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Theorem 4.3: Assume that the partitioning in (4.20) is made so that 
umn(X,)>um,(X2). Then the subsystem ( A , , . B , . C )  is reachable and 
observable. 

Proof: From (4.22) it follows that 

A f , X l A l , + A ~ l X 2 A , l - X l ~  -C:Cc,. (4.27) 

Assume that the subsystem ( A ,  B , ,  C2) is not observable. Then there 
exists an eigenvector u with corresponding eigenvalue h of A ,  such that 

AI lC  =x0 

C1C = 0 

I ’ C l l  = I .  

(4.28) 

(4.29) 

(4.30) 

Multiply (4.27) from the right by c and left by C* to  obtain 

( l - ~ ~ ~ ~ ) L ’ * X I D = U * A ~ , X Z A 2 , D .  (4.3 1) 

We have 

U*X, t ‘  23 Um,,(ZI) (4.32) 

o * A T , X z A , l c ~ I I A , , o l l ~ u ~ ~ ( X 2 ) .  (4.33) 

Insertion of (4.32) and (4.33) into (4.3 I )  gives 

( I - I x 1 2 ) u ~ n ( Z l ) ~  IIAz1DliZUm,(2z). (4.34) 

From Theorem 4.1 it follows that 

(4.35) 

Insert (4.35) into (4.34) to get 

( ~ - l ~ 1 2 ) ~ ~ ~ ( X l ) ~ ( l - l ~ 1 2 ) ~ m ~ ( X ~ ) .  (4.36) 

We know that the subsystem ( A  I ,, B l ,  C, )  is asymptotically stable. There- 
fore 

I - l h ! 2 > 0  

and 

~rnin(’l) C D m a ( Z z ) .  (4.37) 

This contradicts the assumption of the theorem. Therefore. the subsystem 
is obvservable. Analogously it can be shown that it is reachable. 

The folloiving example shows that the other subsystem ( A  ,?. B, . C2 ) is 
not nccessarily controllable and observable. 

Example 4.2: The system 

Jl = (1 0)xr  

is asymptotically stable, reachable, observable, and balanced. The gram- 
miam art: both equal to 

The subsystem (0, I .  I ) ,  which corresponds to the large eigenvalue of Z is 
controllable and observable in accordance to the theorem. The subsy-stem 
(0,O.O). which corresponds to  the smallest eigenvalue of Z. is,  however, 
neither reachable nor observable. Observe also that the balanced represen- 

tation is unique. since X has distinct eigenvalues. Therefore, it is not 
possible to find an equivalent balanced representation, which  is such that 
every subsystem is reachable and observable. It follows from Theorem 3.3 
and Lemma 3.1 that this is almlays possible in the continuous time case. 
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A Stochastic Control  Approach  to  Group  Preventive 
Replacement in a Multicomponent System 

A. HAURIE, hMIBER. IEEE, AND P. L’ECUYER 

Abstract-A group preventive replacement problem is formulated in 
continuous time for a multicomponent system having identical elements. 
The dynamic  programming  equation is obtained in the framework of the 
theory of optimal  control of jump processes. For a discrete time version of 
the model, the numerical  computation of optimal and  suboptimal strategies 
of  group  preventive replacement are done. A monotonicity property of the . 
Bellman functional (or cost-to-go function) is used to reduce thesize of the 
computational  problem. Some counterintuitive properties  of the optimal 
strategy are  apparent  in  the  numerical results obtained. 

NOTATIONS 

Throughout this paper IAl denotes the cardinality of the set A.  1 is  the 
indicator function 

if condition is true 
’~COndlllOn) = ( A othen+.ise, 

No is the set N U (0). LWT is  the positive orthant in Rm. y( M )  is  the class 
of subsets of the set M .  

I. INTRODUCTION 

The aim of this paper is to formulate and solve a group preventive 
replacement (GPR) problem. considered in the framework of optimal 
stochastic control theory. 

recommended by S. 1. Marcus. Past Chairman of the  Stochastic  Control  Committee. This 
Manuscript received April 2, 1980; revised June 16. 1981 and  November 17. 1981. Paper 

work was supponed by the  Natural  Science and Engineering  Research  Council of Canada 
under  Grant  A 9368. the  SSHRC of Canada  under  Grant 410-78-0603-R1, and  the  DGES. 

Quantitadves.  Montreal.  P.Q..  Canada H3T IV6 
A. Haurie is with  the  €cole  des  Hautes  Etudes  Commerciales.  Sewice  des  Metbodes 

Universite  de  Montreal. klontreal, P.Q.. Canada,  and  with  GERAD. e o l e  des  Hautes 
P. L‘Ecuyer is Xvitb the Departement  d‘lnfonnatlque et de Recherche  Operationnelle. 

Etudes  Commerciales.  Montreal.  P.O..  Canada  H3T IV6. 

00I8-9286/82/0400-0387$00.75 01982 IEEE 

Authorized licensed use limited to: Université de Montréal. Downloaded on June 10,2020 at 21:54:20 UTC from IEEE Xplore.  Restrictions apply. 



388 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-27, NO. 2, APML 1982 

A presentation of group preventive maintenance can be found in [I]. 
The GPR problem that we are considering occurs when a system consists 
of several elements of the same type whch work under the same general 
conditions. All the elements have the same lifetime distribution. Only ttvo 
actions are available for a single element: either replace it when it fails 
(emergency replacement) or replace the element before it fails (preventive 
replacement). The possibility to combine preventive replacements with 
emergency replacements in a multicomponent system can generate a 
substantial maintenance cost reduction if there is a large fixed cost 
associated with any intervention on the system. whatever be  the number 
of elements replaced. 

