR problem that we are considering occurs when a system consists
of several elements of the same type which work under the same general
conditions. All the elements have the same lifetime distribution. Only two
actions are available for a single element: either replace it when it fails
(emergency replacement) or replace the element before it fails (preventive
replacement). The possibility to combine preventive replacements with
emergency replacements in a multicomponent system can generate a
substantial maintenance cost reduction if there is a large fixed cost
associated with any intervention on the system, whatever be the number
of elements replaced.

In [1] the GPR strategy is defined by a heuristic service rule which is
clearly nonoptimal. In [2] a formulation of the GPR problem as a
stochastic control problem has been proposed and a dynamic program-
ming equation has been heuristically derived.

In Section II of the present paper, the dynamic programming equation
of [2) is more rigorously obtained by using some general results of the
control theory of jump processes.

In Section III a discrete time formulation of the problem is proposed
and the approach for the numerical solution of this large scale problem is
described.

In Section IV several numerical illustrations are fully developed to show
the effect of the relative magnitudes of the fixed and the variable parts of
the maintenance cost on the optimal GPR strategy. The optimal strategies
are then compared with suboptimal strategies which are simpler to
implement.

II. THE GROUP PREVENTIVE REPLACEMENT PROBLEM

We consider a system comprised of m identical elements working
independently under the same conditions. At time f, = 0 every element is
new; at time 7 > 0. the whole system is replaced by a new one. During the
time interval [0, 7]. if one element fails it has to be replaced immediately
by a new one. This is called an emergency replacement (ER). Simulta-
neously with an ER the repairman can replace any number of working
elements he wants. This is called the preventive replacement (PR) of a
working element.

The cost of an intervention contains two parts: a fixed cost B is
incurred whatever the number of elements replaced: a variable cost varies
linearly with the number of elements which are replaced. Thus, the cost of
an intervention where v elements are replaced will be given by

B+ b,

Knowing this cost structure and the failure rate function /(r) for one
element, where r is the age of the element, the problem is to find the
optimal strategy for preventive replacement (optimal PR strategy).

We assume that ER’s or PR’s are performed instantaneously.

In order to establish rigorously the optimality conditions characterizing
the optimal strategy, it will be convenient to formulate the problem in the
framework of the theory of optimal control for jump processes. Recently.
several authors {3]-[6] have obtained very general optimality conditions
for the control of jump processes. The results obtained by Rishel are
appropriate for the solution of the present problem.

Let us define the set

for v=1.

X=MXR"

and consider a jump process x = (x(7); 0 <7 <T) with value in X where
x() = (¥(2), z(1)), the component y(7r)€ M giving the identification num-
ber of the last element which has failed at or before r. while the vector
2(1)ER?T gives the age of each element just after the last intervention of
the repairman.

The set U of possible actions describes the choices of emergency and
preventive replacements that the repairman can do during an intervention.
We shall describe an element u of U as a vector (#/),c ,, where each
component u/ is a subset of M which must contain ;j as an element.

JEWER(M).

When element j fails, all elements contained in «/ are replaced. Thus, «
is already defined as a policy telling the repairman which working element
he has to replace preventively. knowing that an emergency replacement is
necessary for the element j.
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For all t€[0.T). let n(r) be the number of jumps during [0, ¢]. Define

the jump times 7. 72, -, T,, - - - by letting 7, = 0 and t, be the time of the
ath jump if a(TY=nor7,=Tif n(T)<n. Let
Y”é'\"(’rll) (])
Denote by X, the random sequence
Y,,é(xo.Tl,.\‘,.Tzu“.r,,.x,,). )

Rishel [6] has shown that the controlled jump process is determined if
one has given the family of conditional jump rate functions

Pli<r, H<r+dz:X,u]

t X,.u)= lim z t=1,uel (3
7 u) dria’ dePle<,.y Xyou) i @
and the family of conditional state jump probabilities

(A X, T ) EP[ X, EAX, 1,1, u]l.  ACX.ucU. (4)

A control is a functional «(z, X)) on the past of the process, with value
in U’. We notice that, given the information X, the action (s, X,) has no
effect on the jump rate at ¢.

Let us define

WE=r(n). (5)
2,=(2]) e 22(n, (6)

Thus, following the assumption of independence and given the failure
rate function /(r) for one element, the jump rate at time ¢ is given by

q(:lX,) = 2 ('n+t—T)

jeEM

(M

Once a jump has occurred, the state jump probabilities now depend on
u.

Given z,,., 7,4, and u. let us define the vector £(/,u) ER™ by

E(ju)=0 if i€y,

§Uou)=z =, 0f iGu, (8)
Then we have
/ :;{+ T .
Plx, =80 0)) Xp Ty u] = — G ) vjEM.
2 I( +7, Ta=1 Tn)
i=1
®

For all subsets 4 of M XR™ not containing an element (j. £(/, u)) the
probability (6) is equal to zero. Thus, at any time ¢, only m state jumps are
possible. given an action # and an age vector z,, at 7, <<1.

Equations (7)—(9) define a controlled jump process associated with the
GPR problem. A cost functional ¢(T, X,,). giving the amount paid at the
terminal time T if #n{T) = n, is defined by

x2S

k=1

o(T. B+b Y, 1(-'i=°)) e Pk

JEM

(19)

since, at each jump k. the fixed cost B is incurred and the unit cost b is
multiplied by the number of elements replaced (2, 41,.;=¢)). p is the
discount rate.

The control problem is to pick the control u(r. X,)) in the admissible
class so that

E[q)(T' Xn(T))] (“)

1s minimized.

The optimal control thus obtained will produce an optimal GPR
strategy.

Notice that according to (7) and (9) we can write

q(t.7,.2,) = q(11 X,
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and

P["n'lz(j’g(j‘u))|7n'zn“rn’1‘u]
:P[xn-rl:(j'i(j’u))|Xn*Tn+l'u]'

Thus, the control can be restricted to a functional u(z, . z,).

Using the dynamic programming optimality conditions given by Rishel
[6], we can say that an optimal control u*(z. 7,. z,,) is such that there exists
a function V(¢.7,.z,) absolutely continuous in ¢ such that

W(T.7,,z,)=0 (12)
a ) "
,Eil(z,fn,:,,):ygré jg.ll(z,{+z—-r,,)
~{e*P'(B+b|uj|)+V(z,z.g(j,u))—V(r.T,,.zn)} (13)

where the optimal GPR strategy u*(z.7,.z,) solves the right-hand side
minimization. The dynamic programming equation (13) also yields a
sufficient condition for optimality.
When looking for a solution of (12) and (13) we could take advantage
of the fact that the age at time ¢ of the element j is given by
=z, JEM. (14)
Thus, defining the vector » = (7)< »;. we could restrict the function V
to the class of functions satisfying

V(170 2,) =W(1.7) (15)
whenever 7,. z,, satisfy (14) and where W(s, r) is a given function.
Clearly, the following relation will thus hold:
oV _ oW 14
—=—+ > . (16)
ar ar = or;

With this restricted class of function the sufficient conditions (12) and
(13) become

W(T.ry=0 (17)
14 W1, r)
W=y LD
dr JEM a,:’
n
+ > {(r;) min {(B+b u;|)e
j=1 Y EL ’
=W(t.y(r.u))=W(e.r)} (18)
where y(r, ;) is the vector defined by
A . y(r,u)=0 ifi€u,
x,'(r,u])i(y"(r,uj)) <y ERT with (. !
e Y(rou)=s ifi¢u,
(19)

Going from (12), (13) to (17), (18) is going from optimality conditions
which involve a single differential equation in ¢ to a partial differential
equation.

It is not clear which system will be easier to solve numerically.

As the ( y. r) process is Markovian, the optimality conditions (17). (18)
will have a discrete time counterpart related to the theory of the control of
Markov chains. This is the approach followed in the next section.

III. A DiISCRETE TIME FORMULATION

We consider now the case where the system is observed at discrete
sampled times. Assume that the time interval [0,7] is divided into »
subintervals of length Ar. Thus, the sampled times of observation are

1,=0, y=Ar---,1,=0Ar,-- - . T=nAq.
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We assume that ER’s and PR’s are possible only at sampled times.
Denote by 7 the time ¢, immediately after the replacements (if any).

The replacement decision at time 1, if any, will generate an instanta-
neous state transition. More precisely, at a sampled time ¢, the state of
the system is a vector r = (r;);e 4y € (NU {d})™. If r; = d. this means that
the element j is observed 1o be in a failure state at time 7,. If ,EN, then
the element j has the age 7;Ar.

At time ¢z, the state of the system is a vector £=(§,),e € (Ng)™
whose component £, is given by

0
= r

We assume again that an element which has been observed to be in a
state of failure 4 at time ¢, must be replaced immediately.