In [ I ]  the GPR strategy is defined by a heuristic service rule \vhich  is 
clearly nonoptimal. In [2] a formulation of the GPR problem as a 
stochastic control problem has been proposed and a dynamic program- 
ming equation has been heuristically derived. 

In Section I1 of the present paper, the dynamic programming equation 
of [7] is more rigorously obtained by using some general results of the 
control theory of jump processes. 

In Section I11 a discrete time formulation of the problem is proposed 
and the approach for the numerical solution of this large scale problem is 
described. 
In Section IV several numerical illustrations are fully developed to show 

the effect of the relative magnitudes of the fixed and the variable parts of 
the maintenance cost on the optimal GPR strategy. The optimal strategies 
are then compared with suboptimal strategies whch are simpler to 
implement. 

11. T H E  GROUP PREVEKTIVE REPLACEMENT PROBLEM 

We consider a system comprised of rn identical elements working 
independently under the same conditions. At time ro = 0 even. element is 
netv; at time T >  0. the whole system is replaced by a new one. During the 
time intewal [O. TI. if one element fails it has to be replaced immediately 
by a new one. Thls is called an emergency replacement ( E R ) .  Simulta- 
neously with an ER the repairman can replace any number of working 
elements he wants. This is called the preventive replacement (PR) of a 
working element. 

The cost of an intervention contains two parts:  a fixed cost B is 
incurred whatever the number of elements replaced: a variable cost varies 
linearly with the number of elements tvhich are replaced. Thus. the cost of 
an intervention Lvhere Y elements are replaced mill  be given  by 

B f u h ,  for v 2 l .  

Knowing this cost structure and the failure rate function I (  r )  for one 
element. Lvhere r is the age of the element, the problem is to find the 
optimal strategy for preventive replacement (optimal PR strategy). 

We assume that ERs  or PRs  are performed instantaneously. 
In order to establish rigorously the optimality conmtions characterizing 

the optimal strategy. it will  be convenient to formulate the problem in the 
framework of the theory of optimal control for jump processes. Recently. 
several authors [3]-[6] have obtained very general optimality conditions 
for the control of jump processes. The results obtained by Rishel are 
appropriate for the solution of the present problem. 

Let us define the  set 

X= IMXR;' 

and consider a jump process x = (I( 1 ) :  0 < r C T )  mith  value in X where 
x( r ) ( y(  r ) ,  z (  I)), the component y( t )  E M giving the identification num- 
ber of the last element which has failed at or before f .  whle the vector 
: ( I )  E R ?  gives the age of each element just after the last intervention of 
the repairman. 

The set C; of possible actions describes the choices of emergency and 
preventive replacements that the repairman can do during an intervention. 
We shall describe an element u of Li as a vector ( U J ) , ~  ,, where each 
component uJ is a subset of M which must contain] as an element. 

;E u j €  "3( M). 

When element; fails, all elements contained in uJ are replaced. Thus. u 
is already defined as a policy telling the repairman whch working element 
he has to replace preventively. knowing that an emergency replacement is 

For all r E [O. TI. let H( t )  be the number of jumps during [0, t ] .  Define 
the jump times T ~ .  T.. . . . ,T". . . . by letting T~ = 0 and be the time of the 
t ~ t h j u m p i f r l ( ~ ) a ~ ~ o r ~ , = T i f n ( T ) < , ~ . L e t  

X , , c ' S ( T , , ) .  

Denote by X,, the random sequence 

Rishel [6] has shown that the controlled jump process is determined if 
one has given  the family of conditional jump rate functions 

and the family of conditional state  jump probabilities 

~ ( A ; , Y , , . T , ~ + ~ . U ) ~ P [ . ~ , + I E A I X , , . T ~ - ~ , U ] .  A C X .  U E C .  (4) 

A control is a functional u ( r .  X,,) on the past of the process, with value 
in LI. We notice that, given the information X,. the action u ( f .  X , )  has  no 
effect on the jump rate at 1.  

Let us define 

?;, &.v( 7"). ( 5 )  

G=(zi),E,\, '4T,J. (6) 

Thus, following the assumption of independence and given the failure 
rate function I ( r )  for one element, the jump rate at time t is  given  by 

q ( r l X , ) =  x I ( Z p - T " ) .  

j E . M  

Once a  jump  has occurred. the state  jump probabilities now depend  on 

Gik-en z n .  T,,+ I. and u .  let us define the vector ((;, u )  E R" by 
U. 

( ' ( j .  u )  = O  if i E  u, 

Then we have 

, = I  

For all subsets A of M XRm not containing an element ( J .  E(;. u ) )  the 
probabilit)- (6) is equal to zero. Thus, at any time r .  only n~ state jumps are 
possible. given an action u and an age vector z,, at T,, < t. 

Equations (7)-(9) define a controlled jump process associated nith the 
GPR problem. A cost functional v (  T,  X,,). giving  the amount paid at the 
terminal time T if rl(T) = n ,  is defined by 

since, at each jump k .  the  fixed cost B is incurred and the unit cost b is 
multiplied by the number of elements replaced (21t,%,l(,i=o,). p is the 
discount rate. 

The control problem is to pick the control u( t .  X,) in the admissible 
class so that 

is minimized. 
The optimal control thus obtained will produce an optimal GPR 

Kotice that according to (7) and (9) we can write 
strategy. 

Authorized licensed use limited to: Université de Montréal. Downloaded on June 10,2020 at 21:54:20 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-27, NO. 2, APRIL 1982  389 

and 

P [ - ~ n - l = ( j : I ( j . u ) ) l ~ , . ~ , , ~ , - l . u ]  
- 
- ~ [ ~ ~ + l = ( j . ~ ( j . t ~ ) ) I ~ , , . ~ , , + ~ . u ] .  