Thus, the control action at a santpled time 7, is the subset R of elements
replaced. This set must contain, as a subset, the set H of failed elements.

If an clement j is in state §,EN, at time ¢, then the conditional
probability that it will fail during the next time period of length Ar given
that it has not failed during (7, — §;Ar,1,] is given by

if the element j has been replaced at ¢,
otherwise.

AQ(gj):1—exp[—f:’1(gjm+§)d§]

=l(§]At)At’o('_\t) (20)
where 0(Ar) is such that lim,, , go(Af)/Ar=0.

From now on, we assume an increasing failure rate (IFR), and so is
AQ(¢ ;). as a function of ¢ ;- (IFR is a standard assumption in reliability
theory and it corresponds to adverse aging. See [9], [1].)

Given the state vector £ at r}, the conditional probability that the
subset G C M will contain all the elements which will fail during (7,. 7, ]
and only these is given by

P(GI1&) =[] a0(¢)

I€EG

H (lf‘ﬁQ(gj))'

JEM—G

(21

We shall look for the solution of the GPR problem formulated on this
discrete sampled time set and use this solution as an approximation to the
exact solution of the continuous time GPR problem.

In a discrete time setting, there is no theoretical difficulty to assume
that a preventive replacement can be made even if no failure has occurred
(in a continuous time setting this would have led to an impulse control
problem). It could be shown, however, that with the chosen cost structure,
preventive replacements are never made in the absence of failures [13].

Let us assume a discount factor §€ [0, 1] per time period Az and define
the cost-to-go function J,(r) as the total minimal expected cost given that
we are at time

t,=T— kAr (22)

and that the system is observed to be in state r.

We will use the notation e, for the ith unit vector (0,---.1,---,0) ER"™,
and write de, for the vector whose ith component is equal to d. the other
components being zeros.

By a standard dvnamic programming approach (cf. [7], [8]). we obtain
the following equations defining the functions J,, k=0, - -, m:

Zy=Jy =0

and for k=1,---.m

J(r)= min B+b R -’rZ,( riei) iEH 79

«(r) (R HCRCM)[ 2% le,g:—R }

Jl(r)=2Z,(r) =9
(24

where
HE (jlp=d)

is the set of failed elements at time 7, =7 — kA7 and
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2

JEM-G

2 de; +
JEG

Zk(r)éﬂ 2 P(Gi")-]k—l( (G‘H)e;)' (25)

GCM

The equations (23)—(25) are clearly the discrete time counterpart of
(IND-(19).

At time 7. the age of each element can take n+1 possible values
{assuming that » =0 at time () and so there are (n + 1) possible states
of the system.

We can define an order on NU{d} by setting d > & VAEN. As the
elements are identical, it is possible to reduce the number of possible
states of the system by considering that the components of r are always
ranked by decreasing order of magnitude:

nNErn=--2r,.

(26)

This is equivalent to saying that the name of an element is no longer
recorded. The number of possible states is now the number of combina-
tions with repetitions of m elements among » + 1, which is given by

'
— :(n+m).
ntm min!

wrl (27)
In practice, there may be an age which can be attained by an element
only with a very small probability. In that case. to reduce further the

number of possible states, we may approximate AQ(r;) by a function of

the form
AQ(r; v
p(r,)={ )

v

<a

Y %)

)
4Q(a) 7
where @ < n. Hence, an element of age greater than a is equivalent 1o an
element of age a.
This reduces the number of possible states of the system to

- m+a)!
fo=cp, =t (29)
Equation (27) then becomes
peny=1lp()- I (1=p()). (30)

iI€G JEM—-G

In another way, it is possible to limit the life of any element to a — 1
periods by taking

p(a)=1

It means that any element of age @ + 1 is replaced immediately.

In (24), for a given H. we have 2™~ ¥ possible candidates for R. This
number can be very large if there are many elements. However, since we
assume that AQ(x) is not decreasing in X, it seems intuitively clear that
the elements preventively replaced, if any, will always be the oldest
elements. A proof of this assertion can be found in {13].

Hence, choosing R reduces to choosing a number n. 0<y<m— H
and replacing the 7 oldest elements. The number of candidates for R 1s
thus reduced to m — 1 — | H|.

Notice that at a sampled time 7., 6 =1, no element can be of age 0. The
set of all possible states of the system at that time is thus

N

R:{r€{1,2.‘--,a.d}m|rl>r2>--->rm}, (32)
At 1, , 0=0, the set of all possible states of the system is
Ro={re{0.1.---.a}"|n=n=---=,}. (33)

In the light of the preceding remarks, the dynamic programming
algorithm can be reformulated as follows:
1) Set, VrE€ R:

Jo(ry=0. (34)
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2y Fork=1,---,n:
VEE Ry, set

Zi(§)=8 2 P(G|&) -

GCM

o

S et 3 (4+0e))

Jeo JEM—-GC
(%)

Vr& RUR,. set

Zi(r) ifre Xy
)TV min {0b+Zk(ord( ’"i" r,-e,))} otherwise
p=b=<m 1=f-1—p J

(36)
where
p = max{i|r,=d} (37

represents the number of failed elements and ord(s) is the vector sE R™
whose components have been rearranged by decreasing order,

Let 8,(r) be the value of 8 for which the minimum is attained in (36). It
represents the optimal number of elements to replace when we are in state
x at time 7 — &Ar.

Another reduction of the computation time is possible by using a result
proved in [13] which states that if r and 7 are in R. 7=r and 8,(r) = m,
then 8,(F)= m.

For m =1, that result is the well-known control-limit rule (see [7.
Theorem 6.9)). But for m>1 and 6, (r)<m, 7=r does not imply
0,(7)= 8, (r). A counterexample will be given in Section IV.

However. one could restrict beforehand the class of admissible strate-
gies to monotone strategies (i.e., #,(r) is nondecreasing with respect to r)
and thus look for suboptimality instead of optimality. In Section IV, this
approach is discussed.

Consider finally the case where Az is fixed and 7 =oc. Let J(r) be the
expected discounted cost over an infinite horizon when & RUR|, is the
state of the system. Assume £ <<1. From Proposition 1 on p. 227 of {§], we
have. Vr€ RUR:

B+bm<
1-8

J(r)=l\1j~.mx]k(r)< (38)

According to Proposition 2 on p. 229 of [8], there exists a stationary
optimal strategy {u*(r)},c y telling which elements to replace when the
svsiem is observed to be in state r. Moreover, from (38) and (34)-(37) it
could be shown (see [13]) that J(r) is a nondecreasing function of each
component r, and that the optimal stationary control law will still have all
the properties stated above for the finite horizon optimal control law.

According to Proposition 4 on page 237 of [8]. the function J_ obtained
by the following algorithm is such that

max J (r)—J(r}i<e.
reR

Algorithm:

1) Set & =0 and define J, as in (34).

2) Repeat n times: k:=k — 1 and calculate {Z,(r)},c g,
{Ju()}e rur, and {8,(1)),c g as in (35)-(36).

3) Set

le*B_ miélo(]k(’)“]hl(’))

1- re
- B -
2T rfgak"o(-]k(r) Je ().

4) If v, — v, > € return to step 2).
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5) Set

NTn
2

J*(r):']k(r)_

0.(r)=0(r)

VreER,

R.

vre

Stop.

IV. NUMERICAL ILLUSTRATIONS
In this section various examples are worked out. The analysis has been

restricted to the infinite time horizon case.
A. Example |

Consider m = 6 elements, 8 = 0.95, a fixed cost B = 8.0, and a unit cost
of b= 6.0 for each replaced element. The probability p(r) that an element
of age r will fail during the next period is given in Table L.

We thus have a = 4. After 50 iterations (CPU time =131 s on a cyber
173). we obtain the solution depicted in Table II, where the maximum
error on the expected cost-to-go is less than € = 0.01. For each possible
observed state of the system, Table II indicates the best action to do. It is
already known that when there is no failure, we do no PR. So, these states
without failed elements do not have to appear in the table. The expected
discounted cost-to-go starting with a new system is J _(0) = 274.49.

Notice that in state (33111*) we replace only the failed element, but
that in state (31111%) we replace two elements! Hence. s=r does not
imply that 8 (s)=0 (r).

This counterintuitive result can be explained as follows: when the
system 1s in state (31111*), replacing two elements leads to a state where
all elements are not old, whereas when the system is in state (33111%), the
same replacement decision would leave one element at age 3 and. thus, a
rather high probability of failure. To lower significantly the probability of
failure in that latter state, we must replace three elements. But this is too
expensive; hence. the best decision is to replace none of the elements of
age 3 and wait for the next sampled time.

B. Comparison with Suboptimal Solutions

One simple suboptimal strategy is the following:

1) Do no PR’s when all elements are operative.