Thus, the control can be restricted to  a  functional u( r .  T,,. :n). 

Using the dynamic programming optimality conditions given  by  Rishel 
[6], \ve can say that an optimal control u*(r .  z , ~ )  is such that there exists 
a function V(r. T". :n) absolutely continuous in t such that 

V( T .  7". z , ~ )  0 

where the optimal GPR strategy u * ( r . ~ , , ? z , , )  solves  the right-hand side 
minimization. The dynamic programming equation ( 13) also yields a 
sufficient condition for optimality. 

When loolung for a solution of (12) and (13) we could take advantage 
of the fact that the  age at time r of the element j is given  by 

5 = :!, + r - T,, . j E  M .  (14) 

Thus. defining the vector r = ( we could restrict the function V 
to the class of functions satisfying 

V ( r , T , z , z n ) = b ' ( r , r )  (15) 

lvhenever T,. z ,  satisfy (14) and where W (  t ,  r )  is a given function. 
Clearly, the  following relation will thus hold: 

With this restricted class of function the sufficient conditions (12)  and 
( 13 ) become 

M/( T .  r )  0 (17) 

where y ( r .  u J )  is the vector defined by 

( 19) 

Going from (12). ( 13) IO (17). (18) is going from optimality conditions 
Lvhich involve a single differential equation in t to a  partial differential 
equation. 

It is not clear which  system  will  be easier to  solve numerically. 
As  the ( y. r )  process  is Markokian. the optimality conditions ( 1  7). ( 1  8) 

will have a discrete time counterpart related to the theory of the control of 
Markov chains. Th~s  is  the approach followed in the next section. 

111. A  DISCRETE  TIME FORMULATION 

We consider now  :he case  where the system  is observed at discrete 
sampled times. Assume :hat the time intend [O. TI is divided into n 
subintends of length A t .  Thus. the sampled times of observation are 

We assume that ERs and PR's are possible only at sampled times. 
Denote by r,' the time f, immediately after the replacements (if any). 

The replacement decision at time I,,, if any, wdl generate an instanta- 
neous state transition. More precisely, at a sampled time f v ,  the state of 
the system  is a vector r = (c),, ,E (N U {d})"' .  If 5 = d .  this means that 
the element j is observed to be  in a failure state at time r , .  If 5 E N .  then 
the element j has the age 5 A r .  

At time 1,. the  state of the system  is a vector [ = ( ~ I ) , E , , , E ( N O ) m  
whose component tJ is  given  by 

' J =  ( 0 if the elementj has been replaced at r ,  
5 othemise. 

We assume again that an element which has been observed to be in a 
state of failure d at time to  must be replaced immediately. 

Thus, the control action at a sampled time r ,  is the subset R of elements 
replaced. This set must contain, as a subset. the set H of failed elements. 

If an element j is in state 6, E No at time 1:. then the conditional 
probability that it will fail during the  next time period of length A t  given 
that  it  has not failed during ( r ,  - [ ( A r .  r,] is given  by 

= l ( t , A t ) A r - o ( A r )  (20) 

Lvhere o ( A r )  is such that limA,,oo(At)/Ar=O. 
From now on, we assume an increasing failure rate (IFR). and so is 

AQ( 6, ), as a function of 6,. (IFR is a standard assumption in reliability 
theory and  it corresponds to adverse aging. See [9], [ 11.) 

Given the state vector 6 at r : .  the conditional probability that the 
subset G C 34 will contain all the elements pihich d l  fail during (1,. r , ,  , I  
and only these is given  by 

P(GIS)= A Q ( t , )  ( l - A Q ( t , ) ) .  (21) 
r E G  J E ,\f ~ G 

We shall  look for the solution of the GPR problem formulated on ths 
discrete sampled time set and use this solution as an approximation to the 
exact solution of the continuous time GPR problem. 

In a discrete time setting, there is no theoretical difficulty to assume 
that a preventive replacement can be made even if no failure has occurred 
(in a continuous time setting this would have led to  an impulse control 
problem).  It could be sho\vn. however. that with the chosen cost structure, 
preventive replacements are never made in  the absence of failures [ 131. 

Let us assume a discount factor BE [0,1] per time period Ar and define 
the cost-tego function Jn( r )  as the total minimal expected cost given that 
we are at time 

I,= 7- k.lr (22) 

and that the system is observed to be in state r. 
We will  use the notation e, for the i th unit vector (0:' . . . 1.. . . .O) E W"', 

and write de, for the vector whose ith component is equal to d .  the  other 
components being zeros. 

By a  standard dynamic programming approach (cf. [7]. [SI). we obtain 
the following equations defining the functions JL , k = 0. . . . m :  

ZoEJ0EO (23) 

and for k = 1:. ..m 

i f H = +  

(24) 

where 

H 5  { J j r , = d }  

is the set of failed elements at time I ,  = T -  kAr and 
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z k ( r ) %  2 P(Gir)Jk-l(  2 deJ+ 2 ( ? + l ) e , ) .  (25) 
G C M J E  G J E  M - G 

The equations (23)-(25) are clearly the discrete time counterpart of 

At time T. the age of each element can take n + 1 possible values 
(assuming that r = 0 at time t o )  and so there are ( n  + I)"' possible states 
of the system. 