2) When there is at least one failure. replace only the failed elements.
This strategy will be called NOPR (no preventive replacements).

Another suboptimal strategy consists of the following:

1) Do no PR’s when all clements are operative.

2) When there is at least one failure, replace all failed elements and all
those elements whose ages are greater or equal to a certain threshold a_.
which is independent of the observed state of the system.

The number a, is chosen in the set {1,2,---,a ~1}. Such a strategy will
be called a FAT strategy (fixed age threshold). Notice that a FAT strategy
is a particular monotone strategy.

Adopting the NOPR strategy corresponds to taking ¢, = « + 1. Hence,
there exists a number ¢, € {1.---,¢+1} such that starting with a new
system and using the corresponding FAT strategy will vield an expected
discounted cost-to-go not greater than the one obtained when using the
NOPR strategy.

The following example is an illustration of what can be the percentage
of increase of the expected cost when using NOPR or FAT instead of the
optimal strategy.

C. Example 2

Consider a system of m =6 clements. each having a Gamma (4,1)
lifetime distribution. Thus. Vi€ N

F(r—1)—F(1)

20(n) = 1—F(1)

where

1 opr, .
F(1) :_ﬁfo"-je “dz.
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TABLEI
DEFINITION OF THE PROBABILITIES OF FAILURE

t p(t)
0 .05
1 .10
2 .20
3 .40

>4 .90

The failure rate AQ(¢) can be approximated reasonably (taking « =7)

by
p(f):{

We then obtain a definition of the probabilities of failure (see Table
I1D).

For 8=0.90, »=1.0 and for different values of B. the expected
discounted cost-to-go starting with a new system (J_(0)) has been com-
puted using 1) the algorithm of Section III, which gives the optimal
strategy. 2) NOPR, and 3) FAT with different values of a,.. Table IV gives
the results of this computation,

Notice that

1) The cost reduction in doing PR’s increases as the ratio B/ of the
fixed cost over the unit cost increases.

2) The optimal value of ¢, for the strategy decreases as B/b increases.

3) The cost-to-go when using the optimal FAT strategy is in general
not very much higher than when using the optimal strategy (1.3 percent
increase in the worst case).

This numerical illustration suggests that, in a real-life large-scale prob-
lem. a FAT suboptimal PR strategy could be a good substitute to the
optimal closed loop strategy. This could. however, be true only for
systems observed over an infinite time horizon. When the time horizon is
finite the age threshold should at least depend on time.

For this example, the values of J,(0) for the suboptimal strategies have
been computed by using the dynamic programming algorithm of Section
II1. in which the strategy was fixed [modifying (36)]. Hence, the computa-
tional times were almost the same. However. for a very large scale
problem, it is clear that the optimal value of @, for a FAT strategy can be
found by using a linear search combined with simulation. whereas due to
the curse of dimensionality. the algorithm of Section II would be impossi-
ble to use.

For 1> 7, p(1) has been approximated by p(7) = 0.482. Let us see what
happens now, for the case B =3, if p(7) is raised to 0.6 or 0.8.

We can see, in Table V. that the optimal value of ¢, changes with p(7).
However, the value of J_(0) does not change very much. Thus. the
approximation of AQ(r) by p(r) seems reasonable.

<7

1>17.

A0(1)
AQ(7)

V. CONCLUSION

Multicomponent systems are commonplace in practice, whereas the
theory of optimal maintenance is mainly directed towards single compo-
nent systems (cf. the recent survey of [9]). The results obtained in previous
sections show that an optimal GPR strategy can be devised through the
use of modern stochastic control theory in the case where all components
have the same lifetime distribution.

The problem considered in this paper is related to the problem consid-
ered by Vergin in [10]. However. the methodology we have used permitted
us to solve a much larger problem than the one considered in [10].

Two extensions of this work can be considered:

1) The actions available for maintenance of one element could refer to
a larger variety of repair and overhaul activities. This would necessitate a
more detailed description of the state of wear of an element than the one
given by the age of the element. A first attempt to generalize the model in
this direction can be found in [2].