We can define an order  on N U { d }  by setting d > k V k  E N. As the 
elements are identical. it is possible to reduce the number of possible 
states of the system by considering that the components of r are always 
ranked by decreasing order of magnitude: 

(17)-(19). 

rl 2 r2 2 . . . 2 rn,. (26) 

This is equivalent to saying that the name of an element is no longer 
recorded. The number of possible states is  now the number of combina- 
tions with repetitions of rn elements among )I + 1, which is given  by 

In practice. there may be an age  which can be attained by an element 
only with a ve? small probability. In that case. to reduce further the 
number of possible states, we may approximate A Q (  5 )  by a function of 
the form 

where a < 11. Hence. an element of age greater than a is equivalent to an 
element of age a. 

Thls reduces the number of possible states of the system to 

Equation (27) then becomes 

r € G  J E  . % - G  

In another way, it is possible to limit the life of any element to a - I 
periods by taking 

p ( a ) = l .  (31) 

It means that any element of age a + 1 is replaced immediately. 
In (24), for a given H .  we have 2"'- H I  possible candidates for R .  This 

number can be very large if there are many elements. HoLvever. since we 
assume that AQ(.Y) is not decreasing in x. it seems intuitively clear that 
the elements preventively replaced, if any. will  always  be the oldest 
elements. A proof of this assertion can be found in [ 131. 

Hence, choosing R reduces to choosing a number r). 0 < q S nl - €I 
and replacing the q oldest elements. The number of candidates for R is 
thus reduced to rn - 1 - i H I .  

Notice that at a sampled time t o ,  0 3 I ,  no element can be of age 0. The 
set of all possible states of the system at that time  is thus 

R = { r E ( I . 2 : ~ ~ , a , d ) " ' ~ 1 . ~ ~ r ~ Z ~ ~ ~ ~ r , , ~ } .  (32) 

At r ,  . u 2 0. the set of all possible states of the system is 

In the light of the preceding remarks. the dl-namic programming 

I )  Set, V r E   R :  
algorithm can be reformulated as follow: 

J,( r )  = 0. (34) 

where 

p g m a x { i I r , = d }  (37) 

represents the number of failed elements and ord(s) is the vector sE R"' 
whose components have been rearranged by decreasing order. 

Let Oh( r )  be the value of 6 for which the minimum is attained in (36).  It 
represents the optimal number of elements to replace xvhen  we are in state 
I at time T -   AI. 

Another reduction of the computation time is possible by using a result 
p r o v e d i n [ 1 3 ] w h l c h s t a t e s t h a t i f r a n d i a r e i n R . i 3 r a n d 6 , ( r ) = n l ,  
then B , (  i )  = nr. 

For m = 1, that result is the well-known control-limit rule (see [7, 
Theorem 6.91).  But for M > I and Oh( r )  < m. i 2  r does not imply 
6,( i )  3 6,(r). A counterexample will be given in Section IV. 

HoLvever. one could restrict beforehand the class of admissible strate- 
gies to monotone strategies (Le., Or( r )  is nondecreasing with respect to r )  
and thus look for suboptimality instead of optimality. In Section IV. ths 
approach is discussed. 

Consider finally the case  where l r  is fixed and 7= cc. Let J ( r )  be the 
expected discounted cost over an infinite horizon xvhen r E   R U R ,  is the 
state of the system. Assume j? < I .  From Proposition 1 on p. 227  of  [SI,  we 
have. V F E  R U R , :  

According to Proposition 2 on p. 229  of [X]. there exists a  stationary 
optimal strategy { u*( r ) J rE  ,Y telling which elements to replace when the 
system is obsemed to be in state r .  Moreover. from (38) and (34)-(37) it 
could be shown (see [ 131) that J (  r )  is a nondecreasing function of each 
component r, and that the optimal stationary control law  will still have all 
the propertiis stated above for the finite horizon optimal control law. 

According to Proposition 4  on page 237 of [PI. the function J ,  obtained 
b! the following algorithm is such that 

y1 = - min (J,( r )  - Jh- r ) )  P 
l - P . E R o  

4) If y2 - y, > c return  to step 2). 
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5) Set 

stop. 

I\'. NUMERICAL  ILLUSTIL4TIONS 

In th s  section various examples are worked out. The analysis has been 
restricted to the infinite time horizon case. 

A. E.wntple 1 

Consider n l  = 6 elements, p = 0.95. a fixed cost B = 8.0. and  a unit cost 
of h = 6.0 for each replaced element. The probabilityp(/) that an element 
of age t will fail during the next period is given in Table I. 

We thus have u = 4. After 50 iterations (CPU time = 13 1 s on  a cyber 
173). we obtain the solution depicted in Table 11, where the maximum 
error  on the expected cost-to-go is less than = O . O I .  For each possible 
obsemed state of the system. Table I1 indicates the best action to  do. It is 
already kn0N-n that &-hen there is no failure, we do no PR. So, these states 
without failed elements do not have to  appear in the table. The expected 
discounted cost-tego starting with a new  system  is J,(O) = 251.49. 

Sotice that in state (331 11*) we replace only the failed element, but 
that in state (3 1 1  1 1  * )  we replace two elements! Hence. s > r does NOZ 
imply that O , ( s ) > B J r ) .  

Ths  counterintuitive result can be explained as follo\vs:  n.hen  the 
system  is  in state (3 1 1  1 I* ) .  replacing two elements leads to a  state where 
all elements are not old, whereas  when  the system is in state (331 1 1  *). the 
same replacement decision would  leave one element at age 3 and. thus. a 
rather hgh probability of failure. To lower significantly the probability of 
failure in that latter  state. we must replace three elements. But  this  is too 
expensive: hence. the best decision is to replace none of the elements of 
age 3  and wait for the next sampled time. 

B. C o n p r i s o n  wzrh Suhopnnzul Solurions 

One simple suboptimal strategy is  the following: 
I )  Do no PR's when  all elements are operative. 
2) When there is at least one failure. replace only the failed elements. 

Another suboptimal strategy consists of the following: 
1) Do no PR's when all elements are operative. 
2) When there is at least one failure. replace all failed elements and all 

those elements whose  ages are greater or equal to a certain threshold a,. 
Lvhich is independent of the obsemed state of the system. 

The number u* is chosen in the set { 1.2.. . ..a 1). Such a strategy will 
be called a  FAT strategy (fixed age threshold). Notice that a  FAT strategy 
is a particular monotone strategy. 

Adopting the NOPR strategy corresponds to taking u* = u + 1. Hence, 
there exists a number u ,  E { 1; . .u + 1 } such that starting with a new 
system and using the corresponding FAT strategy will  yield an expected 
discounted cost-to-go not greater than the one obtained when  using the 
KOPR strategy. 

The following example is an illustration of what can be the percentage 
of increase of the expected cost when using NOPR or FAT instead of the 
optimal strategy. 

C. E.wnlple 2 

This strategy will be called KOPR (no preventive replacements). 

Consider a system of nz = 6 elements. each having a  Gamma (4. I )  
lifetime distribution. Thus. QtE N 

\vhere 

TABLE I 
DEFINITIOY OF THE PROBMlLlTlES OF FAILURE 

t P(t) 

0 
1 

.05 

2 
.10 

3 
.20 

2 4  
.40 
.90 

The failure rate A Q ( r )  can be approximated reasonably (taking u = 7) 
by 

We then obtain  a definition of the probabilities of failure (see Table 
111). 

For p = 0.90. b = 1.0 and for different values of B. the expected 
discounted cost-to-go starting with a new system ( J J O ) )  has been com- 
puted using I )  the algorithm of Section 111, which  gives  the optimal 
strategy. 2) NOPR.  and 3) FAT \\ith different values of u*.  Table IV  gives 
the results of this computation. 

Notice that 
I )  The cost reduction in doing PR's increases as the ratio B / h  of the 

2) The optimal value of u,  for the strategy decreases as B/ 'b  increases. 
3) The cost-to-go n.hen  using  the optimal FAT strategy is  in general 

not very  much higher than when using the optimal strategy (1.3 percent 
increase in  the  worst case). 

This numerical illustration suggests that, in a real-life large-scale prob- 
lem. a  FAT suboptimal PR strategy could be a good substitute to the 
optimal closed loop strategy. This could. however, be true only for 
systems observed over an infinite time horizon. When the time horizon is 
finite the  age threshold should at least depend on time. 

For th s  example, the values of J,(O) for the suboptimal strategies have 
been computed by using the dynamic programming algorithm of Section 
111. in  which the strategy was fixed [modifying (36)]. Hence. the computa- 
tional times  were almost the  same. HoLvever. for a very large scale 
problem, it is clear that the optimal value of u ,  for a F.41 strategy can be 
found by using a linear search combined with simulation. whereas due  to 
the curse of dimensionality. the algorithm of Section I1 would be impossi- 
ble to  use. 

For t > 7 ,  p (  I )  has been approximated byp(7) = 0.482. Let us see what 
happens now. for the case B = 3.  if p ( 7 )  is raised to 0.6 or 0.8. 

We can see. in Table V. that the optimal value of u, changes with p(7). 
However, the value of J,(O) does not change very much. Thus. the 
approximation of I Q ( r )  byp(  I )  seems reasonable. 

fixed cost over the unit cost increases. 

V. COKCLUSION 

Multicomponent systems are commonplace in practice, Lvhereas the 
theory of optimal maintenance is mainly directed to\vards single compo- 
nent systems (cf. the recent sumev of 191). The results obtained in previous 
sections show that an optimal GPR strategy can be  devised through the 
use of modern stochastic control theory in  the case where all components 
have the same lifetime distribution. 

The problem considered in this  paper is related to the problem consid- 
ered by Vergin in [IO]. However. the methodology we have used permitted 
us to solve a much larger problem than the one considered in [ 101. 

T~vo extensions of this work can be considered: 
1 ) The actions available for maintenance of one element could refer to 

a larger variety of repair and overhaul activities. This would necessitate a 
more detailed description of the state of  w-ear  of an element than the one 
given by the age of the element. A first attempt to generalize the model in 
this direction can be found in [?I. 

2 )  The elements could have distinct lifetime characteristics. This is the 
case for many systems Ilks trucks [ I  I]. aircraft engines, etc. There is no 
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TABLE I1 
SOLCTION FOR THE NUhERICAL EXAMPLE 

Observed ages xuober  of T o t a l   c o s t  Descr ip t icn   Expec ted   Observed  ages 
of t h e   e l e m e x r e  e 1 E 3 e n t s   o f   t h e  of the  sys tem  Dis :wnted  ef the e l e m e n t s   e 1 e n e n t s  of t h e  
( *  i n d i c a t e s   f a i l u r e )  t o   r e p l a c e   i n t z r u e n t i o n  a f t e r  che 

limber c f   T o t a l  cost 32S:riptlGn fxpecced  
of che s y s ~ 2 1 1  J i S i a u n t e S  

cosc cc ga ( *  m e i c a t e s   f z i l u r e )  to r e p l a c e   i n t e r v e n c i o n  after ch* ;J5L io go 
p r e v e n t i v e l y   i n t e r v e n t l m  p r e v e n t i v e l y   i n t e r v e n t i m  