2) The elements could have distinct lifetime characteristics. This is the
case for many systems like trucks [11], aircraft engines, etc. There is no
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TABLEII
SOLUTION FOR THE NUMERICAL EXAMPLE
Observed ages Number of Total cost Descripticn Expected Observed ages Number of Total cost DJescriptien Ixpected
of the elemeats elenents of the of the system Discounted of the elements elements of the of the system Discountes
(* indicates failure) to replace intervention after the cOST te go (* indicates failure) to replace intervention after the cost to go
preventively intervention preventively intervention
T 6,(r)-|u| 3-b9,(r) 3 (&) x 6.(r)-'H B+bB, (r) 4
& F k& K % 44.00 00 0 9 0O 274.49 L3 2 1 o*x % 2 32.0C 21 90 9 ¢ 0 281.56
1 * * & * % 38.00 1 0 00 0 O 276.85 & 4 2 1 » % 2 32.00 21 0 0 © O 281.56
2k *k k % % 38.00 2 0 00C 00 279.47 33 301 % % 20.00 33 31 0 9 292.83
3 0x x & F % 1 44.00 0 0 90 ¢ 0 D 274.49 403 3 1 * * 20.00 £ 3 31 00 294.21
4 * * X F % 1 44.00 0 0 0 0 G O 274.4 4 04 3 1 * =% 20.00 4 4 3 1 20 0 294,44
11 * % *x =% 32.00 110 0 0 90 278.99 4 4 4 1 * % 20.00 4 4 41 9 0 254,48
2 1 % x * % 32.00 21 0000 281.56 2 2 2 2 * & 20.00 222 2 00 290.06
301 % x ox % 1 38.00 1 0 0 ¢ 0 0 276.85 302 02 2 % % 20.00 3 2 2 200 291.93
4 1 ok * X % 1 38.00 1 0 0 ¢ 00 276.85 4 2 2 2 % % 1 26.00 2 22 0 00 287.08
2 2 * * % % 32.00 22 00 00 283.59 303 2 2 % % 20.00 33 2 200
3 2 & & % & 1 38.00 2 000 00 279.47 4 3 2 2 * % 1 26.00 3 22000
4 2k x x % 1 38.00 2 00 0 0 O 279.47 4 4L 2 2 x % 20.00 4 4 2 2 06 0
3 3 & * x % 32.00 3 30000 286.35 303 3 2 * % 20.00 3332 0 ¢
4 3 & % % % 44.00 0 0 0 0 0 0 274.4 4 3 3 2 &% % 20.00 &3 3 2 00
4 4 k2 X & 2 44.00 0O 0 00 0 0 274.49 4 403 2 * % 20.00 4 4 3 2 0 0
1 1 1 * * =% 26.00 1119000 280.92 4 4L o4 2 * % 20.00 4 4 4 2 00
2 01 1 % *x % 26.00 211000 283.42 303 03 3 % % 20.00 3 33 3 0 0 2
311 * % % 1 32.00 116000 278.99 & 3 3 3 * x 20.00 43 3 3 00 2
4 1 1 * * % 1 32.00 1100 00 278.99 & 4 3 3 *= % 20.00 4 4 3 3 0 0 2 7L
2 2 1 * %= =% 26.00 221000 285.530 4 4 4 3 % 20.00 4 4 4 3 0 0 295.80
3021 % * % 1 32.00 21 090 00 281.56 4 4 4 4 * % 20.00 4 4 4 L D D 295.81
4 2 1 * % % 1 32.00 21090 00 281.56 11 111 * 14,00 111119 284.11
33 1 & x % 26.00 3 31000 288.52 2 1111 * 14.00 2111129 286.39
4 3 1 * * % 2 38.00 1000 00 276.85 311 11 % 1 20.00 1 21100 282.62
4 & 1 *x k% 2 38.00 1 0 00 00 276.85 4 1 1 1 1 % 1 20.00 111100 282.62
2 2 2 % *x % 26.00 2 2 2 ¢ 00 287.08 2 2 11 1 % 14.00 2211 1¢ 288.36
3 2 2 % x = 26.00 32 20 00 288.96 321 1 1 * 14.00 3 21110 290.63
4 2 2 % % x 1 32.00 2 2 0 0 00O 283.59 4 2 1 1 1 * 1 20.00 2111 0 0 285.03