~ * ( ~ ) - I I I  3-b3,(r) I: S = ( r ) -  H 3+'58,(r) :*c<) 

* * * * h i  14.00 0 0 0 0 0 0 274.49 
I - * * * *  38.00 
* * * * e *  33. 00 2 0 0 C 0 0 279.17 3 3 3 1 "  
3 * * * * *  1 44.00 0 0 J 0 0 0 274.19 ; 3 3 1 * *  20.00 
& * * * ' X  1 4L. 00 0 0 0 0 0 0 274.L9 
1 1 * * * '  32.00 1 1 0 0 0 0 218.99 4 4 4 1 - *  20.00 4 4 L 1 3 0 294.40 
: I * * * '  
3 1 1 * * '  1 30 .00  1 0 0 c 0 3 276.85 

2 2 2 2 * *  20.00 2 2 2 2 0 3 290.06 

& I * * - *  
3 2 1 : * *  

1 30 .00  1 o o o o o 276.85  26.00 < 2 2 2 * *  
20.00 3 2 2 2 0 0 291.93 

1 2 * * * *  
2 : 2 o o .o 2a7.00 

3 ? * * * *  
3 2 . 0 0  2 2 o o o o 283.59 3 5 ? 2 * *  20.00 

1 30 .00  2 0 0 0 0 0 279.47 1 
3  3 2 2 0 0 293.20 

; 2 * * * *  
4 3 2 2 * *  26.00  3 2 1 o o o 288.96 

3 3 * - * *  
2 0 0 0 0 0 279.47 & L 2 2 f *  20.00 4 L 2 2 0 0 295.39 

& 3 * ' * *  2 4L.00 0 0 0 0 0 0 274.49 4 3 3 2 * *  20.00 
4 4 * * * *  

L 3  3 : 0 0 295.33 
2 6L. 00 0 0 0 0 0 0 274.49 

1 1 1 * * *  26.00 1 1 1 0 0 0 280.92 
4 L 3 2 * *  20.00 4 4 3 2 0 0 295.72 

2 1 1 * * *  26.00 2 1 1 0 0 0 283.42 
& 4 & 2 = %  
3 3 > 3 * *  

20.00 h 4 4 2 0 0 295 . i9  

3 1 1 * * *  
20.00 

1 32.00 1 1 o o o o 278.99 4 3 3 3 * '  20.00 
3  3  3  3 0 0 294.41 

4 1 1 * * *  1 32.00 
4  3 ; 3 0 0 295.4? 

2 2 1 * * *  26.00 
1 1 o o o o 278.99 
2 2 1 0 0 0 285.50 

4 6 3 3 ' -  20.00 
& & 4 3 "  

4 4 3  3 0 0 295.7L 

3 2 1 * * *  1 32.00 
20.00 

2 1 0 0 0 0 201.56 
4 4 4 3 0 0 295.80 

& 2 1 * * *  
& j 4 4 t '  

1 32.00 
20.00 4 4 1 L 9 o 2 9 j . a l  

2 1 0 0 0 0 201.56 1 1 1 1 1 '  1 4 . 0 0  
3  3 1 0 0 0 208.52 

1  1 1 1 1 3 284.11 
? i l l l *  

4 3 1 * * *  
2 1  1 1 1 3 286.39 

2  38.00 1 
4 4 1 ' * *  

1 0 0 0 0 0 276.85 
2  38.00 

3 1 1 1 1 *  20.00 1 1 1 1 0 0 282.62 
1 0 0 0 0 0 276.85 i l l l l *  1 

2 2 2 * * '  26.00 2 2 2 0 0 0 287.08 2 2 1 1 1 *  
20.00 1 1 1  1 o o 282.62 
14  .oo 

3 2 2 * * *  26.00  3  2 2 0 0 0 285.96 3 2 1 1 1 *  
2 2 1 1  1 0 288.36 

4 2 2 * * '  
1.i.00 

1 32.00 2 2 0 0 0 0 203.59 4 2 1 1 1 *  1 
3 2 1 1 1 0 290.63 

3 3 2 * * x  26.00  3  3 2 0 0 0 290.03 
20.00 2 1 1 1 0 0 285.03 

& 3 2 * * *  
3 3 1 1 1 *  

2  38.00 
14.00  3  3 1 i 1 0 292.04 

4 : 2 * * *  
2 0 0 0 0 0 2 i9 .47  & 3 1 1 1 *  26.00 1 1 1 0 0 0 200.92 

3 3 3 * * *  
38 .00  
26.00 

2 0 0 0 0 0 2i9.h: 4 4 1 : 1 *  
3  3  3 13 o o 290.50 2 2 2 1 1 -  

4 3 3 * * *  26.00 
14.00 2 2 2 I 1 0 290.03 

4  3  3 0 0 0 291.09 
4 & 3 * ' *  

3 2 2 1 1 '  1 L . 0 0  3 2 2 1  1 0 292.21 
26.00  4 4 3 0 0 0 292 .11  L ? 2 1 1 *  1 

& & L e * *  26.00 
20.00 2 2 1 1 0 0 207.09 

1 1 1 1 * *  
4 4 4 0 0 0 292.1: 3 3 2 1 1 -  14.00 

20.00 
3  3  2 1 1 0 293.76 

2 1 1 1 * *  
1 1 1 1 0 0 282.62 i 3 Z 1 1 '  

20.00  2 1  1 1 0 0 285.03 
20.00  3 2 1 1 0 .  0 289.26 

3 1 1 1 * *  
L 4 2 1 1 *  

1 26.00 1 1  1 o o o 280.92 3 3 3 1 1 *  1 4 . 0 0  
26 .00  2 1 1 o o o 283.42 

3  3  3 1 1 0 294.65 
: 1 1 1 * *  1 26.00 1 1 1 0 0 0 200.92 4 3 3 1 1 *  
2 2 1 1 * *  

14 .00  
20.00 

4  3  3 1 1 0 296.14 

3 2 1 1 * *  20.00 
2 2 1 1 o o 287.09 4 4 3 1 1 *  
3  2 1 1 o o 289.26 

14 .00  
4 4 L l l *  14 .00  

4 4 3 1 i 0 296.43 

4 2 1 1 * *  
4 4 4 1 1 0 296.49 

1 26.00  2 1 1 0 0 0 203.42 2 2 2 2 1 *  14.00 
3 3 1 1 * '  20.00 

2 2  2 2 1 0 291.38 

L 3 l l * *  
3  3 1 1 0 0 290.43 3 2 2 2 1 %  14.00 3 2 2  2 1 0 293.38 

2  32.00 1 1 0 0 0 0 270.99 4 2 2 2 1 *  1 
2 32.00 1 1 o o o o 278.99 

20.00 2 2 2 1 n o 280.79 
4 4 1 1 * '  
2 2 2 1 ' *  

3 3 2 2 1 *  14.00 
20.00 

3  3 2 z 1 o 294.88 
2 2 2 1 0 0 200.79 

3 2 2 1 * *  20.00 
4 3 2 2 1 *  14.00 1. 3 2 2 1 0 296.79 

3  2 2 1 0 0 290.05 4 4 2 2 1 *  
4 2 2 1 * *  1 26.00 

14.00 4 4 2 2 1 0 297.2i  

3 3 2 1 * '  
2  2 1 0 0 0 285.50 

20.00 
3 3 3 2 1 -  14.00 

3  3  2 1 0 0 292.10 L 3 3 2 1 *  
3  3  3  2 1 0 295.88 

L 4 3 2 1 *  
14 .00  
14.00 

L 3  3 2 1 0 297.48 
4 4 3 2 1 0 290.01 

4 4 4 2 1 *  14.00 4 4 4 2 1 0 290.15 

L 3 2 1 ' *  
S . i ? l ' *  1 0 0 0 0 0 276.85 

31.0C 2 1 0 3 C 0 201.56 
32.00 2 1 o o o o :al . jb 
20.00 3  3 j 1 '3 3 192 .53  

4  3  3 1 0 0 294.21 
20.00 .i 4 3 1 0 0 29$.L4 

2 

. * 5 1 * *  . .  

32.00 2 1 0 0 0 0 201.56 

1 

1 30.00 
32.00  3  3 0 0 0 0 236.35 3 3 3 2 * *  20.00  3  3  3 1 0 C 293.95 

3 3 1 * * *  26.00  14.00 

26.00 1 1 1 0 0 0 280.92 

1 

2 

3 3 3 3 1 *  
4 3 3 3 1 *  
4 4 3 3 1 *  
4 4 1 3 1 *  
4 4 4 6 l *  
2 2 2 2 2 *  

4 2 ;  
3 2 * ? 2 *  

4 3 2 2  
3 3 2 .  

3 4 2 2 -  
3 3 3 2 2 *  
4 3 3 2 2 -  

4 3 3 3 2 -  
3 3 3 3 2 *  

' 4 3 3 2 *  
i f . 4 3 2 -  
4 h j L 2 r  

A 3 3 3 3 '  
3 3 3 3 3 '  

L 4 3 3 3 *  
4 4 4 3 3 *  
4 4 4 4 3 *  
6 4 4 4 4 *  

14 .  on 
14  . 00 I 3  3 3 1 0 297.67 

3 3  3 3 1 0 296.44 

14 .00  4 L 3 3 1 0 290.06 
14.00 4 4 4 3 1 0 290.16 
14.00 4 4 4 4 1 o 298.18 
14.00 2 2 2 2 2 0 292.42 
14 .00  3 2 2 2 2 0 294.20 
20.00 
14.00 
14.00 
14.00 
15.00 
14 .  00 
14 .00  
1 L .  00 
14 .00  
1 4 .  00 
14.00 
11 .00  
14 .00  
1 4  .oo 
14.00 
14.00 
14 .00  
14 .00  
14 .  on 

2 2 2 2 0 0  

4 3 2 2 2 0  
3 3 2 2 2 0  

4 4 2 2 2 0  
3 3 1 2 2 0  
L 3 3 ? ? 0  
L 4 3 2 Z O  
B A L 2 2 0  
3 3 3 3 2 0  
4 3 3 3 2 0  
4 4 3 3 2 0  
4 4 4 3 2 0  
4 & 4 4 2 0  
3 3 3 3 3 0  
4 3 3 3 3 0  
4 4 3 3 3 0  
4 4 L 3 3 0  
4 4 4 4 3 0  
4 4 4 4 4 0  

290.06 
295.54 
297.41 
298.00 
296.49 

298.75 
298.99 
297.12 

290.90 
299.19 
299.26 
297.56 

299.06 
299.22 
299.27 
299.20 

29a.09 

29a.63 

298.62 

difficulty in obtaining  the dynamic programming equation for the char- the search for a best policy to such a class of simpler policies can be the 
acterization of optimal GPR strategies in the case where the components best way to  obtain  a practical solution to  a ver). large scale problem. 
are not identical [12]. Ho\vever. the size of the state set could rapidll- A realistic maintenance problem Rill. in general, involve a multicompo- 
become much too large to  allow for a direct adaptation of the numerical nent sl-stem xvith nonidentical elements and dth a complex description of 
procedure presented in this paper to obtain an optimal solution. Kumeri- the state of  w-ear of each element as well as of  the set of available 
cal examples suggest that a "reasonable" or near-optimal solution can be maintenance activities. Such problems offer stimulating challenges to 
found in the class of FAT type policies defined in Section IV. To restrict stochastic control theorists. 
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A Lagrange  Approach  to Set-Theoretic Control 
Synthesis 