3 3 2 % & * 26.00 3 32 000 290.03 33 11 1 * 14.00 331 110 292.04
4 3 2 *x *x % 2 38.00 2 0 0 0 00 279.47 43 1 1 1 * 2 26.00 11190 0 0 280.92
4L 4 2 * x % 2 38.00 2 0 0 0 00 279.47 4 04 1 1 1 * 2 26.00 111 0 0 0 280.92
3 3 3 * * % 26.00 333 90 00 290.58 22211 = 14.00 222110 290.03
4 3 3 * k% 26.00 4 3 3 0 0 0O 291.89 32211 % 14,00 322110 292.21
4 4 3 * x ok 26.00 4 4 3 0 0 O 292,11 «@ 02 2 11 * 1 20.00 221100 287.09
& 4 4 x K 26.00 4 4 4 0 0 O 292.14 33 211 = 14.00 332110 293.76
1 1 1 1 % & 20.00 111100 282.62 4 3 21 1 =* 1 20.00 321100 289.26
21 1 1 * = 20.00 211100 285.03 404 2 1 1 * 2 26.00 211009 0 283.42
31 11 * * 1 26.00 111000 280.92 33 311 % 14.00 3331 1 0 294,65
4 1 1 1 * =* 1 26.00 111000 280.92 4 3 31 1 * 14,00 4 3 3 1 1 0 296.14
2 21 1 * * 20.00 2 21100 287.09 4 % 3 1 1 % 14.00 4 4 3 1 10 296.43
321 1 % % 20.00 321100 289.26 4 4 4 1 1 % 14.00 4 4 4 1 1 0 296.49
4 2 1 1 * * 1 26.00 2119000 283.42 22 2 2 1 = 14.00 2221210 291.38
3311 % = 20.00 331100 290.43 32 2 21 * 14.00 32 2 210 293.38
4 3 1 1 * = 2 32.00 11 0000 278.99 4 2 2 2 1 * 1 20.00 222100 288.79
4 4 1 1 * % 2 32.00 110000 278.99 33 2 2 1 % 14.00 332 210 294,88
22 21 * = 20.00 2 22100 288.79 4 3 2 21 * 14.00 43 2 210 296.79
3 02 2 1 % * 20.00 322100 290.85 4 4 02 2 1 % 15.00 4 4 2 2 1 0 297.27
4 2 2 1 * * 1 26.00 2 210 00 285.50 333 21 = 14.00 333 210 295.88
3 3 21 * = 20.00 332100 292.18 4 3 3 2 1 * 14.00 4 3 3 210 297.48
L 04 3 21 * 14.00 4 04 3 21 0 298.01
4 4 4 2 1 * 14.00 4 4 &4 2 1 0 298.15
Observed ages Number of Total cost Description Expected
of the elements elements of the of the system Discounted
i {* indicates failure) to replace intervention after the cost to go
preventively intervention
r €, (c)-[H| B+b6  (T) 13 J, (&)
33 3 3 1 % 14.00 333310 296.44
L 3 3 3 1 % 14.00 43 3 3 10 297.67
4 4 3 3 1 * 14.00 4 4 3 31 0 298.06
4 4 L3 1 * 14.00 4 4 4 3 1 0 298.16
4 4 L 4 1 % 14.00 & 4 4 4 1 0 298.18
202 2 2 2 % 14.00 222 2 20 292.42
302 2 2 2 & 14.00 3222 20 294.20
4 2 2 2 2 = 1 20.00 2 22 2 0 0 290.06
33 2 2 2 * 14.00 3 3 2 2 20 295.54
4 3 2 2 2 * 14.00 4 3 2 2 2 0 297.41
4 4 2 2 2 * 14.00 4 4 2 2 2 0 298.00
303 3 2 2 % 14.00 33 3 2 20 296.49
4 3 3 2 2 % 14.00 &3 3 220 298.09
4 4 03 2 2 x 14,00 L2 4 3 2 20 298.75
L4 4 2 2 % 14.00 64 5 2 20 298.99
33 3 3 2 * 14.00 333 3 20 297.12
4 3 3 3 2 = 14.00 4 3 3 3 20 298.43
L 4 3 3 2 * 14.00 4 4 3 3 2 0 298.98
& 4 4 3 2 % 14,00 & 4 4 3 20 299.19
4 4 4 & 2 % 14.00 4 4 4 4 2 0 299.26
3 3 33 3 * 14.00 333 3 30 297.56
43 3 3 3 * 14.00 4 3 3 3 30 298.62
4 4 3 3 3 % 14.00 4 4 3 3 3 0 299.06
4 4 4 3 3 * 14.00 4 4 & 3 3 0 299.22
4 4 4 4 3 * 14.00 4 4 4 4 3 0 299,27
4 4 4 4 4 % 14.00 4 4 4 4 £ 0 299.28