P. B. USORO. MEMBER.  IEEE. F. c .  SCHb’EPPE, FELLOW, IEEE. 
L.  A. tiOULD. FELLOW.  IEEE, AND D. N. W-ORMLEY 

Abstracr -A Lagrange approach to solving the nonlinear constrained 
optimization problem arising in the set-theoretic control problem is de- 
scribed. By introducing matrix Lagrange multipliers, the problem is re- 
duced to that of solving a set of nonlinear simultaneous matrix equations, 
one of which is the familiar matrix Riccati equation frequently encountered 
in linear-quadratic control theory. The structural similarities and dif- 
ferences between set-theoretic and linear-quadratic control methods are 
identified. The results obtained from the set-theoretic control approach are 
compared  with those obtained from the linear-quadratic control approach. 

I. INTRODUCTION 

A set-theoretic approach to solving constrained control problems has 
evolved  from  Schweppe’s  work on “unknown-but-bounded” representa- 
tion of uncertainty [I] .  [2 ] .  a modeling technique wluch assumes no 
statistics for the uncertainty. and the only information that is kn0v.m 
about the uncertainty is its bound. Later work on target reachability 
problems-Delfour and Ivfitter [3]. Bertsekas and Rhodes [4]. Glover and 
Schweppe [j], and Sira-Ramirez [6]-has enhanced the development of 
the set-theoretic concept into  a practical control system design tool. In 
fact. a set-theoretic control synthesis algorithm for linear systems has 
been developed. implemented in a computer program, and tested [7]. 

The set-theoretic control problem for a linear system is as follows. 
Consider the system described in state-space form by  the continuous time 
model 

X = A x + B u + G w  

y =  H x  
( 1) 

(2) 

where x = n-dimensional state vector, u = r-dimensional control vector. 
= m-dimensional output vector. w = a  single input disturbance (scalar). 

and A .  B .  G. H = matrices of appropriate dimensions. 
The input disturbance w is modeled as an unknown-but-bounded 

quantity represented by IwI G Q l i 2 .  or equivalently 

wEQ,= { w :  w ’ Q - ’ w G I }  (3) 

where Q 1 T ‘ 2  is the bound on the amplitude of the disturbance. 
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TABLE I11 
DEFIKITION OF THE  PROBABILITIES OF FAILURE 

.245 

4 
5 

.389 

6 
.429 
.459 

2 7  .482 

TABLE IV 
COMPARISON  OF  THE EXPECTED TOTAL DISCOU~TED COST-TO-GO 

FOR A NEW SYSTEM  FOR THREE KINDS  OF STRATEGIES 

T P j O P R  F A T  
Optimal 
Strategy 

16.693 

- 
a* 
- 
8 

8 
7 

8 
7 
6 
5 
4 

8 
4 
3 
2 

8 
3 

1 
2 

8 
2 
1 

- 

- 

- 

- 

- 

- 

- 
J,(O) 
- 
16.693 

22.921 
23.025 

29.149 
29.17 
29.18 
29.20 
29.27 

34.7 
35.38 

34.90 
34.21 

41.61 
38.84 
38.627 
39.41 

72.75 
57.253 
57.322 

- 

__ 

~ 

- 

- 

- 

increase 
x of 

0.  00% 

i n c r e a s e  
z of 

0.00% 16.693 

22.921 0.06% 0.06% 

1.31% 

1.1zx 

29.149 

- 

35.38 

1.31% 

4.582 

41.61 8.651 5.0 38.296 
0.86; 

10.0 I 57.189 72.75 27.21Z 0.11% 

TABLE V 
VNUATION OF J,(o) WHENp(7) GOES FROM 0.482 TO 0.6 OR 0.8 

Optimal 
Strategy F A T  

.6 
c 0.03% 29.18 6 

c 0.382 29.25 8 
c 0.062  29.18 7 c .03X 28.779 

.8 128.784 I < .05Z I i I 1 29.36 c 0.75% 
29.20 c 0.142 
29.18 < 0.032 

REFERENCES 

I I 1  I. B. Gertsbakh. Models of Preuerlrrw .&furnrenu?rce. Amsterdam. The Netherlands: . .  

[2] A. All and A.  Haurie. “Hierarchical control of a population process  with application 
Noh-Holland, 1977. 

to group preventive  maintenance,” in Proc. 2nd IFAC Workshou h a e  Srule Srs- 
re&. Touiouse.  France. June 1980. 

[3] R.  Boel and P. Varayia. “Optimal control of J U ~ P  p r m s . ”  SIAM J. Conrr. 

[4] P. Bremaud. “Bang-bang controls of point processes,” Adu. Appl. P r o h h i l w .  vol. 8. 
Oprrmr:., vol. 15. pp. 92-  119.  1977. 

[SI R. Rishel. “Controls optimal  from  time r onward  and  dmamic programming  for 
pp. 385-394.  1976. 

systems of controlled Jump processes.” in Srochavic Svssrems .tfodelrng Idenrifrmrron 

. I  

0018-9286/82/0400-0393$00.75 C1982 IEEE 

Authorized licensed use limited to: Université de Montréal. Downloaded on June 10,2020 at 21:54:20 UTC from IEEE Xplore.  Restrictions apply. 