difficulty in obtaining the dynamic programming equation for the char- the search for a best policy to such a class of simpler policies can be the
acterization of optimal GPR strategies in the case where the components  best way to obtain a practical solution to a very large scale problem.

are not identical [12]. However. the size of the state set could rapidly A realistic maintenance problem will, in general, involve a multicompo-
become much too large to allow for a direct adaptation of the numerical  nent system with nonidentical elements and with a complex description of
procedure presented in this paper to obtain an optimal solution. Numeri-  the state of wear of each element as well as of the set of available
cal examples suggest that a “ reasonable™ or near-optimal solution can be  maintenance activities. Such problems offer stimulating challenges to
found in the class of FAT type policies defined in Section IV. To resirict  stochastic control theorists.
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TABLE III
DEFINITION OF THE PROBABILITIES OF FAILURE

p(ty
.019
126
.245
.330
.389
429
.439
482

NouUubWLWNEO |t

v

TABLE IV
COMPARISON OF THE EXPECTED TOTAL DISCOUNTED COST-TO-GO
FOR A NEW SYSTEM FOR THREE KINDS OF STRATEGIES

Optimal
Strategy NOPR FAT
B J,(0) 1,(0) Z of a, | J,(0) Z of
increase increase
1.0 | 16.693 |16.693 | 0.007% 8 116,693 | 0.00%
2.0 22.907 22,921 0.067 8 22,921 | 0.06%
7 23.025
8 129.149 1.31%
7 129.17
3.0 28,772 | 29.149} 1.31% 6 {29.18
5 129.20
4 29.27
8 35.38
4,0 33.830 |35.38 4,587 4 134.7
3 34.21 1.12%
2 |34.90
8 |41.61
5.0 ] 38.296 j4l.61 8.657 3 38.84
2 | 38.627 0.86%
1 }139.41
8 172.75
10.0 | 57.189 |72.75 27.217 |2 }57.253 | 0.11%
1 }57.322
TABLE V

VARIATION OF J_(0) WHEN p(7) GOES FROM 0.482 10 0.6 OR 0.8

Optimal
Strategy FAT
Z of 7 of
p(7) J*(O) increase | a, | J,(0) increase
8 29,149
.482 | 28.772 7 |29.17
6 29,18
8 129.25 |< 0.387
.6 28.779 < .03Z |7 [29.18 [« 0.06Z
6 |29.18 |< 0,032
8 129.36 {< 0.75%
.8 28.784 | < .05Z |7 |[2%.20 |< 0.142
6 29.18 | < 0.03%Z
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A Lagrange Approach to Set-Theoretic Control
Synthesis

P. B. USORO, MEMBER, IEEE, F. C. SCHWEPPE, FELLOW, IEEE,
L. A. GOULD, FELLOW, IEEE, AND D. N. WORMLEY

Abstract —A Lagrange approach to solving the nonlinear constrained
optimization problem arising in the set-theoretic control problem is de-
scribed. By introducing matrix Lagrange multipliers, the problem is re-
duced to that of solving a set of nonlinear simultaneous matrix equations,
one of which is the familiar matrix Riccati equation frequently encountered
in linear-quadratic control theory. The structural similarities and dif-
ferences between set-theoretic and linear-quadratic control methods are
identified. The results obtained from the set-theoretic control approach are
compared with those obtained from the linear-quadratic control approach.

I. INTRODUCTION

A set-theoretic approach to solving constrained control problems has
evolved from Schweppe’s work on * unknown-but-bounded” representa-
tion of uncertainty [1], {2]. a modeling technigue which assumes no
statistics for the uncertainty, and the only information that is known
about the uncertainty is its bound. Later work on target reachability
problems— Delfour and Mitter [3], Bertsekas and Rhodes [4], Glover and
Schweppe (5], and Sira-Ramirez [6]—has enhanced the development of
the set-theoretic concept into a practical control system design tool. In
fact, a set-theoretic control synthesis algorithm for linear systems has
been developed. implemented in a computer program, and tested [7].

The set-theoretic control problem for a linear system is as follows.
Consider the system described in state-space form by the continuous time
model

X=Ax+Bu+Go (D
(2

where x = n-dimensional state vector, # = r-dimensional control vector.
» = m-dimensional output vector, w = a single input disturbance (scalar).
and A4, B, G, H = matrices of appropriate dimensions.

The input disturbance w is modeled as an unknown-but-bounded
quantity represented by |w| < Q'/2, or equivalently

y=Hx

we,={w: w0 o<1}

3)

where @'/ is the bound on the amplitude of the disturbance.
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